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Amplified spontaneous emission spectra and light amplification spectra of some 

Nd 3 + :glass rods (silicate glass Schott LG680, phosphate glasses Schott LG760 and 

Hoya LHG5) are measured by pulsed flashlamp excitation. The spontaneous emission 

distribution, the stimulated emission cross-section spectra and the excited state 

absorption cross-section spectra are extracted. Excited state absorption prevents laser 

action around 1320 nm for the 4 F 3 / 2 - 4 l 1 3 / 2 transition of N d 3 + in the investigated glasses. 

1 . I n t r o d u c t i o n 

N d 3 + doped crystals and glasses are widely applied solid-state laser materials [1-6]. F r o m 
the 4 F 3 / 2 upper laser level o f the 4f 3 electrons o f the N d 3 + ions transitions occur to a l l levels 
o f the 4 I y mani fo ld wi th J = 15/2 (transition wavelength X « 1.8 /mi) , J = 13/2 
(X « 1.32/mi), / = 11/2 (A « 1.06 /mi) and / = 9/2 (X « 0.88 / m i , g round state). A n 
energy level d iagram is included i n F i g . 8 [2]. The N d : glass lasers generally operate 
on the 4 F 3 / 2 - 4 I 1 1 / 2 t ransit ion emitt ing a round 1.06 / m i where they have great importance as 
high power and short pulse solid-state lasers. Laser act ion o f Nd:g lass lasers on the 
4 F 3 / 2 - 4 I 1 3 / 2 t ransi t ion [7-9] (flashlamp pumping at r o o m temperature) and o n the 4 F 3 / 2 - 4 I 9 / 2 

transit ion ( room temperature laser pumping [10] and l ow temperature flashlamp pumping 
[8, 11, 12]) has been reported. 

The luminescence linewidths o f the N d : glass laser transitions are rather b road (Av « 100 
to 200 c m - 1 ) due to Stark split t ing o f the involved levels and inhomogeneous broadening 
in the glass matr ix [2-6]. Laser wavelength tuning across the luminescence l inewidth is 
readily achieved by insertion o f a tuning element i n the laser oscil lator [13-16]. 

The possible laser transitions and wavelength tuning ranges depend on the effective 
amplification cross-section distribution o&(X) = &em(X) — oQX{X) where cr e m is the stimulated 
emission cross-section and <rex is the excited state absorption cross-section. F o r the 4 F 3 / 2 - 4 I 1 1 / 2 

transit ion cj e f f values at the laser frequency were determined by laser threshold measure
ments [17-19]. Peak stimulated emission cross-sections c r e m P for the 4 F 3 / 2 - 4 I 1 1 / 2 [2,20-23] and 
the 4 F 3 / 2 - 4 I 1 3 / 2 [21] transitions were determined by measuring absorpt ion cross-sections and 
applying the Judd-Ofe l t mode l o f crystal-field induced electric dipole transitions [2, 20, 24, 
25]. There are few reports o f excited state absorpt ion measurements i n Nd.g lass systems [20, 
26]. In [26] excited state absorpt ion o f the 1.06/mi radia t ion was extracted f rom gain 
saturation measurements (<rex « crem/3), and i n [19] the Judd-Ofe l t theory was applied to 
determine the 4 F 3 / 2 - 2 G 9 / 2 oscil lator strength for the excited state absorpt ion o f the 1.06 /mi 
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Figure 1 E x p e r i m e n t a l a r r a n g e m e n t . L R , laser r o d ; A 1 , A 2 , aper tu res ; L1, L2, lenses; F, f i l te rs ; M , a l u m i n i u m 

mir ror ; M O , m o n o c h r o m a t o r ; P D , PbS de tec to r . 

radia t ion ( 4 F 3 / 2 - 2 G 9 / 2 oscil lator strength is approximately equal to one tenth o f 4 F 3 / 2 - 4 I 1 1 / 2 

oscillator strength). 
In this paper spontaneous emission spectra, stimulated emission cross-section spectra, 

and excited-state absorpt ion cross-section spectra o f some N d : glasses (silicate glass Schott 
L G 6 8 0 , phosphate glasses Schott L G 7 6 0 and H o y a L H G 5 ) are determined by amplified 
spontaneous emission [4] and light amplif icat ion measurements [27]. The studies give 
relative cross-section distributions. Absolu te cross-section distributions are obtained by 
cal ibrat ing the results to reported peak stimulated emission cross-sections c r e m P at the 
wavelength A P a round 1.06 ^ m . a e x(/l P) is assumed to be zero because c r e m P calculations [2, 
20-23] and c e f f (A P ) measurements [17-19] gave similar results wi th in the experimental 
uncertainties. Devia t ions from 0"ex(AP) = 0 should show up in the determined spectra 
i n regions o f negative cr e x. In this case avoid ing negative crex values w o u l d a l low for the 
determination o f a e x ( ^ P ) . The 4 F 3 / 2 - 4 I 1 3 / 2 , 4 F 3 / 2 - 4 I 1 1 / 2 and 4 F 3 / 2 - 4 I 9 / 2 emission transitions are 
considered. 

2. E x p e r i m e n t a l d e t a i l s 
The experimental arrangement for the amplified spontaneous emission ( A S E ) and the light 
amplif icat ion measurements is shown in F i g . 1. The Nd:glass rod L R and two linear flash 
lamps ( I L C Technology model L-2426) are mounted i n a highly reflective double-el l ipt ical 
cylinder (material is a luminium). C o o l i n g water containing N a N 0 2 for ultraviolet ( U V ) 
light filtering is circulated through the p u m p cavity. The power supply ( J K Lasers type 
System 2000) has a capacitor bank o f C = 500 fiF. The flash lamp pulse wid th is approxi 
mately 650 fis. The pump source allows a repetition rate o f up to about 0.2 H z . The rod sizes 
are 3/8" i n diameter and 4" i n length. 

In the A S E measurements the right light path is closed and the light output f rom the 
left r od surface is collected by lens L I and transferred to the monochromator by lens L 2 . 
The monochromator output signal is detected wi th a PbS photoconductor (Va lvo SV61) . 
The recording wavelength is tuned manual ly from shot to shot. The measured signals are 
corrected for the wavelength dependence o f the detection system. The spectral sensitivity 
was determined by recording the spectral d is t r ibut ion o f a halogen-tungsten lamp o f k n o w n 
colour temperature (Osram type H L X 64655, T = 3450 K at 12 V voltage) [28]. F r o m the 
A S E spectra the spontaneous emission spectra and the stimulated emission cross-section 
spectra are extracted (see Section 4 below). 

The light amplif icat ion is measured by feeding back the light emitted at the right side o f 
the r o d wi th the a id o f the mi r ro r M and by detecting the signal increase caused by the 
feedback light. The amplif icat ion is measured at a low pump voltage and a high pump 



T — i — i — i — i — i — i — i — i — i — I — i — i — i — i — i — i — i — i — I — i — i — i — i — i — i — i — i — i — i — i — i — r 

pi i i i I i i i i I i I i l i i i i l i I i i l i i i i l i i i i i 
900 950 1050 1100 1300 1350 H 0 0 

WAVELENGTH X (nm) 

Figure 2 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n p o w e r spec t ra ( ) a n d n o r m a l i z e d s p o n t a n e o u s 

e m i s s i o n p o w e r spec t ra ( ) f o r s i l i ca te laser g lass S c h o t t L G 6 8 0 . P u m p v o l t a g e U = 8 0 0 V. T h e c u r v e s 

in t h e left a n d r i g h t f i g u r e are e x p a n d e d ve r t i ca l l y b y 4 x a n d 5 * , respec t i ve ly . 

voltage. F r o m the amplif icat ion factor o f the feedback light the effective amplif icat ion 
cross-section dis t r ibut ion <reff(/l) = &cm(X) — aQX{X) is extracted (see Section 4 below). 

3. E x p e r i m e n t a l r e s u l t s 
The normal ized A S E spectra /ASEW/^Wmax of the three investigated Nd:g lass rods are 
shown in Figs 2 (LG680), 3 (LG760) and 4 (LHG5). PASEfmax is the m a x i m u m spectral power 
which occurs for the 4 F 3 / 2 - 4 I 1 1 / 2 t ransit ion. The wavelengths lv o f PAsE,max 0 e -
^ A S E ( ^ P ) = ^ASE,max) are ^ P = 1061 n m for LG680 ( F i g . 2), A P = 1054 n m for LG760 
(F ig . 3), and AP* = 1055 n m for L H G 5 (F ig . 4). The 4 F 3 / 2 - 4 I 9 / 2 A S E spectra are Stokes 
shifted f rom the 4 l 9 / 2 - 4 F 3 / 2 absorpt ion spectra (shown i n Figs 6 to 8) because o f fluorescence 
reabsorption by the 4 I 9 / 2 g round state level popu la t ion and because o f thermalizat ion o f 
excitation wi th in the inhomogeneously broadened 4 F 3 / 2 level. 

The amplif icat ion o f the light fed back to the laser r o d is shown i n F i g . 5 for LG680. The 
4 F 3 / 2 - 4 I 1 1 / 2 and 4 F 3 / 2 - 4 I 1 3 / 2 transitions are considered. The ratio p = (i >

t ot"^ASE)/^ASE * s 

plotted versus wavelength for two sets o f pump voltages U{ = 1000 V and U2 = 2000 V . 
P t o t is the total signal compr is ing the A S E signal P A S E and the amplified feedback signal. 
Simi lar curves are obtained for LG760 and L H G 5 . In regions o f p(X, U2) > p{K Ux) the 
feedback light is amplified i n the r o d (cr effW > 0), while i n regions o f p(X, U2) < p(K Ux) 
the feedback light is attenuated (o&{k) < 0). 

4. T h e o r e t i c a l r e l a t i o n s 
The theoretical relations between amplified spontaneous emission, light amplif icat ion, 
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Figure 3 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n ( ) a n d n o r m a l i z e d s p o n t a n e o u s e m i s s i o n spec t ra 

( ) f o r p h o s p h a t e laser g lass S c h o t t L G 7 6 0 . P u m p v o l t a g e U = 8 0 0 V. T h e cu rves in t h e left a n d r i g h t 

f i g u r e are e x p a n d e d ve r t i ca l l y b y 1 0 * a n d 5 * , respec t i ve ly . 

*ASE(A> - ^ s P ( A > TZr~FT\ _ / 1 M A r J 

spontaneous emission, stimulated emission cross-section, and excited-state absorpt ion 
cross-section are derived in the fo l lowing. 

4 . 1 . Relation between spontaneous emission and amplified spontaneous 
emission 

The relat ion between amplified spontaneous emission power dis t r ibut ion P A S E W a n d 
spontaneous emission power dis t r ibut ion Psp(X) is given by [4, 27, 29] 

exp{[<x e mffl - Gex(X)]NJ} ~ 1 

In E q u a t i o n 1 it is assumed that the N d 3 + excitat ion is constant across the rod diameter, 
i.e. Nu(r9 z) = Nu(z) where r is the radia l rod coordinate and z is the axial r od coordinate. 
Nu is the upper laser level popula t ion number density averaged over the r o d length, i.e. 
N u = ^AT u ( z )dz / / . Nu depends on the flashlamp pump power, the 4 F 3 / 2 spontaneous 
emission lifetime and the amplification o f the spontaneous emission [27,29]. A n accumulation 
o f popula t ion i n the terminal laser levels is neglected. 

The gain factor G o f light amplif icat ion is 

G(X) = e x p { K m ( A ) - aex(X)]NJ} (2) 

Insertion o f Equa t i on 2 into Equa t ion 1 and rearranging the terms gives 

P V W = PASEW^Z! (3) 



Figure 4 N o r m a l i z e d a m p l i f i e d s p o n t a n e o u s e m i s s i o n ( ) a n d n o r m a l i z e d s p o n t a n e o u s e m i s s i o n spec t ra 

( ) f o r p h o s p h a t e laser g lass H o y a L H G 5 . P u m p v o l t a g e U = 7 0 0 V. T h e c u r v e s in t h e lef t a n d r i g h t f i g u r e 

are e x p a n d e d b y 1 0 * a n d 5 x , respec t i ve ly . 

F o r weak amplif icat ion G 1 (low flashlamp pump voltage or small cr e f f) the spontaneous 
emission P s p becomes equal to the amplified spontaneous emission PASE-

4.2. Relation between spontaneous emission and stimulated emission cross-
section 

The relat ion between the spontaneous emission dis t r ibut ion E(X) = Psp(X)/jPsp(X)dl 
(integration over a l l 4 F 3 / 2 -> % transitions) and the stimulated emission cross-section 
dis t r ibut ion <7 e m(A) is [4, 20, 30, 31] 

ff«nW = o i n \ — (4) 

where r r a d is the radiative lifetime o f the upper laser level, c 0 is the light velocity i n vacuum, 
and n(X) is the refractive index at the emission wavelength. The refractive indices at 
632.8 n m and at the peak lasing wavelength A P a round 1.06/mi are given i n the Nd:g lass 
data sheets o f Schott [32] and H o y a [33]. n(X) is approximately determined by applying the 
single oscil lator dispersion relat ion [n2(X) — \]j[n2{X) + 2] = C/ (A 0 " 2 — I ' 2 ) where C and 

are fitting constants [34]. 
In our studies the stimulated emission cross-sections oem{kv) at the peak lasing wave

length i P a round 1.06/im are taken f rom data sheets [32, 33] and the spectral dependence 
o f the stimulated emission cross-sections is calculated by 

^ p s p ( i y q P ) 
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Figure 5 N o r m a l i z e d a m p l i f i e d f e e d b a c k l i g h t p o w e r ( le f t o r d i n a t e s ) a n d a m p l i f i c a t i o n f a c t o r G ( r i g h t 

o r d i n a t e s ) ve rsus w a v e l e n g t h f o r S c h o t t g lass L G 6 8 0 . U = 1 0 0 V ( ), U = 2 0 0 0 V ( ) . T h e ( ) 

cu rves represent t h e ave rage f e e d b a c k f a c t o r / = Pbi-m/PASE ( 'e f t o r d i n a t e a p p l y ) . 

E q u a t i o n 5 is derived by appl icat ion o f Equa t i on 4 for <7 e m(A) and c r e m (A P ) wi th E(X) 
propor t iona l to P s p ( A ) . 

Care has to be taken for the 4 F 3 / 2 - 4 l 9 / 2 transit ion since P s p (A) is reduced by luminescence 
reabsorption due to ground-state absorpt ion. E q u a t i o n 5 applies only to the long wave
length side where the thermal popula t ion o f the Stark split 4 I 9 / 2 levels becomes small and 
the luminescence reabsorption becomes weak (see Section 5). 

4.3. Ampl i f i ca t ion of feedback ASE l ight 
The amplif icat ion factor G = Ph,0utlFh;m o f the feedback A S E light is given by E q u a t i o n 2. 
The input feedback light power is P B I N = / P A S E where / is the feedback fraction. The 
amplified feedback light power is Phout = Piot — PASE. These relations give 

1 

7 w 
- 1 = exp{[a e m(/l) - ffcxWR'} (6) 

K n o w i n g c r e m (A P ) — cr e x (A P ) ( = <7 e m (A P ) i n our case) then aem(X) — <rex(A) may be expressed 
by 

In 

^emW - tfexOO = Km(Ap) — 0" e x(/lP)] 

1 

In 
1 

1 

FASE(^P) 
- 1 

(7) 

The determination o f aem(X) — <7ex(A) relative to <7 e m (A p ) — cr e x (A P ) avoids the necessity to 
determine Nu explici t ly. 
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Figure 6 C r o s s - s e c t i o n s o f S c h o t t G lass L G 6 8 0 . C u r v e s are c a l i b r a t e d t o oem? = < 7 e m ( A P ) = 2 .9 * 1 0 " 2 0 c m 2 

w i t h XP = 1 0 6 1 n m [ 3 2 ] . c r e x ( A P ) = 0 is a s s u m e d . A b s o r p t i o n s p e c t r u m ffabs(^) is c a l c u l a t e d f r o m t r a n s 

m i s s i o n s p e c t r u m in [ 3 2 ] . 

The feedback fraction f(X) is nearly wavelength-independent. A s s u m i n g a linear relat ion 
between the upper laser level popula t ion NU and the square o f the flashlamp pump voltage 
U, the feedback fraction /(2) may be determined f rom E q u a t i o n 6 by the fo l lowing relation: 

A*) = - 1 QXp[-K(X)Uf] (8) 
P A S E ( i , U{) 

where K(X)U2 = [<7 e m(T) — oex(A)]NU(U)l = \n[G(l, U)]. K(2) may be expressed by 

l n [ G 0 l , U2)] - ln[G(l, U,)] 
K ( 1 ) = V\ - Uf 

ln[P t o t (A, U2)/PASE(^ U2) - 1] - ln[P t o t (A, U^/P^X, Ux) - 1] 

F o r small p u m p voltages f(X) approaches [Piot(X, U -> 0 ) / P A S E ( A , £ / - » ( ) ) ] — 1. W i t h i n the 
4 F 3 / 2 - 4 I 1 3 / 2 and the 4 F 3 / 2 - 4 I 1 1 / 2 emission bands average f(X) values are used. 

The analysis described above is not applicable to the 4 F 3 / 2 - 4 I 9 / 2 t ransit ion because 
ground-state light absorpt ion has not been included. F o r this case E q u a t i o n 2 has to be 
rewritten to 

G{X) = exp{[cr e mW - <reK(X)]NJ - <7abs(A)7Vg/} 

where <rahs(l) is the 4 I 9 / 2 - 4 F 3 / 2 ground-state absorpt ion cross-section and JVg is the 4 I 9 / 2 

ground-state level popula t ion . Ne t gain G > 1 requires Nu > Nga&hs(X)l[(Tem(X) — vex(X)] 
as i n three-level laser systems [4] . 
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Figure 7 C r o s s - s e c t i o n s o f S c h o t t Glass L G 7 6 0 . Cu rves are c a l i b r a t e d t o < r e m ( ^ P ) = 4 . 2 x 1 0 2 0 c m 2 

(/lp = 1 0 5 3 . 5 n m [ 3 2 ] ) . c r e x ( l P ) = 0 is a s s u m e d . o - a b s (2 ) is c a l c u l a t e d f r o m t r a n s m i s s i o n s p e c t r u m in [ 3 2 ] . 

5. T h e o r e t i c a l r e s u l t s 
Average feedback factors / are determined f rom the ( P t o t — P A S E V ^ A S E curves by applica
t ion o f Equat ions 8 and 9. They are shown by the dash-dotted lines i n F i g . 5 for L G 6 8 0 . 
U s i n g the right ordinates o f F i g . 5 the dashed and sol id curves present the gain curves 
G = ( P t o t - PAsE)l(FASEf) for the pump voltages o f 1000 V (dashed) and 2000 V (solid). 
G > 1 represents dominant amplif icat ion and G < 1 represents dominant attenuation. 

K n o w i n g G(A, U), the PASEWIPASE^X curves o f Figs 3 and 4 (solid curves) may be 
transferred to PSP(X)IPSP^MAX curves by appl icat ion o f Equa t i on 3. They are shown by the 
dashed curves in Figs 2, 3 and 4. The spectral nar rowing o f the A S E curves compared to 
the spontaneous emission curves is small because the gain G(XP) is small for displayed A S E 
spectra (G(A P, 800 V ) « 1.1 for L G 6 8 0 , G(A P, 800 V ) « 1.25 for L G 7 6 0 , and G(A P, 700 V ) « 
1.19 for L H G 5 ) . The 4 F 3 / 2 - 4 I 1 3 / 2 fluorescence peaks around 1330nm are approximately a 
factor o f 9.3 smaller than the 4 F 3 / 2 - 4 I 1 1 / 2 fluorescence peaks P s p > m a x at AP around 1055 n m for 
al l three investigated Nd:glass rods. The 4 F 3 / 2 - 4 I 9 / 2 fluorescence peaks of the phosphate laser 
rods L G 7 6 0 and L H G 5 occur around 907 n m and are approximately a factor o f 11 smaller 
than P s p ? m a x , while the 4 F 3 / 2 - 4 I 9 / 2 fluorescence peak o f the silicate laser rod L G 6 8 0 is located 
at 918 n m and its relative height is P s p (918 n m ) / P s p m a x = 0.21. 

The stimulated emission cross-sections <7em(A) are derived from Equa t ion 5 and are dis
played by the solid curves i n Figs 6, 7 and 8 for the laser glasses L G 6 8 0 , L G 7 6 0 and L H G 5 , 
respectively. The curves are adjusted to the <x e m(A P) values o f the data sheets [32, 33]. F o r the 
4 F 3 / 2 - 4 I 9 / 2 transition only the long-wavelength part o f the solid curves (X > 930 n m for 
L G 6 8 0 , X > 910 n m for L G 7 6 0 and L H G 5 ) gives correct cr e m values. The dotted curves show 



Figure 8 C r o s s - s e c t i o n s o f H o y a Glass L H G 5 . C u r v e s are c a l i b r a t e d t o <7 e m (^p) = 3 . 9 * 1 0 " 2 0 c m 2 

( 2 P = 1 0 5 4 n m in [ 3 3 ] ) . oex(X?) = 0 is a s s u m e d . <r a b s (A) is r e d r a w n f r o m [ 3 5 ] . T h e inser ted level d i a g r a m is 

r e d r a w n f r o m [ 2 ] . 

the expected wavelength dependence o f oem. They are drawn by assuming a mir ror symmetry 
between <rem and <rabs [5, 31]. The 4 F 3 / 2 - 4 I 9 / 2 absorption spectra are shown by the short-dashed 
curves. They are calculated f rom transmission spectra displayed i n [32] for the Schott glasses 
L G 6 8 0 and L G 7 6 0 and from an optical density spectrum o f L H G 5 given i n [35]. 

The (Teff(A) curves are derived f rom E q u a t i o n 7 and are displayed by the dashed curves 
i n the Figs 6 to 8. <rex(AP) = 0 is assumed. F o r the 4 F 3 / 2 - 4 I 9 / 2 transitions the <reff spectra are 
not shown because o f the ground state light absorpt ion. The difference o f <rem(^) — G^{X) 
gives the excited state absorpt ion cross-section. F o r the 4 F 3 / 2 - 4 I i 3 / 2 transitions a round 
1.32 /mi the crex(A) spectra are shown by the dash-dotted curves. 

The excited state absorpt ion cross-sections are remarkably large i n the region o f the peak 
stimulated emission cross-section o f the 4 F 3 / 2 - 4 I 1 3 / 2 t ransi t ion. This f inding is i n agreement 
wi th the observation o f a long-wavelength shift o f laser act ion to the region between 
1.35 /mi and 1 40 / m i [7-9] while the peak o f spontaneous emission is between 1.325 / m i and 
1.335 /mi . The excited state absorpt ion is due to transitions f rom the 4 F 3 / 2 level to the 2 K 1 3 / 2 , 

4 G 7 / 2 , and 4 G 9 / 2 levels as is seen by the level d iagram inserted i n F i g . 8. The strong excited 
state absorpt ion a round 1.32/mi is unfavourable for the appl icat ion o f Nd:g lass lasers on 
the 4 F 3 / 2 - 4 I 1 3 / 2 t ransit ion. 

The c e f f(A) and <7em(/l) curves for the 4 F 3 / 2 - 4 I 1 1 / 2 t ransi t ion a round 1.06 / m i agree wi th in the 
uncertainties. The peak heights at kv are adjusted to the same value. Gex(X) values up to 
about 2 0 % o f the <rem(/lp) values cannot be excluded because the assumption cr e x (2 P ) = 0 
is only va l id w i th in this l imi t [20,26] and the deviations between cjem and <7EFF are o f this order. 



The ground-state absorpt ion occurr ing for the 4 F 3 / 2 - 4 I 9 / 2 t ransi t ion hinders a determina
t ion o f cr e f f(A) and o"ex(/l). The cr e m(A) distr ibutions cou ld be determined roughly f rom the 
4 F 3 / 2 - 4 I 9 / 2 absorpt ion spectra. Laser act ion on the 4 F 3 / 2 - 4 I 9 / 2 t ransmission seems to 
be possible under strong pumping condit ions as they are necessary for three-level laser 
systems [4, 5]. 

6. C o n c l u s i o n s 
Stimulated emission cross-section, cr e m , and excited-state absorpt ion cross-section, erex, 
distr ibutions for neodymium doped glasses have been determined by amplified spontaneous 
emisssion and light amplif icat ion measurements o f flashlamp pumped rods. The obtained 
effective stimulated emission cross-section curves, <jeff = aem — c e x , give a clear indica t ion 
o f the possible lasing regions o f the glass rods. The described measurement technique may 
also be applied to other solid-state laser materials employing four-level laser transitions. 

The absolute peak stimulated emission cross-sections, c r e m (2 P ) , were taken from the 
literature. I f addi t ional ly the radiative lifetime, i r a d , o f the upper laser level is determined 
(see E q u a t i o n 4 [31]), e.g. by fluorescence lifetime, T f , and fluorescence quantum yield, 0 F , 
measurement ( r r a d = T f / 0 f ) , then absolute o" e m(A) curves are obtainable. 
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