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Abstract – In this paper, we control the motion of a flock of 1-trailer systems. A set of 
artificial potential field functions is proposed for split/rejoin of the flock of 1-trailer robots via 
the Lyapunov-based control scheme for the avoidance of obstacles and attraction to their 
designated targets. A leader follower strategy is used to accomplish the desired formation and 
reformation of the flock.  The flock maintains a prescribed formation, splits and maneuvers 
around obstacles and then returns to its original position in the prescribed formation. The 
various formations shapes that we shall consider are the line, column, arrowhead and the 
double platoon. The effectiveness of the proposed control laws are demonstrated through 
computer simulations. 
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1 Introduction 
 Formation behaviors seen in nature, like flocking and schooling, benefit 
individuals like animals that use them in various ways. Flocking is a 
coordinated and cooperative motion of groups (flocks) of entities or beings, 
ranging from simple bacteria to mammals [1].   Common examples include 
schools of fishes, flocks of birds, and herds of land animals, to name a few. 
This outstanding behavior is based on the principle that there is safety and 
strength in numbers [2], [3]. Conversely, if a flock is attacked, the members 
can disperse, thus avoid being captured and rejoin later at a safe distance. At 
the same time flocking behavior can contribute to safer long range migration 
[4]. The control mechanism of formation control can be divided into three 
layers; formation shape, formation type and robotic control.  

 The basic flocking model consists of three simple steering behaviors; 
separation, alignment and cohesion, which describe how an individual member 
or boid maneuvers, based on the positions and velocities of its nearby 
flockmates [5]. There are various approaches found in literature in relation to 
the strict observance of a prescribed formation of a flock during motion [6], 
[7]. One is the split/rejoin maneuver in flock of birds, swarms of insects and 
ants, and herds of animals. There are various applications of split/rejoin 
maneuvers in the field of robotics, for example, reconnaissance, sampling and 
surveillance. The other considers tight formations as can be required in many 
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engineering applications, for example parallel and simultaneous transportation 
of vehicles or delivery of payloads [8], [9], [6], [7], [10]. 

 In recent years the split/rejoin maneuvers in robotic applications have 
become progressively more popular [8], [10], [11]. Many researchers have 
utilized various techniques to create swarming and flocking behaviors for multi 
agent systems. Recently, Sharma et al. [12], [7], [13] and Vanualailai et al. [14] 
proposed control algorithms that considered motion planning and control of 
mobile robots within a constrained environment cluttered with obstacles. In 
[15], the authors considered the autonomous control of a flock of six 1-trailer 
robots in an arrowhead formation.  Continuous acceleration control laws were 
derived from the Lyapunov-based control scheme. The Lyapunov-based 
control scheme requires the design of target attractive functions and obstacle 
avoidance functions [16]. In this paper, we adopt this control scheme to control 
the flocking motion of a group of 1-trailer robots.  

 The attractive potential field functions enable the flock of tractor-trailer 
robots to move towards their designated target. The repulsive potential field 
functions, on the other hand, ensure a collision free avoidance in the 
workspace. One of the common reference types widely used in formation 
control is the leader-follower strategy. The split/rejoin maneuver for a flock of 
n 1-trailer system in this research is guided by the above strategy. The flock 
maintains a prescribed formation, splits and maneuvers around obstacles and 
then returns to its original position in the prescribed formation. 

 This paper is organized as follows: in Section 2 the robot model is 
defined; in Section 3 and 4 the artificial potential field functions are defined; in 
Section 5 the dynamic constraints are defined; in Section 6 the acceleration-
based control laws are derived; in Section 7 we illustrate the effectiveness of 
the proposed controllers via simulations and in Section 8 we conclude the 
paper and outline future work in the area. 

2 Vehicle Model 
 Two different trailer systems can be distinguished from literature; standard 
and the general trailer systems, grouped into two different categories based 
upon their different hooking schemes [13]. The standard 1-trailer system 
embodies a car-like robot and an on-axle hitched two wheeled passive trailer. 
The authors will consider n standard 1-trailer system, in Euclidean plane. With 
reference to Figure 1, ( ),im imx y for 1, 2m =  represents the Cartesian 
coordinates and gives the reference point of each solid body of the articulated 
robot, 1iθ and 2iθ  give the orientations with respect to the 1z  axis of the ith 

The 7th IMT-GT International Conference on Mathematics, Statistics and its Applications 
(ICMSA 2011) 
__________________________________________________________________________________369

ISBN: 978 - 974 - 231- 812 - 3
_____________________________________________________________________________________________________



tractor and trailer, respectively, while iφ  gives the ith tractor’s steering angle 
with respect to its longitudinal axis. For simplicity, the dimensions of the n 
members are kept the same. Therefore, 1L  is the distance between the center of 
the rear and front axles of the ith tractor, 2L is the distance from the midpoint 
of the rear axle of the tractor robot to the midpoint of the rear axle of the 
attached trailer and w is the length of each axle. The connections between the 
two bodies give rise to the following holonomic constraints on the system:    

1 2 1 22 2
2 1 1 2 2 1 1 22 2 2 2cos cos ;     sin sinL L d L L d

i i i i i i i ix x y yθ θ θ θ+ += − − = − −  

We define 1:d cε= + , where c is a small offset (see Fig 1). The model of the 
ith tractor-trailer, adopted from [13], is  

( )

1

1

2

1 1 1 1 1 22

1 1 1 2 1 22

cos sin ; ;  ;  

sin cos ;  sini

L
i i i i i i i i i i i

vL
i i i i i i i iL

x v v

y v

θ ω θ θ ω σ ω σ

θ ω θ θ θ θ

⎫= − = = = ⎪
⎬

= + = − ⎪⎭

� �� �
��

 

where iv and iω are, respectively, the instantaneous translational and rotational 
velocities, while 1iσ  and 2iσ  are the instantaneous translational and rotational 
accelerations of the ith tractor. Without loss of generality, we assume 1i iφ θ= .  
The state of the ith tractor-trailer robot is then described by  

( ) 6
1 1 1 2: , , , , ,i i i i i i ix y vθ θ ω= ∈x \  for 1,2, ,i n= … . For the n members in the 

flock, we define ( ) 6
1: , , n

n
×= ∈x x x… \ . 

 

 

 

                                                                                                            

                                                                                                              

 

 

 

Fig. 1. Kinematic model of the ith 1-trailer                   Fig. 2. Positioning of a mobile target   
                         boid.                                                        relative to the position of the leader.            

 

(1) 
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3 Attractive Potential Field Functions 
3.1  Attraction to Target 
 This section formulates collision free trajectories of the robot system 
under kinodynamic constraints in a fixed and bounded workspace. It is 
assumed that the tractor-trailer robots have priori knowledge of the whole 
workspace. We want to design the acceleration controllers, 1iσ  and 2iσ , so that 
the flock moves safely towards their respective targets. The leader-follower 
strategy utilized here is adopted from [17]. The flock of tractor-trailer robots 
follows one particular robot which acts as the leader. This is attained by fixing 
mobile ghost targets relative to the position of the leader (Figure 2).  

Each of the follower robots have a different ghost target designated to it. While 
the leader moves towards its defined target, the ghost targets move relative to 
its position and the follower robots move towards their designated ghost target. 
We affix a target for each tractor-trailer robot to reach after some time t. For 
the ith tractor-trailer, we define a target  

( ) ( ) ( ){ }2 22 2
1 1 2 2 , :i i i iT x y z t z t rt= ∈ − + − ≤\  

with center ( )1 2,i it t  and radius irt . The leader moves towards its target 

( )11 12, .t t  For the followers, the mobile ghost targets are positioned relative to 

the position of the leader whose center is given by ( ) ( )1 2 11 11, ,i i i it t x a y b= − − , 
for 2, ,i n= … . For the attraction to these targets, we consider an attractive 
potential function  

( ) ( ) ( )2 2 2 21
1 1 1 22i i i i i i iV x t y t v ω⎡ ⎤= − + − + +⎣ ⎦x  

for 1, ,i n= … . This function is a measure of the distance between the first body 
of the ith tractor-trailer robot and its target iT .   

3.2 Auxiliary Function 
 To guarantee the convergence of the tractor-trailer mobile robot to its 

designated target, we design an auxiliary function defined as          

( ) ( ) ( ) ( ) ( )2 2 2 21
1 1 1 2 1 3 2 42i i i i i i i i iG x t y t t tθ θ⎡ ⎤= − + − + − + −⎣ ⎦x  

(2) 

(3) 
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for 1, ,i n= …   where 3it is the desired final orientation of the ith tractor and 4it
is the desired final orientation of the ith trailer. This potential function is then 
multiplied to the repulsive potential functions to be designed in the following 
sections. 

4 Repulsive Potential Field Functions 
 We desire the members of the flock to avoid all stationary and moving 
obstacles intersecting their paths. For this, we construct the obstacle avoidance 
functions that merely measure the distances between each body of the 
articulated robot and the obstacles in the workspace. To obtain the desired 
avoidance, these potential functions appear in the denominator of the repulsive 
potential field functions. This creates a repulsive field around the obstacles.  

4.1 Fixed Obstacles in the Workspace 

 Let us fix q solid obstacles within the workspace and assume that the lth 
obstacle is circular with center ( )1 2,l lo o and radius lro . For the mth body of the 
ith articulated robot with a circular avoidance region of radius vr  to avoid the 
lth obstacle, we adopt 

( ) ( ) ( ) ( )2 2 2
1 2

1         
2iml im l im l l vW x o y o ro r⎡ ⎤= − + − − +⎣ ⎦x  

for 1, , , 1,2 and 1,2 , .i n m l q= = =… …  

4.2 Moving Obstacles 

 To generate feasible trajectories, we consider moving obstacles of which 
the system has priori knowledge. Here, each member of the flock becomes a 
moving obstacle for all the other members. Therefore, for the mth body of the 
ith tractor trailer to avoid the uth body of the jth tractor-trailer, we have  

( ) ( ) ( ) ( )2 2 21
2 2muij im ju im ju vM x x y y r⎡ ⎤= − + − − ×⎢ ⎥⎣ ⎦

x  

for , 1,...,  with  and , 1,2.i j n i j m u= ≠ =  

4.3 Dynamic Constraints 

 Practically, the steering and bending angles of an articulated robot is 
limited due to mechanical singularities while the translational speed is 
restricted due to safety reasons. Subsequently, we have; ( ) maxv v≤i  , where 

(4) 

(5) 
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maxv  is the maximal speed of the tractor; ( ) 2i max
πφ φ≤ <ii  , where maxφ  is the 

maximal steering angle of the tractor; and ( ) 1 2 2i i max
πθ θ θ− ≤ <iii  , where maxθ  

is the maximum bending angle of the trailer with respect to the orientation of 
the tractor. This prevents a jack knife situation. Thus, the trailer is free to rotate 
within ( )2 2,π π− . Considering these constraints as artificial obstacles, we have 
the following potential field functions: 

( ) ( )( )

( )

( ) ( )( ) ( )( )

1
1 max max2

max max1
2 2

min min

1
3 max 2 1 max 2 12

i i i

i i i

i i i i i

DC v v v v

v vDC

DC

ω ω
ρ ρ

θ θ θ θ θ θ

= − +⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞

= − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤= − − + −⎣ ⎦

x

x

x

 

for 1, ,i n= … . These potential functions guarantee the adherence to the above 
restrictions placed upon the translational velocity iv , steering angle iφ , and the 
rotation angle 2iθ  of the ith trailer, respectively. 

5 Design of Control Laws 
 Combining all the potential functions ( )2 8− , and introducing constants, 
denoted as the control parameters , 0, 0iml muijα β> >  and 0isγ > for 
, , , , ,i j l m s u∈` , we define a candidate  Lyapunov function  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 2 2

1
1 1 1 1 1 1 1

i j

qn n
muijiml is

i i
i m l s j m uiml is muij

L V G
W DC M

βα γ

≠
= = = = = = =

⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎪⎢ ⎥= + + + ⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∑ ∑∑ ∑ ∑∑∑x x x

x x x
 

Clearly, ( )L x is locally positive and continuous on the domain 

( ) ( ) ( ){ 6 : 0,  0 ,n
iml isD L W DC×= ∈ > >x x x\ ( ) }0 .muijM >x We define 

( ) 6
1 2 3 4: , , , 0,0 n

e i i i it t t t ×= ∈x \ for 1, ,i n= …  as an equilibrium point of system

( )1 . Thus, we have ( ) 0eL =x .   

(6) 

(7) 

(8) 

(9) 
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for 2, ,i n= … , and  

 
1 2

5 62 2
1 2

1 ,         1i i
i i i i

i i

f G f G
DC DC
γ γ

= + = +                  

 
for 1, ,i n= … .                                                                 

 We note that ( ) ( ) ( )2 2
1 21

1

0
n

i i i i
i

L vδ δ ω
=

= − + ≤∑x�  for all ( )D L∈x , and 

( ) ( )1 0eL =x� .  
 
A careful scrutiny of the properties of our scalar function reveals that ex is an 
equilibrium point of system ( )1  in the sense of Lyapunov and ( )L x  is a 
legitimate Lyapunov function guaranteeing stability. This is in no contradiction 
with Brockett’s result [18] as we have not proven asymptotic stability. 

6 Simulation 
 To illustrate the effectiveness of the proposed controllers, we present a 

split/rejoin maneuver of a flock of six, 1-trailer robots. The robots are clustered 
at the starting line, then get into a prescribed formation and move in the 
direction of their targets. Upon encountering an obstacle, the formation of the 
articulated robots split. The members move around the obstacle and later rejoin 
the group into their prescribed formation. 
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TABLE 1 
NUMERICAL VALUES OF INITIAL STATES, CONSTRAINTS AND  

PARAMETERS  FOR THE ARROWHEAD FORMATION. 
                                   Initial Conditions 

Rectangular positions 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 11 21 21 31 31 41 41

51 51 61 61

, 10,14 , , 10,17 ; , 10,11 , , 4,14 ;

, 4,17 , , 4,11

x y x y x y x y

x y x y

= = = =

= =

    
 

Angular positions and 
velocities 

1 0.5v =  and 9iv = for 2i = to 6, 1 20.8, 0 i i iω θ θ= = =  for i =  1 to 6 

Control and Convergence Parameters 

Obstacle avoidance 0.5imlα =  for 1i = to 6, 1,2m = and 1,2l =  

Boid avoidance 0.001muijβ =  for 1i = to 6, 1j = to 6, i j≠ , 1,2m = and 1,2u =  

Dynamic constraints 0.1isγ =  for i =  1 to 6 and 1s =  to 4 

Convergence 11 92σ = , 1 10iσ =  for i =  2 to 6 and 2 10iσ = for i =  1 to 6  

                            Constraints and Parameters 

Final orientations 3 4, 0i it t =  for i =  1 to 6 

Leader Target ( ) ( )11 12, 80,14t t = , 1 0.2rt =  

Dimensions of boids 1 21.3, 1.9, 0.5 L L w= = =  

Position of ghost 
targets relative to 
position of leader 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 3 3 4 4

5 5 6 6

, 3, 3 , , 3,3 , , 6,0 ,

, 9, 3 , , 9,3

a b a b a b

a b a b

= − = =

= − =

 
 

Fixed obstacles
( )1 2,l lo o  ( ) ( ) ( ) ( )11 12 21 22 1 2, 40,20 , , 40,8 ; 2.5o o o o ro ro= = = =   

Max. translational 
speed max 10v =  

Min. turning radius min 0.75ρ =  

Clearance parameters 1 20.1, 0.2 ε ε= =  
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The leader is chosen arbitrarily from the flock. The members of the flock move 
towards their ghost targets positioned relative to their leader. The corresponding initial 
and final states and other details for the simulation are listed in Table 1 (assuming that 
appropriate units have been taken into account). From the initial configuration, the 
members of the flock quickly move into a desired formation. Upon encountering an 
obstacle, the members split from their designated formation and maneuver around the 
obstacles. While avoiding the two obstacles, the members maintain a collision free 
avoidance with another member of the flock. After avoidance, the members rejoin the 
flock into the same prescribed formation.  Several formations of a team of six 1-trailer 
robots are considered (Fig 8): 
• Line – the robots travel line-abreast. 
• Column – the robots travel one after the other. 
• Arrowhead – the robots travel in an arrowhead formation. 
• Double Platoon – the robots travel in double platoon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               Fig. 4. Accelerations: 11σ and 12σ .   Fig. 5. Evolution of ( )xL  and its time derivative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Fig. 6. Translational Velocities: 1v , 2v and 6v .         Fig. 7. Orientations of the 1st body of the  
              leader and its followers. 
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(a) Line 

 

 

 

    

 

 

 

 

(b) Column   

 

 

 

 

 

 

 

 

 

(c) Arrowhead   
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(d) Double-Platoon      

Fig. 8: The line, column, double platoon and arrowhead formation, split/rejoin maneuvers for a flock of 
six 1-trailer robots and reformation before reaching its final state. 

 

Fig. 4 and Fig.5 show the convergence and boundedness of the variables at the final 
state, respectively, implying the effectiveness of the control laws. Fig. 6 and Fig.7 
show the time evolution of the translational and rotational accelerations of the leader. 

 

7 Conclusion 
This paper presents a set of artificial field functions derived from a Lyapunov-based 

control scheme. We were able to generate a prescribed formation, split/rejoin when 
necessary to maneuver around obstacles and re-group to the original formation. The 
derived controllers produced feasible trajectories and ensured a nice convergence of 
the system to its equilibrium state while satisfying the necessary kinematic and 
dynamic constraints. We note here that convergence is only guaranteed from a number 
of initial states of the system. 

The prescribed formations of the flock were possible by the leader-follower strategy 
that involved having mobile ghost targets positioned relative to the position of the 
leader. Future research will address the general tractor-trailer systems and extending 
the results to steerable trailer systems. 
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