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a b s t r a c t

Null linear discriminant analysis (LDA) method is a popular dimensionality reduction method for

solving small sample size problem. The implementation of null LDA method is, however, computa-

tionally very expensive. In this paper, we theoretically derive the null LDA method from a different

perspective and present a computationally efficient implementation of this method. Eigenvalue

decomposition (EVD) of SþT SB (where SB is the between-class scatter matrix and SþT is the pseudoin-

verse of the total scatter matrix ST) is shown here to be a sufficient condition for the null LDA method.

As EVD of SþT SBis computationally expensive, we show that the utilization of random matrix together

with SþT SB is also a sufficient condition for null LDA method. This condition is used here to derive a

computationally fast implementation of the null LDA method. We show that the computational

complexity of the proposed implementation is significantly lower than the other implementations of

the null LDA method reported in the literature. This result is also confirmed by conducting classification

experiments on several datasets.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Dimensionality reduction is an important aspect of pattern
classification. It helps in improving the robustness (or general-
ization capability) of the pattern classifier and in reducing its
computational complexity. The two well known dimensionality
reduction techniques are principal component analysis (PCA) and
linear discriminant analysis (LDA) [12]. PCA is an unsupervised
learning algorithm and LDA is a supervised learning technique.1

The LDA technique finds an orientation matrix W that transforms
high dimensional feature vectors belonging to different classes to
lower dimensional feature vectors such that the projected feature
vectors of a class are well separated from the feature vectors of other
classes. If the dimensionality reduction is from d-dimensional space
to h-dimensional space (where hod), then the orientation (or
transformation) matrix W¼ ½w1,w2,. . .wh� belongs to Rd�h and is
of rank h; i.e., it has h non-zero column vectors that are linearly
independent. For a c-class problem, the value of h will be c�1 or
less; i.e., 1rhrc�1. The orientation W is obtained by maximizing
the Fisher’s criterion function. This criterion function depends on
three factors: orientation W, within-class scatter matrix ðSW ARd�d

Þ

or total scatter matrix ðST ARd�d
Þ and between-class scatter matrix
ll rights reserved.

ation capabilities of PCA and
ðSBARd�d
Þ. The Fisher’s discriminant ratio can be given by

9WTSBW9=9WTSW W9. It has been shown in the literature [12] that
the modified version of Fisher’s criterion

JðWÞ ¼
9WTSBW9

9WTST W9
ð1Þ

produces similar results. In the conventional LDA technique, the
within-class scatter matrix (SW) or total scatter matrix (ST) (depend-
ing upon the criterion taken) needs to be non-singular.

In this paper, we are interested in a small sample size (SSS)
problem [12], where the dimensionality of the feature space (d) is
very large compared to the number of training samples (n). A
number of pattern recognition applications (such as cancer
classification from microarray data, face recognition, etc.) fall in
this category. When the number of training samples is less than
the dimensionality, the scatter matrices SW and ST become
singular and it is not possible to use the conventional LDA
technique for dimensionality reduction. This drawback is consid-
ered to be the main problem of LDA and is known as the SSS
problem [12].

Several methods have been proposed to overcome the SSS
problem. These include pseudo-inverse LDA method [40,32], regu-
larized LDA method [11,14], Fisherface LDA method [37,2], direct
LDA method [47], and null LDA method [6]. Some other related
methods are reported in [22,16,15,34,35,23,27,28,26,25,30,5]. Among
these methods, the null LDA method is a highly competitive method
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in terms of classification performance and has been very popular in
the pattern recognition literature.

In the null LDA method, the dimensionality is reduced in two
stages. In the first stage, the training samples are projected on the
null space of within-class scatter matrix SW (i.e., the range space
of SW is discarded). In the second stage, the dimensionality is
reduced by choosing h eigenvectors of the transformed between-
class scatter matrix corresponding to the highest eigenvalues.
Therefore, the null LDA method optimizes the Fisher’s criterion
sequentially in two stages.

The computational complexity of the null LDA method is
approximately Oðd2nÞ, which is very high when the dimensionality
of the feature space is very large. In order to reduce this computa-
tional complexity, the principal component analysis (PCA) plus null
space method has been proposed [17,43]. In this method, a pre-
processing step is introduced where PCA technique is applied to
reduce the dimensionality from d to n�1 by removing the null
space of total-scatter matrix ST (assuming feature vectors are
linearly independent and, thus, rankðST Þ ¼ n�1). It has been shown
[17,43] that this pre-processing step does not discard any useful
discriminative information as SB and SW are zero in the null space of
ST. In the reduced n�1 dimensional space, it is manageable to
compute the null space of SW. This pre-processing step is then
followed by the two steps of the null LDA method. The computa-
tional complexity of PCAþnull LDA method is estimated to be
16dn2

þ4dnc flops (for dbn). The computational complexity is also
reduced by Ye [44]. He has proposed orthogonal LDA (OLDA)
method which is shown to be equivalent to the null space based
method under a mild condition; i.e., when the training vectors are
linearly independent [45]. In his method, the orientation matrix W is
obtained by simultaneously diagonalizing scatter matrices. The
computational complexity of OLDA method is estimated to be
14dn2

þ4dncþ2dc2 flops (where c is the number of classes).
Recently, Chu and Thye [7] proposed a new implementation of null
LDA method by doing QR decomposition. There approach requires
approximately 4dn2

þ2dnc computations. Though these methods
exhibit faster implementations of null LDA method, their computa-
tional complexity is still high (as d and n grow larger and dbn).

In this paper, we present a new computationally fast proce-
dure for the null space method. The computational complexity of
our implementation is dn2

þ2dnc and can be reduced to Oðdn1:376Þ,
which is significantly lower than other implementations of null
LDA method. Here, we derive this procedure theoretically and
demonstrate its effectiveness empirically on several datasets.
2. Null LDA method: alternative derivation

2.1. Basic notations

Let be a set of n training vectors (samples or patterns) in a
d-dimensional feature space, and O¼ foi : i¼ 1,2,:::,cg be the
finite set of c class labels, where oi denotes the ith class label.
The set can be subdivided into c subsets 1, 2,y, c (where
subset i belongs to oi); i.e., i � and 1 [ 2 [ � � � [ c ¼ .
Let ni be the number of samples in class oi such that:

n¼
Xc

i ¼ 1

ni

The samples or vectors of set can be written as:

¼ fx1,x2,. . .,xng, where xjARd:
Let lj be the centroid of w
j and l be the centroid of w, then the

between-class scatter matrix SB is given by

SB ¼
Xc

j ¼ 1

njðlj�lÞðlj�lÞT

The within-class scatter matrix SW is defined as

SW ¼
Xc

j ¼ 1

Sj,

where

Sj ¼
X
xAwj

ðx�ljÞðx�ljÞ
T

The total-class scatter matrix ST is defined as

ST ¼
Xn

j ¼ 1

ðxj�lÞðx�lÞT:

It can be shown [10] that ST ¼ SBþSW . The matrix ST can also
be formed as follows ST¼AAT, where AARd�n is defined as

A¼ ðx1�lÞ,ðx2�lÞ,. . .,ðxn�lÞ
� �

In a similar way, SB can be formed as SB¼BBT, where rectan-
gular matrix BARd�c can be defined as

B¼ ½
ffiffiffiffiffi
n1
p
ðl1�lÞ,

ffiffiffiffiffi
n2
p
ðl2�lÞ,. . .,

ffiffiffiffiffi
nc
p
ðlc�lÞ�

It can be seen that ST, SB and SW are symmetric matrices. In this
paper, we assume that the n training vectors or patterns are
linearly independent. Therefore, the ranks of matrices
ST ,SB, andSW are t¼n�1, b¼c�1 and n�c, respectively. Thus,
rankðST Þ ¼ rankðSBÞþrankðSW Þ.

2.2. Basis

The essence of null LDA method is to find the orientation or
transformation matrix W¼ ½w1,w2,. . .,wh�ARd�h (of rank h) that
satisfies the following two criteria (or conditions):

SW W¼ 0, ð2Þ

and

SBWa0 ð3Þ

Under these two conditions (Eqs. (2) and (3)), it can be seen
that the modified Fisher’s ratio (Eq. (1)) attains a maximum value
of 1; i.e., JðwiÞ ¼ 1 for i¼1yh. Note that W satisfying these two
conditions will have c�1 independent column vectors. When
h¼c�1, then this W defines the transformation matrix for the
null LDA method. However, when 1rhoc�1, then the transfor-
mation matrix WARd�h (with h column vectors) for null LDA
method can be obtained by

W¼ arg max
9WTSW W9 ¼ 0

9WTSBW9 ð4Þ

Since ST ¼ SBþSW , we can write SW W¼ 0 as

ðST�SBÞW¼ 0

or SBW¼ ST W

or W¼ S�1
T SBW ð5Þ

Eq. (5) is a necessary condition for null LDA method; i.e., if W
defines the transformation matrix for the null LDA method, then
it has to satisfy this equation. This condition can also be shown to
be sufficient for the null LDA method; i.e., if WARd�h (of rank h)
satisfies this equation, then it will satisfy the two above-men-
tioned criteria of the null LDA method (see Appendix-A for the
proofs). The problem with Eq. (5) is that ST becomes singular in
SSS problem and it is not possible to compute the inverse of
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matrix ST . Therefore, for singular cases, the approximation of the
inverse of ST is used:

W¼ SþT SBW ð6Þ

where SþT is the pseudo inverse of ST . It will be shown in the next
sub-section that Eq. (6) is a sufficient condition for the null LDA
method. Though this equation can be used to compute the
transformation W for the null LDA method, it has the problem
that it requires eigenvalue decomposition of SþT SB which is very
difficult to compute due to the large size of SþT SB. In order to make
the computation of W to be easier, we replace W on the right
hand side of Eq. (6) by a random matrix YARd�ðc�1Þof rank c�1;
i.e., we use the following equation to compute the orientation
matrix W:

W¼ SþT SBY ð7Þ

We will prove in the next sub-section that this equation is a
sufficient condition for the null LDA method. The matrix
WARd�ðc�1Þ obtained in this manner has c�1 linearly indepen-
dent vectors as its columns and these vectors may not be
orthonormal. However, if we want to have WARd�h with h

orthonormal vectors (where 1rhrc�1), then eigen-value
decomposition (EVD) can be applied to select h leading ortho-
normal eigenvectors of WTSBW. If h¼ c�1, then QR decomposi-
tion can also be applied on the column vectors of W to make these
vectors orthonormal. Thus, we can ensure that the h eigenvectors
obtained by using either EVD or QR decomposition will always be
orthonormal. The matrix WARd�h obtained from these h eigen-
vectors defines the orientation or transformation matrix for the
proposed null LDA method and it is used for reducing the
dimensionality from d to h.

The random matrix YARd�ðc�1Þ used in eq. 7 has the following
two properties: 1) it is c�1 column vectors are linearly indepen-
dent; i.e., the rank of random matrix is c�1, and 2) when it is
multiplied with the matrix SþT SB of rank c�1, it is product ðSþT SBYÞ
will also have rank equal to c�1 as no two elements of random
matrix Y are identical and its elements Yij are random numbers
uniformly distributed in the range 0oYijo1. This will make sure
that all the c�1 column vectors of W are independent.

Furthermore, the training feature vectors are assumed to be
linearly independent; i.e., the rank of SþT SB will always be equal to
the number of classes minus one ðc�1Þ. This will ensure the
dimensionality reduction of feature vectors from d-dimensional
space to c�1 dimensional space. If these vectors are linearly
dependent, then dependent vectors can be surgically removed
(though we have never observed this case for the databases we
have investigated in this paper).
2.3. Proof

In this sub-section we first prove that Eq. (6) is a sufficient
condition for the null LDA method and then prove the sufficiency
of Eq. (7) for the null LDA method.
2.3.1. Proof of equation 6 being a sufficient condition for the null

LDA method

Here we show that W given by Eq. (6) is sufficient condition
for the null LDA method; i.e., when W satisfies Eq. (6), it will also
satisfy SW W¼ 0 and SBWa0. This proof is given below in the
form of Theorems 1 and 2.

Theorem 1. If the matrix WARd�h satisfies the relation
W¼ SþT SBW, then it is in the null space of SW ; i.e., WTSW W¼ 0.
Proof 1. Let us define

HðWÞ ¼WTSW W ðT1:1Þ

Using ST ¼ SBþSW , it becomes

HðWÞ ¼WT
ðST�SBÞW ðT1:2Þ

It is given that

W¼ SþT SBW ðT1:3Þ

Substituting this value of W in Eq. (T1.2), we get

HðWÞ ¼WTSBSþT ðST�SBÞS
þ

T SBW

¼WTSBSþT ST SþT SBW�WTSBðS
þ

T SBÞ
2W

We have shown in Appendix-B (Lemma A3) that if G¼ SþT SB,

then G2
¼ G. Using this and the matrix identity AþAAþ ¼ Aþ , we

get

HðWÞ ¼WT SBSþT SBW�WT SBSþT SBW

or HðWÞ ¼ 0

i.e. WTSW W¼ 0

This concludes the proof of the Theorem.

Theorem 2. If the matrix WARd�h of rank h satisfies the relation
W¼ SþT SBW, then W is not in the null space of SB; i.e., SBWa0.

Proof 2. Since WARd�h is a matrix of rank h, it contains h linearly
independent vectors; i.e., W¼ ½w1,w2,. . .wh� and wia0 for
i¼ 1. . .h. Since W¼ SþT SBW, it follows wi ¼ SþT SBwi for i¼ 1. . .h.
In order to prove this theorem, we first prove that if wi ¼ SþT SBwi,
then SBwia0. To do this, we use the method of contradiction.
Assume that SBwi ¼ 0. Then by substituting SBwi ¼ 0 in the
relation wi ¼ SþT SBwi, we get

wi ¼ SþT ðSBwiÞ

¼ SþT ð0Þ

¼ 0

But since wia0, so the relation SBwi ¼ 0 can not be true. Thus,

from contradiction, we have shown that SBwia0. Since it is true

for i¼ 1. . .h, we can say that SBWa0.

This concludes the proof of the Theorem.&

2.3.2. Proof of Eq. (7) being a sufficient condition for null LDA

method

Here we prove that W given by Eq. (7) is sufficient condition
for the null LDA method; i.e., when W satisfies Eq. (7), it will also
satisfy SW W¼ 0 and SBWa0. The proof is given below in the
form of Theorem 3.

Theorem 3. If the orientation matrix WARd�ðc�1Þ is obtained by
using the relation W¼ SþT SBY (where YARd�ðc�1Þ is any random
matrix of rank c�1), then it satisfies the two criteria of null LDA
method (Eqs. (2) and (3)).

Proof 1. It is given that

W¼ SþT SBY ðT3:1Þ

where YARd�ðc�1Þ is any random matrix of rank c�1. Therefore,

rankðWÞ ¼min½rankðSþT Þ, rankðSBÞ,rankðYÞ� ¼min½n�1,c�1,c�1� ¼

c�1:

Thus, the rank of WARd�ðc�1Þ obtained by Eq. (T3.1) will be

c�1.



Table 1
Fast implementation of null LDA method.

1. Compute eigenvalues E1 ARn�tand eigenvectors D1 ARt�t of ATAARn�n.

2. Compute transformed matrix B̂ (from eq. 10).

3. Form t � ðc�1Þ matrix Ŷ randomly (i.e. Ŷ¼ randðt,c�1Þa). Note that the rank of Ŷ should be c�1.

4. Compute Ŵ¼K1K2, where K1 ¼D�1
1 B̂ and K2 ¼ B̂

T
Ŷ.

5. If orthonormal Ŵ is required then Ŵ’qrðŴÞ.

6. Compute W¼D�1=2
1 Ŵ, thenW’E1W and thenW’AW.

Note: Matlab code is available from http://www.hgc.jp/�aloks/
a Here function rand is used to generate random numbers uniformly distributed between 0 and 1.
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Let us define

LðWÞ ¼ SþT SBW ðT3:2Þ

Substituting value of W from Eq. (T3.1) in Eq. (T3.2), we get

LðWÞ ¼ SþT SBSþT SBY

From Appendix-B (Lemma A3), we substitute ðSþT SBÞ
2
¼ SþT SB to

get

LðWÞ ¼ SþT SBY

Using Eq. (T3.1), this becomes

LðWÞ ¼W

or SþT SBW¼W

This equation is same as Eq. (6). Thus, WARd�ðc�1Þ given by Eq.

(T3.1) has the following properties: 1) it satisfies Eqs. (6) and (2))

it is of rank c�1. From Theorems 1 and 2, we know that W

following these properties satisfies the two criteria of null LDA

method. Thus, W given by Eq. (T3.1) will be a sufficient condition

for the null LDA method. This concludes the proof of the Theorem.
2 If 1rhrc�1, then EVD can be applied to select h leading orthonormal

vectors of Ŵ
T
ŜBŴ.
3. Implementation of the fast procedure

In the preceding section, we have proposed an alternative null
LDA procedure. In this section, we describe its fast implementa-
tion. In the proposed null LDA procedure, the orientation matrix
WARd�ðc�1Þ is computed by utilizing W¼ SþT SBY (Eq. (7)), where
YARd�ðc�1Þ is any random matrix of rank c�1.

In order to compute W by Eq. (7), we need SþT . This requires
the EVD of ST ¼ AATARd�d, which is computationally very expen-
sive as d is very large in the SSS problem. A computationally faster
way would be to compute the EVD of ATAARn�n instead of
ST ¼ AATARd�d [12]. This will reduce the computational complex-
ity significantly to Oðn3Þ. If the eigenvectors and eigenvalues of
ATAARn�n are EARn�n and DARn�n, respectively, then

ATA¼ EDET

¼ ½E1,E2�
D1

0

� � ET
1

ET
2

" #

where

E1ARn�t ,E2ARn�ðn�tÞ and D1ARt�t

¼ E1D1ET
1

ð8Þ

and orthonormal eigenvectors U1 defining the range space of ST

can be given as

U1 ¼AE1D1
�1=2:
Since discarding the null space of ST does not cause any loss of
discriminant information [17], we can use U1ARd�t to transform
the original d-dimensional space to a lower t-dimensional space.
The matrices A and B can be written in the lower dimensional
space as follows:

Â¼UT
1AARt�n

¼D1
�1=2ET

1ATA

¼D1
�1=2ET

1E1D1ET
1 ðfrom Eq: ð8ÞÞ

¼D1
1=2ET

1 ð9Þ

and

B̂¼UT
1ARt�c

¼D1
�1=2ET

1ðA
TBÞ

Computing B̂ using this equation is expensive as d is very large.
This computation, however, can be reduced by constructing B̂
from Â. In order to do this, we first write the transformed matrix
Â as Â¼ ½v1,v2,. . .,vn� and then compute B̂ as

B̂¼ 1ffiffiffiffi
n1
p

Xn1

j ¼ 1

vj,
1ffiffiffiffi
n2
p

Xn1þn2

j ¼ n1þ1

vj,. . .,
1ffiffiffiffi
nc
p

Xn

j ¼ n1þn2þ���þnc�1þ1

vj

2
4

3
5 ð10Þ

This will give transformed between-class scatter ŜB ¼ B̂B̂
T
.

From Eq. (9), the transformed total-scatter matrix
ŜT ¼ ÂÂ

T
¼D1=2

1 ET
1E1D1=2

1 ¼D1. The Eq. (7) can now be used with
ŜT and ŜB to obtain transformation matrix ŴARt�ðc�1Þ for the null
LDA method in the lower t-dimensional space as follows:

Ŵ¼ Ŝ
þ

T ŜBŶ

¼D�1
1 B̂B̂

T
Ŷ ð11Þ

where ŶARt�ðc�1Þ is a matrix formed from any t � ðc�1Þ random
numbers. Let us define K1 ¼D�1

1 B̂ARt�c and K2 ¼ B̂
T
ŶARc�c , then

Ŵ¼K1K2.
Note that this ŴARt�ðc�1Þ will not be orthogonal. If needed, it

can be made orthogonal by QR decomposition (for h¼ c�1)2.
Thus, in the proposed null LDA procedure, we transform the d-
dimensional space to h-dimensional space using the transforma-
tion

W¼U1Ŵ¼ AE1D�1=2
1 Ŵ¼AK4K3,

where K3 ¼D�1=2
1 Ŵ and K4 ¼ E1K3. The implementation of the

proposed fast procedure is summarized in Table 1.
4. Computation complexity and storage requirements

In this section, we discuss the computational complexity and
storage requirements of the proposed implementation and

http://www.hgc.jp/~aloks/
http://www.hgc.jp/~aloks/


Table 2
Computational complexity of the fast implementation procedure.

Steps Complexities

multiplication of ATAARn�n dn2

computation of E1 ARn�t and D1 ARt�t using eigenvalue decomposition of ATA 17n3

Computation of transformed matrix B̂ (from eq. 10) n2

computation of K1 and K2 tcþ2tcðc�1Þ

computation of Ŵ¼K1K2
2tcðc�1Þ

Orthogonalization of ŴARt�ðc�1Þ (if QR decomposition is used) 4tc2�4c3=3

multiplication of W¼D�1=2
1 Ŵ, W’E1W and W’AW tðc�1Þþ2ntðc�1Þþ2dnðc�1Þ

Total estimated dn2þ2dncþ17n3þ2n2cþ8nc2þ2nc�4
3c3 (since t � n and c�1� c)

Table 3
Computational complexities of different implementation of the null space LDA

method.

Implementations Computational complexity

(for dbn and n4c )

Null LDA 4d2n

PCAþnull LDA 16dn2þ4dnc

OLDA 14dn2þ4dncþ4dc2

QR–NLDA [7] 4dn2þ2dnc

Proposed implementation

of null LDA
dn2þ2dnc

Table 4
Storage requirements of different implementation of the null space LDA method.

Implementations Storage

Null LDA dh (where 1rhrc�1)

PCAþnull LDA dh (where 1rhrc�1)

OLDA dðc�1Þ

QR–NLDA dðc�1Þ

Proposed implementation of null LDA dh (where 1rhrc�1)

3 Most of the DNA microarray gene expression datasets can be downloaded

from http://sdmc.lit.org.sg/GEDatasets/Datasets.html or http://cs1.shu.edu.cn/

gzli/data/mirror-kentridge.html or http://leo.ugr.es/elvira/DBCRepository.
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compare it with other implementations of null LDA method. The
computational complexities of the major steps of the proposed
implementation are listed in Table 2 (see Appendix-C for compu-
tational complexities of some major operations).

In a typical SSS problem, where the dimensionality d is very
large compared to the number of training vectors (i.e., dbn), the
computational complexity of the proposed implementation is
dn2þ2dnc flops (which is mainly due to the multiplication of
matrices). The computational complexity can be further reduced
by using efficient matrix multiplication algorithms (see Appendix-C).
In this case the computational complexity will be Oðdn1:376Þþ2dnc.

In the null LDA method [6], the computation of the null space
of SW is required. This can be achieved by doing singular value
decomposition of AARd�n for computing U and S1 matrices. This
step involves 4d2n�8dn2 computations [13], which is very
expensive. The PCAþnull LDA method requires approximately
16dn2þ4dnc computations. In the OLDA method [44], the singu-
lar value decomposition carried out at two steps approximately
requires 14dn2�2n3 and 14nc2�2c3 computations [13], followed
by QR decomposition at one step which requires approximately
4dc2�4c3=3 flops [13]. In addition, matrix multiplication requires
approximately 4dnc computations. The QR–NLDA method [7]
requires approximately 4dn2þ2dnc computations. The computa-
tional complexities of different implementations are listed in
Table 3.

It can be observed from Table 3 that the computational
complexity of the proposed implementation is much lower than
the other implementations. This computational complexity can be
reduced further to Oðdn1:376Þþ2dnc. The storage requirements of
different implementations are listed in Table 4. In all the cases,
the orientation matrix WARd�h computed during training ses-
sion is required to be stored for the testing session.

In summary, the computational complexity of the proposed
implementation is lower than that of the other implementations.
This is experimentally demonstrated in the next section.
5. Datasets and experimentation

Three types of datasets are utilized for the experimentation.
These are DNA microarray gene expression data, face recognition
data and text classification data. In addition to this, we use
randomly generated data to investigate the effect of dimension-
ality d on the computation time of different implementations.
5 DNA microarray gene expression datasets3 are utilized in this
work to show the effectiveness of the proposed method. For face
recognition, two commonly known datasets, namely ORL data-
base [33] and AR database [29], are utilized for the experimenta-
tion. The ORL database contains 400 images of 40 persons (with
10 images per person). The dimensionality d of the feature space
is 10,304. A subset of AR database is used here with 1400 face
images from 100 persons (14 images per person). The dimension-
ality d is 4980. We use a subset of Dexter dataset [4] for text
classification in a bag-of-word representation. This dataset has
sparse continuous input variables. The description of all the
datasets is given in Table 5. It can be seen from this table that
the dimensionality d for each dataset is very large compared to
the number of training samples. This leads to the SSS problem.

The null LDA method is used for dimensionality reduction and
the nearest neighbor classifier is used for classifying the test data.
As expected, the classification accuracies of PCAþnull LDA, OLDA,
QR–NLDA and the proposed implementation are found to be
identical. However, they significantly differ in terms of their
computation times as shown in Table 6.1. Here, we measure the
computation time of a given implementation as the CPU time
taken by its ‘Matlab’ program on a Dell computer (Optiplex 755,
Core 2 Quad, 2.4 GHz). We can observe from Table 6.1 that the
proposed implementation of the null LDA method requires lowest
computation time. For completeness, we list the classification
accuracies of all these null LDA algorithms (PCAþnull LDA, OLDA,
QR–NLDA and the proposed implementation) using N-fold cross
validation (where N¼3) in Table 6.2.

To investigate the computation time as a function of dimen-
sionality, we generate random data for 100 classes with 5 training
vectors per class. Therefore, the total number of training vectors is

http://sdmc.lit.org.sg/GEDatasets/Datasets.html
http://cs1.shu.edu.cn/gzli/data/mirror-kentridge.html
http://cs1.shu.edu.cn/gzli/data/mirror-kentridge.html
http://leo.ugr.es/elvira/DBCRepository


Table 5
Datasets used in the experimentation.

Datasets Class Dimension Number of
training samples

Number of
testing samples

ALL subtype [46] 7 12,558 215 112

GCM [31] 14 16,063 144 54

Prostate Tumor [36] 2 12,600 102 34

SRBCT [21] 4 2,308 63 20

MLL [1] 3 12,582 57 15

Face ORL [33] 40 10,304 200 200

Face AR [29] 100 4,980 700 700

Dexter [4] 2 20,000 300 300

Table 6.1
Computation time of different implementations on the microarray gene expres-

sion, face recognition and text classification datasets.

Database PCAþNull

LDA CPU

Time

OLDA CPU

Time

QR–NLDA

CPU time

Proposed

implementation

of null LDA CPU

Time

ALL subtype 4.43 3.94 2.57 0.76

GCM 3.84 3.77 1.91 0.44

Prostate

Tumor

1.51 1.44 0.89 0.23

SRBCT 0.18 0.17 0.08 0.03

MLL 0.72 0.72 0.40 0.13

Face ORL 5.10 5.12 1.81 0.59

Face AR 20.11 16.99 7.87 4.21

Dexter 8.80 7.81 5.32 1.52

Table 6.2
A comparative table showing the classification accuracy for different databases

with other null LDA based algorithms (using N-fold cross validation, where N¼3).

Database PCAþNull LDA

accuracy (%)

OLDA accuracy

(%)

QR–NLDA

accuracy

(%)

Proposed

implementation

of null LDA

accuracy (%)

ALL subtype 90.3 90.3 90.3 90.3

GCM 72.7 72.7 72.7 72.7

Prostate

Tumor

88.6 88.6 88.6 88.6

SRBCT 100 100 100 100

MLL 95.7 95.7 95.7 95.7

Face ORL 96.9 96.9 96.9 96.9

Face AR 95.7 95.7 95.7 95.7

Dexter 94.5 94.5 94.5 94.5
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Fig. 1. Computation time as a function of dimensionality on randomly-generated

data (where c¼ 100 and n¼ 500) using PCAþnull LDA, OLDA, QR–NLDA and

proposed implementation of null LDA method.

Table 7
A comparison of classification accuracy of the null LDA algorithms with other

existing methods (using N-fold cross-validation, where N¼3).

Database RLDA PILDA DLDA Fisherface EFR PCA NLDA

ALL subtype 86.0 80.1 78.2 88.5 90.0 57.0 90.3

GCM 76.5 60.1 62.8 70.0 74.9 55.7 72.7

Prostate Tumor 81.8 76.5 73.5 88.6 82.6 62.1 88.6

SRBCT 93.6 68.0 84.6 100 100 73.1 100

MLL 94.2 87.0 91.3 95.7 95.7 91.3 95.7

Face ORL 96.4 96.7 97.2 92.5 96.7 95.8 96.9

Face AR 96.3 97.3 96.3 94.9 97.3 78.3 95.7

Dexter 94.7 73.8 91.2 94.5 94.7 85.7 94.5

average 89.9 79.9 84.4 90.6 91.5 74.9 91.8
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500. We vary the dimensionality d from 5000 to 70,000 and
measure the computation times of these implementations. Fig. 1
shows the computation time as a function of dimensionality. It
can be seen from this figure that the computation time of OLDA is
similar to the processing time of PCAþNull LDA. It can also be
seen that as the dimensionality becomes large, QR–NLDA
becomes computationally more efficient than OLDA and
PCAþNull LDA, and the proposed implementation is the fastest.

We also show the comparative performance in terms of classi-
fication accuracy of the null LDA algorithms (PCAþNull LDA, OLDA,
QR–NLDA, proposed null LDA) with the following algorithms:
pseudoinverse technique (PILDA) [40], direct LDA (DLDA) technique
[47], regularized LDA (RLDA) technique [11,14], Fisherface LDA
[37,2] technique, principal component analysis (PCA) [12] and
eigenfeature regularization (EFR) technique [18]. All the techniques
(except PCA) are used to reduce the dimensionality to c�1 (since
rank of SB is c�1), where c is the number of classes. For PCA, the
dimensionality is reduced to n�1 (since rank of covariance matrix is
n�1), where n is the number of training samples. After dimension-
ality reduction, the nearest neighbor classifier (NNC) using Euclidean
distance measure is used for classifying a test feature vector. The
training set and test set merged in a set of samples and N-fold cross-
validation is performed (where N¼ 3) to evaluate the classification
accuracy on all the datasets using the above mentioned techniques.
The comparison has been depicted in Table 7. It can be observed
from the table that the null LDA algorithms performs comparably
well with other existing methods.
6. Conclusion

In this paper, we have theoretically derived an alternative null
LDA method and proposed a procedure for its fast implementa-
tion. The proposed implementation is shown to be computation-
ally faster than the existing implementations of the null LDA
method. This computational advantage is achieved without any
degradation in classification performance.
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Appendix A

Theorem 1. If the matrix WARd�h satisfies the relation

W¼ S�1
T SBW, then it is in the null space of ; i.e., SW W¼ 0.

Proof 1. It is given that

W¼ S�1
T SBW

Pre-multiplying both sides of this equation by ST , we get

ST W¼ SBW

or ðST�SBÞW¼ 0

Substituting ST ¼ SBþSW , we get

SW W¼ 0

This concludes the proof of this Theorem.

Theorem 2. If the matrix WARd�h of rank h satisfies the relation
W¼ S�1

T SBW, then W is not in the null space of ; i.e., SBWa0.

Proof 2. Since WARd�h is a matrix of rank h, it contains h linearly
independent vectors; i.e., W¼ ½w1,w2,. . .wh� and wia0 for
i¼ 1. . .h. Since W¼ S�1

T SBW, it follows wi ¼ S�1
T SBwi for i¼ 1. . .h.

In order to prove this theorem, we first prove that if wi ¼ S�1
T SBwi,

then SBwia0. To do this, we use the method of contradiction.
Assume that SBwi ¼ 0. Then by substituting SBwi ¼ 0 in the
relation wi ¼ S�1

T SBwi, we get

W¼ S�1
T ðSBWÞ

¼ S�1
T ð0Þ

¼ 0
But since wia0, so the relation SBwi ¼ 0 can not be true. Thus,
from contradiction, we have shown that SBwia0. Since it is true

for i¼ 1. . .h, we can say that SBWa0.

This concludes the Proof of the Theorem.

Appendix B
Lemma A1. If It ¼RBþRW (where It ARt�t is an identity matrix
of rank t, and RBARt�t and RW ARt�t are diagonal matrices of
ranks b and t�b, respectively), then b diagonal elements of matrix
RB will be unity and the remaining t�b diagonal elements will
be zero.

Proof A1. It is given that It ¼RBþRW . Therefore, RW can be
written as

RW ¼ It�RB ðAL1:1Þ

Since RB is diagonal matrix of rank b, it can be written as

RB ¼ diagðl1,l2,. . .,lb,0,0,. . .0|fflfflfflfflffl{zfflfflfflfflffl}
t�bzeros

Þ ðAL1:2Þ

where lja0 8 j¼ 1. . .b . Substituting RB in Eq. (AL1.1), we get

RW ¼ diagð1�l1,1�l2,. . .,1�lb,1,1,. . .1|fflfflfflfflffl{zfflfflfflfflffl}
t�bones

Þ

The rank of matrix RW is t�b. This is possible only when
1�lj ¼ 08j¼ 1. . .b, or lj ¼ 18j¼ 1. . .b. Substituting these values of

lj in equation AL1.2, we get

RB ¼
Ib 0

0 0

� �
, whereIbARb�bis an identity matrix.

This concludes the proof of the Lemma.

Lemma A2. Let ST ¼ SBþSW , where ST ¼AAT, AARd�n, SB ¼ BBT,
BARd�cand SW ARd�d with rankðST Þ ¼ t¼ n�1 (where tod),
rankðSBÞ ¼ b¼ c�1(where bot) and rankðSW Þ ¼ n�c. Let U¼
½U1,U2� be the matrix consisting of eigenvectors of A where

U1ARd�t corresponds to the range space of ST and U2ARd�ðd�tÞ

corresponds to the null space of ST . If a rectangular matrix Q ARt�c is

defined such that Q ¼R�1
1 UT

1B (where R1ARt�t is a diagonal matrix

of square root of eigenvalues of ST ) and if eigenvalue decomposition

of Q Q T is RKRT (where RARt�t is an orthogonal matrix and

KARt�t is a diagonal matrix), then K¼
Ib 0

0 0

� �
, where IbARb�b

is an identity matrix.

Proof A2. Note that the proof given here is an extension of the
proof provided by Ye [44]. The singular value decomposition of
ST can be given by

ST ¼U
R2

1 0

0 0

" #
UT, where UARd�dis an orthogonal matrix.

or
R2

1 0

0 0

" #
¼UTST U. Substituting ST ¼ SBþSW , we get

R2
1 0

0 0

" #
¼UTSBUþUTSW U ðAL2:1Þ

Substituting U¼ ½U1,U2�, this equation becomes

R2
1 0

0 0

" #
¼

UT
1SBU1 UT

1SBU2

UT
2SBU1 UT

2SBU2

" #
þ

UT
1SW U1 UT

1SW U2

UT
2SW U1 UT

2SW U2

" #
ðAL2:2Þ

Since the two matrices on the right hand side of Eq. (AL2.2) are

positive semidefinite, we have UT
2SBU2 ¼ 0, UT

2SW U2 ¼ 0,

UT
1SW U2 ¼ 0 and UT

1SBU2 ¼ 0.

Therefore from Eqs. (AL2.1) and (AL2.2) we get

UTSBU¼
UT

1SBU1 0

0 0

" #
ðAL2:3Þ

and

UTSW U¼
UT

1SW U1 0

0 0

" #
ðAL2:4Þ

Substituting Eqs. (AL2.3) and (AL2.4) in Eq. (AL2.1), we get

R2
1 ¼UT

1SBU1þUT
1SW U1

multiplying both sides of this equation by R�1
1 from left as well as

from right, we get

It ¼R�1
1 UT

1SBU1R
�1
1 þR�1

1 UT
1SW U1R

�1
1 ,

where It ARt�t is an identity matrix. Using SB ¼ BBTand

Q ¼R�1
1 UT

1B, we get

It ¼QQ T
þR�1

1 UT
1SW U1R

�1
1 ðAL2:5Þ

Since rankðSBÞ ¼ c�1 is less than the ranks of R�1
1 and U1, the

rank of the matrix QQ Twill be c�1. The EVD of QQ T is

QQ T
¼ RKRT(where RARt�t is an orthogonal matrix and

KARt�t is a diagonal matrix of rank c�1). Substituting

QQ T
¼ RKRT in Eq. (AL2.5), we get

It ¼ RLRT
þR�1

1 UT
1SW U1R

�1
1
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Multiplying both the sides of this equation by RT from the left

and R from the right, we get

It ¼KþRTR�1
1 UT

1SW U1R
�1
1 R, ðAL2:6Þ

or It�K¼ RTR�1
1 UT

1SW U1R
�1
1 R.

Since the left hand side of this equation is diagonal, the right

hand side will also be diagonal. Since rankðSW Þ ¼ n�c is lower

than the ranks of U1, R�1
1 and R, the rank of the right hand side

will also be n�c; i.e., rankðRTR�1
1 UT

1SW U1R
�1
1 RÞ ¼ n�c. In addition,

the ranks of It and K are t¼ n�1and b¼ c�1, respectively. Thus,

rankðItÞ ¼ rankðKÞþrankðRTR�1
1 UT

1SW U1R
�1
1 RÞ ðAL2:7Þ

Using Lemma A1 and equations AL2.6 and AL2.7, we can deduce

that K¼
Ib 0

0 0

� �
, where IbARb�b is an identity matrix.

This concludes the proof of the Lemma.

Lemma A3. If G¼ SþT SB (where SþT is the pseudo inverse of the
total scatter matrix ST and SB is the between class scatter matrix),
then it satisfies the relation G2

¼G.

Proof 1. Since ST ARd�d is of rank t¼ n�1, its eigenvalue decom-
position (EVD) can be given by,

ST ¼US2UT
¼ ½U1,U2�

R2
1 0

0 0

" #
UT

1

UT
2

" #
, ðAL3:1Þ

where UARd�d is an orthogonal matrix with partitions U1ARd�t

and U2ARd�ðd�tÞ, where U1 corresponds to the range space of ST

and U2 corresponds to the null space of ST , and R1ARt�t is a
diagonal matrix. The pseudoinverse of ST is given by,

SþT ¼U
R�2

1 0

0 0

" #
UT

It is given that G¼ SþT SB, or

G¼U
R�2

1 0

0 0

" #
UTSB ðAL3:2Þ

since UUT
¼UTU¼ Id�d, Eq. (AL3.2) can be written as

G¼U
R�2

1 0

0 0

" #
UTSBUUT

From Eq. (AL2.3) of Lemma A2, it follows

G¼U
R�2

1 0

0 0

" #
UT

1SBU1 0

0 0

" #
UT

Since SB ¼ BBT, it follows

G¼U
R�2

1 UT
1BBTU1 0

0 0

" #
UT

or G¼U
R�2

1 UT
1BBTU1R

�1
1 R1 0

0 0

" #
UT

Let Q ¼R�1
1 UT

1B, then

G¼U
R�1

1 QQ TR1 0

0 0

" #
UT
If the EVD of QQ T is RKRT (where RARt�t is the orthogonal

matrix and KARt�t is diagonal matrix), then G can be written as

G¼U
R�1

1 RKRTR1 0

0 0

" #
UT

ðAL3:3Þ

From this, G2 is given by

G2
¼GG¼U

R�1
1 RKRTR1 0

0 0

" #
UTU

R�1
1 RKRTR1 0

0 0

" #
UT

or

G2
¼U

R�1
1 RK2RTR1 0

0 0

" #
UT

ðAL3:4Þ

Lemma A2 shows that the diagonal matrix KARt�t is given by,

K¼
Ib 0

0 0

� �
,

where Ib is an identity matrix of rank b¼ c�1. Therefore, K2
¼K.

Substituting this in Eq. (AL3.4), we get

G2
¼U

R�1
1 RKRTR1 0

0 0

" #
UT

Using Eq. (AL3.3), this can be written as

G2
¼G

This concludes the proof of the Lemma.

Appendix C

Computational complexities:
i.
 Matrix multiplication of ATA (where AARd�n) will require dn2

computations. This computation can be, however, reduced by
splitting matrix A into d=n square blocks and since the square
matrix multiplication has the computational complexity of
Oðn2:376Þ [9], the block computation of ATA will require
approximately Oðdn1:376Þþ1

2ðdn�n2Þ computations.

ii.
 The multiplication of two rectangular matrices of sizes p� q

and q� r will require 2pqr computations [13].

iii.
 Singular value decomposition of a matrix GARp�q (where

p4q) to get diagonal matrix RARt�t and eigenvectors
U1ARp�t (wheret¼ q�1¼ rankðGÞ) will require approxi-
mately 14pq2�2q3 computations [13]. If UARp�q is required,
then computational complexity will be 4p2q�8pq2 flops.
iv.
 The QR decomposition of a matrix GARp�q (where p4q) to
get Q 1ARp�t (wheret¼ q�1¼ rankðGÞ) will require approxi-
mately 4pq2�4q3=3 computations [13].
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