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We demonstrate that the combined effect of a spatially periodic potential, lateral confinement
and spin-orbit interaction gives rise to a quantum ratchet mechanism for spin-polarized currents in
two-dimensional coherent conductors. Upon adiabatic ac-driving, in the absence of a net static bias,
the system generates a directed spin current while the total charge current is zero. We analyze the
underlying mechanism by employing symmetry properties of the scattering matrix and numerically
verify the effect for different setups of ballistic conductors. The spin current direction can be changed
upon tuning the Fermi energy or the strength of the Rashba spin-orbit coupling.

PACS numbers: 05.60.Gg, 73.23.-b, 72.25.-b

I. INTRODUCTION

Charge transport is usually studied by considering cur-
rent in response to an externally applied bias. How-
ever, there has been growing interest throughout the last
decade in mechanisms enabling directed particle motion
in nanosystems without applying a net dc-bias. In this
respect, ratchets, periodic structures with broken spa-
tial symmetry, e.g. saw tooth-type potentials, represent
a prominent class. Ratchets in the original sense are de-
vices operating far from equilibrium by converting ther-
mal fluctuations into directed particle transport in the
presence of unbiased time-periodic driving1. First dis-
covered in the context of (overdamped) classical Brow-
nian motion2,3, the concept of dissipative ratchets was
later generalized to the quantum realm4. More recently,
coherent ratchets and rectifiers have gained increasing
attention. They are characterized by coherent quantum
dynamics in the central periodic system in between leads
where dissipation takes place. Proposals comprise molec-
ular wires5 and cold atoms in optical lattices6, besides
Hamiltonian ratchets7. Experimentally, ratchet-induced
charge flow in the coherent regime was first observed in
a chain of triangular-shaped lateral quantum dots8 and
later in lateral superlattices9.

Here we propose a different class of ratchet devices,
namely spin ratchets which act as sources for spin cur-
rents with simultaneously vanishing charge, respectively
particle currents. To be definite we consider coherent
transport through ballistic mesoscopic conductors in the
presence of spin-orbit (SO) interaction10. Contrary to
particle ratchets, which rely on asymmetries in either the

spatially periodic modulation or the time-periodic driv-
ing, a SO-based ratchet works even for symmetric peri-
odic potentials. As possible realizations we have in mind
semiconductor heterostructures with Rashba SO interac-
tion11 that can be tuned in strength by an external gate
voltage allowing to control the spin evolution.

Among other features it is this property which is trig-
gering recent broad interest in semiconductor-based spin
electronics12. Also since direct spin injection from a fer-
romagnet into a semiconductor remains problematic13,
alternatively, several suggestions have been made for gen-
erating spin-polarized charge carriers without using mag-
nets. In this respect, spin pumping appears promising,
i.e. the generation of spin-polarized currents at zero bias
via cyclic variation of at least two parameters. Different
theoretical proposals based on SO14 and Zeeman15 medi-
ated spin pumping in non-magnetic semiconductors have
been put forward16 and, in the latter case, experimen-
tally observed in mesoscopic cavities17.

While pumps and ratchets share the appealing prop-
erty of generating directed flow without net bias, ratchet
transport requires only a single driving parameter, the
periodic ratchet potential has a strong collective effect
on the spin current and gives rise to distinct features
such as spin current reversals upon parameter changes.

II. MODEL AND SYMMETRY

CONSIDERATIONS

We consider a two-dimensional coherent ballistic con-
ductor in the plane (x, z) connected to two nonmagnetic
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leads. The Hamiltonian of the central system in presence
of Rashba SO interaction reads

Hc =
p̂2

2m∗
+

~kSO

m∗
(σ̂xp̂z − σ̂z p̂x) + U(x, z) . (1)

Here m∗ is the effective electron mass, U(x, z) includes
the ratchet potential in x- and a lateral transverse con-
finement in z-direction, and σ̂i denote Pauli spin matri-
ces. The effect of the SO coupling with strength kSO is
twofold: it is leading to spin precession and it is coupling
transversal modes in the confining potential18.

In view of a ratchet setup we consider an additional
time-periodic driving term HV (t) due to an external bias
potential V (t) with zero net bias (rocking ratchet). We
study adiabatic driving (such that the system can adjust
to the instantaneous equilibrium state), assuming that
the driving period t0 is large compared to the relevant
time scales for transmission. This is the case in related
experiments8. The entire Hamiltonian then reads

H = Hc + HV (t) ; HV (t) = V (t)g(x, z; V ) , (2)

where g(x, z; V ) describes the spatial distribution of the
voltage drop and should in principle be obtained self-
consistently from the particle density.

We model spin-dependent transport within a scatter-
ing approach assuming that inelastic processes take place
only in the reservoirs. Then the probability amplitude
for an electron to pass through the conductor is given by
the scattering matrix Snσ;n′σ′ (E, V ), where n′, n denote
transverse modes and σ′, σ = ±1 the spin directions in
the incoming and outgoing lead, respectively. Making use
of the unitarity of the scattering matrix, SS† = S†S = 1,
and summing over all open channels in the left (L) and
right (R) lead, respectively, we find the relations

∑

n,σ∈R
n′,σ′∈R∪L

|Sn,σ;n′,σ′ |
2

=
∑

n,σ∈R

1 ,
∑

n,σ∈R
n′,σ′∈R∪L

σ |Sn,σ;n′,σ′ |
2

= 0 . (3)

For the further analysis, we consider an unbiased
square wave driving V (t) = V0 sign [sin(2πt/t0)], re-
stricted to the values ±V0 (V0 > 0); generalizations
to, e.g., harmonic driving are straight forward. The
ratchet current is then given by the average of the steady-
state currents in the two opposite rocking situations,
〈I(V0)〉 = [I(+V0)+I(−V0)]/2, which we compute within
the Landauer formalism relating conductance to trans-
mission.

Contrary to charge current, spin current is usually not
conserved. Thus it is crucial to fix the measuring point,
which we choose to be inside the right lead. Then, in
view of Eq. (3), the ratchet charge 〈IC〉 and spin 〈IS〉
currents can be expressed as

〈IC/S(V0)〉 = GC/S

∫ ∞

EC

dE ∆f(E, V0)∆TC/S(E, V0) . (4)

Here, the prefactor GC/S is equal to e/2h for the charge
current and 1/8π for the spin current. EC denotes
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FIG. 1: (Color online) Spin-dependent transmissions as a
function of the injection energy E = (kL)2 in the presence
of Rashba spin-orbit interaction (kSOL = 1.5) for a short
periodic chain of five symmetrical potential barriers (see in-
set, barrier height U0 = 22) and moderate rocking amplitude
V0 = 2. The dashed (red) and dotted (blue) lines indicate TS,
Eq. (7), in the two rocking situations. The solid (black) line
depicts the ratchet spin transmission, Eq. (5), the sign indi-
cating the flow direction. For reference, the dashed-dotted
(green) curve shows TC, Eq. (6), and the staircase function
TC for a wire without potential barriers and SO interaction.

the energy of the conduction band edge, ∆f(E, V0) =
[f(E, EF + V0/2) − f(E, EF − V0/2)] is the difference be-
tween the Fermi functions in the leads, and

∆TC/S(E, V0) = TC/S(E, +V0) − TC/S(E,−V0). (5)

With Tσ,σ′ =
∑

n∈R,n′∈L |Sn,σ;n′,σ′ |
2
, the transmission

probabilities for charge and spin in (5) are defined as

TC(E, V ) =
∑

σ′=±1∈L
σ=±1∈R

Tσ,σ′(E, V ) , (6)

TS(E, V ) =
∑

σ′=±1∈L

[T+,σ′(E, V ) − T−,σ′(E, V )] . (7)

The latter is given by the difference between the trans-
mission of spin-up and spin-down electrons upon exit,
with the spin measured with respect to the z-axis.

Equation (5) indicates that ∆TC/S(E, V0), and thereby
the average conductance, vanishes in the linear response
limit V0 → 0. In the following we consider the nonlinear
regime and devise a minimum model for a spin ratchet
mechanism by assuming identical leads and a spatially
symmetric potential U(x, z) in Eq. (1). The total Hamil-
tonian (2) is then invariant under the symmetry oper-

ation P̂ = ĈR̂xR̂V σ̂z, where Ĉ is the operator of com-
plex conjugation, R̂x inverses the x-coordinate and R̂V

changes the sign of the applied voltage (±V ↔ ∓V ).

The action of P̂ on the scattering states is to switch be-
tween the two rocking situations and to exchange the
leads, i.e., a mode index n is replaced by its correspond-
ing mode ñ. Moreover, incoming (outgoing) states are
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FIG. 2: (Color online) (a) Ratchet spin transmission as a function of the number of barriers N for kSOL = 1.5, U0 = 22, V0 = 2,
and energies E = (kL)2 =24 (black symbols, lower line), 33 (red, middle line) and 35.5 (green, upper green). (b) Ratchet
spin conductance 〈IS〉(e/V0) at zero temperature in units of eGS as a function of applied voltage V0 for N = 20, kSOL = 1.5,
U0 = 22 and E =24 (black solid line), 33 (red dashed line) and 35.5 (green dash-dotted line).

transformed into outgoing (incoming) states with com-
plex conjugated amplitude. It is then straightforward to
show that

Sn,σ;n′,σ′(E,∓V0) = σσ′Sñ′,σ′;ñ,σ(E,±V0) , (8)

leading to a vanishing charge current 〈IC(V0)〉 and a sim-
plified expression for the ratchet spin transmission (5):

∆TS(E, V0) = 2 [T+,−(E, +V0) − T−,+(E, +V0)] . (9)

III. RATCHET MECHANISM: NUMERICAL

RESULTS

We illustrate the prediction for a ratchet spin current
(Eq. (4) with (9)) by performing numerical calculations
for the Hamiltonian (1,2). The amplitudes Snσ′ ;mσ(E, V )
are obtained by projecting the Green function of the open
ratchet system onto an appropriate set of asymptotic
spinors defining incoming and outgoing channels. For the
efficient calculation of the S-matrix elements a real-space
discretization of the Schrödinger equation combined with
a recursive algorithm for the Green functions was imple-
mented for spin-dependent transport21,22.

As a model for a spin ratchet we consider a ballistic
two-dimensional quantum wire of width W with Rashba
SO strength kSO and a one-dimensional periodic mod-
ulation (period L) composed of a set of N symmetric
potential barriers U(x) = U0[1 − cos(2πx/L)]. We as-
sume a linear voltage drop19 across the system, g(x, z) =
1/2 − x/(NL) in Eq. (2). To simplify the assessment
of the rich parameter space (EF , U(x), V, kSO, N) of the
problem (L can be scaled out and W is fixed to 1.5L)
and to analyze the mechanisms for spin currents, we first
consider a strip with N =5 potential barriers (see inset in
Fig. 1) and few open transverse modes. Figure 1 shows
the numerically obtained spin transmission probabilities
TS(E, V ), Eq. (7), for kSOL = 1.5 in the two rocking sit-
uations ±V0 (dashed and dotted line, respectively). The
solid line represents the resulting ratchet spin transmis-
sion ∆TS, Eq. (5). For comparison, the dashed-dotted
curve shows TC(+V0)=TC(−V0), Eq. (6), and the stair-
case function the successive opening of transverse modes

n = 1, 2, 3 in the overall transmission of the conductor
without potential barriers and SO interaction.

At energies below U0 and within the first conducting
transverse mode the spin transmissions TS(±V0) are zero,
while the total transmission TC(±V0) is suppressed up to
a sequence of four peaks representing resonant tunnel-
ing through states which can be viewed as precursors of
the lowest Bloch band in the limit of an infinite periodic
potential. When the second mode is opened spin polar-
ization is possible (see model below) and takes different
values in the two rocking situations leading to a finite
ratchet spin transmission. Two transmission peak se-
quences, related to the lowest one, reappear at higher en-
ergies (around E=24 and 45), both for TC(±V0) and for
TS(±V0), owing to corresponding resonant Bloch states
involving the second and third transverse mode. The en-
hanced ratchet spin transmission at the opening of the
third mode (at E = 38) can be associated to a ’classical’
rectification effect resulting from a different number of
open modes in one lead in the two rocking situations.

Figure 1 demonstrates moreover that the associated
spin current changes sign several times upon variation
of the energy, opening up the experimental possibility
to control the spin current direction through the carrier
density via an external gate. This energy dependence

FIG. 3: (Color online) Ratchet spin transmission as a func-
tion of energy E=(kL)2 and SO interaction kSOL for N = 20,
V0 = 2 and U0 = 22. The dashed lines are a guide to the eye
for the shift of the first Bloch band.
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of the spin current implies also current inversion as a
function of temperature21. Such behavior is considered
as typical for quantum (particle) ratchets4,8.

In Fig. 2(a) we present the ratchet spin transmission
∆TS as a function of the barrier number N . Obviously,
∆TS approaches different asymptotic values depending
on the Fermi energy: For energies in resonance with the
first Bloch band (lowest trace), ∆TS exhibits a long- and
a short-scale frequency oscillation owing to commensu-
rability between the spin precession length LSO =π/kSO

and the geometry of the periodic system. For off-resonant
injection energies two characteristic, distinct behaviors
are shown: a large-scale oscillation (upper curve) and
a nearly constant behavior (middle trace), respectively.
It is remarkable that in all cases the periodic structure
enhances considerably the absolute value of ∆TS.

In Fig. 2(b) we show the ratchet spin conductance,
〈IS〉(e/V0), as a function of the applied driving voltage
for a system with 20 barriers. For energies within the
first Bloch band (solid line), the ratchet spin conductance
exhibits a non-monotonic behavior. For the off-resonant
cases (dashed and dashed-dotted line) it is monotonically
increasing in the voltage window considered.

In Fig. 3 we present the ratchet spin transmission as a
function of injection energy E and Rashba SO interaction
kSO. We find a rich structure in the explored parameter
space, where both large positive and negative values of
the ratchet spin transmission can be observed. In the
whole energy range peaks due to resonant tunneling are
visible, which are shifted to lower energies for increasing
SO coupling (e.g., region between dashed lines). Further-
more, we observe discontinuities in the spin transmission
at energies where an additional transversal mode in one
of the leads opens up (marked by arrows).

For InAs quantum wells LSO is of the order of 0.2 µm23,
in InGaAs it has been tuned from 0.7 to 1.6 µm24 and
in GaAs from 2.3 to 5.6 µm25; the range of SO coupling
kSOL = πL/LSO given in Fig. 3 can be achieved in ex-
periments for period L on scales of µm. Spin-polarized
currents as predicted here exceed those observed with ex-
perimental detection schemes, reported, e.g., in Ref. 17.

IV. RATCHET MECHANISM: SIMPLIFIED

MODEL

Finally we present a simplified model providing ad-
ditional insight into the underlying mechanism for the
occurrence of a finite ratchet spin current. We con-
sider a wire with two open transverse modes (n = 1, 2)
and a smooth symmetric potential barrier U(x) in the
two rocking situations, see Fig. 4. Upon adiabatically
traversing the barrier from A via B to C, the spin-orbit
split energy spectrum En(kx) for electrons is shifted up
and down. For fixed Fermi energy EF, the initial shift
causes a depopulation of the upper levels (n=2) and a
spin-dependent repopulation while moving from B to C.
When EF is traversing an anti-crossing between succes-

V>0
V0

FE

C

V=0
V<0

BA

FIG. 4: (Color online) Illustration of the spin polarization
mechanism for transmission through a strip with a single adi-
abatic symmetric potential barrier U(x) (solid line) in the
two rocking situations (dashed and dotted line). At points
A,B and C the position-dependent energy dispersion relation
En(kx) is sketched with respect to the Fermi energy EF (hor-
izontal line) for two transverse modes and SO-induced spin
splitting of each mode.

sive modes (see the region indicated by the dashed win-
dow in Fig. 4), there is a certain probability P for the
electrons to change their spin state. This causes an asym-
metry between spin-up and -down states for the repop-
ulated levels20. The related transition probability can
be computed in a Landau-Zener picture and reads, for a
transverse parabolic confinement of frequency ω0,

P (±V0)=1− exp

{

−πkSOω0/Σz

(∂/∂x)[U(x, z) ± V0g(x, z)]

}

. (10)

Here Σz denotes the difference in the polarizations of
the two modes involved. The spin transmission is pro-
portional to P (V ) and thus different in the two rocking
situations. Hence, the ratchet spin current 〈IS(V0)〉 is
nonzero, even in the case of a symmetric barrier. Ex-
panding Eq. (10) for small V0 allows to qualitatively un-
derstand the linear dependence of the ratchet spin con-
ductance for small V0 in Fig. 2. However, a quantitative
explanation of the spin ratchet effect for a periodic, non-
necessarily adiabatic potential is beyond this model.

V. CONCLUSIONS

The overall analysis indicates that the ratchet setup,
carrying features of a spin rectifier, differs from the pro-
posals14,15,17 for spin pumps, since it operates with a
single driving parameter, invokes quantum tunneling ef-
fects, and the spin transmission is governed by the spatial
periodicity of the underlying potential. Further calcula-
tions21 for combined Rashba- and Dresselhaus26 SO cou-
pling do not alter the overall picture but show that the
spin current direction can be changed upon tuning the
relative strength of the two coupling mechanisms.

To summarize, we showed that ratchets built from
mesoscopic conductors with SO interaction generate
spin currents in an experimentally accessible parame-
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ter regime. Many further interesting questions open up
within this new concept, including the exploration of spin
ratchet effects for non-adiabatic driving and for dissipa-
tive and non-equilibrium particle and spin dynamics.
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