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Abstract
Experimental and theoretical work on the ionization of deep impurity centres
in the alternating terahertz field of high-intensity far-infrared laser radiation,
with photon energies tens of times lower than the impurity ionization energy,
is reviewed. It is shown that impurity ionization is due to phonon-assisted
tunnelling which proceeds at high electric field strengths into direct tunnelling
without involving phonons. In the quasi-static regime of low frequencies
the tunnelling probability is independent of frequency. Carrier emission
is accomplished by defect tunnelling in configuration space and electron
tunnelling through the potential well formed by the attractive force of the
impurity and the externally applied electric field. The dependence of the
ionization probability on the electric field strength permits one to determine
defect tunnelling times, the structure of the adiabatic potentials of the defect,
and the Huang–Rhys parameters of electron–phonon interaction.

Raising the frequency leads to an enhancement of the tunnelling ionization
and the tunnelling probability becomes frequency dependent. The transition
from the frequency-independent quasi-static limit to frequency-dependent
tunnelling is determined by the tunnelling time which is, in the case of phonon-
assisted tunnelling, controlled by the temperature. This transition to the high-
frequency limit represents the boundary between semiclassical physics, where
the radiation field has a classical amplitude, and full quantum mechanics where
the radiation field is quantized and impurity ionization is caused by multiphoton
processes. In both the quasi-static and the high-frequency limits, the application
of an external magnetic field perpendicular to the electric field reduces the
ionization probability when the cyclotron frequency becomes larger than the
reciprocal tunnelling time and also shifts the boundary between the quasi-static
and the frequency-dependent limits to higher frequencies.

At low intensities, ionization of charged impurities may also occur through
the Poole–Frenkel effect by thermal excitation over the potential well formed by
the Coulomb potential and the applied electric field. Poole–Frenkel ionization
precedes the range of phonon-assisted tunnelling on the electric field scale and
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enhances the ionization probability at low electric field strengths. Applying
far-infrared lasers as sources of a terahertz electric field, the Poole–Frenkel
effect can clearly be observed, allowing one to reach a conclusion regarding
the charge of deep impurities.
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1. Introduction

One of the main manifestations of quantum mechanics is tunnelling. An essential feature of the
tunnel effect is the absence of a time lag. The tunnelling probability remains unchanged up to
very high frequencies. At higher frequencies the tunnelling process proceeds into multiphoton
transitions as long as the photon energy is less than the particular activation energy. This was
fully worked out theoretically for the first time by Keldysh [1]. The development of high-
power terahertz lasers allowed experimental investigation of the transitions between these
two limits; the result found was that the rising frequency drastically enhances the tunnelling
probability. This has been observed in semiconductors where the transition from the quasi-
static regime, where tunnelling is independent of frequency, to the high-frequency regime,
where the enhancement of tunnelling occurs, is found to be at terahertz frequencies [2].
Tunnelling in alternating potentials is important in a variety of physical phenomena such as
field emission, interband breakdown, tunnelling chemical reactions, Coulomb blockade, and
the destruction of adiabatic invariance. Furthermore, tunnelling in high-frequency fields is the
most effective mechanism of absorption of high-power radiation in the transparency region of
dielectrics between phonon and electron excitations.

This review deals with the newly found nonlinear optical effect of deep-impurity ionization
by terahertz radiation with photon energies a few tens of times lower than the impurity binding
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energy. This effect was first observed in the photoconductive signal of semiconductors doped
with deep impurities in response to high-power terahertz radiation [3]. The measurements were
carried out on impurity centres with no direct coupling of light to localized vibrational modes.
The ionization mechanism has been investigated in great detail [4–6] yielding the finding that
deep impurities can be ionized by tunnelling through the oscillating potential well formed
by a strong terahertz electric field of far-infrared (FIR) radiation together with the attractive
potential of the defect. Ionization of impurities in semiconductors by dc electric fields is well
known and is, in particular, applied in deep-level transient spectroscopy (DLTS) [7]. It will be
shown that in a certain limit, terahertz radiation acts like a strong dc electric field ionizing deep
impurities in spite of the fact that the field is alternating and the quantum energy is much smaller
than the impurity binding energy. In this limit the ionization probability does not depend on
the radiation frequency. An increase of the frequency and decrease of temperature result in
the ionization probability becoming dependent on frequency, which indicates a transition to
the range where the quantization of the radiation field becomes significant [2]. This transition
takes place at ωτ = 1 where ω is the radiation frequency and τ is the tunnelling time [8] in
the sense of Büttiker and Landauer [9, 10].

Deep impurity centres play a dominant role in the electronic properties of semiconductor
materials and have therefore become a focus of extensive investigation [11–17]. Deep centres
usually determine the nonequilibrium carrier lifetimes by acting as centres of nonradiative
recombination and thermal ionization. The effect of an electric field on thermal ionization
and carrier trapping has been used to probe deep impurities. In particular, investigation of the
ionization or capture in a strong electric field is actually the only way to find the parameters of
the phonon-assisted transitions determining the nonradiative recombination rate. DLTS is also
among the most extensively employed tools. Most of the parameters of deep centres, such as
ionization energy, and nonradiative and radiative trapping cross-sections, were obtained using
various modifications of DLTS. Direct application of strong static electric fields is usually
complicated by the onset of field nonuniformities in the sample and quite frequently initiates
avalanche breakdown. Using an electric field of high intensity, short laser pulses at terahertz
frequencies permit the contactless and uniform application of strong electric fields. Despite
the high radiation intensities involved, there is no or only insignificant heating of the electron
gas or of the crystal lattice under these conditions [5]. This is the result of the extremely weak
absorption of the terahertz radiation due to the low concentration of free carriers (the carriers
are frozen out on the centres), as well as to the use of short nanosecond-range pulses which do
not substantially perturb the phonon system.

The observation of tunnelling ionization of deep impurities by contactless application
of a strong uniform electric field using short FIR laser pulses revealed a new method for
probing deep centres in semiconductors. Laser pulses shorter than the nonequilibrium carrier
lifetimes allow one to measure the Huang–Rhys parameters of electron–phonon interaction in
the adiabatic approximation, the structure of the adiabatic potentials, and the trapping kinetics
of nonequilibrium carriers [18, 19].

This article is organized in the following way. After the introduction in section 1, in
section 2 the thermal ionization of deep impurities in the adiabatic approximation is briefly
reviewed, showing the importance of defect tunnelling in the ionization process. Section 3 deals
with a rigorous theory of tunnelling ionization in high-frequency electric fields. In section 4
the experimental technique is described. Finally, in section 5 the experimental results are
presented and discussed in relation to the theoretical background. It is shown that impurity
ionization in a high-frequency electric field has been observed in a large variety of different
defects and semiconductor hosts.
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Figure 1. A schematic representation of the modulation of the impurity binding energy εb by lattice
vibrations; (a) the electronic ground state; (b) the electron merging into the continuum.

2. Thermal ionization of deep impurities

2.1. Adiabatic approximation

The binding energy of deep centres is much larger than the average phonon energy and therefore
thermal emission and capture of carriers may only be achieved by involving many phonons.
Since electronic transitions occur much faster than transitions in the phonon system, the
adiabatic approximation can be used [20] and the electron–phonon interaction can be treated
in the semiclassical model of adiabatic potentials. For the sake of simplicity and to be specific,
we will discuss in the following electrons only, though the experimental investigation involves
either electrons or holes.

We consider the simplest case of deep impurities having only one bound state. Obviously,
this model applies directly to the emission and capture of carriers by neutral centres. However,
as will be shown, the conclusions reached here remains valid also for deep impurities with
attractive Coulomb potentials. The depth of the potential well depends sensitively on the
separation of the impurity and the neighbouring atoms. Thus, vibrations of the impurity
and lattice vibrations involving these atoms modulate the energy level of the impurity bound
state [21], as sketched in figure 1. In the course of thermal vibrations the bound state level may
eventually come up to the level of the continuous spectrum, enabling the electron to move from
the localized state into the corresponding band, leaving the impurity in an ionized state or, more
generally, in an electron-detached state. To describe this behaviour, a one-mode model with
a single configuration coordinate x is assumed. This approximation is justified because the
breathing mode of local vibrations is most effective in phonon-assisted ionization and capture
of deep impurities. In the adiabatic approximation, electronic transitions are assumed to occur
at a constant configuration coordinate x . The vibrations of the impurity are determined by the
potential due to the interaction with the surrounding atoms and due to the mean polarization
field induced by the localized electron. Such a potential averaged over the electronic motion is
called adiabatic. The magnitude of the potential includes the energy of the electron at a fixed
coordinate x .

In figure 2 two basically different adiabatic potential diagrams are shown, representing
an impurity with strong electron–phonon interaction and autolocalization, as used to describe
the properties of DX and EL2 centres in III–VI compound semiconductors (figure 2(a)) and a
substitutional on-site impurity of weak electron–phonon coupling (figure 2(b)). The potential
curves U1(x) and U2(x) correspond to the electron bound to the impurity and to the ionized
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Figure 2. Upper diagrams: adiabatic potentials as a function of the configuration coordinate
x of the impurity motion for two possible schemes: (a) strong electron–phonon coupling with
autolocalization; (b) weak electron–phonon coupling of substitutional impurities. εT and εopt are
the thermal and optical activation energies, respectively. Solid curves U1(x) and U2(x) correspond
to the carrier bound to the centre and detached from the impurity at the bottom of the band (ε = 0),
respectively. Bottom diagrams: blown-up representations of the tunnelling trajectories.

impurity with zero kinetic energy of the electron, respectively. The equilibrium position of the
bound state is shifted with respect to the ionized state due to the electron–phonon interaction.
The energy separation between the two potentials is determined by the electron binding energy
εb(x) as a function of the configuration coordinate x :

U1(x) = U2(x) − εb(x). (1)

Taking into account the Franck–Condon principle, the bound state equilibrium energy yields the
value of the threshold of optical ionization: εopt = εb (x = x0), where x0 is the displacement
of the bound state due to electron–phonon interaction (see figure 2). Assuming the simple
parabolic approach for U1(x), as shown in figure 2, εopt is larger than the energy of thermal
ionization εT , where εT is the distance between the minima of the parabola. The relaxation
energy �ε = εopt − εT characterizes the strength of the electron–phonon coupling. The
larger the magnitude of the coupling, the larger �ε. The electron–phonon coupling can be
conveniently characterized by a dimensionless parameter

β = �ε

εT
= εopt − εT

εT
. (2)

The configuration of figure 2(a) illustrates the case of β > 1, where the optical and thermal
ionization energies differ considerably. This diagram is used to describe, for instance, the
DX and EL2 centres, where this difference was experimentally revealed [11–17]. Such
autolocalized states have a large potential barrier suppressing the return of free carriers to
the localized state, thus giving rise to the phenomenon of persistent photoconductivity. In
these conditions, there is no radiative capture into the impurity state.

The configuration of figure 2(b) corresponds to weak electron–phonon coupling (β < 1).
In this case the difference between εopt and εT is usually small, being several milli-electron
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volts. In fact for deep impurities in Ge and Si, a difference between εopt and εT has been
observed only recently, by electric field-enhanced tunnelling ionization, as reviewed here [18].
There are, however, some cases where the relaxation energy �ε is large, as shown by Henry
and Lang for ‘state 2’ oxygen in GaP where β = 0.56 [21]. The large value of �ε in this
case has been attributed to the two different vibrational frequencies in the adiabatic potential
of localized electrons and in the electron-detached state.

2.2. Thermal tunnelling emission and capture

The various features of the adiabatic potential configuration are of great importance for the
thermal emission and the nonradiative capture of free carriers [14]. We shall restrict ourselves
to the simple model of two identical displaced parabolic curves, which was first proposed
by Huang and Rhys [20] and is currently widely employed in the theory of phonon-assisted
transitions. By this model,

U1(x) = Mω2
vib(x − x0)

2

2
− εT (3)

U2(x) = Mω2
vib x2

2
(4)

where M and ωvib are the mass of the impurity and the vibrational frequency, respectively.
Here we consider the zero-field electron emission from deep centres in equilibrium, where

the emission rate is balanced by electron capture. The emission rate is identical to the capture
rate. In a classical approach, the thermal emission probability is given by

e = 2π

ωvib
exp

(
−εT + ε2

kB T

)
(5)

where ε2 = U1(xc), and xc is the coordinate of the crossing of the potentials U1(x) and U2(x),
at which the electron binding energy vanishes, εb(xc) = 0 (see figure 2). Thus εT + ε2 is the
minimum excitation energy required to drive the electron into the continuum across the potential
barrier separating U1(x) and U2(x). Adopting the Huang–Rhys model (equations (3), (4)) we
get ε2 = (εT − �ε)2/4 �ε. Usually the experimentally observed activation energy is much
less than εT + ε2. In fact the electron is emitted from a vibrational energy level E above the
minimum of the potential U1(x) with εT < E � εT + ε2 (see figure 2). This is because
the defect tunnels from the configuration corresponding to the electron bound state to that
of the ionized impurity state or electron-detached state in the case of DX centres. As the
vibrational energy E increases, the tunnelling barrier separating U1(x) and U2(x) becomes
lower, and, hence, the tunnelling probability increases. On the other hand, the population of
the energy level E decreases with increasing E proportionally to exp(−E/kB T ). Thus for each
temperature an optimum energy E = Em exists where the probability for tunnelling assumes a
maximum [14, 15, 22, 23].

The defect tunnelling process will be treated in the semiclassical approximation. In this
approach the particle has a well defined trajectory even under the potential barrier where the
kinetic energy is negative. In this case the thermal emission of carriers can be described by a
two-step process:

(i) Thermal excitation drives the vibrational system to an energy level E � εT in the bound
state potential U1(x). The probability of this process is PT (E) ∝ exp(−E/kT ).

(ii) A tunnelling reconstruction of the vibrational system occurs corresponding to a tunnelling
at energy E from the bound potential U1(x) to the ionized potential U2(x) with the
tunnelling probability Pd(E) (see figure 2, lower diagrams). This process will be called
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defect tunnelling, in contrast to electron tunnelling which will be important in the electric
field-enhanced tunnelling emission.

The ionization probability of the total process P(E) is the given by

P(E) = PT (E)Pd(E). (6)

The probability Pd(E) of the tunnelling reconstruction of the vibrational system in
the semiclassical approximation depends exponentially on the imaginary part of the action
integral S(E) multiplied by 1/h̄ and evaluated along the trajectory of tunnelling:

Pd(E) ∝ exp(−2S(E)). (7)

The total emission probability is then

P(E) ∝ exp(−ψ) (8)

with

ψ(E) = E
kB T

+ 2S(E). (9)

The first term in equation (9) describes the population of the vibrational energy level E , and the
second, the defect tunnelling from the bound state to the electron-detached state. The optimum
tunnelling energy Em is determined by the vibrational energy at which �(E) has a minimum:

dψ(E)

dE

∣∣∣∣
E=Em

= 2
dS(E)

dE

∣∣∣∣
E=Em

+
1

kB T
= 0. (10)

The derivative dS(E)/dE in equation (10) multiplied by −h̄ may be identified as the Büttiker–
Landauer time τ for defect tunnelling [9, 10, 24] through the barrier at the optimum tunnelling
energy Em :

τ = −h̄
dSi (E)

dE

∣∣∣∣
E=Em

. (11)

Thus, in the case of phonon-assisted tunnelling ionization the time for tunnelling along the
optimum trajectory is τ = h̄/2kB T , determined only by the temperature.

The tunnelling trajectories for both adiabatic potential configurations are indicated in
figure 2 (lower diagrams) by arrows. The trajectories start at the turning point a1 and go under
the potential U1(x) to the crossing point of the two adiabatic potentials xc and then to the
turning point a2 under potential U2. Thus, after [14, 22, 23], S(E) can be split into two parts
in the form

S(E) = −S1(E) + S2(E), (12)

with

Si (E) =
√

2M

h̄

∫ xc

ai

dx
√

Ui(x) − (E − εT ), i = 1, 2. (13)

The actual direction of tunnelling along the x-coordinate is specified by the sign of Si (E) in
equation (13). Following from the orientation of the tunnelling trajectories, S1(E) is positive
for the case of β < 1 (figure 2(b)) and negative for β > 1 (autolocalization; see figure 2(a))
because in this case xc < a1. The action integral S2(E) is positive for both adiabatic potential
configurations.

The tunnelling times τ1 and τ2 under the corresponding adiabatic potentials are

τi (Em) = −h̄
dSi (E)

dE

∣∣∣∣
E=Em

= −
√

M

2

∫ xc

ai

dx√
Ui (x) − (Em − εT )

i = 1, 2. (14)
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Figure 3. Illustrations of the tunnelling ionization of deep centres in a static electric field: (a)
thermal excitation and defect tunnelling; (b) electron tunnelling with probabilities PT (E), Pd (E, ε),
and Pe(ε).

One can see that they are given by integration over the distance of tunnelling divided by the
magnitude of the velocity under the barrier.

Equations (10)–(14) yield

τ = τ2 ± |τ1| = h̄

2kB T
(15)

where the minus and plus signs correspond to the configurations of figures 2(a) and (b),
respectively. Since (Em − εT ) is usually much smaller than εT , the time τ1 is practically
temperature independent and can be calculated for Em = εT .

3. Theory of electric field-enhanced tunnelling ionization

3.1. Ionization probability

Carrier emission in static electric fields was first considered in [25] and calculated numerically
in [26]; analytical expressions for the probability of deep-impurity-centre ionization were
obtained in [27, 28].

In a homogeneous electric field a potential of constant slope along the direction of the field
vector is superimposed on the potential well binding the electron to the impurity. A triangular
potential barrier is formed, that the electron may cross by tunnelling on a level of negative
kinetic energy ε. The adiabatic potential of the unbound state is thus shifted down in energy
to

U2ε(x) = U2(x) + ε (ε < 0) (16)

(dashed lines in figures 3(a) and 4) shortening the defect tunnelling trajectory in configuration
space and lowering the barrier height. Thus the electron emission is enhanced above the level
of thermal ionization in equilibrium. In alternating electric fields of high-frequency radiation,
the electrons predominantly leave the impurities if the electric field assumes its peak amplitude.
One of the main issues of the following discussions will be the question of how far this model
applies with increasing frequency.

The electric field-stimulated emission of carriers consists of three simultaneously
proceeding processes: the two processes like in the case of thermal equilibrium emission
of carriers, namely:

(i) thermal excitation of the vibrational system and
(ii) the tunnelling reconstruction of the vibrational system (illustrated in figure 3(a) for the

case of strong electron–phonon interaction); and in addition a new one:
(iii) tunnelling of the electron through the triangular potential formed by the attractive force

of the impurity and the electric field (figure 3(b)).



Topical Review R1271

Figure 4. Blown-up representations of the tunnelling trajectories for (a) strong electron–phonon
coupling (autolocalization) and (b) weak electron–phonon coupling. The dashed curves show the
potential U2ε(x) of the system: an ionized impurity and an electron with negative kinetic energy ε

obtained by electron tunnelling in an electric field.

Electron tunnelling occurs at an energy ε < 0 with the probability Pe(ε). The electric
field acts on electron tunnelling only, and the stimulation of thermal tunnelling ionization of
impurities is caused by the lowering of the ionized adiabatic potential from U2(x) to U2ε(x)

with ε < 0 (figures 3(a) and 4). The ionization probability of the total process depends now
also on the electron energy ε and is given by

P(E, ε) = PT (E)Pd(E, ε)Pe(ε). (17)

The probability Pd(E, ε) of the tunnelling reconstruction of the vibrational system in the
semiclassical approximation is calculated similarly to in the case of thermal emission. The
tunnelling trajectories and potential barriers for weak and strong electron–phonon interaction
are shown in figure 4.

The trajectories, as in the case of thermal tunnelling ionization, are split into two parts,
both under barriers formed by the potentials U1(x) and here U2ε(x). The system tunnels at
energy level E − εT from the turning point a1ε to xcε under the potential U1(x) and from xcε,
where x = xcε is the intersection of the potentials, to the turning point a2ε under U2ε(x)

(equation (16)). We note that all energies are measured from the bottom of the potential U2(x).
The tunnelling probability depends exponentially on the imaginary part of the principal
function (action) evaluated along the trajectory linking the turning points a1 and a2ε. Then the
probability of defect tunnelling is given by

Pd(E, ε) ∝ exp(−2(S2ε(E, ε) − S1ε(E, ε)) (18)

where

S1ε(E, ε) =
√

2M

h̄

∫ xcε

a1

√
U1(x) − (E − εT ) dx (19)

and

S2ε(E, ε) =
√

2M

h̄

∫ xcε

a2ε

√
U2ε(x) − (E − εT ) dx . (20)

The probability of electron tunnelling in the alternating electric field Pe(ε) is calculated
semiclassically using the short-radius potential model for impurities after [24, 29]. The
unperturbed wavefunction �0(r, t) of an electron in a short-range potential at r = 0 on
the energy level ε (ε < 0) is given by

�0(r = 0, t) ∝ exp(−iεt/h̄). (21)

The electron wavefunction in an arbitrary point r and for the time t is

�(r, t) ∝ e(i/h̄)S̃(r,t), (22)
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where S̃(r, t) is the electron action. In order to determine S̃(r, t) as a function of the electron
coordinates r and the time t , one should find the general integral [30] of the Hamilton–Jacobi
equations

∂ S̃

∂ t
= −H(p, r, t); ∇S̃ = p (23)

which depends on an arbitrary function. Here H and p are the Hamiltonian and the electron
momentum, respectively. The resulting principal function S̃(r, t) can be written in the form

S̃ = S̃0 − εt0; S̃0 =
∫ t

t0

L(r′, ṙ′, t ′) dt ′, (24)

where L(r′, ṙ′, t ′) is the Lagrange function. The position vector r′(t ′) as a function of t ′ can
be found by solving the classical equation of motion with boundary conditions

r′(t ′)|t ′=t0 = 0; r′(t ′)|t ′=t = r. (25)

The principal function is obtained in the form of equation (24) by taking it into account that
the wavefunction �(r, t) is equal to the unperturbed wavefunction �0(r, t) at r = 0 (at the
defect) and that r = 0 at t = t0 (equation (25)). In equations (24) and (25), t0 is a function
of r and t which should be found from the equation(

∂ S̃

∂ t0

)
r,t

= 0. (26)

We want to emphasize that r and t are real while r′, t ′, and t0 can be complex. As will be
shown below, the imaginary part of t0 determines the Büttiker–Landauer electron tunnelling
time and is a function of the electron energy ε.

The electron tunnelling probability Pe(ε), being determined by the current density flowing
from the centre, is proportional to |�|2 in the region of r outside the potential well where the
electron is free. To find Pe(ε), it is sufficient to calculate Im S̃ in the vicinity of its maximum,
i.e. at values of r where

Im ∇S̃ = Im(p|t ′=t ) = 0. (27)

For this region of space, it follows that, after the left side of equations (23),

∂(Im S̃)

∂ t
= 0. (28)

Thus, the probability of electron tunnelling Pe(ε) can be written as

Pe(ε) = exp(−2Se(ε)) (29)

where

Se(ε) = Im S̃

h̄
. (30)

Here S̃ is determined by equations (24), (26), and (27). Note that in calculating Se(ε), one can
arbitrarily take a value of the time t according to equation (28); we will assume t = 0.

The electron tunnelling time τe(ε) is determined as

τe(ε) = −h̄
∂Se(ε)

∂ε
. (31)

Using equations (24) and (30) we obtain

τe(ε) = −Im
∂ S̃

∂ε
= −Im

(
−t0 +

∂ S̃

∂ t0

∂ t0
∂ε

)
. (32)
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According to equation (26) we finally get

τe(ε) = Im t0. (33)

As a result, the probability of ionization e(E) as a function of the electric field E is
obtained by integrating equation (17) over E and ε:

e(E) =
∫ ∫

Pe(ε)Pd(E, ε) exp(−E/kB T ) dε dE . (34)

Calculating this integral by the saddle point method, we see that there is a vibrational energy
E = Em and an electron energy ε = εm where the ionization probability has a sharp maximum.
Thus, defect and electron tunnelling take place mostly at these energy levels and the ionization
probability can be written in the following approximate form:

e(E) ∝ Pe(εm)Pd(Em, εm) exp(−Em/kB T ). (35)

The defect and the electron tunnelling at the energy levels Em and εm can be characterized by a
defect tunnelling time τ and an electron tunnelling time τe ≡ τe(εm), respectively. The saddle
point method applied to equation (34) yields that the defect tunnelling time is determined by
the temperature [6]:

τ = τ2ε(Em, εm) − τ1ε(Em, εm) = h̄

2kB T
(36)

where τnε(Em, εm) are times for tunnelling under the barriers Unε(x) of the vibrational system
with

τnε(E, ε) = −h̄
∂Snε(E, ε)

∂E
(n = 1, 2). (37)

As an important result obtained by the saddle point method for solving the integral equation (34)
is that the electron tunnelling time τe(εm) is equal to the defect tunnelling time τ2ε(Em, εm)

under the potential U2ε(x) of the ionized configuration:

τe(εm) = τ2ε(Em, εm). (38)

The solution of equations (36) and (38) allows one to find Em and εm .

3.2. Phonon-assisted tunnelling

The tunnelling ionization probability in the limit of not-too-high electric fields and not-too-low
temperatures is dominated by phonon-assisted tunnelling. The electric field and temperature
limits will be defined more precisely below. The theory is developed for neutral impurities,
which means that the Coulomb force between the carrier and the centre is ignored when the
carrier is detached from the impurity centre. The tunnelling ionization of charged impurities
in static and alternating electric fields [19] will be discussed below, where we show that at
low electric field strengths, ionization is caused by the Poole–Frenkel effect, whereas at high
fields, tunnelling ionization enhanced by the Coulomb force dominates the emission process.
In the case of the phonon-assisted tunnelling the optimum electron tunnelling energy εm is
small in comparison to the optimum defect tunnelling energy Em . In this limit the tunnelling
emission probability e(E) of carriers can be calculated analytically. The effect of the electric
field is a small shift of the ionized potential U2(x) to a lower level U2ε(x). The potential
U1(x) is not affected by the electric field. For small ε the quantities S1ε(E, ε) and S2ε(E, ε)

can be taken into account in the linear approximation as a function of ε. Then we obtain
S2ε(E, ε)− S1ε(E, ε) = S2(E, ε)− S1(E, ε)+τ2ε/h̄, where S1(E, ε), S2(E, ε), τ2 are calculated
after equations (19), (20), and (37) for ε = 0 and are independent of the electric field. Taking
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into account equations (31)–(36) and (33), we find the dependence of the ionization probability
on the electric field in the form

e(E) = e(0) exp

(
−2

h̄
Im S̃0(εm)

)
(39)

where e(0) is the thermal ionization probability at zero field; S̃0 follows from equation (24)
and should be calculated in the range where equation (27) is satisfied at arbitrary t .

3.2.1. Frequency dependence. Now we consider the frequency dependence of phonon-
assisted tunnelling and determine Im S̃0(εm). If an alternating electric field E(t) is applied to
an electron, the Lagrange function has the form

L(r′, ṙ′, t ′) = mṙ′2

2
+ e (r′ · E(t ′)) (40)

where m and e are the mass and the charge of the electron, respectively. The equation of
motion is

mr̈′ = eE(t ′). (41)

Integrating equation (24) by parts and taking into account equations (40) and (41) with the
boundary conditions given by the equations (25) and (27), we get

Im S̃0 = −Im
∫ t

t0

mṙ′2

2
dt ′. (42)

In the following we consider the general case of elliptically polarized radiation of frequency ω:

Ex = E1 cos ωt, Ey = E2 sin ωt (43)

propagating in the z-direction. Then we have from equation (41)

ẋ ′ = eE1

mω
sin ωt ′ + ux (44)

ẏ ′ = −eE2

mω
cos ωt ′ + uy (45)

and hence

x ′ = − eE1

mω2
(cos ωt ′ − cos ωt0) + ux(t

′ − t0) (46)

y ′ = − eE2

mω2
(sin ωt ′ − sin ωt0) + uy(t

′ − t0). (47)

Here the velocities ux and uy are real constants (see equation (27)) which are related to the
velocity v0 = ṙ(t ′ = t0) by the equations

ux = −eE1

mω
sin ωt0 + v0x (48)

uy = eE2

mω
cos ωt0 + v0y . (49)

According to equation (33), the complex time t0 can be written in the form

t0 = t ′
0 + iτe. (50)

Taking into account that

∂ S̃0

∂t0

∣∣∣∣
r,t

= H (r′, t′)|t′=t0,r′=0 (51)
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we have from equation (26)

ε = mv2
0

2
(52)

where ε < 0 and hence v2
0 is negative (see [30]).

According to equations (48), (50), and (52), we get

2ε

m
=

(
ux +

eE1

mω
(cosh ωτe(ε) sin ωt ′

0 + i sinh ωτe(ε) cos ωt ′
0)

)2

+

(
uy − eE2

mω
(cosh ωτe(ε) cos ωt ′

0 + i sinh ωτe(ε) sin ωt ′
0)

)2

. (53)

The condition that the coordinates x ′ and y ′ should be real at t ′ = t , together with equation (50),
gives

ux = − eE1

mω2τe(ε)
sinh ωτe(ε) sin ωt ′

0 (54)

uy = eE2

mω2τe(ε)
sinh ωτe(ε) cos ωt ′

0. (55)

Now we can see that the left part of equation (53) can be real only if sin ωt ′
0 = 0 or cos ωt ′

0 = 0.
For E2 = 0 (linear polarization), cos ωt ′

0 cannot be equal to zero, as it leads to positive values
of ε, while they must be negative due to electron tunnelling. Thus, only the first situation is
practically realized. In this case we have from equation (53) a relation between the tunnelling
time τe and the electron energy ε:

2ε

m
= −

(
eE1

mω

)2

sinh2(ωτe(ε)) +

(
eE2

mω

)2( sinh ωτe(ε)

ωτe(ε)
− cosh ωτe(ε)

)2

. (56)

Then, after integration of equation (42), an expression for Im S̃0 is obtained:

Im S̃0 = e2τe(ε)

4mω2

[
E2

1

(
1 − sinh 2ωτe(ε)

2ωτe(ε)

)
+ E2

2

(
1 +

sinh 2ωτe(ε)

2ωτe(ε)
− 2

sinh2 ωτe(ε)

(ωτe(ε))2

)]
. (57)

In the case of phonon-assisted tunnelling considered here, the electron tunnelling time τe(εm)

is equal to the defect tunnelling time τ2, because τe(εm) = τ2ε(Em, εm) (equation (38)) and
τ2ε(Em, εm) is equal to the tunnelling time τ2 (equation (15)) for |εm| � Em .

Therefore, the probability of the phonon-assisted tunnelling can be obtained by using
equations (39) and (57), replacing τe(εm) by τ2.

From equation (39) we get the ionization probability as a function of the electric field E :

e(E) = e(0) exp

(
E2

E2
c

)
. (58)

It is convenient to write Ec in the form

E2
c = 3mh̄

e2(τ ∗
2 )3

(59)

introducing an effective time τ ∗
2 . This time may be obtained from equation (57). In the case

of linear polarization (E1 = E , E2 = 0), we find

(τ ∗
2 )3 = 3τ2

2ω2

(
sinh 2ωτ2

2ωτ2
− 1

)
, (60)

and for circular polarization (E1 = E2 = E), we have

(τ ∗
2 )3 = 3τ2

ω2

(
sinh2 ωτ2

(ωτ2)2
− 1

)
. (61)
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These relations show that for a static electric field (ω = 0) the effective time τ ∗
2 is equal to the

defect tunnelling time τ2. Therefore, equations (58) and (59) are in agreement with previous
derivations of the tunnelling emission probability in static fields [28].

The equations (58)–(61) have been obtained without any assumption about the shape of
the adiabatic potentials U1(x) and U2(x). In fact, the defect tunnelling time τ = h̄/2kB T is
independent of the form of the potentials. However, the parameters τ1 and τ2 = τ + τ1, which
are crucial for electric field-stimulated tunnelling, substantially depend on the configuration of
the potentials. In the model of parabolic potentials (the Huang–Rhys model; see equations (3)
and (4)), τ1 is given by

τ1 = 1

2ωvib
ln

εT

�ε
. (62)

From equation (62) it follows that the tunnelling time τ1 is negative for autolocalized impurities
with �ε > εT and positive for substitutional impurities with weak electron–phonon interaction
where �ε < εT . Thus we get

τ2 = h̄

2kT
± |τ1| (63)

with the plus and minus signs for substitutional and autolocalized impurities, respectively. The
tunnelling time τ2 controls defect tunnelling in static fields; it is a function of the temperature
and the shape of the adiabatic potentials, and is independent of the frequency ω. The effective
time τ ∗

2 which controls tunnelling for all frequencies additionally depends on ω. The frequency
dependence of τ ∗

2 /τ2 as function of ωτ2 is displayed in figure 5 for linearly and circularly
polarized radiation. As long as ωτ2 � 1, the ratio τ ∗

2 /τ2 is equal to one, and in this quasi-
static regime the ionization probability is independent of the electric field frequency and the
state of polarization. For ωτ2 > 1 the ratio increases, drastically enhancing the ionization
probability. In this high-frequency regime, the ionization probability is polarization dependent,
being higher for linearly than circularly polarized radiation at the same amplitude E of the
electric field.

3.2.2. Magnetic field dependence. An external magnetic field B applied perpendicularly to
the electric field which generates the tunnelling barrier decreases the probability of electron
tunnelling. This effect has been theoretically investigated for tunnelling of electrons through
static potential barriers [29, 31]. The theory has been extended to phonon-assisted tunnelling
ionization of deep impurities in dc electric fields [32] and in high-frequency alternating
fields [33] showing that in the case of phonon-assisted tunnelling also, the carrier emission is
suppressed by an external magnetic field (B ⊥ E). For the ionization probability we get again
an exponential dependence on the square of the electric field strength ∝ exp(E2/E2

c ) where
we write E2

c in the form of equation (59), defining by this an effective time τ ∗
2 which depends

now on the magnetic field strength:

(τ ∗
2 )3 = 3ω2

c

(ω2 − ω2
c)

2

{∫ τ2

0

[(
− cosh ωτ +

ωc

ω

sinh ωτ2

sinh ωcτ2
cosh ωcτ

)2

dτ

+
∫ τ2

0

(
ω

ωc
sinh ωτ − ωc

ω

sinh ωτ2

sinh ωcτ2
sinh ωcτ

)2]
dτ

}
. (64)

Here ωc = eB/mc is the cyclotron frequency. In figure 6 the calculated τ ∗
2 normalized by the

frequency-independent tunnelling time τ2 is shown as a function of ωτ2 for different parameters
ωcτ2 ∝ B . The suppression of the tunnelling probability occurs in both frequency ranges: at
low frequencies when tunnelling is independent of frequency as well as at high frequencies
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materials, all temperatures, and all radiation frequencies of the present investigation. The inset
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B ⊥ E.

when the tunnelling probability increases drastically with rising frequency. The effect of a
magnetic field on tunnelling is strongest if B is oriented normal to the tunnelling trajectory
and vanishes if B is parallel to the electric field.

3.3. Direct tunnelling ionization

The phonon-assisted tunnelling regime with the characteristic electric field dependence of the
ionization probability e(E) ∝ exp(E2/E2

c ) is limited by the condition that the optimal electron
tunnelling energy is smaller than the optimal defect tunnelling energy, |εm| < Em . For linear
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Figure 7. A schematic plot of the adiabatic potentials in high electric fields. With rising electric
field strength, |ε| increases; thus, U2ε(x) shifts to lower energy. The crossing point of U2ε(x)

approaches the minimum of the bound state U1(x). The tunnelling process proceeds from phonon-
assisted tunnelling to direct tunnelling at the crossing point without involving phonons.

polarization (E1 = E and E2 = 0), this inequality can be written in the form

(eEτe)
2

2m
< εT

(ωτe)
2

sinh2(ωτe)
. (65)

In this limit electron tunnelling yields only a small correction to the defect tunnelling, and
the electron tunnelling time τe is equal to the defect tunnelling time τ2 and is independent on
the electron energy ε. If the inequality is violated (|εm| > Em), direct tunnelling dominates
the ionization process. Now the tunnelling times become dependent on the electron energy ε.
This occurs at high electric fields, which shifts |εm| to higher values. The adiabatic potential
of the ionized defect for various field strengths is shown in figure 7. With rising electric field
strength, the magnitude of the electron energy, |ε|, increases and the potential curve of the
electron-detached state U2ε(x) is shifted to lower energy. The crossing point of the U2ε(x) and
U1(x) decreases on the energy scale approaching the minimum of U1(x). Now direct electron
tunnelling takes place at the crossing point of these potential curves without the assistance of
phonons.

As equation (65) shows, the electric field strength where the transition from phonon-
assisted tunnelling to direct tunnelling occurs decreases with increasing frequency and/or
decreasing temperature because of the temperature dependence of τe (equations (38), (63)). In
the regime of direct tunnelling, the ionization probability approaches the well known relation
for electron tunnelling through a triangular barrier [24]. The effect of thermal phonons can
be considered as a small perturbation which decays with rising electric field strength. The
emission probability is found to be independent of frequency and can be written as

e(E) = eE

2
√

2mεopt
exp(−φ) (66)

with

φ = 4
√

2m

3h̄eE
ε

3/2
opt − b

mωvibε
2
opt

h̄e2 E2
coth

h̄ωvib

2kT
. (67)

Here b is a constant. In the Huang–Rhys model, b = 4 �ε/εopt where �ε = εopt − εT . The
first term in equation (67) is the exponent for electron tunnelling through a triangular barrier
(see figure 3(b)) while the second term is a correction due to thermal phonons.

The deviation from phonon-assisted tunnelling at increasing electric field strength can
be utilized to characterize deep impurities. The transition from phonon-assisted tunnelling to
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Figure 8. Calculations for ionization of the neutral impurity with εT = 90 meV and m∗ =
0.044 me. The ratio of the emission probability in the electric field e(E) and the thermal
emission probability e(0) is plotted as a function of E2 for different values of ωvib and �ε at
τ1 = 2.9 × 10−14 s.

direct tunnelling strongly depends on�ε = εopt−εT and ωvib and allows one to determine these
parameters. To demonstrate this dependence, the emission probability of neutral impurities
has been calculated for different combinations of these parameters at constant tunnelling time
τ1, taking into account both phonon-assisted and direct tunnelling. The results are plotted in
figure 8, showing that the electric field strength of the transition shifts to higher values with
rising local vibration frequency.

3.4. The effect of impurity charge

Most deep centres bear a charge, which means that a Coulomb force is acting between the
detached carrier and the impurity centre. Thus the long-range Coulomb potential must be
taken into account in addition to the deep well causing the large binding energy of the
carrier. For a Coulomb potential, in contrast to the narrow potential well, the height of
an energy barrier formed by an external electric field is lowered along the direction of the
electric field vector, as sketched in figure 9. Therefore an electric field yields an increase
of the thermal emission probability by excitation of the carrier across the barrier, without
tunnelling. This thermal ionization process is called the Poole–Frenkel effect [34, 35]. It has
been observed in the current–voltage characteristics under dc conditions in many insulators
and semiconductors. The Poole–Frenkel effect is the dominant mechanism of electric field-
assisted thermal ionization at not-too-high field strengths before tunnelling of carriers becomes
important [19].

A simple calculation shows that in an electric field E , the ionization barrier is diminished
by an amount εP F : given by

εP F = 2

√
Ze3 E

κ
(68)

where Z is the charge of the centre and κ is the dielectric constant.
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Figure 9. The potential of a charged deep impurity in the absence (a) and presence (b) of an electric
field E applied along axis z. εb is the ground state binding energy and εP F is the Poole–Frenkel
reduction of the potential barrier height.

Owing to this fact, the probability of thermal emission due to an electric field increases as

e(E)/e(0) = exp(εP F/kT ). (69)

In semiconductors this effect is observed for attractive Coulomb impurity centres at high
temperatures and electric field strengths E less than the field which yields εP F (E) = Z 2 Ryd�,
where Ryd� is the effective Rydberg energy of the electron in the Coulomb potential of the
charged impurity. The current flow in the sample in this case increases exponentially with the
square root of the applied electric field.

There are, however, several disagreements between experiment and the Frenkel theory.
In particular, experimental studies showed that the slope of ln e(E)/e(0) versus E is only
about one half of that derived from equations (68) and (69) and that at very low electric field
strengths the emission rate becomes practically constant. These discrepancies are resolved
by more realistic theoretical approaches which consider the emission of carriers in three
dimensions [36, 37], take into account carrier distribution statistics [38–40], or are based
on the Onsager theory of dissociation [35, 40]. For the present purpose of analysing the
field ionization of deep impurities, it is sufficient to say that the proportionality, given by
equation (69), is valid over a wide range of electric fields for both the classical model of
Frenkel and the more sophisticated models referenced above.

If tunnelling occurs at higher fields, the role of a charge is reduced to increase the barrier
transparency, because of the lowering of the barrier height. This gives only a correction to the
tunnel ionization probability. In the limit of εm > Ryd� this correction has been calculated
in [41], yielding a multiplicative factor for the emission rate e(E) of equation (37):

e(E) = e0 exp

[
2
√

2m∗ Ryd�

eEτ2
ln

(
4τ2

3e2 E2

m∗h̄

)]
exp

(
τ 3

2 e2 E2

3m∗h̄

)
. (70)

We readily see that the correction due to the impurity charge in equation (70) tends to unity
with increasing electric field and becomes insignificant in strong fields. Thus, taking into
account the Poole–Frenkel effect and phonon-assisted tunnelling ionization with the charge
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Table 1. Characteristics of the FIR laser lines used in this work.

Wavelength Frequency Quantum energy Line of CO2 Maximum intensity
(µm) ω (1012 s−1) h̄ω (meV) pump laser (kW cm−2) Medium

76 25 16 10P(26) 4000 NH3

90.5 21 14 9R(16) 5000 NH3

148 13 8.5 9P(36) 4500 NH3

250 7.5 4.9 9R(26) 400 CH3F
280 6.7 4.4 10R(8) 1000 NH3

385 4.9 3.2 9R(22) 5 D2O
496 3.8 2.5 9R(20) 10 CH3F

correction given in the above equation, we get that the logarithm of e(E) varies as a function
of the electric field at first like

√
E and then changes to showing an E2-dependence for high

fields. The correction due to the charge in equation (70) approaches unity for increasing E
and therefore the charge correction becomes unimportant at high fields.

4. Experimental methods

4.1. Optically pumped FIR molecular lasers

As a source of terahertz electric fields, a high-power pulsed FIR molecular laser pumped by
a TEA CO2 laser has been used [42]. Strong single-line emission has been achieved in the
wavelength range from 30 to 500 µm applying NH3, CH3F, and D2O as laser-active media.
In table 1 the characteristics of these lines are listed together with lines of the TEA CO2 laser
which are used for pumping.

The photon energies corresponding to the wavelengths in the FIR lie in the 35–2 meV
range and are in all cases substantially lower than the binding energies of the deep impurities
in typical wide-gap semiconductors. The radiation pulse length varies for different lines from
10 to 100 ns. The radiated power was up to �50 kW in the frequency range from 5 × 1012 to
50 × 1012 s−1. The radiation could be focused to a spot of about 1 mm2, with the maximum
intensity reaching as high as 5 MW cm−2 which corresponds to an electric field of about
40 kV cm−1 inside the semiconductor samples.

The peak intensity of each single laser pulse could be monitored with fast noncooled
photodetectors based on the photon drag effect [43], on intraband µ-photoconductivity [44],
or on the stimulated tunnelling effect in metal/semiconductor structures under plasma
reflection [46]. The shape of the laser beam and the spatial distribution of the laser radiation
were controlled with a Spiricon pyroelectric camera.

4.2. Samples

The tunnelling ionization processes were studied for two different types of deep impurity
centre:

(i) substitutional impurities with weak electron–phonon coupling (Au, Hg, Cu, Zn in
germanium, Au in silicon, and Te in gallium phosphide); and

(ii) off-site impurities with strong electron–phonon coupling where autolocalization occurs
(Te in Alx Ga1−x As and in Alx Ga1−xSb).

The thermal ionization energy of acceptor impurities εT was in the case of germanium
150 meV (Au), 90 meV (Hg), 40 meV (Cu), and 30 meV (Zn), for Au in silicon, 300 meV,
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Figure 10. Oscillographic traces of the excitation pulse (top) at λ = 90.5 µm and of the
photoconductive signals of Ge:Au (middle) and Alx Ga(1−x)As:Te (bottom, showing persistent
photoconductivity at terahertz excitation!) The inset shows the measurement circuit.

Table 2. Parameters of samples investigated.

εT εopt �ε τ1 ωvib

(meV) (meV) (meV) (10−15 s) (1013 s−1) SH R

AlGaAs:Te 140a 850a 710 3.3 25 4
AlGaSb:Te 120a 860a 740 29 3.0 36
Ge:Au 150b 160 10 45 3.0 0.5
Ge:Hg 90b 106 16 29 3.0 0.8
Ge:Cu 40b — — 41 — —

a Reference [13].
b Reference [14].

and for the donor tellurium in gallium phosphide, 90 meV [14]. Note that tellurium
in gallium phosphide is basically a shallow impurity with a large central cell splitting
of the hydrogen-atom-like ground state resulting in a large binding energy. These data
and experimental results reviewed below are given in table 2. Doping with tellurium of
Alx Ga1−x Sb with x = 0.28 and 0.5, and of Alx Ga1−x As with x = 0.35 yielded n-type
conductivity. The samples showed all features characteristic of DX centres—in particular,
persistent photoconductivity [16, 17, 47, 48].

The resistance response of the semiconductor samples to laser irradiation was measured
in a standard photoconductivity measurement circuit with a load resistance of RL = 50 � (see
the inset to figure 10). The bias voltage across the sample, �5 V cm−1, was substantially lower
than the impurity avalanche breakdown threshold. The samples were placed in a temperature-
controlled optical cryostat. Irradiation of the samples by visible and medium-infrared light
was prevented by the use of crystalline quartz and black polyethylene filters, respectively. The
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measurements were carried out in the temperature range between 4.2 and 150 K, depending on
the material, where at thermal equilibrium practically all carriers are bound to the impurities.

The ratio of the conductivity under illumination, σi , and the dark conductivity, σd , has
been determined from peak values of photoconductive signals. For laser pulses shorter than
the carrier capture time, as is the case here, σi/σd is equal to e(E)/e(0), where e(E) is the
emission rate as a function of the electric field strength E . Note that the terahertz response in
the case of DX centres corresponds to the detachment of electrons from the defect, yielding
persistent photoconductivity (see for details [8]).

5. Experimental results and discussion

5.1. Ionization of deep impurities by terahertz radiation

Semiconductors doped by deep impurities have been successfully used for a long time as
low-temperature detectors for infrared radiation [49]. The long-wavelength limit to their
use is determined by the binding energy of the impurities. At low irradiation intensities, no
response is obtained from deep centres such as Ge:Au and Ge:Hg in the terahertz spectral range.
However, on applying high-power FIR laser pulses to semiconductor samples doped with deep
impurities, a photoconductive signal was observed, despite the fact that the pump photon
energy was tens of times lower than the thermal ionization energy εT [2–6, 8]. A signal rising
superlinearly with the incident radiation intensity was found with all samples studied within
the broad range of temperatures and wavelengths employed. The sign of the photoconductive
signal corresponds to a decrease of the sample resistance. The characteristic decay times of the
signal are different for different kinds of impurity and for different temperatures. The length
of the photoresponse pulse for deep substitutional impurities is somewhat longer than that of
the laser pulse (figure 10) and varies, depending on temperature, from 100 ns to 10 µs. These
time constants correspond to the lifetimes of photoexcited carriers [14, 50, 51].

In the case of autolocalized DX centres in Alx Ga1−x As and Alx Ga1−x Sb, an increase
of the sample conductivity is observed which persists for several hundreds of seconds after
the excitation pulse (figure 10). This behaviour is characteristic of the decay of persistent
photoconductivity in semiconductors with DX centres [13].

The increase of the sample conductivity due to high-power terahertz radiation pulses
can be either due to radiation absorption by free carriers (electron gas heating, µ-
photoconductivity [52]) or,on the other hand,due to the generation of additional free carriers by
impurity ionization. We discuss first the possible effect of heating of the lattice or of the electron
gas, since this is the most natural mechanism of photoconductivity due to intense illumination.
Carrier heating was studied in detail in the submillimetre range on samples with shallow impuri-
ties and at not-too-low temperatures, i.e. where the impurities are ionized and the conditions are
most favourable for heating. As a result of this investigation, in the case of excitation of samples
with deep impurities, the possibility of electron gas heating as the cause of the observed impurity
ionization can be excluded [5]. This conclusion is mainly based on the kinetics of the detected
signals. The photoresponse signal due to electron heating should either reproduce the shape of
the pump pulse or be more complex but not longer than the pump pulse [5, 53, 54]. In contrast,
the observed signals are substantially longer than the pump pulses and their durations agree
with the recombination times of excited free carriers. The detachment of electrons in samples
containing DX centres is also very clearly demonstrated by the FIR photoconductivity which
persists when the electrons are definitely at ambient temperature. Furthermore, electron gas
heating in the temperature range and free carrier concentration range investigated here should
produce negative photoconduction, whereas the photoconductivity observed experimentally is
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Figure 11. The logarithm of the ratio of the irradiated conductivity, σi , to the dark conductivity,
σd , as a function of the squared electric field, E2 for Al0.35Ga0.65As:Te at T = 100 K for various
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positive. Thus, the observation of positive photoconductive signals with decay times substan-
tially in excess of the pump pulse length excludes the possibility of electron gas heating and the
corresponding photoconductivity being the mechanism of the observed photoresponse. There-
fore the photoresponse must indeed be caused by photoionization of deep impurities by irradi-
ation with the photon energy h̄ω much less than the thermal ionization energy of impurities εT .

Figure 11 displays the dependence of the photoresponse of the DX centre in AlGaAs on the
square of the radiation electric field strength for four different wavelengths. The experimentally
determined relative change in conductivity, �σ/σd = (σi −σd)/σd , corresponds to the relative
change in the free carrier concentration, which, in turn, is proportional to the change in the
impurity ionization probability.

Detailed investigations of the photoconductivity with high-power terahertz excitation of
semiconductors doped with deep impurities led to the conclusion that the carrier detachment
process is caused by tunnelling [2, 3, 8]. The measurements showed that at relatively high
temperatures, photoconductivity does not depend on radiation wavelengths at longλ throughout
the intensity range covered by the present investigation. This is demonstrated by figure 11
which shows that the curves for all wavelengths coincide within the measurement accuracy.

An increase in frequency or decrease in temperature result in the onset of a frequency
dependence of the ionization probability. As shown in section 3.2, the limit between frequency-
independent and frequency-dependent ionization of deep impurities is given by the tunnelling
time τ2. The ionization probability is independent of frequency in the quasi-static limit as
long as ωτ2 � 1. In the high-frequency limit, ωτ2 > 1, the ionization probability drastically
increases. This increase indicates the transition from semiclassical physics, where ionization is
accomplished by the classical electric field amplitude, to the full quantum mechanical process
of multiphoton transitions.

5.2. Phonon-assisted tunnelling ionization

5.2.1. The quasi-static limit. Phonon-assisted tunnelling ionization is characterized
by an exponential dependence on the squared-wave electric field amplitude: e(E) =
e(0) exp(E2/E2

c ) (see equation (58)). Such an increase in the photoconductive signal has
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c ) with E2
c as a fitting parameter.

been observed for all samples within a broad range of fields and temperatures, the ranges being
different for different samples and frequencies. The experimental dependences of ln(σi/σd) on
the squared amplitude of the electric field are shown in figure 11 for Alx Ga1−x As and for Ge:Au
in figure 12. The measurements were performed at different temperatures and wavelengths.
We see that for each temperature there exists a field interval within which the probability of
photoionization depends on the electric field amplitude as exp(E2/E2

c ). A comparison of
experimental data on terahertz ionization of the Au impurity in Si at T = 300 K with earlier
studies of the dependence of thermal ionization probability on a dc electric field, e(E), made
by means of capacitive spectroscopy [55, 56] showed that in both cases e(E) ∝ exp(E2/E2

c ),
with the values of Ec differing by a factor of 1.5–2. This may be considered a good agreement
between the results obtained by such different methods, if we take into account the field
inhomogeneities present in a sample studied by DLTS.

Figures 11 and 12 show also plots of the A exp(E2/E2
c ) relation calculated with the fitting

parameter E2
c . As follows from equations (58) and (59), the slope of the experimental curves

in the field region where ln(σi/σd) ∝ exp(E2/E2
c ) permits determination of the tunnelling

times τ2. In order to extract τ2 from experimental data, one has to know the effective carrier
mass, which determines the tunnelling process. In figure 13, the tunnelling time τ2 is shown
as a function of reciprocal temperature for a number of deep impurities studied. In the case
of deep acceptors in germanium, the light-hole mass was used. Figure 13 demonstrates the
good agreement of the experimental values of τ2 with equation (63). One may thus conclude
that holes bound to a deep acceptor tunnel into the light-hole subband [3]. This is due to the
fact that the symmetry of substitutional impurities corresponds to the point group Td, and that
the ground state of a deep impurity represents a superposition of the light- and heavy-hole
states. Thus an acceptor-bound hole can be associated with neither the light nor the heavy
mass. It was shown theoretically [57] that tunnelling depends essentially on the wavefunction
tail distant from the centre, and that it is the light holes that provide a major contribution to
this tail.

For comparison, figure 13 also shows a plot of h̄/2kB T . We see that τ2 is of the order of
h̄/2kB T . Note, however, an essential point. As is evident from the experimental data presented
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Figure 13. Tunnelling time τ2 derived from experimental values of E2
c versus reciprocal

temperature for substitutional impurities (Ge:Cu and Ge:Hg) and DX centres (AlGaAs:Te and
AlGaSb:Te). The full line represents h̄/2kB T and the dashed lines are fits to τ2 = h̄/2kB T ± τ1.
The line h̄/2kB T separates the range of weak electron–phonon interaction (τ2 = h̄/2kB T +τ1) and
strong electron–phonon interaction (τ2 = h̄/2kB T − τ1). The corresponding adiabatic potentials
are shown in the insets (top left and bottom right). The tunnelling time τ1 is of the order of 10−14 s
(see table 2).

in figure 13, for any temperature, τ2 is larger than h̄/2kB T for substitutional impurities, but less
than h̄/2kB T for autolocalized DX centres. This result is in excellent agreement with theory
(see equation (63)). Thus, by determining the tunnelling time from data on phonon-assisted
tunnelling ionization in a high-frequency electric field but in the quasi-static limit, one can
unambiguously identify the type of deep-impurity adiabatic potential [8]. The temperature-
independent tunnelling times τ1 = τ2 − h̄/2kB T are given in table 2 for different impurities.

Concluding, we note that the specific structure of the adiabatic potentials of DX centres
allows a process inverse to phonon-assisted tunnelling detachment of carriers in terahertz fields.
Irradiating samples with visible radiation accumulates free carriers in the conduction band with
the bottom U2(x). At low temperatures (T < 100 K) the lifetime of these carriers is very long,
and is responsible for the persistent photoconductivity. Illuminating the samples in this state
with terahertz pulses produces, in contrast to the positive photoconductive signal without pre-
illumination, a negative photoconductive signal caused by phonon-assisted tunnelling from
U2ε(x) to U1(x) and subsequent capture in the impurity bound state by phonon emission.

5.2.2. The high-frequency limit. The frequency-independent tunnelling is limited to
frequencies ω with ωτ2 < 1 (see equation (60)). The fact that the tunnelling time τ2 depends
on temperature (see figure 13) allows one to proceed into the high-frequency regime ωτ2 > 1
simply by cooling the samples. This is an important advantage in this case, because the other
opportunity to get ωτ2 � 1, i.e. raising the frequency, is limited by one-photon absorption.
The measurements show that in a finite electric field range for the case of ωτ2 � 1, the
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Figure 14. ln(σi /σd ) for Al0.35Ga0.65As:Te as a function of E2 for different frequencies ω at
T = 60 K.

ionization probability still depends exponentially on the square of the electric field strength
e(E) ∝ exp(E2/E∗2

c ). The essential difference compared to the ωτ2 < 1 situation is that
the characteristic field E∗

c now becomes frequency dependent. It is found that ionization is
enhanced with rising frequency. This behaviour has been observed for all impurities and is
demonstrated for AlGaAs:Te in figure 14 and for Ge:Hg in figure 15 for temperatures that are
not very low and electric field strengths that are not very high. At higher field strengths the
exponential dependence on E2 ceases and the ionization probability rises more slowly with
increasing E . This high-field case will be discussed below.

The experimentally determined values of E∗
c for various frequencies, temperatures, and

materials allow one to obtain the value of τ ∗
2 /τ2. Figure 5 shows this ratio as a function of ωτ2

in comparison to calculations after equation (60). The tunnelling times τ2 were determined
from frequency-independent values of E∗

c = Ec. The experimental results shown in figure 5
are grouped according to the materials. For each material the variation of the value of ωτ2

has been obtained by applying different radiation frequencies in the range from 3.4 × 1012

to 25 × 1012 s−1 and for different temperatures between 4.2 and 150 K. A good agreement
between theory and experiment is obtained. It should be pointed out that the theory does not
contain any fitting parameter.

The enhancement of tunnelling at frequencies higher than the inverse tunnelling time
has been anticipated in a number of theoretical works [1, 58–60], but has been demonstrated
experimentally only recently [2]. In contrast to the case for static electric fields where the
electron tunnels at a fixed energy, in alternating fields the energy of the electron is not conserved
during tunnelling. In this case the electron can absorb energy from the field (see the inset in
figure 5) and hence leaves the impurity at an effectively narrower tunnelling barrier. This
leads to a sharp increase of the tunnelling probability with increasing frequency. The observed
enhancement of the ionization probability demonstrates that an electron can indeed absorb
energy below a potential barrier if the process of tunnelling is induced by a high-frequency
alternating electric field. The absorption of energy is controlled by the electron tunnelling time
τe, i.e. the Büttiker–Landauer time. In the case of phonon-assisted tunnelling, the energy of the
electron under the barrier, εm , follows from the condition that the electron tunnelling time τe
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Figure 16. ln(σi /σd ) for Al0.35Ga0.65As:Te as a function of E2 for different frequencies ω at liquid
helium temperature. The inset shows the low-field behaviour.

is equal to the defect tunnelling time τ2, which is determined by the tunnelling reconstruction
of the defect vibration system equation (63). Thus the Büttiker–Landauer time of electron
tunnelling can be varied by the temperature and can be measured from the field dependence
of the ionization probability.

Further decrease of the temperature increases the tunnelling time and leads to a much
stronger frequency dependence of the ionization probability. Figure 16 shows measurements
carried out at 4.2 K on AlGaAs:Te. The data have been obtained making use of persistent
photoconductivity of the sample in order to reduce the dark resistance [61]. Because of the
large binding energy of the DX centre, the resistance of the sample cooled in the dark is too
high for detecting any signal at this temperature in response to terahertz radiation. Therefore
the sample was illuminated for a short time with weak visible and near-infrared light detaching
the electrons from a small fraction of DX centres. As a result, the sample resistance drops
to experimentally reasonable values of the order of several hundred megohms. After this
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Figure 17. ln(σi /σd ) for Ge:Cu as a function of E2 for different frequencies ω at liquid helium
temperature. Lines show calculations after equations (58)–(60) for the three lowest frequencies
used in experiments.

illumination the resistance change at 4.2 K is persistent and allows one to measure the process
of electron detachment by terahertz radiation.

In order to display in one figure the total set of data covering eight orders of magnitude
in the square of the electric field strength, log(E2) has been plotted on the abscissa. To make
an easy comparison to the exp(E2/E2

c ) dependence of σi/σd possible, a log–log presentation
has been used for the ordinate. In the low-field range the characteristic ∝ exp(E2/E∗2

c ) field
dependence of phonon-assisted tunnelling is observed. This is additionally shown in the inset
of figure 16 in a log–linear plot. The frequency dependence in the field range of phonon-
assisted tunnelling is so strong that a change of three orders of magnitude of E2 needs only a
six times change in the frequency ω.

Similar results have been obtained for substitutional impurities having a smaller binding
energy and showing larger tunnelling times τ2 (see figure 13). Figure 17 shows experimental
results for Ge:Cu at T = 4.2 K in the frequency range between 3.4 and 25 THz. Here the
frequency dependence at low field strengths is even stronger. For a given constant signal a
change of six orders of magnitude of E2 needs a factor-of-seven change in frequency ω.

5.2.3. The transition to direct tunnelling. At higher field strengths the field dependence of the
emission probability gets much weaker and the frequency dependence practically disappears.
The transition to frequency-independent probability at higher field strength occurs at lower
fields for Ge:Cu than for DX centres in AlGaAs:Te. The weak increase of the frequency-
independent carrier emission at high electric fields cannot be attributed to emptying of the
impurity states. This has been proved by one-photon ionization of Ge:Cu using CO2 laser
radiation of ω = 200×1012 s−1. The saturation level of the photoconductivity where practically
all impurities are ionized lies well above the terahertz data (see figure 17).

This complex dependence of the ionization probability on the field strength and radiation
frequency is a result of the transition from phonon-assisted tunnelling at low field strengths
to direct tunnelling without phonons at high fields (see section 3.3 and figure 7). At low field
strength the electric field and frequency dependence are controlled by τ2 being independent of
the electron energy ε. At high fields, these tunnellings become dependent on the electron energy
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frequencies used in experiments. Calculations were carried out for 4.2 K using the parameters of
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and will therefore be denoted by τ2ε(E, ε) and τe(ε). The emission probability for phonon-
assisted tunnelling as a function of the electric field strength given by equation (3) was obtained
in the limit where corrections to the thermal emission resulting from the electron tunnelling
are small, i.e., the energy of electron tunnelling |εm| is much smaller than the defect tunnelling
energy Em . In the opposite limit, |εm| � Em , direct carrier tunnelling from the ground state
into the continuum, without participation of phonons, becomes dominant [4–6, 62]. Direct
electron tunnelling occurs at the crossing of the U2ε(x) and U1(x) potential curves, where
an electronic transition is possible without any change in the configuration coordinate. This
effect, leading to weaker field dependence of the ionization probability in comparison to that
of phonon-assisted tunnelling, dominates the ionization process at very high fields.

The results of calculations of the ionization probability over a wide range of electric field
strength, which demonstrate the transition from phonon-assisted tunnelling to direct tunnelling,
are presented at figures 18. The calculations are performed for the Huang–Rhys adiabatic
potential model (see equations (3) and (4)). The probability of tunnelling ionization has been
calculated by using equation (35). For the calculations, the defect tunnelling times, the electron
tunnelling time, and the values of the optimal defect and electron tunnelling energies are needed.
The defect tunnelling times τ2ε(E, ε) and τ1ε(E, ε) as a function of the electron energy ε and the
defect energy E have been calculated after equations (3), (4), and (37). The electron tunnelling
time as a function of electron energy ε, electric field strength E , and radiation frequency ω

has been obtained using equation (56) for E2 = 0 and E1 = E which corresponds to linearly
polarized radiation. Optimal electron and defect tunnelling energies, εm and Em , have been
obtained using equations (36) and (38). Figure 19 shows the results of the calculations using
the parameters of AlGaAs:Te and Ge:Cu (ignoring Coulomb interaction). The calculations,
which take into account both processes (phonon-assisted tunnelling and direct tunnelling),
were carried out for several field frequencies used in the experiments.

The theory qualitatively describes the whole of the complex features of the tunnelling
ionization probability as a function of frequency and electric field strength. The experimentally
observed stronger frequency dependence at low field strength of the ionization probability of
Ge:Cu compared to that of AlGaAs:Te is caused by the larger values of τ2 in the first case.
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Figure 19. The tunnelling time τ2ε(Em, εm) versus E2 calculated for different frequencies used in
experiments. Calculations were carried out for 4.2 K using the parameters of Ge:Cu taking into
account phonon-assisted tunnelling and direct tunnelling but ignoring Coulomb interaction.

The disappearance of the frequency dependence at very high fields is caused by the reduction
of tunnelling time τ2ε(Em, εm) with the rising electric field strength. In figure 19 the electric
field dependence of τ2ε(Em, εm) calculated with the parameters of Ge:Cu is shown. Figure 19
presents data for 4.2 K and for various frequencies. The physical reason for the drop of
τ2ε(Em, εm) is the increase of the electron tunnelling energy ε. Because of this, ωτ2ε(Em, εm)

becomes smaller than one and thus the frequency dependence vanishes.
The feature of the exponential dependence on the square of the electric field strength

changing to a weaker field dependence at lower fields for Ge:Cu compared to AlGaAs:Te
is caused by the difference of the binding energies. The transition from phonon-assisted
tunnelling to direct tunnelling depends substantially on the value of the binding energy
(equation (66)). For smaller binding energies it occurs at lower fields, yielding weaker field
and frequency dependences.

Note that the results of calculations obtained in the framework of the Huang–Rhys model
cannot be used for a quantitative description of the transition from the phonon-assisted to
the direct tunnelling regime because the real shape of the potentials can differ from the
parabolic shape used in the model of Huang and Rhys. Furthermore, to achieve a quantitative
agreement of theory and experiment, heating of the phonon system by energy transfer from
the electrons should be taken into account. The efficient tunnelling ionization at high fields
causes a substantial increase in free carrier concentration. Thus, free electrons may be heated
by terahertz radiation due to Drude absorption. An increase of the sample temperature of just
a few degrees leads to a decrease of τ2ε. As a result, the normalized emission rate e(E)/e(0)

decreases and the frequency dependence of the emission probability becomes much weaker.
Furthermore, for the case of charged impurities one needs to extend the theory by taking into
account the lowering of the barrier height in the presence of an external electric field due to
the Coulomb field of impurities.

5.3. The Poole–Frenkel effect in high-frequency fields

In the region of relatively weak electric fields, one also observes deviations from the
exp(E2/E2

c ) behaviour of the phonon-assisted tunnelling [19, 63], which is clearly seen from
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figure 20 displaying the ln(σi/σd) versus E2 relation for Ge:Hg. The dominant mechanism in
this ionization process is the Poole–Frenkel effect (see section 3.4). Data for the weak-field
region are shown in the inset of figure 20, where ln(σi/σd) is plotted as a function of the
square root of the high-frequency electric field amplitude,

√
E . In the low-field range, the

ionization probability is seen to follow closely the e(E) ∝ exp
√

E/EP F relation. The square-
root dependence of ln(σi/σd) on E and its temperature behaviour are in good agreement with
equations (68) and (69) describing the Poole–Frenkel effect.

The charge effect manifests itself also in the phonon-assisted tunnelling ionization,
resulting in an additional factor in the ionization probability according to equation (70). This
is seen from extrapolation of the straight lines corresponding to the region of phonon-assisted
tunnelling ionization to zero electric field. We see that ln(σi/σd) does not vanish for E = 0
(figures 15 and 20), which implies that σi is not equal to σd , as this follows from equation (58)
which does not take into account the charge effect.

Finally we note that the Poole–Frenkel effect has not been observed with DX centres
within the accuracy of the experiment. The emission probability can consistently be described
as phonon-assisted tunnelling down to vanishing electric field strength. As seen from figures 11
and 14, the logarithm of the normalized emission probability, ln(e(E)/e(0)) = ln(σi/σd), can
be extrapolated to zero at zero electric field E with constant slope. This observation proves
that there is no Coulomb force between the detached electron and the impurity centre. Thus,
the DX ground state is negatively charged while the electron-detached state is neutral.

The determination of the slope of the power law of ln(e(E)) versus E for small fields is
an easy and unambiguous way to determine the nature of the field enhancement of the carrier
emission [19]. If phonon-assisted tunnelling prevails even for low fields, the carrier is emitted
from a neutral impurity. Since an enhancement of the carrier emission rate in an electric field
is observed for both charged and neutral impurities, the observation of the enhancement of the
emission rate in an electric field alone is not sufficient for reaching a conclusion on the charge
state of an impurity. The latter can be inferred from a plot of the logarithm of the emission
probability e(E) as a function of E2 at high fields and

√
E at low field strength or from plotting

the logarithm of the normalized emission probability e(E)/e(0) versus E2 in the electric field
range of phonon-assisted tunnelling.
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6. Summary

In summary, tunnelling ionization of deep impurities in semiconductors by high-intensity
submillimetre laser radiation with photon energies much smaller than the impurity ionization
energy has been investigated in theory and experiment. The measurements have been carried
out over a broad range of intensities, wavelengths, and temperatures, and for a variety of
impurities.

It has been shown that in a wide range of experimental conditions the electric field laser
radiation in the terahertz frequency range acts like a dc field. The effect of an electric field on
the thermal emission and capture of carriers is of importance for the kinetics and dynamics of
semiconductors. A high static electric field drives the system into avalanche breakdown which
is usually associated with a large increase in noise, self-generated oscillations, and current
filamentations. These effects substantially change the properties of the material and disguise
the elementary properties of tunnelling. The present method of ionizing impurities by short
laser pulses avoids these problems. The use of short high-power terahertz laser pulses permits
contactless application of very high electric field strengths. The radiation pulse is shorter
than the time needed to form a free carrier avalanche; therefore extremely high electric field
strengths may be applied. The dc bias field required to record photoconductivity may be kept
well below the threshold of instability where the perturbation of the electron system is small,
avoiding injection at the contacts. The intrinsically high sensitivity of photoconductivity gives
a measurable signal from a few radiation-excited carriers.

In contrast to tunnelling ionization of atoms by applying very short high-power pulses
of visible lasers, tunnelling ionization of atom-like centres in solids strongly depends on the
electron–phonon interaction with the thermal bath over a wide range of electric field strength.
Only at very high electric fields does tunnelling occur, like in the case of atoms, directly,
without involving phonons. With charged impurities at small electric field strengths, the
Poole–Frenkel effect is superimposed on the tunnelling ionization process. Therefore three
characteristic electric field dependences of the impurity ionization may be distinguished:

(i) at low fields, the Poole–Frenkel emission due to lowering of the thermal ionization energy
of attractive impurity centres;

(ii) at higher field, phonon-assisted tunnelling; and

(iii) at very high fields, direct tunnelling.

In the range of phonon-assisted tunnelling, the electron–phonon interaction determines
the time of tunnelling due to the reconstruction of the vibrational system by the tunnelling
detachment of a carrier. Hence the tunnelling time can be easily varied by changing the
temperature. The field dependence of the photoconductive signal allows one to determine
defect tunnelling times, the Huang–Rhys parameter, the structure of the adiabatic potentials,
and the defect charge. Thus, tunnelling ionization may be applied to characterize deep
impurities, complementing the usual method of DLTS.

The observed enhancement of the tunnelling probability on increasing the frequency gives
evidence that the tunnelling carrier can absorb energy while tunnelling under the barrier. The
enhancement of the tunnelling occurs when the frequency becomes larger than the inverse
tunnelling time. This limit is approached in the terahertz regime. Applying a magnetic field
normal to the electric field vector, increase of temperature and/or increase of electric field lead
to a shift of the boundary between the quasi-static and frequency-dependent regimes to higher
frequencies.
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11 913 (Engl. transl. 1985 Sov. Tech. Phys. Lett. 11 377)

[45] Andrianov A V, Beregulin E V, Ganichev S D, Glukh K Yu and Yaroshetskĭı I D 1988 Pis. Zh. Tekh. Fiz. 14
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