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Effect of magnetic pair breaking on Andreev bound states and resonant supercurrent

in quantum dot Josephson junctions
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We propose a model for resonant Josephson tunneling through quantum dots that accounts for
Cooper pair-breaking processes in the superconducting leads caused by a magnetic field or spin-flip
scattering. The pair-breaking effect on the critical supercurrent Ic and the Josephson current-
phase relation I(ϕ) is largely due to the modification of the spectrum of Andreev bound states
below the reduced (Abrikosov-Gorkov) quasiparticle gap. For a quantum dot formed in a quasi-one-
dimensional channel, both Ic and I(ϕ) can show a significant magnetic field dependence induced by
pair breaking despite the suppression of the orbital magnetic field effect in the channel. This case
is relevant to recent experiments on quantum dot Josephson junctions in carbon nanotubes. Pair-
breaking processes are taken into account via the relation between the Andreev scattering matrix
and the quasiclassical Green functions of the superconductors in the Usadel limit.

PACS numbers: 74.50.+r,73.63.-b

I. INTRODUCTION

Since its discovery the Josephson effect1 has been stud-
ied for a variety of superconducting weak links2,3,4. The
research has recently entered a new phase with the ex-
perimental realization of quantum dot weak links ex-
ploiting electronic properties of finite-length carbon nan-
otubes coupled to superconducting leads5,6,7. In particu-
lar, for the first time since its theoretical prediction8,9,10

resonant Josephson tunneling through discrete electronic
states has been observed in carbon nanotube quantum
dots6. As demonstrated in Refs. 6,7, the novel type of
weak links exhibits transistor-like functionalities, e.g. a
periodic modulation of the critical current with a gate
voltage tuning successive energy levels in the dot on-
and off-resonance with the Fermi energy in the leads.
This property has already been implemented in a recently
proposed carbon nanotube superconducting quantum in-
terference device (CNT-SQUID)11 with possible applica-
tions in the field of molecular magnetism.

Motivated by the experiments on resonant Josephson
tunneling, in this paper we investigate theoretically how
robust it is with respect to pair-breaking perturbations in
the superconducting leads. Cooper pair breaking can be
induced by a number of factors, e.g. by paramagnetic im-
purities12, an external magnetic field13 or by structural
inhomogeneities producing spatial fluctuations of the su-
perconducting coupling constant14. It can cause a drastic
distortion of the Bardeen-Cooper-Schrieffer (BCS) super-
conducting state, which manifests itself in the smearing
of the BSC density of states leading to gapless supercon-
ductivity12,13.

While the pair-breaking effect on bulk superconductiv-
ity is now well understood, its implications for quantum
superconducting transport have been studied to a much
lesser extent [see, e.g. Refs. 4,15,16] which to our knowl-
edge does not cover Josephson tunneling through quan-
tum dots. On the other hand, in low-dimensional systems

pair-breaking effects may be observable in a common ex-
perimental situation when, for instance, a carbon nan-
otube weak link is subject to a magnetic field. Since the
orbital field effect in the quasi-one-dimensional channel is
strongly suppressed, pair breaking in the superconduct-
ing leads can be the main source of the magnetic field
dependence of the Josephson current. This situation is
addressed in our work.

The influence of pair breaking on the Josephson cur-
rent can not, in general, be accounted for by mere sup-
pression of the order parameter in the superconducting
leads. As was pointed out in Ref. 15, it is a more sub-
tle effect involving the modification of the spectrum of
current carrying states in the junction, in particular, the
subgap states usually referred to as Andreev bound states
(ABS)10,17. We illustrate this idea for quantum dot junc-
tions in the simple model of a short superconducting
constriction with a scattering region containing a sin-
gle Breit-Wigner resonance near the Fermi energy. The
Josephson current is calculated using the normal-state
scattering matrix of the system and the Andreev reflec-
tion matrix9,10. Unlike Refs. 9,10 we focus on dirty su-
perconductors for which the Andreev matrix can be quite
generally expressed in terms of the quasiclassical Green
functions18, allowing us to treat pair breaking in the su-
perconducting leads nonperturbatively. Although we ac-
count for all energies (below and above the Abrikosov-
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FIG. 1: Scheme of a superconducting constriction with a nor-
mal scattering region N . The arrows indicate the electrons
(e) and holes (h) incident on and outgoing from N .
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Gorkov gap ∆g), it turns out that the behavior of the
Josephson current can be well understood in terms of
a pair-breaking-induced modification of the ABS, which
depends sensitively on the relation between the Breit-
Wigner resonance width Γ and the superconducting pair-
ing energy ∆. Both the critical supercurrent and the
Josephson current-phase relation are analyzed under ex-
perimentally realizable conditions.

II. MODEL AND FORMALISM

We consider a junction between two superconduc-
tors S1 and S2 adiabatically narrowing into quasi-one-
dimensional ballistic wires S′

1 and S′
2 coupled to a nor-

mal conductor N [Fig. 1]. The transformation from the
superconducting electron spectrum to the normal-metal
one is assumed to take place at the boundaries S1S

′
1

and S′
2S2, implying the pairing potential of the form2:

∆(x) = ∆eiϕ1 for x < −L/2, ∆(x) = 0 for |x| ≤ L/2
and ∆(x) = ∆eiϕ2 for x > L/2 with the order parameter
phase difference ϕ ≡ ϕ2 − ϕ1 and the junction length
L ≪ ~vF /∆ (vF is the Fermi velocity in S1,2).

The Josephson coupling can be interpreted in terms
of the Andreev process19 whereby an electron is retro-
reflected as a Fermi-sea hole from one of the super-
conductors with the subsequent hole-to-electron conver-
sion in the other one. Such an Andreev reflection cir-
cle facilitates a Cooper pair transfer between S1 and S2.
Normal backscattering from disordered superconducting
bulk into a single-channel junction is suppressed due to
the smallness of the junction width compared to the elas-
tic mean free path ℓ. The N region in the middle of the
junction is thus supposed to be the only source of nor-
mal scattering. In such type of weak links the Josephson
current is conveniently described by the scattering ma-
trix expression of Refs. 10,20 that can be written at finite
temperature T as the following sum over the Matsubara
frequencies ωn = (2n + 1)πkBT [Ref. 20]:

I = −2e

~
2kBT

∂

∂ϕ

∞
∑

n=0

ln Det
[

1̂ − ŝA(E)ŝN (E)
]

E=iωn.
(1)

Here ŝN (E) is a 4×4 unitary matrix relating the incident
electron and hole waves on the N region to the outgoing
ones [Fig. 1]. It is diagonal in the electron-hole space:

ŝN =

[

see(E) 0
0 shh(E)

]

, see(E) =

[

r11(E) t12(E)
t21(E) r22(E)

]

.

The matrix see(E) describes electron scattering in terms
of the reflection and transmission amplitudes, rjk(E)
and tjk(E), for a transition from S′

k to S′
j (j, k = 1, 2).

The hole scattering matrix is related to the electron one
by shh(E) = s∗ee(−E). The Andreev scattering matrix
ŝA(E) is off-diagonal in the electron-hole space:

ŝA =

[

0 seh(E)
she(E) 0

]

, (2)

where the 2 × 2 matrices she(E) and seh(E) govern the
electron-to-hole and hole-to-electron scattering off the su-
perconductors. Equation (1) is valid for all energies as
long as normal scattering from the superconductors is
absent10,20.

In Ref. 10 the Andreev matrix (2) was obtained by
matching the solutions of the Bogolubov-de Gennes equa-
tions in the wires S′

1,2 to the corresponding solutions in
impurity-free leads. Gorkov’s Green function formalism
in combination with the quasiclassical theory21 allows
one to generalize the results of Ref. 10 to dirty leads with
a short mean free path ℓ ≪ ~vF /∆. In the latter case the
matrices she(E) and seh(E) can be expressed in terms of
the quasiclassical Green functions of the superconductors
as follows18:

seh =

[

f1(E)
g1(E)+1 0

0 f2(E)
g2(E)+1

]

, she =





−f†
1
(E)

g1(E)+1 0

0
−f†

2
(E)

g2(E)+1



 .

Here g1,2 and f1,2 (f †
1,2) are, respectively, the normal and

anomalous retarded Green functions in S1,2. These ma-
trices are diagonal in the electrode space due to a local
character of Andreev reflection in our geometry.

Neglecting the influence of the narrow weak link on the
bulk superconductivity, we can use the Green functions
of the uncoupled superconductors S1,2 described by the
position-independent Usadel equation21,

[

Eτ̂3 + ∆̂j +
i~

2τpb
τ̂3ĝj τ̂3 , ĝj

]

= 0, (3)

with the normalization condition ĝ2
j = τ̂0 for the matrix

Green function

ĝj =

[

gj fj

f †
j −gj

]

, ∆̂j =

[

0 ∆eiϕj

−∆e−iϕj 0

]

, j = 1, 2.

Here τ̂0 and τ̂3 are the unity and Pauli matrices, re-
spectively, and [..., ...] denotes a commutator. Equa-
tion (3) accounts for a finite pair-breaking rate τ−1

pb
whose microscopic expression depends on the nature of
the pair-breaking mechanism. For instance, for thin su-
perconducting films in a parallel magnetic field, τ−1

pb =

(vF ℓ/18)(πdB/Φ0)
2 [Ref. 13] where d is the film thickness

and Φ0 is the flux quantum. For paramagnetic impuri-
ties, τpb coincides with the spin-flip time12. In the case of
the spatial fluctuations of the superconducting coupling,
τ−1
pb is proportional to the variance of the fluctuations14.

From Eq. (3) one obtains the Green functions

gj =
u√

u2 − 1
= ue−iϕj fj, f †

j = −e−2iϕj fj, (4)

E

∆
= u

(

1 − ζ√
1 − u2

)

, ζ =
~

τpb∆
, (5)

where, following Refs. 12,13, we introduce a dimension-
less pair-breaking parameter ζ. The matrices seh and she
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can be expressed using Eqs. (4) as follows:

seh = α

[

eiϕ1 0
0 eiϕ2

]

, she = α

[

e−iϕ1 0
0 e−iϕ2

]

, (6)

α = u −
√

u2 − 1. (7)

We note that pair breaking modifies the energy depen-
dence of the Andreev reflection amplitude α according to
the non-BCS Green functions (4) and (5). A few words
concerning the applicability of this result are due here.

First of all, there is no restriction on energy E, e.g. for
ζ ≤ 1, equations (6) and (7) are valid both below and
above the reduced (Abrikosov-Gorkov) quasiparticle gap

∆g = ∆
(

1 − ζ2/3
)3/2

. In particular, for |E| ≤ ∆g one

can show that u is real and |u| ≤ (1 − ζ2/3)1/2 < 1
[Ref. 13], corresponding to perfect Andreev reflection
with α = exp(−i arccos(u)). Since in the Usadel limit
ℓ ≪ vF τpb, normal scattering from the superconduc-
tors is suppressed due to the smallness of the junction
width also in the presence of pair breaking. The ab-
sence of normal transmission at |E| ≤ ∆g is consistent
with the Abrikosov-Gorkov approach assuming no impu-
rity states inside the gap and the validity of the Born
approximation12,13. For |E| ≥ ∆g the relevant solution
of Eq. (5) is complex and has positive Imu related to the
density of states of the superconductor13. Equations (5)
and (7) are thus the generalization of the known result

α = (E/∆0) −
√

(E/∆0)2 − 1 [Ref. 22] for transparent
point contact, where ∆0 ≡ ∆|ζ=0 is the BCS gap. It
is convenient to measure all energies in units of ∆0 for
which equations (4)–(7) should be complemented with
the self-consistency equation for ∆. At T = 0, the case
we are eventually interested in, this equation can be writ-
ten as 12,13:

ln(ζ0/ζ) = −πζ/4, ζ ≤ 1, (8)

ln(ζ0/ζ) =
√

ζ2 − 1/(2ζ) − ln(ζ +
√

ζ2 − 1) − (9)

− (ζ/2) arctan
(

1/
√

ζ2 − 1
)

, ζ ≥ 1,

with ζ being now a function of a new pair-breaking pa-
rameter ζ0 = ~/(τpb∆0) ranging from zero to the critical
value ζ0 = 0.5 at which ζ = ∞ and ∆ = 012,13.

Inserting Eqs. (2) and (6) for ŝA(E) into Eq. (1) and
taking the limit T → 0 we obtain the Josephson current
for an arbitrary ŝN (E) as

I = −4e

h

∫ ∞

0

dω
∂

∂ϕ
ln { 1 +

α4 Det see(E)Det s∗ee(−E) −
α2 [r11(E)r∗11(−E) + r22(E)r∗22(−E)+ (10)

e−iϕt21(E)t∗12(−E) + eiϕt12(E)t∗21(−E)
]}

E=iω.
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FIG. 2: Phase dependence of the Andreev bound state for a
broad resonant level with Γ = 15∆0 close to the Fermi energy
(Er = 0.1Γ); dashed line shows the normalized gap for a given
value of the pair-breaking parameter ζ0.

III. ANDREEV BOUND STATES IN A

RESONANT JUNCTION

Let us assume that the N region is a small quantum
dot and electrons can only tunnel via one of its levels
characterized by its position Er with respect to the Fermi
level and broadening Γ. For the simplest Breit-Wigner
scattering matrix with r11 = r22 = (E−Er)/(E−Er+iΓ)
and t12 = t21 = Γ/i(E − Er + iΓ), equation (10) reads

I = −(2e/h)T sin ϕ
∞
∫

0

dω× (11)

{

u2

(

R + T
(

1 +
√

1−u2−ζ
Γ/∆

)2
)

− 1 + T sin2
(

ϕ
2

)

}−1

E=iω.

where T = 1 − R = Γ2/(E2
r + Γ2) is the Breit-Wigner

transmission probability at the Fermi level. The param-
eter Γ/∆ accounts for the energy dependence of the res-
onant superconducting tunneling. In Eq. (11) the inte-
grand has, in general, poles given by the equation

u2

(

R + T
(

1 +
√

1−u2−ζ
Γ/∆

)2
)

= 1 − T sin2
(

ϕ
2

)

.(12)

Along with Eq. (5) they determine the energies of the An-
dreev bound states (ABS) localized below the Abrikosov-

Gorkov gap ∆g = ∆
(

1 − ζ2/3
)3/2

. It is instructive to un-
derstand how the pair breaking modifies the ABS spec-
trum since this is reflected on both the current-phase
relation I(ϕ) and the critical current Ic ≡ max I(ϕ).

We start our analysis with an analytically accessible
case of an infinitely broad resonant level, Γ/∆ → ∞,
where Eq. (12) reduces to u2 = 1−T sin2(ϕ/2), yielding
the ABS energies ±E(ϕ) [see, Eq. (5)]:

E(ϕ) = ∆

√

1 − T sin2(ϕ/2)

[

1 − ζ√
T | sin(ϕ/2)|

]

. (13)

Requiring E(ϕ) ≤ ∆g we find that the ABS exist in

the phase interval where sin2(ϕ/2) ≥ ζ2/3/T and only
if ζ2/3 ≤ T . The numerical solution of Eqs. (5), (8)



4

ϕ
2π00 01 1

1

1

∆  /∆g 0

∆  /∆g 0

∆  /∆g 0

ζ =00 ζ =0.2
0 ζ =0.350

0.5 0.5 0.5

0.25

0.75

0.5
E(ϕ)
∆0

FIG. 3: Phase dependence of the Andreev bound state for a
narrow resonant level with Γ = 0.3∆0 and Er = 0.1Γ.

and (12) confirms that the interval of the existence of
ABS gradually shrinks from 0 ≤ ϕ ≤ 2π to a narrower
one with increasing pair breaking [see, Fig. 2]. Outside
this interval the Josephson current is carried by the con-
tinuum states (E ≥ ∆g) alone, which is automatically
accounted for by Eq. (11). An equation of the same form
as Eq. (13) was derived earlier for a nonresonant system
and by a different method15.

By contrast, the ABS spectrum for a narrow reso-
nant level turns out to be much less sensitive to pair
breaking. Indeed, under condition Γ/∆ ≪ 1 − ζ equa-
tions (5) and (12) reproduce the known result, E(ϕ) =
√

E2
r + Γ2

√

1 − T sin2(ϕ/2) [Refs. 4,9]. In particular,

for Er → 0 the ABS exist within the resonance width,
E(ϕ) < Γ and are separated from the continuum by a
gap ∆g − Γ. Solving Eqs. (5), (8) and (12) numerically,
we find that until this gap closes at a certain value of ζ0,
the ABS spectrum remains virtually intact [see, Fig. 3].
For bigger ζ0, the spectrum gets modified in a way simi-
lar to the previous case [cf., third panels in Figs. 2 and 3].
In the case of a very narrow resonance, the characteristic
value of ζ0 is ≈ 0.45, corresponding to ζ ≈ 1, i.e. to the
onset of gapless superconductivity12,13.

IV. CRITICAL CURRENT AND

CURRENT-PHASE RELATION: RESULTS AND

DISCUSSION

For numerical evaluation of the Josephson current (11)
we first put E = iω in Eq. (5) and then make the transfor-

mation u → iν, yielding ω/∆ = ν(1− ζ/
√

1 + ν2). Using
this relation, in Eq. (11) we change to the integration
over ν with the Jakobian dω/dν = ∆[1− ζ/(1 + ν2)3/2]:

I = (2e∆/h)T sinϕ
∞
∫

ν0

dν
(

1 − ζ
(1+ν2)3/2

)

× (14)

{

ν2

(

R + T
(

1 +
√

1+ν2−ζ
Γ/∆

)2
)

+ 1 − T sin2
(

ϕ
2

)

}−1

.

Positiveness of ω in Eq. (11) enforces the choice of the
lower integration limit: ν0 = 0 for ζ ≤ 1 and ν0 =
√

ζ2 − 1 for ζ ≥ 1.

∆/∆0

I /I (0)c c

0.25 0.50

0.25

0.5

0.75

1

0 ζ
0

0.1

0.01

=15Γ/∆
0

FIG. 4: On-resonance critical current vs. pair-breaking pa-
rameter ζ0 = ~/(τpb∆0) for different Γ/∆0. The behavior of
the normalized order parameter12,13 is shown, for comparison,
in red.

Using Eqs. (8), (9) and (14) we are able to analyze the
critical current Ic ≡ max I(ϕ) in the whole range of the
pair-breaking parameter, 0 ≤ ζ0 ≤ 0.5 [see, Fig. 4]. In
line with the discussed behavior of the Andreev bound
states, for a narrow resonance, Γ/∆0 ≪ 1, the critical
current starts to drop significantly only upon entering
the gapless superconductivity regime 0.45 ≤ ζ0 ≤ 0.5.
On the other hand, for a broad resonance, Γ/∆0 ≫
1, the suppression of Ic is almost linear in the whole
range. We note that in both cases the behavior of Ic

strongly deviates from that of the bulk order parameter
(red curve)12,13 largely due to the pair-breaking effect
on the ABS. In practice, the Ic(ζ0) dependence can be
measured by applying a magnetic field [the case where

ζ0 = (B/B∗)
2 and B∗ = (Φ0/πd)

√

18∆0/~vF ℓ] in an ex-
periment similar to Ref. 6 where a quantum dot, defined
in a single-wall carbon nanotube, was strongly coupled
to the leads with the ratio Γ/∆0 ≈ 10. Carbon nanotube

0.5

0

−0.5

1

ϕ/2π

hI
/e

∆ 0

ζ =0
0

ζ =0.35
0

ζ =0.470

FIG. 5: On-resonance current-phase relation for different
values of the pair-breaking parameter ζ0 and Γ = ∆0.
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FIG. 6: Critical current vs. resonant level position: ζ0 = 0
(black), ζ0 = 0.25 (blue) and ζ0 = 0.45 (red).

quantum dots with lower Γ/∆0 values are accessible ex-
perimentally, too5,11.

We also found that the crossover between the gapped
and gapless regimes is accompanied by a qualitative
change in the shape of the Josephson current-phase rela-
tion I(ϕ) as demonstrated in Fig. 5 for the on-resonance
case Er = 0 and Γ = ∆0. The I(ϕ) relation is anhar-
monic as long as the junction with ∆g 6= 0 supports
the ABS (black and blue curves). The vanishing of the
ABS upon entering the gapless regime leads to a nearly
sinusoidal current-phase relation (red curve). A closely
related effect is demonstrated in Fig. 6 showing the mod-
ification of the critical current resonance lineshape with
the increasing pair-breaking strength. In the absence of
pair breaking it is nonanalytic near Er = 0 (black curves)
reflecting the anharmonic I(ϕ) due to the ABS in a trans-

parent channel9,10. On approaching the gapless regime
this singularity is smeared out (red curves), which is ac-
companied by the suppression of the Ic amplitude. At fi-
nite temperatures T ≪ ∆/kB the pair-breaking-induced
smearing of the resonance peak will enhance the usual
temperature effect.

In conclusion, we have proposed a model describing
resonant Josephson tunneling through a quantum dot
beyond the conventional BCS picture of the supercon-
ducting state in the leads. It allows for nonperturbative
treatment of pair-breaking processes induced by a mag-
netic field or paramagnetic impurities in diffusive super-
conductors. We considered no Coulomb blockade effects,
assuming small charging energy in the dot EC ≪ ∆0, Γ,
which was, for instance, the case in the experiment of
Ref. 6. Our predictions, however, should be qualitatively
correct also for weakly coupled dots with Γ ≤ EC ≪ ∆0

at least as far as the dependence of the ctitical super-
current on the pair-breaking parameter is concerned. In-
deed, for a narrow resonance the Andreev bound states
begin to respond to pair breaking only when the gap ∆g

becomes sufficiently small [see, Fig. 3] so that for a fi-
nite EC ≪ ∆0 one can expect a sharp transition to the
resistive state, too, similar to that shown in Fig. 4 for
Γ/∆0 ≪ 1.
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