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Micron-sized ferromagnetic permalloy disks having an in-plane vortexlike configuration are excited by a
fast-rise-time magnetic-field pulse perpendicular to the plane. The excited modes are imaged using time-
resolved magneto-optic Kerr microscopy and Fourier transformation. Two types of modes are observed: modes
with circular nodes and modes with diametric nodes. The frequency of the modes with circular nodes increases
with the number of nodes. In contrast, the frequency of the modes with diametric nodes decreases with the
number of nodes. This behavior is explained accurately by an analytical model.
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Acoustic membranes resonate in such a way that adding a
circular or a diametric node inevitably produces an increase
of the vibrational frequencysChladni’s law1,2d. This phenom-
enon is a consequence of the positive dispersion of ordinary
waves. Negative dispersion—the lowering of the frequency
with increasing wave vector—is occasionally measured in
light optics for negative index media,3,4 special photonics
crystals,5,6 and media with inverted population.7 In spin sys-
tems, negative group velocity was predicted theoretically8–10

and excitations with frequencies lower than the uniform pre-
cessional mode were interpreted as magnetostatic backward
modes.11–16 We demonstrate by directly imaging the nodal
structure that Chladni’s law is violated by spin excitations in
small circular ferromagnetic disks with a vortexlike ground-
state configuration. While the precessional frequency indeed
increases upon adding circular nodes, it decreases when dia-
metric nodes are built in. We argue that this violation is due
to the particular laws governing spin dynamics. This phe-
nomenon can be interpreted as the spin analogon of a pho-
tonic left-handed material.

Here we study the excitation spectrum of individual
micron-sized permalloy disks with a vortex structure excited
by a perpendicular magnetic-field pulse. The magnetic re-
sponse of the individual disks is examined by recording a
time-resolved movie with a high spatial resolution of
300 nm. In the Fourier transform of the movies, we can iden-
tify the eigenmodes up to the third order in this highly sym-
metric system. The excitation spectrum and spatial distribu-
tion of all modes was imaged for a circular platelet with a
radius of 3mm and a thickness of 15 nm in a recent paper25

in more detail. Here we present further experimental results
by including additional samples. The measured eigenmodes
can be accounted for by a linear model based purely on di-
polar interactions. We expand our analytical model17 to in-
clude modes containing diametric nodal lines in order to con-
struct a more thorough theoretical model. Micromagnetic
simulations using the Landau-Lifshitz-GilbertsLLGd code18

and the object oriented micromagnetic framework19

sOOMMFd support our experimental findings and the ana-
lytical results. In the size regime we examined, no deviations

of the modal frequencies from the dipolar-dominated model
are observed.33

The samples studied are single ferromagnetic permalloy
disks with a thicknessd=15 nm, ranging in radius from 1 to
3 mm and patterned by e-beam lithography onto a Si sub-
strate. A 500-nm-thick Cu microcoil was prepared around the
element using e-beam lithography and electroplating. It sur-
rounds the sample with an inner diameter of 8mm and an
outer diameter of 12mm. For details of the preparation see
Ref. 20.

In the ground state the magnetic elements exhibit a flux
closure vortex configuration.20 We perturb this state by
launching a short current pulse though the microcoil that
produces a magnetic tipping field pulse perpendicular to the
sample plane. The maximum strength of the field is less than
50 Oe, with a rise time of about 100 ps. This magnetic-field
pulse exerts a torque onto the local magnetization vector that
launches the precessional motion of the elements magnetiza-
tion. The motion is imaged stroboscopically by means of the
magneto-optic Kerr effect as a function of the time delay
between application of the tipping pulse and the probe pulse.
Details of the experiment are described elsewhere.17,21–25For
each magnetic element a movie of thez component of the
magnetization vector is recorded at time intervals of
25–40 ps.25 From such a sequence one may extract an over-
all periodicity corresponding to the strongest excited mode.
The spin motion, however, is not uniform, but is the super-
position of a number of modes.13,14,25

Using a recently developed phase-sensitive Fourier trans-
form procedure,13,14,25we are able to reconstruct each indi-
vidual mode driving the spin motion. Let us briefly describe
the method: the Fourier transform of the time-domain data is
performed at each location on the disk. Both the amplitude
and the phase are recorded. The Fourier transform consists of
a sequence of resonances marking the characteristic eigen-
modes. The frequencies corresponding to the maxima of the
resonance peaks are used for constructing the experimental
dispersion curves. The amplitudesleft-hand sided and the
phasesright-hand sided at resonance are plotted in Fig. 1.
One recognizes two types of modes. Some are organized into
concentric rings with circular nodesfFigs. 1sad–1scdg. The
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modes in Figs. 1sdd and 1sed instead have onesrespectively
twod diametric nodes. The various nodes are easily identified
because at their spatial location the spectral weight is small
and because the phase jumps byp. The occurrence of these
modes—in particular of those with diametric nodes—is dis-
cussed in detail in Ref. 25.

We relate the nodal structure of the modes to akW
vector and construct experimental dispersion relations.
The modal structure observed in Fig. 1 requires the introduc-
tion of polar coordinatesr ,w in the plane of the disk. We
define the wave vectorkW =skr ,kwd of a spin excitation by
introducing an orthogonal set of basis functions suitable
for the two-dimensional vortexlike spin configuration
mrsr ,wdaJ1skrrdexpsikwwd. In Appendix A we show that the
radial part is an exact solution for infinite radius.17 These
functions are the analog for circular geometries of plane
waves in Cartesian geometries. The 2p periodicity in w re-
quires kw

m=0, ±1, ±2, . . . .,with the indexm=0, ±1, ±2, . . .
counting the number of diametric nodes. The boundary con-
ditions atr =0 and atr =R fRefs.s16 and 17dg establish a set
of possible values forkr: kr

n=xn/R, xn indicating the zeroes of
the Bessel functionsJ1; nPN counts the number of circular
antinodes.n=1 corresponds to the state with nodes atr =R
and r =0. From Fig. 1—the nodes and their location—one
can read out the mode numberssn,md of the measured
modes. We can now construct the experimental dispersion
relations f vs sn,m=0d fradial modes, Fig. 2sadg and f vs
sn=1,md fazimuthal modes, Fig. 2sbdg. We observe a posi-
tive dispersion for the axially symmetric modesm=0 and
negative dispersion for the modes withmÞ0. In contrast,
Chladni’s law for sound in a circular membrane1,2 states that
f ~ sm+2nd2. Figure 2 reports the experimental data for disks
with different diameters. The dispersion curves show the
same behavior for all disks, their sign being independent of
the diameter.

In the following, we suggest a quantitative model that
essentially accounts for all the experimental dispersion
curves measured, including the lowering off with m and the
size dependence. We point out that for moderate field pulse
excitations and large magnetic elementsse.g., several tens of
micronsd the highly degenerate excitation spectrum is domi-
nated by magnetostatic modes.23 When the size of the ele-
ments is reduced or higher order modes are excited, the ex-
change interactions can, in general, no longer be ignored and
the dynamic response gradually changes from a purely mag-
netostatic to an exchange-dominated one.15,26,27Yet, on the
basis of the recent findings by Park and co-workers26 and on

FIG. 1. sColord Images of the eigenmodes forR=3 mm. The top row shows the absolute value of the Fourier amplitude at resonance, the
bottom row the phase. The modal maps are composed from two half-images: the left from the micromagnetic simulation; the right from the
experiment.sad–scd: Axially symmetric modes showing concentric nodessn=1,2,3,m=0d. sad 2.80 GHz.sbd 3.91 GHz.scd 4.49 GHz.sdd,
sed: These modes have nodal lines going across the image.sdd 2.08 GHz, one azimuthal nodes1,1d. sed 1.69 GHz, two azimuthal nodess1,2d.
Notice that across the nodal lines the phase changes by 180°. A Hamming cutoff window was used to obtain the fast Fourier transformsFFTd
data from the 3.33-ns-long scans. The Fourier spectrum consists of a sequence of resonances along the frequency axis corresponding to the
eigenmodes. Although the spacing in the frequency domain of the raw data isdf=1/sTend−Tstartd=1/3.33 ns=0.30 GHz, the exact location
of the maximum of these resonances can be determined with a higher accuracy when using zero filling. The half-images from the time-
domain simulation data were obtained using the same method.

FIG. 2. Dispersion relations.sad The frequency for modes of the
type sn,m=0d as a function of the radial mode numbern: R
=1 mm ssd, 1.5 mm sLd, 2 mm snd, 3 mm s,d. The error bars
are ±df /2. sbd The frequency for modes of the typesn=1,md as a
function of the azimuthal mode numberm. The corresponding data
points of the micromagnetic simulation based on the LLG code18

are diagramed as small full symbols and dashed lines. Results from
the variational model as discussed in the text are represented as
solid and the dotted lines. The dotted line is calculated by the diag-
onal elements and the solid line from the full matrix eigenvalues.
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the results we are going to present, we believe that the exci-
tation spectrum in mesoscopic permalloy elements with the
diameters considered here can be accounted for by consider-
ing only the dipolar interaction. Thus, as shown previously,17

the relevant operator governing the dipolar modes is the di-
mensionless in-plane radial field given by

ĥrfmrg = d
]

]r
E

disk
d2rW8

1

urW − rW8u
1

r8

]

]r8
fr8mrsr8,w8dg. s1d

The eigenfrequencies of the various modes are related to the

eigenvalues Nr of the equation ĥrfmrg=−Nrmr by the
relation17 v2=4psgMsd2Nr. These results were already pub-
lished in Ref. 17 and used there to calculate the modes with
circular nodes. Here we generalized them to include modes
with diametric nodes as well. Generalizing Ref. 17, the ma-

trix fhgnn8,m8 scn,m,ĥrcn8,md within the trial space consisting
of orthonormal basis functions28

cn,m 8
1

ÎpRJ2sx1nd
J1sknrdeimw s2d

is diagonalized. Using 15 basis functionsn,n8=1, . . . ,15
within each sectorm was found to give good convergence.
The details of this calculation are provided in Appendix B.
Them=0 sector provides the eigenvalues for the modes with
circular nodes. Them=1,2, . . .provides the eigenvalues for
modes with1,2, . . .diametric nodes. The frequencies result-
ing from the matrix diagonalization are plotted as dotted
lines in Fig. 2. The agreement with the experimental data is
remarkable, taking into account that the calculation is a fully
analytical one with no adjustable parameters. In particular,
the negative dispersion for the modes with diametric nodes is
also well reproduced.

The central result of this paper is the existence of two
distinct types of dynamical modes, one with positive disper-
sion and one with negative dispersion. The references8–16

quoted heresthe list is by no means exhaustived indicate that
this should be a quite general phenomenon, not limited to the
geometry and size investigated in the present paper, when the
excitation spectrum is dominated by magnetostatic modes.
As suggested by Fletcher and Kittel more than 40 years ago
sread the last eight lines of Ref. 9d, a possible way to quali-
tatively explain this phenomenon is to consider the magne-
tostatic energy associated with the excited modes. In Appen-
dix B we show that the magnetostatic energy Fletcher and
Kittel are referring to are the diagonal elements of our ma-
trix. These diagonal elements are exactly the Coulomb en-
ergy of the effective magnetic charges1/rds] /]rdrcn,msr ,wd.
They are also indicated in Fig. 2 and are clearly quite close
to the “true” eigenfrequencies, confirming the qualitative
suggestion by Fletcher and Kittel. The negative dispersion
means that when the magnetic charge distribution is parti-
tioned by introducing diametric nodes, the Coulomb energy
sand thus the frequencyd decreases. In light of these consid-
erations, the origin of the violation of Chladni’s law in this
spin system is evident: in ordinary standing waves residing
on a membrane, the change of frequency due to diametric
modes is related to the matrix elements of the angular part of

the Laplace operator, which scales with the square of the
angular momentum,m2. The relevant operator for spin sys-
tems contains the Coulomb interaction, which behaves quite
differently with m, as discussed above.

Our analytical calculationsssee Appendix Bd suggest a
simple scaling law that should be obeyed by all modes, pro-
vided they are of magnetostatic origin: all frequencies for
different radii should fall onto one single function when
fsn,mdsR/dd1/2 is plotted as a function ofn at fixedm sradial
modesd or m at fixedn sazimuthal modesd, this function be-
ing only dependent on the number of diametric and circular
nodes. The agreement is approximately realizedssee Fig. 3d.
The largest deviations from this scaling law are observed for
small radii, where the exchange interaction is expected to
become more important. We recall that the frequency de-
pends only on the symmetry functionfsn,md and the aspect
ratio of the disksf~Îd/Rd for both kind of modes. This is
quite an universal behavior for these idealized magnetostatic
thin film vortex structures.

Based on these considerations, a negative dispersion in
magnonic crystals seems to be a quite common phenomenon.
The argument developed above shows that introducing spa-
tial nodes does not necessarily mean that the frequency in-
creases, as expected for a large class of phenomena such as
ordinary waves but also for quantum-mechanical systems
like the hydrogen atom or the harmonic oscillator. In smaller
magnetic disks, the exchange interaction should become
more important, and it is expected to change the sign of the
dispersion.9 We can envisage the realization of a type of
junction between elements having opposite dispersion, in
analogy to the boundary between left- and right-handed pho-
tonic crystals.3,4 If the analogy holds true, a spin-wave exci-
tation with mÞ0—such as those made visible in Ref. 25—
should change their helicity when sent across such a
junction,29 thus establishing an elementary spin-logic device
with subnanosecond switching time.

D. P. would like to thank V. Pokrovsky and G.M. Graf for
fruitful discussions. Financial support by the Schweizerische
Nationalfonds, ETH Zurich and the Deutsche Forschungsge-

FIG. 3. Scaling. Whenfsn,mdsR/dd1/28 f̃ is plotted vsm at fixed
n or vs n at fixedm, all data points for different radii fall onto one

single dispersion curvef̃smd and f̃snd. The symbol and line at-
tributes are the same as in Fig. 2.
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meinschaft through the Forschergruppe FOG370/2-1 and the
priority program SPP1133 is gratefully acknowledged.

APPENDIX A

Here we show that the trial functionmr =J1skrrd used
above is an exact solution for the infinite radius limit
of the eigenvalue problem. We substitutemr =J1skrrd
=−s1/krds] /]rdJ0skrrd in Eq. s1d and obtain

ĥrfmrg = −
d

kr

]

]r
E

0

`

d2rW8
1

urW − rW8u
1

r8

]

]r8
Sr8

]

]r8
J0skrr8dD .

sA1d

Expanding 1/urW−rW8u=ol=−`
` e0

`dk JlskrdJlskr8deil sw−w8d into
Bessel functions and using the Bessel differential equation
r]rfr]rJ0skrrdg+kr

2r2J0skrrd=0, we obtain

ĥrfmrg = krd
]

]r
E

0

`

r8 dr8E
0

2p

dw8E
0

`

dko
l=−`

`

eil sw−w8d

3JlskrdJlskr8dJ0skrr8d. sA2d

Becausee0
2p dw8 eilw8=2p only for l =0, only thel =0 sum-

mand contributes

ĥrfmrg = − 2pkrdE
0

`

r8 dr8E
0

`

dk J0skrdJ0skr8dJ0skrr8d.

sA3d

The integral relation30 s1/krddsk−krd
=e0

`r8 dr8 Jlskr8dJlskrr8d is used to obtain

− 2pkr d
]

]r
E

0

`

dk
dsk − krd

kr
J0skrd= sA4d

− 2pd
]

]r
J0skrrd=! −

Nr

kr

]

]r
J0skrrd, sA5d

i.e., the dispersion relation

Nr = 2p dkr . sA6d

APPENDIX B

We want to derive a model for spin excitations of magne-
tostatic origin. We consider thin micron-sized disks with a
ground-state circulating flux-closure configurationsMr =0,
Mw=Ms,Mz=0d, subject to the linearized Landau-Lifshitz
equation

ṁr = gmz4pMs,

ṁw = 0, sB1d

ṁz = − gĥrfmrgMs.

Here,Ms is the saturation magnetization, andg is the abso-
lute value of the gyromagnetic ratio. The equations can be

decoupled yielding oscillating solutionsmr ,mz,expsivtd
with the frequencyv2=4psgMsd2Nr. These solutions belong
to the eigenvalue equation17

ĥrfmrg = − Nrmr . sB2d

ĥr is the dimensionless operator for ther component of the
magnetization provided by the dipolar field of magnetostatic
origin and can be written as a Coulomb-type interaction for
the magnetic-charge distributions1/rds] /]rdfrmrsr ,wdg

ĥrfmrg = d
]

]r
E

disk
d2r8

1

urW − rW8u
1

r8

]

]r8
fr8mrsr8,w8dg.

sB3d

This is valid as long as the spin motion is dominated by the
dipolar interaction.16,17,23 In the range of radii explored in
this study this assumption seems to be justified, i.e., the ex-
change interaction plays a negligible role. This is due to the
fact that the spatial scale of the excitations observed is much
larger than the exchange length.17

We now need to solve the eigenvalue problem Eq.sB2d.
Here we propose to use a variational approach: we calculate
the matrix elements of the operatorsB3d in the basis

B = hcn,mjn=1,2,3,. . .,m=0,±1,±2,. . ., sB4d

where

cn,m =
1

ÎpRJ2sx1nd
J1skr

nrdeimw, sB5d

and kr
n=x1n/R and x1j are the zerosx11=3.83,x12=7.02,x13

=10.17, . . . of theBessel functionJ1sxd. n=1,2,3, . . . is the
circular sor radiald mode number andm=0, ±1, ±2, . . . is the
diametricsazimuthald mode number. The setB is an ortho-
normal basis on the circle of radiusR with respect to the
scalar product28

kcn,m,cn8,m8l =E
0

RE
0

2p

r drd wcn,m
* sr,wdcn8,m8sr,wd

= dnn8dmm8.

Our motivation for this choice of basis is twofold. First, in
the context of the variational method, the convergence of the
eigenvalues with increasing trial space size is faster if the
trial functions are close to the real eigenfunctions. In the
present case, experiment suggests that the choice ofJ1 is
plausiblessee Fig. 1d. Second, we know that the functions
J1skr

nrd are exact solutions for the infinite radius eigenvalue
problemssee Appendix Ad.

The matrix elementfhgnn8,m corresponding to the states
with angular momentumm reads
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fhgnn8,m = kcn,m,hrcn8,ml

=E
disk

d2r cn,m
* sr,wdd

]

]r

3HE
disk

d2r8
1

urW − rW8u
1

r8

]

]r8
fr8cn8,msr8,wdgJ

sB6d

Partial integration yields a symmetric form inr andr8, which
can be interpreted as a magnetic Coulomb energy of the
magnetic-charge distributionss1/rds] /]rdfrcsr ,wdg

fhgnn8,m = − dE
disk
E

disk
d2r d2r8H1

r

]

]r
frcn,m

* sr,wdgJ
3

1

urW − rW8u
H 1

r8

]

]r8
fr8cn8,msr8,wdgJ sB7d

since the boundary terms

dHE
0

2p

dw rcn,m
* sr,wdE

disk
d2r8

1

urW − rW8u
1

r8

]

]r8

3fr8cn8,msr8,w8dgJ
R

0

vanish under the boundary conditioncn,m
* sr =0,wd

=cn,m
* sr =R,wd=0. Using the Bessel recursion relation

s1/rds] /]rdrJ1skr
nrdg=kJ0skr

nd gives

fhgnn8,m = −
1

pR2J2sx1ndJ2sx1n8d
x1n

R

x1n8

R

3dE
disk
E

disk
d2r d2r8 J0skr

nrdJ0skr
n8r8d

3e−imsw8−wd 1

urW − rW8u
. sB8d

Expanding in Bessel functions gives

fhgnn8,m = −
1

pR2J2sx1ndJ2sx1,n8d
x1n

R

x1n8

R

3dE
0

R

r drE
0

2p

dwE
0

R

r8 dr8E
0

2p

dw8J0skr
nrd

3J0skr
n8r8deimsw8−wd o

l=−`

` E
0

`

dkJlskrdJlskr8deil sw−w8d.

sB9d

The Fourier orthogonality relations

E
0

2p

dwE
0

2p

dw8 e−imsw−w8deil sw−w8d = s2pd2dlm

give

fhgnn8,m = −
s2pd2

pR2J2sx1ndJ2sx1n8d
x1n

R

x1n8

R

3dE
0

R

r drE
0

R

r8 dr8 J0skr
nrdJ0skr

n8r8d

3E
0

`

dk JmskrdJmskr8d. sB10d

Introducing the dimensionless variablesx=r /R, y=r8 /R and

k̃=kR leads to

fhgnn8,m = −
ds2pd2x1nx1n8

pJ2sx1ndJ2sx1n8d

3E
0

1

x dxE
0

1

y dy J0sx1nxdJ0sx1n8yd

3E
0

` dk̃

R
Jmsk̃xdJmsk̃yd sB11d

The last integral has a closed form result in hypergeometric
functions31

E
0

`

dk̃Jmsk̃xdJmsk̃yd =
s2md!

sm ! d222m

sxydm

sx2 + y2dm+1/22F1

3S2m+ 1

4
,
2m+ 3

4
,m+ 1,

4x2y2

sx2 + y2d2D .

Using this in Eq.sB11d finally yields

fhgnn8,m = − 4p
d

R

x1n

J2sx1nd

x1n8

J2sx1n8d
s2md!

sm ! d222m

3E
0

1

x dxE
0

1

y dy J0sx1nxd

3J0sx1n8yd
sxydm

sx2 + y2dm+1/22F1

3S2m+ 1

4
,
2m+ 3

4
,m+ 1,

4x2y2

sx2 + y2d2D .

sB12d

This integral giving the matrix elements has to be evaluated
numerically. The Coulomb-type singularity expected atx=y,
as well as the oscillatory character of the integrand means
that some care is needed while performing the integration.
Here aVEGAS32-type adaptive Monte Carlo integrations al-
gorithm was used. Notice that the set of functions in Eq.sB4d
form a complete orthonormal basis set. If we calculate the
operator matrix elements using the whole infinite set, we will
get, in principle, the exact eigenvalues. A rough estimate, on
the other hand, can be found by simply calculating the
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expectation value of the operator in the statecn,m: Nn,m

=−scn,m,ĥrcn,md. This corresponds to the diagonal elements
of the operator matrix. To increase the accuracy of the eigen-
values, a 15315 matrix fhg

ññ8,m
s15d was computed and diago-

nalized. We then find the higher-order approximation for the
eigenvalues:Nn,m

s15d=−hspecsfhg
ññ8,m
s15d djn, which does further

improve the agreement with experiment as discussed in the
text.
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