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Excitations with negative dispersion in a spin vortex
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Micron-sized ferromagnetic permalloy disks having an in-plane vortexlike configuration are excited by a
fast-rise-time magnetic-field pulse perpendicular to the plane. The excited modes are imaged using time-
resolved magneto-optic Kerr microscopy and Fourier transformation. Two types of modes are observed: modes
with circular nodes and modes with diametric nodes. The frequency of the modes with circular nodes increases
with the number of nodes. In contrast, the frequency of the modes with diametric nodes decreases with the
number of nodes. This behavior is explained accurately by an analytical model.
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Acoustic membranes resonate in such a way that adding @f the modal frequencies from the dipolar-dominated model
circular or a diametric node inevitably produces an increas@re observed
of the vibrational frequenc¢Chladni’s law?). This phenom- The samples studied are single ferromagnetic permalloy
enon is a consequence of the positive dispersion of ordinar§fisks with a thicknesel=15 nm, ranging in radius from 1 to
waves. Negative dispersion—the lowering of the frequency3 #m and patterned by e-beam lithography onto a Si sub-
with increasing wave vector—is occasionally measured irstrate. A 500-nm-thick Cu microcoil was prepared around the
light optics for negative index medi, special photonics element using e-beam Ilthog_raphy z_ind electroplating. It sur-
crystals®® and media with inverted populatidrin spin sys- rounds the sample with an inner diameter ofu® and an

tems, negative group velocity was predicted theoretigality guetferzglameter of 1:m. For details of the preparation see
and excitations with frequencies lower than the uniform pre- In the ground state the magnetic elements exhibit a flux

cessionleillemode were interpreted as magnetqstatic baCkwaE?osure vortex configuratioff. We perturb this state by
modes.~° We demo_r,\strate_ by_ directly imaging t_he.nodgl launching a short current pulse though the microcoil that
structure that Chladni’s Iavy is _V|oIate_d by spin excitations INproduces a magnetic tipping field pulse perpendicular to the
small circular ferromagnetic disks with a vortexlike ground- sample plane. The maximum strength of the field is less than
state configuration. While the precessional frequency indeedy Qe with a rise time of about 100 ps. This magnetic-field
increases upon adding circular nodes, it decreases when digg|se exerts a torque onto the local magnetization vector that
metric nodes are built in. We argue that this violation is dUﬂaunches the precessiona| motion of the elements magnetiza-
to the particular laws governing spin dynamics. This phetion. The motion is imaged stroboscopically by means of the
nomenon can be interpreted as the spin analogon of a phenagneto-optic Kerr effect as a function of the time delay
tonic left-handed material. between application of the tipping pulse and the probe pulse.
Here we study the excitation spectrum of individual Details of the experiment are described elsewhéfé&:>>For
micron-sized permalloy disks with a vortex structure excitedeach magnetic element a movie of th&eomponent of the
by a perpendicular magnetic-field pulse. The magnetic remagnetization vector is recorded at time intervals of
sponse of the individual disks is examined by recording &25-40 p<® From such a sequence one may extract an over-
time-resolved movie with a high spatial resolution of all periodicity corresponding to the strongest excited mode.
300 nm. In the Fourier transform of the movies, we can iden-The spin motion, however, is not uniform, but is the super-
tify the eigenmodes up to the third order in this highly sym-position of a number of modég:*425
metric system. The excitation spectrum and spatial distribu- Using a recently developed phase-sensitive Fourier trans-
tion of all modes was imaged for a circular platelet with aform procedurd?'4?5we are able to reconstruct each indi-
radius of 3um and a thickness of 15 nm in a recent pdper vidual mode driving the spin motion. Let us briefly describe
in more detail. Here we present further experimental resultthe method: the Fourier transform of the time-domain data is
by including additional samples. The measured eigenmodgzerformed at each location on the disk. Both the amplitude
can be accounted for by a linear model based purely on diand the phase are recorded. The Fourier transform consists of
polar interactions. We expand our analytical méféd in-  a sequence of resonances marking the characteristic eigen-
clude modes containing diametric nodal lines in order to conmodes. The frequencies corresponding to the maxima of the
struct a more thorough theoretical model. Micromagneticresonance peaks are used for constructing the experimental
simulations using the Landau-Lifshitz-GilbeitLG) codé®  dispersion curves. The amplitudéeft-hand sidg and the
and the object oriented micromagnetic framewotR  phase(right-hand sidg at resonance are plotted in Fig. 1.
(OOMMF) support our experimental findings and the ana-One recognizes two types of modes. Some are organized into
lytical results. In the size regime we examined, no deviationgoncentric rings with circular nodd$igs. Xa)-1(c)]. The

1098-0121/2005/7110)/1044156)/$23.00 104415-1 ©2005 The American Physical Society


https://core.ac.uk/display/11529935?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

M. BUESSet al. PHYSICAL REVIEW B 71, 104415(2005

©006®

0 max

FIG. 1. (Color) Images of the eigenmodes fB=3 um. The top row shows the absolute value of the Fourier amplitude at resonance, the
bottom row the phase. The modal maps are composed from two half-images: the left from the micromagnetic simulation; the right from the
experiment(a)—(c): Axially symmetric modes showing concentric nodes1,2,3 m=0). (a) 2.80 GHz.(b) 3.91 GHz.(c) 4.49 GHz.(d),

(e): These modes have nodal lines going across the intdg2.08 GHz, one azimuthal nod#,1). (e) 1.69 GHz, two azimuthal nod€s,2).

Notice that across the nodal lines the phase changes by 180°. A Hamming cutoff window was used to obtain the fast FourierEamsform

data from the 3.33-ns-long scans. The Fourier spectrum consists of a sequence of resonances along the frequency axis corresponding to the
eigenmodes. Although the spacing in the frequency domain of the raw déta 19(Teng— Tstard =1/3.33 ns=0.30 GHz, the exact location

of the maximum of these resonances can be determined with a higher accuracy when using zero filling. The half-images from the time-
domain simulation data were obtained using the same method.

modes in Figs. () and Xe) instead have on&espectively In the following, we suggest a quantitative model that
two) diametric nodes. The various nodes are easily identifieessentially accounts for all the experimental dispersion
because at their spatial location the spectral weight is smafiurves measured, including the loweringfokith m and the
and because the phase jumpsyThe occurrence of these size dependence. We point out that for moderate field pulse
modes—in particular of those with diametric nodes—is dis-excitations and large magnetic elemefesy., several tens of
cussed in detail in Ref. 25. microng the highly degenerate excitation spectrum is domi-
We relate the nodal structure of the modes toka nated by magnetostatic mod&When the size of the ele-
vector and construct experimental dispersion relationsments is reduced or higher order modes are excited, the ex-
The modal structure observed in Fig. 1 requires the introducchange interactions can, in general, no longer be ignored and
tion of polar coordinates, ¢ in the plane of the disk. We the dynamic response gradually changes from a purely mag-
define the wave vectok=(k, k,) of a spin excitation by ~netostatic to an exchange-dominated &€’ Yet, on the
introducing an orthogonal set of basis functions suitabld®@sis of the recent findings by Park and co-workeasid on
for the two-dimensional vortexlike spin configuration
m.(r, @) ady(kr)explik,¢). In Appendix A we show that the 8r
radial part is an exact solution for infinite radit/sThese
functions are the analog for circular geometries of plane

s}

_ w4l
waves in Cartesian geometries. The Reriodicity in ¢ re- 53 )
quiresky=0,+1,+2,....,with the indexm=0,+1,+2,... = =
counting the number of diametric nodes. The boundary con-§5- g3
ditions atr=0 and atr =R [Refs.(16 and 17] establish a set 34 E

[

of possible values fdk,: k'=x,/R, X, indicating the zeroes of
the Bessel functiond;; n e NV counts the number of circular
antinodesn=1 corresponds to the state with nodes aR
and r=0. From Fig. 1—the nodes and their location—one
can read out the mode numbefs,m) of the measured mode number n mode number m
modes. We can now construct the experimental dispersion
relationsf vs (n,m=0) [radial modes, Fig. @)] and f vs
(n=1,m) [azimuthal modes, Fig.(B)]. We observe a posi-

tive dispersion for the axially symmetric modes=0 and 4 14f/2. (b) The frequency for modes of the tyge=1,m) as a
negative dispersion for the modes with+0. In contrast,  fynction of the azimuthal mode number The corresponding data
Chladni's law for sound in a circular membrérestates that  points of the micromagnetic simulation based on the LLG &dde

f o (m+2n)2. Figure 2 reports the experimental data for disksare diagramed as small full symbols and dashed lines. Results from
with different diameters. The dispersion curves show thehe variational model as discussed in the text are represented as
same behavior for all disks, their sign being independent o$olid and the dotted lines. The dotted line is calculated by the diag-
the diameter. onal elements and the solid line from the full matrix eigenvalues.

[
T
N
T

FIG. 2. Dispersion relationga) The frequency for modes of the
type (n,m=0) as a function of the radial mode numbar R
=1 um (O), 1.5um (), 2 um (A), 3 um (V). The error bars
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the results we are going to present, we believe that the exci- mode number n
tation spectrum in mesoscopic permalloy elements with the 70 1 2 3
diameters considered here can be accounted for by consider- i ]
ing only the dipolar interaction. Thus, as shown previodily, 60
the relevant operator governing the dipolar modes is the di- - i 1
mensionless in-plane radial field given by % 50

A J 1 109 2

h[m]=d— dr ——[r'm(r',¢")]. (1 T a0l 1

r[ r] ar ek |F_F,|r,ar,[ rT"r( (2 )] ( ) §40

The eigenfrequencies of the various modes are related to the 30r ]
eigenvaluesN, of the equationh/[m]=-N,m, by the 20 . . .
relation” w?=4m(yM¢)?N,. These results were already pub- 0 1 2
lished in Ref. 17 and used there to calculate the modes with mode number m

circular nodes. Here we generalized them to include modes _ Yo ]
with diametric nodes as well. Generalizing Ref. 17, the ma- FIG. 3. Scaling. Whefin,m)(R/d)”*=f is plotted vsmat fixed

trix [h] ~ N ithin the trial space consistin n or vsn at fixedm, all data points for different radii fall onto one
X Lhlny m= (U m, .'lﬂ”""‘) wihin rial space consisting single dispersion curvé(m) and f(n). The symbol and line at-
of orthonormal basis functiof%

tributes are the same as in Fig. 2.

— _; Jy(k.r)eme (2) the Laplace operator, which scales with the square of the
VTR (X)) angular momentunm?¥. The relevant operator for spin sys-
) ) tems contains the Coulomb interaction, which behaves quite
is diagonalized. Using 15 basis functiomsn’=1,...,15 differently with m, as discussed above.
within each sectom was found to give good convergence. QOur analytical calculationgsee Appendix B suggest a
The details of this calculation are provided in Appendix B. simple scaling law that should be obeyed by all modes, pro-
Them=0 sector provides the eigenvalues for the modes withjided they are of magnetostatic origin: all frequencies for
circular nodes. Then=1,2,...provides the eigenvalues for gifferent radii should fall onto one single function when
modes withl,2,...diametric nodes. The frequencies result- f(n m)(R/d)2 is plotted as a function af at fixedm (radial
ing from the matrix diagonalization are plotted as dottedyodeg or m at fixedn (azimuthal modes this function be-
lines in Fig. 2. The agreement with the experimental data isng only dependent on the number of diametric and circular
remarkable, taking into account that the calculation is a fullynoges. The agreement is approximately reali@se Fig. 3
analytical one with no adjustable parameters. In particularype |argest deviations from this scaling law are observed for
the negative dispersion for the modes with diametric nodes igmga|| radii, where the exchange interaction is expected to
also well reproduced. . _ become more important. We recall that the frequency de-
The central result of this paper is the existence of twopends only on the symmetry functidtn,m) and the aspect
distinct types of dynamical modes, one with positive disper{4tio of the disk(fo\d/R) for both kind of modes. This is

sion and one vv_ith_negatlve dispersion. Th_e r_efere?'ré%s quite an universal behavior for these idealized magnetostatic
quoted herdthe list is by no means exhaustjvadicate that thin film vortex structures

this should be a quite general phenomenon, not limited to the Based on these considerations, a negative dispersion in

geometry and size investigated in the present paper, when the, ;¢ crystals seems to be a quite common phenomenon.

excitation spectrum is dominate'd by magnetostatic mOdesI’he argument developed above shows that introducing spa-
As suggested by Fletcher and Kittel more than 40 years a9fal nodes does not necessarily mean that the frequency in-

(read the last eight lines of Ref),% possible way to quali- . oa5e5 as expected for a large class of phenomena such as
tat|ve[y explain this p_henomgnon 1S to.con5|der the magneE>rdinary waves but also for quantum-mechanical systems
tostatic energy associated with the excited modes. In Appeny o the hydrogen atom or the harmonic oscillator. In smaller

dix B we show that the magnetostatic energy Fletcher an agnetic disks, the exchange interaction should become

Kittel are referring to are the diagonal elements of our Mai ore important, and it is expected to change the sign of the

: . Mdispersior®. We can envisage the realization of a type of
ergy of the effective magnetic charg®/r)(d/ ar)r (T, ¢). jungtion between elements having opposite dispersion, in
They are also indicated in Fig. 2 and are clearly quite Clos%nalogy to the boundary between left- and right-handed pho-
to the “true” eigenfrequencies, confirming the qualitative e crystal$ If the analogy holds true, a spin-wave exci-
suggestion by Fletcher and Kittel. The negative dispersionation with m=0—such as those made visible in Ref. 25—
means that when the magnetic charge distribution is partigp, (g change their helicity when sent across such a

tioned by introducing diametric nodes, the Coulomb energy,ntion2° thus establishing an elementary spin-logic device
(and thus the frequengylecreasesin light of these consid- |ith subnanosecond switching time.

erations, the origin of the violation of Chladni’'s law in this

spin system is evident: in ordinary standing waves residing D. P. would like to thank V. Pokrovsky and G.M. Graf for
on a membrane, the change of frequency due to diametriguitful discussions. Financial support by the Schweizerische
modes is related to the matrix elements of the angular part dflationalfonds, ETH Zurich and the Deutsche Forschungsge-
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APPENDIX A

Here we show that the trial functiom,=J;(k,r) used
above is an exact solution for the infinite radius limit

of the eigenvalue problem. We substitute, =J;(k.r)
=—(1/k;)(a/ ar)Jg(k;r) in Eq. (1) and obtain
- da [ 1 19 J
h =——— dze’———( '—Jo(k ’).
m] kearJo ' IF=¢"|r" ar' ook
(A1)

Expanding 1ff-'|==f_, [5dk J(kr)J(kr")e'®~¢) into

Bessel functions and using the Bessel differential equation

ra,[r g Jo(k,r)]+k2r2Jy(k,r)=0, we obtain

-~ J * 2m o * . )
hr[mr]=krd—f r’dr'f dcp’J dk >, é'le=¢)
arlo 0 0

|=—o0

X 3, (k3 (kr ) Jo(k ). (A2)

Becausef2” d¢’ €'¢' =27 only for =0, only thel=0 sum-
mand contributes

h[m]=-2mkd f r'dr’ f dk Jy(kr)Jg(kr')Ig(k,r").
0 0

(A3)
The integral relatiof? (1/k.) 8(k—k;)
=[or' dr’ Ji(kr")Ji(kr') is used to obtain
a " S8k-k
- 2k, d— J dk ( r)Jo(kr): (A4)
arly K
J 1 N, d
- ZWdEJO(krr)': - ?:EJO(krr), (A5)
i.e., the dispersion relation
N, =27 dk. (AB)
APPENDIX B

We want to derive a model for spin excitations of magne-
tostatic origin. We consider thin micron-sized disks with a

ground-state circulating flux-closure configuratioi, =0,

M,=MgM,=0), subject to the linearized Landau-Lifshitz

equation
m, = ymAmxMs,
m,=0, (B1)
m,= - 'yﬁr[mr]Ms-

Here, My is the saturation magnetization, apds the abso-

with the frequencyw?=4m(yMg)°N,. These solutions belong
to the eigenvalue equatibh

F'rl:mr:l =-Nm,. (B2)

h, is the dimensionless operator for theeomponent of the
magnetization provided by the dipolar field of magnetostatic
origin and can be written as a Coulomb-type interaction for
the magnetic-charge distributidd /r)(a/dr)[rm.(r,¢)]

. a 1 19
himl=d— | d'——=—[r'm(’"¢)].
gisk [T r[r"ar

(B3)

This is valid as long as the spin motion is dominated by the
dipolar interactiort®1722In the range of radii explored in
this study this assumption seems to be justified, i.e., the ex-
change interaction plays a negligible role. This is due to the
fact that the spatial scale of the excitations observed is much
larger than the exchange lendth.

We now need to solve the eigenvalue problem @B9).
Here we propose to use a variational approach: we calculate
the matrix elements of the operat@3) in the basis

B={¢nmn=1.23.. m=0.+142,. (B4)
where
W —;3 (KPr)eme (B5)
" ARG ’

and k! =x;yr and x;; are the zerox;;=3.83,%1,=7.02,x;3
=10.17,... of theBessel function);(x). n=1,2,3,... is the
circular (or radia) mode number anth=0,+1,+2,... is the
diametric (azimutha] mode number. The sét is an ortho-
normal basis on the circle of radiu® with respect to the
scalar produc

R 27
<¢n,mv ¢n’,m’> = f f rdrd ¢¢;,m(r’¢) ¢n’,m’(rv¢)
0 J0
= nn’5mm-

Our motivation for this choice of basis is twofold. First, in
the context of the variational method, the convergence of the
eigenvalues with increasing trial space size is faster if the
trial functions are close to the real eigenfunctions. In the
present case, experiment suggests that the choich «f
plausible(see Fig. 1 Second, we know that the functions
Ji(k'r) are exact solutions for the infinite radius eigenvalue
problem(see Appendix A

The matrix elementh],, ,, corresponding to the states

lute value of the gyromagnetic ratio. The equations can bevith angular momentunm reads
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[h]nn/,m = <'r/fn,m- hr dfn’,m> [h] __ (277)2 @ Xin/
T R (4 0un) R R

. d
:f d’r zpn,m(r,qo)dg R R
disk de r drf r' dr’ JO(kPI‘)\]O(kF’r’)
19 0 0

1
X d2r’ r s (1,
{fdisk |F—F'|r’c7r’[ Ui @)]} XJ“’

(B6)

dk 3 (kn)d(kr"). (B10)

0

Partial integration yields a symmetric formirandr’, which

can be interpreted as a magnetic Coulomb energy of thjlentroducmg the dimensionless variabbesr /R, y=r’/R and

magnetic-charge distribution(& /r)(a/ar)[ry(r, ¢)] k=kR leads to
2 2] L9 s d(27) Xy Xy
[h]nn’,m:_d drd7r ——[rlﬂnym(l’,(p)] [h]nn’ m=" —
disk J disk ror ’ mJ5(X1n)I2(X1n7)
1 19 _, , 1 1
lF-7] pr LR () (B7) X f xdxf y dy H(XunX)Jo(Xany)
0 0
since the boundary terms “dk  ~ ~
o L1, Xf EJm(kX)\]m(ky) (B11)
d f derinn(rie) | dr'— =2 i
0 ' gisk  |[T=r[r"ar

The last integral has a closed form result in hypergeometric

0 .
functions?!

X[r,‘ﬁn’,m(r,:ﬁol)]}

R

. Y~ 2m)! m
vanish under the boundary conditiony, (r=0,¢) j dkJp(kx)Im(ky) = (Irr;) T (X};) a2k 1
=y, n(r=R,)=0. Using the Bessel recursion relation 70 (M1)72 (¢ +y7)
(11r)(al ar)rdy(kir)]=xdo(kf) gives 2m+1 2m+3 ax%y?
X , ,m+ 1,ﬁ .
4 4 (X +y9)

_ 1 X1 Xan
TR (X10)Jp(Xn) R R

[h]nn’,m =
Using this in Eq.(B12) finally yields

de J d2r d2r’ Jo(Kr)Jo(KM 1)
disk J disk OO d xin X (2m)!

1 ko 41TR‘J2(Xln) Jo(Xqn) (m1)222M
X erimie’=¢) ——— (B8) 1 1
IF=r ><J xdxj Y dy X1
Expanding in Bessel functions gives 0 0
(xy)™
= 1 Xan X1n’ XJO(Xln’y)WZFl
nn’,m™— 2
TRI,(X10)do(X1 1) R R (Zm +1 2m+3 ax2y? )
R 2 R 2 X , T/, m+ L
xdf rdrf dgof r dr’f de’ Jo(K™) 4 4 (X +y9)
0 0 0 0 (Bj_2)
X Jo(K" 1™ =) > | dkd(kn)Ji(kr)e' ¢, This integral giving the matrix elements has to be evaluated
I== 0 numerically. The Coulomb-type singularity expectedcal,
(B9) as well as the oscillatory character of the integrand means
that some care is needed while performing the integration.
The Fourier orthogonality relations Here aveGas®**type adaptive Monte Carlo integrations al-
o o gorithm was used. Notice that the set of functions in B4
f d@f de’ e img=¢ ) gl (9=¢") = (2m)25 form a complete orthonormal basis set. If we calculate the
0 0 m operator matrix elements using the whole infinite set, we will
get, in principle, the exact eigenvalues. A rough estimate, on
give the other hand, can be found by simply calculating the
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expectation value of the operator in the staig, N,, nalized. We then find the higher-order approximation for the

:—(lﬁn,m,ﬁrlﬁn,m)- This corresponds to the diagonal elementseigenvalues:Nﬂ:—{spetﬁ[h]%?m)}n, which does further
of the operator matrix. To increase the accuracy of the eigerimprove the agreement with experiment as discussed in the

values, a 1% 15 matrix[h]%lﬁs,)m was computed and diago- text.
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