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Spin-Polarized Transport in Inhomogeneous Magnetic Semiconductors:
Theory of Magnetic/ Nonmagnetic p-n Junctions
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A theory of spin-polarized transport in inhomogeneous magnetic semiconductors is developed and
applied to magnetic/nonmagnetic p-n junctions. Several phenomena with possible spintronic applications
are predicted, including spin-voltaic effect, spin valve effect, exponential and giant magnetoresistance.
It is demonstrated that only nonequilibrium spin can be injected across the space-charge region of a p-n

junction, so that there is no spin injection (or extraction) at low bias.
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Semiconductor spintronics is an emerging field promis-
ing device applications with more functionality and bet-
ter integrability with traditional semiconductor technology
than metal-based spintronics [1]. Spin injection into a
semiconductor has been demonstrated [2,3], but an im-
portant question, what this injected spin is useful for,
remains largely unanswered (see, however, [4,5]). This
Letter formulates the problem of spin and charge bipolar
(electron and hole) transport in inhomogeneously doped
magnetic semiconductors (such as CdMnSe or GaMnAs,
whose carrier g factors are large due to magnetic doping).
In particular, we show that a magnetic/nonmagnetic p-n
junction has large magnetoresistance and displays spin-
voltaic and spin valve effects: a current, whose direction
changes with the direction of magnetic field, can flow with-
out any applied bias. These effects should be useful for
sensing magnetic fields, and for probing spin polarization
and spin relaxation.

To introduce the equations for spin and charge bipo-
lar transport in inhomogeneously doped magnetic semi-
conductors, consider a semiconductor doped with N, (r)
acceptors and Ny(r) donors, and with magnetic impuri-
ties, whose density varies in space and whose presence
leads to large g factors for electrons and holes, g,(r) and
gp(r). In a homogeneous magnetic field B the carrier en-
ergies are Zeeman split: spin up (A = 1 or 1) and spin
down (A = —1 or |) electrons have their energy shifted
by —Aqlu(r) = —Ag,(r)upB/2, where wp is Bohr mag-
neton and ¢ is the proton charge; the energy of holes
changes by Aq{,(r) = Ag,(r)ugB/2. Carrier charge cur-
rent densities, resulting from the electric field E = —V ¢,
nonuniform magnetic “potentials” £, electron (hole) den-
sities ¢ = n (¢ = p), are

gApercaVie, (1)

where the upper (lower) sign is for electrons (holes), w
and D stand for mobility and diffusivity, and the “mag-
netic” drift ¢gV{ forces carriers with opposite spins to go
in opposite directions. Equation (1) follows from the re-
quirement that carrier densities in an inhomogeneous envi-
ronment have the quasiequilibrium form [6]. From Eq. (1)

Jex = querchE £ gD p\Vey —
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the carrier charge and spin current densities J = J; + J|
and J, = J; — J are

Jo.=0E — o-ch{c * chvn * qucVSc, (2)
Je = 0cE — O-CV§C * quCVC * qDCVSC . (3)

Here ¢ = ¢ + ¢| and s. = ¢; — ¢}, and we introduced
carrier charge and spin conductivities o, = q(u.c +
,Uvscsc) and oy = Q(/-Lscc + Mcsc), where Me = (,U«cT +
Mel)/2 and  pge = (et — Mel)/2, and similarly for
diffusivities. Equation (2), which is a generalization of the
Johnson-Silsbee magnetotransport equations [7], reflects
the spin-charge coupling in bipolar transport in inhomo-
geneous magnetic semiconductors: a spatial variation
in spin density, as well as in ¢gV{, can cause charge
currents, while spin currents can flow as a result of a
spatial variation of carrier densities and ¢.

Generation and recombination of electrons and holes are
assumed to be mostly due to band-to-band processes. Fur-
thermore, electrons (holes) with a given spin are assumed
to recombine with holes (electrons) of either spin. The sta-
tionary continuity equation for carriers is

Jea _ _ cyp — c—p — AS.
: = FXwealcaT — cpofo) *

\Y
q 2Tlc

“)

Here ¢ is p(n) if ¢ is n(p), co is the equilibrium carrier
density, w is the (generally spin dependent) band-to-band
recombination rate, and 7; is the spin relaxation time.
Spin relaxation equilibrates carrier spins while preserv-
ing nonequilibrium carrier density, so, for a nondegen-
erate semiconductor, 5. = a.gc, where a.o = sc0/co =
tanh({./Vr) is the equilibrium carrier spin polarization
(Vr = kpT/q, with kg being the Boltzmann constant and
T temperature). Equations (1) [or (2) and (3)], (4), and
Poisson’s equation V - €E = p, where p = g(p — n +
N, — N,) and € is the dielectric constant of the semicon-
ductor, determine the distributions of charge and spin in a
magnetic semiconductor under applied bias V.

We have made a number of simplifying assumptions in
our theory which are not strictly valid in real magnetic
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semiconductors. Most importantly, we treat carrier states
as spin doublets and neglect both the effect of magnetic
impurities on the band structure and the response of the
magnetic ions to the magnetic field of polarized carriers
[8]. Our formalism can easily be tailored to include these
more complicated effects on a case-by-case basis. Our
approach is to consider a simple but reasonable model to
illustrate new phenomena that can occur in inhomogeneous
magnetic semiconductors.

We now apply the above theory to the problem of a
magnetic/nonmagnetic p-n junction with nondegenerate
carrier densities and with only electrons magnetically ac-
tive ({, = 0). Two cases are considered (Fig. 1): (i) the
magnetic n side to study spin injection, and (ii) the mag-
netic p side, to study spin extraction and magnetoresis-
tance phenomena. We assume perfect Ohmic contacts
(both carriers and spins at equilibrium) as boundary condi-
tions, except when we study the dependence of the current
on nonequilibrium spin, in which case we keep the ohmic
contacts only for carrier densities.

Specifically we consider an L = 12 yum long GaAs
p-n junction at room temperature, doped with N, = 3 X
10" cm™3 acceptors to the left, Ny =5 X 10 ¢cm ™3
donors to the right [5], and with magnetic impurities in-
ducing electronic g factor which follows the shape of N,
(Ng) for the magnetic p (n) region. Holes are unpolarized,
so we omit the label n when dealing with spin-related
quantities, and reserve that symbol for the n-region-related
variables. Figure 1 depicts our geometry and the distribu-
tion of electrons and holes for various cases considered
below. The materials parameters are the electron and
hole diffusivities, D, = 10D, = 103.6 cm?s” !, and mo-
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FIG. 1. Band-energy schemes for magnetic/nonmagnetic p-n
junctions with magnetically active electrons (arrows). Holes
(circles) are unpolarized. (A) Electrons from the magnetic n
region (note the band split) can be injected into the nonmagnetic
p region only at large bias. (B) Similarly for spin extraction if
the p region is magnetic. (C) If the p region is magnetic and
there is a nonequilibrium spin in the n region, a giant magne-
toresistance and spin-voltaic effects arise. The former can be
observed in a scheme (D), where electron spin is injected from
a magnetic N (through a heterostructure) into the nonmagnetic
n region (p is magnetic).
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bilities w, = 10u, = 4000 cm?V~!s™!. The intrinsic
(nonmagnetic) carrier density is n; = 1.8 X 10° cm™3,
the dielectric constant € = 13.1 of the vacuum permit-
tivity; the calculated built-in voltage is 1.1 V at B = 0.
Recombination rate w = (1/3) X 107> cm®s™!, and the
spin relaxation time 77 = 0.2 ns. The minority [9] diffu-
sion lengths are [5] L, = 1 um, L, = 0.25 um, and the
electron spin diffusion length in the n( p) region is Ly, =
1.4 pum (Ls;, = 0.8 um). Figure 2 illustrates the doping
profile and a typical profile of carrier and spin densities.

We first ask the important question whether spin can be
injected and extracted into/from the nonmagnetic region.
Figure 3 shows the results of our numerical calculations,
where we plot spin (density, not current) polarization
a = s/n. At small bias (below the built-in value) there
is no significant spin injection or extraction. As the bias
increases, the injection and extraction become large and
intensify with increasing 77. The reason why there is no
spin injection or extraction at small bias is that although
there are exponentially more, say, spin up than spin down
electrons in the magnetic side, the barrier for crossing the
space-charge region is exponentially larger for spin up than
for spin down electrons (see Fig. 1). Those two exponen-
tial effects cancel out, leaving no net spin current flowing
through the space-charge region. At large bias (where nu-
merics is indispensable) spin injection is possible, a result
of building up a nonequilibrium spin at the space-
charge region.

The current through a magnetic/nonmagnetic p-n junc-
tion depends on magnetic field. This dependence has two
sources. First, a magnetic field makes the band gap spin
dependent, leading to the increased density of the minority
carriers. For example, the equilibrium density of electrons
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FIG. 2. Calculated electron (n), hole (p), and spin (s) density
profiles for a magnetic p-n junction with ¢{ = 0.5kpT in the
(magnetic) n region, under forward applied bias of V = 0.8 V.
The thin dashed line indicates the doping profile N; — N, (not
to scale).
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FIG. 3. Calculated spin polarization profiles for different for-

ward bias and spin relaxation rates. Spin injection (top) from
the magnetic n side into the nonmagnetic p side occurs only at
large bias (indicated by the numbers in volts). The largest in-
jection in the graph is for V. = 1.5 V, with spin relaxation time
of 1007;. Similar behavior is observed for spin extraction from
the nonmagnetic n region into the magnetic p region (bottom).
The magnetic splitting is g = 0.5kpT.

in a magnetic p region (Fig. 1C) is ng = nj cosh({/
Vr)/N, [in equilibrium, nopy = n?cosh({/Vy)]. The
current through a p-n junction is proportional to the den-
sity of the minority (not majority) carriers, and so it will
grow exponentially with B for { = V7. The exponential
magnetoresistance for the system in Fig. 1B is shown
in Fig. 4. The effect diminishes with increasing bias.
The second way a current can depend on B is if a
nonequilibrium spin with polarization a(L) is introduced
(optically or by electrical spin injection) into the sample
(Figs. 1C and 1D). The exponential magnetoresistance
becomes giant (meaning, the resistance changes when
the orientation of the magnetic moment in the magnetic
region with respect to the orientation of the injected spin
changes) as seen in Fig. 4. The current is exponentially
sensitive to both B and «(L), being large (small) if they
have the same (opposite) sign.

To explain analytically our numerical results, we
generalize the Shockley approximation [6] for the p-n
junction to include nonequilibrium spin, which is given,
in the quasineutral regions, by the spin-diffusion equation

D, Vis = w(sp — sopo) + (s — 5)/T1, (5

where § = agn, of which n is the solution of the cor-
responding carrier diffusion equation. We consider the
magnetic p region, and impose a nonequilibrium spin po-
larization « (L) at the right boundary (see Fig. 1C, where
also the boundary points used below are indicated). We
postulate as the second boundary condition for spin, in the
spirit of the quasiequilibrium approximation [6], that spin
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FIG. 4 (color). Calculated I-B (top) and /-a (bottom) char-
acteristics for the magnetic p-n junction with the magnetic
p region, under different bias (indicated in volts). We use
B* = 2kgT/gup (=900/g Tesla at room temperature) as the
scale for magnetic field (B/B* = q{/Vr). In the top graph the
red line is for a(L) = 0, and the violet (cyan) line for a = 1
and spin relaxation time of 100 (10*) T;. The bottom graph is
for B/B* = 3, and the red, violet, and cyan lines are for the spin
relaxation times of Ty, 1007, and 10*T;. The dashed lines are
the analytical calculations. In both graphs, at V.= 1.5 V, lines
for 1007, and 10*7; almost coincide.

current vanishes at x,, the n-side boundary of the space-
charge region. The spin polarization in the »n region is

a(x) = a(L)[cosh(n) — tanh(n,) sinh(n)],  (6)

where 7 = (L — x)/Lsn and 7, = (L — xn)/Lsn- At
X =Xu, ay = alx,) = a(l)/cosh[(L = x,)/Ls].  In
the p region @(0) = ap (Ohmic boundary condition for
spin) and the second boundary condition, that at x = x,,
the p-side boundary of the space-charge region, which
can be obtained from the usual quasiequilibrium condition
of constant chemical potentials (applied to nondegenerate
statistics) from x, to x,, 18 &, = (ap + a,)/(1 + apay).
The nonequilibrium minority carrier density at x = x,, is
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n(x,) = no(l + apa,)exp(V/Vr). With these boundary
conditions the carrier and spin profiles in the magnetic p
region are

n@) _ sinhG/Ly) vy, )
no sinh(x,/L,) [e 1+ apag) — 11, (1)
LX) — n(x) Sinh(x/Lsp) ﬂ . ) V/VT

o no T sinh(x, /L) ap L@ ®

Having the profiles, we calculate the current in the
magnetic p-n junction. We distinguish equilibrium-spin
electron J, and hole J, currents, and nonequilibrium-
spin-induced current J/, so that the total charge current
isJ =J, + J, + J),. The individual contributions are

2
q& Wi cosh<£>COth<i_p>(€v/vr -0, 9

I =
Ln Na VT n
P n12 L — x,
J,=q-"L —coth<—>(e‘//vf -1, (10
L, 2d »
Dn i .
J =q I Zl—a coth<i—’;>smh<‘%>anev/vﬁ (11)

Figure 4 shows how well this analytical model compares
with our numerical calculation. The small discrepancy is
caused by the neglect of the recombination processes in
the space-charge region. The model breaks down at large
bias, where the Shockley approximation is not valid [6].
We note that if the spin is injected by the bias contact at
x = L, one needs to consider a model in which a(L) de-
pends on J (since it then obviously vanishes at J = 0),
and solve Eqgs. (9)—(11) for J. Otherwise, the above equa-
tions describe either the case of an independent spin in-
jection or the region of J where a(L) is independent of J.

The large exponential magnetoresistance effect, J ~
exp(|£]/Vr) at large |£] (or B), comes from the increase of
the minority electron population with |£|. However, once a
nonequilibrium spin population (finite «,,) is maintained in
the space-charge region, a giant magnetoresistance (GMR)
should be observed, J ~ exp({/Vr) at large |{| and a,, —
+1. The GMR coefficient is then exp(2{/Vr). In addi-
tion to sensing B, these effects can be used for an all-
electrical probing of the injected spin polarization a(L)
and spin-diffusion length Lg,, as they both determine «,
(a possible device scheme is proposed in Fig. 1D). The key
to employing the large magnetoresistance effects in spin-
tronics is the development of materials with large g factors.
Even for g = 100, the GMR coefficient at 7 = 100 K and
B = 1T is about exp(0.65), which is close to 200%. A
magnetic impurity that would give g = 500 would yield
2500% (300% at room temperature). The device potential
of magnetic p-n junctions is enormous, but to take full
advantage we need materials with large g factors at room
temperature [10].

Equations (9)—(11) reveal another interesting phenome-
non, a spin-voltaic effect. The current (J/) stays finite
even for V = 0, if a,, # 0. A current flows at zero bias.
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This is an analogue of the photovoltaic effect, where a
reverse current flows if carriers are photogenerated in the
space-charge region. In the spin-voltaic effect both reverse
and forward currents can flow, depending on the relative
orientation of B and «,; the device can function as a
spin valve. The physics of the spin-voltaic effect is that
nonequilibrium spin in the space-charge region disturbs
the balance between the generation and recombination cur-
rents (Fig. 1C). If { > 0, and more spin up electrons are
present at x,, (a, > 0), the barrier for them to cross the
region is smaller than the barrier for the spin down elec-
trons, so more electrons flow from »n to p than from p to n,
and positive charge current results. If a;, < 0, the current
is reversed.

In summary, we have studied bipolar spin-polarized
transport in magnetic/nonmagnetic p-n junctions. We pre-
dict novel phenomena of exponential and giant magnetore-
sistance, and of spin-voltaic effect, if a nonequilibrium spin
is added into the junction. We have demonstrated that no
spin injection or extraction is possible under low bias, and
that only nonequilibrium spin can be transferred through
the space-charge region. Finally, we have introduced a
modified Shockley model which explains our numerical
findings.
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