
ar
X

iv
:c

on
d-

m
at

/0
51

11
40

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 5

 N
ov

 2
00

5 pss header will be provided by the publisher

From A Local Green Function to Molecular Charge Transport

M. Albrecht1, A. Schnurpfeil1, andG. Cuniberti2

1 Theoretical Chemistry FB08, University of Siegen, 57068 Siegen/Germany
2 Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg/Germany

Received 15 November 2003, revised 30 November 2003, accepted 2 December 2003
Published online 3 December 2003

Key words Green function, incremental scheme, Landauer theory, molecular junctions.

PACS 31.25.-v, 31.25.Jf, 73.40.Ns

A local–orbital basedab initio approach to obtain the Green function for large heterogeneous systems is
developed. First a Green function formalism is introduced based on exact diagonalization. Then the self
energy is constructed from an incremental scheme, rendering the procedure feasible, while at the same time
physical insight into different local correlation contributions is obtained. Subsequently the Green function
is used in the frame of the Landauer theory and the wide band approximation to calculate the electronic
transmission coefficient across molecular junctions. The theory is applied to meta– and para–ditholbenzene
linked to gold electrodes and various correlation contributions are analyzed.
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1 Introduction

As of very recently, the trend in miniaturization of electronic devices indicates a possibility to ultimately
arrive at electronically active elements being constituted by just a single molecule [1, 2]. Specifically it
has been demonstrated in break–junction experiments, thata single organic molecule might be positioned
between two electrodes so as to yield what has become known asa molecular junction [3, 4]. Under certain
circumstances such a system allows for electron transfer from the one electrode to the other. Based on these
experiments two far–reaching conclusions have been ventured, namely that molecular junctions might lead
the way to ultimate one–electron switches, and secondly, that such a switch behaviour can be triggered by
various rather different physical and chemical circumstances.

However, at present experiments are still notoriously difficult and hard to interpret, thus shifting weight
to theoretical considerations which are expected to both create a fundamental understanding of the micro-
scopic processes involved and provide a guidance for improved engineering.

Theoretical descriptions of the problem try to illuminate partial aspects like the role of the molecular
electronic structure [5, 6, 7] or the influence of various structural conformations [8, 9, 10]. Some progress
has been made recently on certain applications. It is the setof methods based on the local density approxi-
mation (LDA) to density functional theory (DFT) as a starting point, which provide numerically affordable
applications to the molecular junction problem [5, 6, 7, 8, 9, 10, 11]. LDA–based schemes were pursued by
Rakshitet al.[11], Pantelideset al. [6, 7] and others [5, 8, 9] for carbon wires and benzene–ring-systems.
Further approximations are introduced by Gutiérrezet al. in an application to an all–carbon–system with
nanotubes as electrodes [12]. Along those lines Fagaset al. analyzed the off–resonant electron transport
in oligomers [13], while both discussed the switch–like behaviour of aC60 ball by means of rotation [12].
Cunibertiet al. focused on the role of the contacts at the junction [14, 15]. An application predicting the
actual current-voltage behaviour of two aromatic molecules was demonstrated by Heurichet al. [16]. A
more advanced scheme developed by Xue and Ratner sticks withthese approximations, but develops a
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non–equilibrium formalism [17]. An earlier attempt was presented by Wanget al. [18]. Further approxi-
mations are commonly built on top of LDA, like the tight binding approach (TB) or parameterized minimal
basis sets [12]. Another set of approaches renounces completely attempts ofab initio calculations and re-
sorts to empirical models [19, 20, 21, 22]. Hettleret al. completely abandonedab initio approaches and
present a semi–quantitative model in calculations on tunneling transport through benzene [19]. In quite
the same spirit, several other groups try to tackle the problem without quantum chemicalab initio meth-
ods,e. g. Ghosh and Datta, who rely on minimal basis set semi–empirical Hückel approaches [20]. An
elastic scattering model is introduced by Todorovet al. [21]. A broad compilation of models was written
by Paulssonet al. [22]. In several applications the Kohn–Sham eigenenergies are interpreted as excitation
energies which is to a large extent feasible. Principle improvements are available, such as time dependent
DFT [23] and the optimized effective potential ansatz [24].However, it is hard to device systematically
improvable schemes in the frame of DFT.

Wave function based methods, on the other hand, are straightforwardly applicable to both ground state
and excited state calculations alike and are amenable to systematic improvement on the numerical accuracy
by their very construction. Subsequently, quantities likethe DOS or the transport coefficientT can be
obtained in a reliable manner. However, the numerical demand increases tremendously with the system
size. Recently it was shown that quantum Monte Carlo techniques (QMC), particularly diffusion Monte
Carlo (DMC), can be applied to excited states in solids [25, 26, 27, 28]. A second class of approaches
extend the coupled cluster (CC) scheme to excited states. The linear response version of CC was used to
obtain excitonic transition energies inBe, CH+, CO andH2O [29]. These approaches can be cast into a
reformulation which rests on the equation–of–motion (EOM)formalism.

The general bottle–neck of steep increase of numerical effort with system size, however, affects all wave
function based methods alike. It is precisely this obstaclewhich we strive to overcome by a formulation
of electron correlations in local orbitals and a hierarchy of correlation contributions called the incremental
scheme. In earlier works we performed band structure calculations with wave function basedab initio
methods [30, 31, 32, 33, 34]. The key enabling such calculations for infinite systems was an approach
based on local orbitals and a real space formulation of the self energy.

In the present work this idea is carried over to the case of molecules, with applications to large, hetero-
geneous systems in mind. The purpose is to display the full theory and introduce the idea of the incremental
scheme in order to construct the Green function. We demonstrate that this particular combination of an
incremental scheme based on local orbitals and the Green function theory allows for numerical efficiency
and generates an analytic tool with local resolution. Once the theory is laid out, the use of the Green func-
tion and its underlying incremental scheme is demonstratedin a simplified application to the problem of
charge transport across a molecular junction. The junctionis thought of as two gold electrodes which are
linked via thiol bridges to meta– and para–dithiolbenzene.In Sec. 2 the theory is explained. The numerical
results are discussed in Sec. 3 and Sec. 4 contains our conclusions.

2 Theory

The Landauer theory used to calculate the transmission coefficient across a molecular junction to be dis-
cussed below rests on the calculation of the one–particle Green function for the region between the junc-
tions. Fig. 1 shows a sketch of what we refer to as a molecular junction. It shows an organic molecule
between two electrodes, which allow to contact the moleculeand measure its current–voltage characteris-
tic. A molecule linked via thiol-bridges to gold electrodessets a canonical example for such a system.

Recently we implemented a wave function basedab initio procedure to set up the Green function for
band structure calculations in solids and polymers [32, 33,34]. Physical insight and numerical efficiency
were derived from an incremental scheme in real space [30, 31, 35, 36]. Here we apply similar ideas to
the problem of molecular junctions. The calculation of the Green function is described in Sec. 2.1. The
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combination of the Green function method with the so called incremental scheme is derived in Sec. 2.2,
while Sec. 2.3 depicts the Landauer theory.

2.1 The Green function

The starting point of our approach are localized Hartree–Fock (HF) orbitals for the molecular region be-
tween the electrodes, which is in the simplest case the bare molecule (cf. below). In terms of such orbitals
a model space P and excitation space Q are distinguished for the example of virtual states (the case of occu-
pied states being completely analogous) as follows: The model space P describing the HF level comprises
of the (N + 1)–particle HF determinants

∣

∣η
〉

, while the correlation space Q contains single and double
excitations

∣

∣α
〉

on top of
∣

∣η
〉

:
∣

∣η
〉

= c†n
∣

∣ΦHF

〉

,
∣

∣α
〉

= c†rca

∣

∣η
〉

, c†rc
†
scacb

∣

∣η
〉

(1)

P =
∑

η

∣

∣η
〉〈

η
∣

∣, Q =
∑

α

∣

∣α
〉〈

α
∣

∣. (2)

In this local description indices provide an orbital indexn which is normally taken to indicate a local HF
orbital. The idea of locality translates into a restrictionof the area the orbital can be chosen from to one
or more contiguous spatial parts of the molecule. It is important to note that by enlarging the size of the
spatial area thus covered, this approximation can be checked in a systematic way for convergence. A very
important implication of this procedure is that the correlation methods employed must be size–consistent.
This idea is elaborated upon in Sec. 2.2.

The Green function approach has precisely the merit of beingintrinsically size–consistent, so that a di-
agonalization allows to go beyond perturbative results. Pertaining to the above notation the Green function
Gnm(t) = −i〈T [cn(0)c†m(t)]〉, whereT is the time–ordering operator and the brackets denote the average
over the exact ground–state, can be obtained from Dyson’s equation as:

Gnm(ω) = [ω − F − Σ(ω)]
−1

nm . (3)

Here the self energyΣkl(ω) which contains the correlation effects, has been introduced. G0
nm(ω) is the HF

propagator
[

G0(ω)
]−1

nm
= ω − Fnm. The correlated energies are given by the poles of the Green function

which are numerically iteratively retrieved as the zeros ofthe denominator in Eq. (3). To construct the self
energy the resolvent

[

ω − HR + i0+
]−1

αα′
(4)

is needed. It can be gained from diagonalization of the Hamiltonian

[HR]αα′ = 〈α
∣

∣H − E0

∣

∣α′〉, (5)

where the states
∣

∣α〉,
∣

∣α′〉 are those of the correlation space Q as in Eq. (1).
Along with a straightforward implementation several perturbative approximations have been derived

and analyzed. Theoretical connections to the perturbativeeffective Hamiltonian [31] were also established.

2.2 The incremental scheme

The efficiency of the procedure is derived from the application of an incremental scheme as follows: A
sketch of the idea is given in Fig. 2.

As subsets of the incremental scheme some arbitrary spatialparts of a molecule, representing a suitable
partitioning, are chosen for this example. An incremental description of the transmission coefficientT

could start with a correlation calculation, in which only excitations inside one of the regions I–VI,e. g.
region I, are allowed. This results in a contribution to the correlation correction to the self energy, and
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ultimately to the transmission coefficient T. With excitations on top of this being restricted to within region
I, the so called one–body increment approximation to the transmission coefficient is obtained from Eq. (10)
to be discussed in detail in the next section. Here we just assume, some correlation method to calculate
T would be available. Of course, there are as many one–body increments as regions chosen to map the
system. They are thus indexed with the region they are referring to. In a next step the calculation is repeated
with excitations correlating the charge carriers being allowed to a region enlarged by one additional part
II. The difference with respect to the one–body increment then isolates the effect of additional excitations
involving this additional region II and constitutes the two–body increment as shown in Eq. (7). This
procedure can be continued to more and more regions. In the end the summation Eq. (9) of all increments
is the final approximation to the sought transmission coefficient.

∆T I = T I (6)

∆T I,II = T I,II − ∆T I − ∆T II (7)

∆T I,II,IV = T I,II,IV − ∆T I,II − ∆T I,IV − (8)

∆T II,IV − ∆T I − ∆T II − ∆T IV

T =
∑IV

A=I ∆T A+

∑IV
A>B=I ∆T A,B+

∑IV
A>B>C=I ∆T A,B,C+

. . .

(9)

From the experience gained with the incremental scheme in its application to the self energy, a rapid
decrease of increments both with the distance between the regions involved and with their number included
in the increment can be expected. This means that only a few increments need to be calculated. It is crucial
to emphasize that the cutoff thus introduced in the summation Eq. (9) is well controlled, since the decrease
of the incremental series can be explicitly monitored.

Furthermore physical information can be extracted from theincremental scheme. In general the relative
weight of specific increments with respect to others helps toidentify important correlation contributions.

In earlier applications to band structure calculations it was demonstrated that the correlation correction
γ = (LUMO − HOMO)HF − (LUMO − HOMO)CORR of the band gap gives a suitable measure of
the correlation effects accounted for, where(LUMO −HOMO)HF is the HOMO-LUMO gap on the HF
level and(LUMO − HOMO)CORR is the correlated result. This correction can also be used asa target
quantity for the incremental scheme in very much the same spirit as the transmission coefficient inserted
above.

2.3 The Landauer Theory

From the Green function, the transport coefficientT can be straightforwardly obtained in the frame of
the Landauer formalism [37]. This theory constitutes an approximation, assuming zero voltage across the
junction, which is frequently adopted and finds its justification in the zero-current theorem [21].

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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In this contextT is given by

T = Tr {ΓL GΓR G†} (10)

Γα = i[Σα − Σ†
α] (11)

Σα = HMαG0
ααHαM (12)

α = L, R, (13)

where the indices L,R refer to the coupling to the left (L) andthe right (R) electrode and can be obtained
from the self energies of the respective coupling regions asshown in Eq. (11). The self energies in turn are
obtained in a partitioning approach as depicted in Eq. (12).Here, the index M refers to the molecule. Eq.
(12) requires in principle the exact knowledge of the isolated lead surface Green functionG0

αα for both
sides of the junction (α = L, R). In the wide band approximation, which has been adopted throughout this
work, the coupling self energies provide an overall widening of the molecular energy levels, in particular
at the thiol bridges, due to the interaction with the energy continuum provided by the metal [6]. This ap-
proximation introduces a coupling between molecule and electrodes parameterized by a coupling strength
δ which replaces the evaluation of Eq. (12).

The Green functionG represents the entire system and is to be obtained from a partition approach
leading to:

GMM =
[

G0
MM

−1
− ΣL − ΣR

]−1

, (14)

where the superscript0 refers to the Green function of the bare molecule, obtained from theab initio
incremental scheme to be discussed below in Sec. 2.2. (The scheme is displayed for the key quantity T,
but has been shown in earlier applications to also hold for the self energyΣ, hence for the Green function
itself, cf. Ref. [32, 33, 34]).

3 Results and Discussion

The theory presented has been applied to both meta– and para–ditholbenzene. A Valence-double-zeta
(vdz) basis set with polarization functions was used throughout the calculations, henceforth denoted as set
A. For the purpose of test calculations a smaller basis set (vdz without polarization functions) denoted as
setB was used as well. In a first preparatory step localized HF orbitals were obtained for the molecules
employing the Pipek-Mezey option of the program package MOLPRO [38]. The four–index transformation
was accomplished by means of the HF program package WANNIER [39] and the subsequent correlation
calculations were performed by the program GREENS developed in our laboratory [32, 33]. First the
self energy and the Green function were calculated for the bare molecule to various levels of accuracy
according to the incremental scheme. The Green function wasthen inserted into the Landauer formalism
in the frame of the wide band approximation to obtain the transmission coefficientT across a molecular
junction with gold electrodes.

3.1 meta–dithiolbenzene

The incremental scheme leaves the partitioning of the molecule into different regions to the user. In the
left panel of Fig. 2 the partitioning underlying the following analysis for meta–dithiolbenzene is depicted.
The parts denoted I and IV comprise the thiol bridges, while parts II and III constitute the carbon ring. Of
course by intuition a partitioning of the carbon ring and itsπ system would not seem physically reasonable,
and indeed this will be confirmed in the end. At this stage, however, we would like to demonstrate the use-
fulness of a local analytic tool in analyzing precisely suchquestions. With this partitioning the incremental
scheme is applied both to the correctionγ to the HOMO-LUMO gap and the transmission coefficientT .

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Throughout this work,T is evaluated at the Fermi–level which was determined by imposing the charge
neutrality condition for the extended system under consideration.
To illustrate the procedure, we first performed calculations on meta–dithiolbenzene using the basis set B.
The results are summarized in Tab. 1. The calculations were done for a value of 3 eV for the external
coupling parameterδ. The molecule was partitioned into four increments numbered I, II, III and IV as
indicated in the left panel of Fig. 2. The third row of Tab. 1 shows the results when we consider only all
one-body increments denoted as ’S’. The correction for the HOMO-LUMO gap amounts to 2.414 eV if
the correlation of the electrons is calculated by means of MP2 (second order Møller-Plesset theory). This
result can be improved when next-neighbored two–body increments (denoted as ’nn–D’) are considered
additionally. By comparing the last two entries in the second column it can be noticed that including
only one–body increments and two–body increments in the calculation reproduces almost the correlation
contribution of the whole molecule. The same can be noticed when the Epstein-Nesbet theory to second
order (EN2) is applied to calculate the correlation contribution. The results are depicted in the third col-
umn. Here the values are somewhat increased with respect to the MP2 results, because beside the Fock
contributions of the diagonal elements ofHR the coulomb -and the exchange contributions of the diagonal
elements ofHR are included in EN2 while MP2 only considers the Fock contributions of the diagonal
elements ofHR [31]. The calculated values obtained by applying a full diagonalization for all one–body
increments is given in the fourth column. The results show notedly the local properties of the correlation
contributions, since the one–body increments include the main part of the correlation energies apart form
a little difference which mainly is included in the two–bodyincrements. The same observation can be
made for the transmission coefficient. The full correlationcontribution (in the sense that all increments
are accounted for, meaning the entire molecule has been correlated) is approximated by just considering
one–body and two–body increments (S and D). So it can be stated that it is unnecessary to include n–body
increments withn > 2. This fact gives rise to an important conclusion: The numerical effort for the corre-
lation calculation can be lowered drastically. For this purpose the one–body increments are treated by full
diagonalization because they include the main part of the correlation while the two–body increments could
even be treated by perturbation theory.

In all of the following calculations, however, diagonalization is performed for all increments and the
basis set A is employed. Higher ordered increments will again be shown to be of minor significance.

For this case we again start by discussing the results forγ as shown in Tab. 2. Again the row denoted
’S’ refers to the result including all one–body increments while ’S+D’ also accounts for all two–body
increments.

The one–body increments account for most of the correction of the HOMO-LUMO gap, changing
the HF value of 11.619 eV by an amount of 5.712 eV. Including all two–body increments brings the
HOMO-LUMO gap down by another 1.711 eV. These calculations were done without coupling to the gold
electrodes.

Once the coupling is switched on, the Landauer theory allowsto calculate the transmission coefficient
T. In Fig. 3 T is calculated in dependence of the couplingδ. Varyingδ might be thought of as modeling
different geometries at the junctions continuously, for example the distance between the electrodes and the
molecule. In order to establish the connection to more realistic descriptions we have run a test calculation
to estimate typical values of the gold–sulfur coupling for atypical covalent Au–S–distance of 2.38Å [40]
with the program package MOLPRO [38] and found coupling integrals in the range of 4 to 5 eV. The HF
results are depicted by dashed lines while the solid line includes the correlation effects. The transmission
sets on as soon as a finiteδ is chosen and then increases monotonously withδ to a peak value at around 8
eV. With still increasing coupling the transmission then declines again. The interpretation of this behaviour
is as follows: As the coupling is switched on, the thiol states will hybridize with the gold atoms, leading
to a broadening of the respective molecular states at the gap, pressing electron density into the former
HOMO-LUMO gap. Conductance then becomes possible. With ever increasing coupling the broadening
of the molecular states then leads to distributing electronic density into the tales of the spectrum away
from the gap region, thus lowering the transmission again. The overall tendency is the same for HF and

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



pss header will be provided by the publisher 7

correlated results. The role of the correlation corrections is to increase the transmission across the junction
quantitatively to some extent.

Selected typical values ofδ are taken to investigate the incremental scheme. Tab. 3 displays the results
for the transmission coefficient T. The denomination of the rows is as above with ’S’ referring to one–body
increments only and ’S+D’ including the two–body corrections as well. Calculations were done for three
different values of the external coupling parameterδ, corresponding to the increasing branch (4 eV), the
peak region (6 eV) and the decreasing branch (10 eV) of the graph in Fig. 3. (As estimated above a typical
covalent situation would be expected to be situated between4 and 5 eV).

In all three cases the HF values are corrected to some extent by the one–body increments. The two–
body increments then only give minor corrections being an order of magnitude smaller. Forδ = 6 eV
the HF value of 0.576 is corrected by the one–body incrementsby an amount of 0.048 or 8% to 0.624.
The inclusion of two–body increments only contributes another 0.007. This drop establishes the rapid
convergence of the incremental scheme.

3.2 para–dithiolbenzene

For the sake of comparison and to elucidate the role of theΠ–system we also did calculations on the
para–ditholbenzene, which is sketched in the right panel ofFig. 2. Contrary to its meta–version it has an
inversion symmetry with respect to its center of mass. Nonetheless we decided to split the carbon ring
again into two asymmetric parts, a larger one (region IV, upper part) and a smaller one in the lower part,
denoted as part II. We would like to use the incremental scheme to investigate how the different parts
contribute to the correlation effects.

The results are shown in Tab. 4 for both the correlation correction γ to the HF HOMO–LUMO gap
and the transmission coefficient T. The terms ’S’, ’S+D’ and ’S+D+T’ refer to inclusion of one–body,
two–body and three–body increments. As in the case of the meta system discussed in the previous section,
most correlation corrections are assessed with the one–body increments, which correct the HF value of
the HOMO-LUMO gap of 11.309 eV by an amount of 6.021 eV. Inclusion of two–body increments leads
to an additional correction of 1.041 eV, while the three–body increments together only amount to another
-0.003 eV. This confirms that converged results are already obtained on the two–body increment level and
justifies the cutoff applied to the incremental series afterthe two–body contributions for the calculations on
the meta–dithiolbenzene in the previous section. It is important to note that the incremental scheme thus
allows for a well–monitored and significant simplification in the numerical effort, since the space to be
diagonalized for two–body increments is in general significantly smaller than with three regions included.
As can be seen from the last column in Tab. 4, these findings areconfirmed for the transmission coefficient
T in very much the same way. As for the case of meta–dithiolbenzene, the convergence is even faster than
for the gap correction. The HF value is changed from 0.274 by 0.054 or 20% to 0.328 by the one–body
increments alone. Two–body increments only correct by -0.006 and three–body increments contribute a
meager -0.001.

We now turn to an analysis of the carbon ring contributions. To this end we check explicitly the com-
binations of the two–body increments where one part of the ring is associated with the left thiol–bridge or
where both parts are included and register their influence onthe gap correction. The upper and lower part
(increments IV and II) are combined with the left thiol–group (region I in the right panel of Fig. 2) to give
the combinations ’1+4’ and ’1+2’, respectively, in Tab. 4. The improvements on top of the one–body cor-
relation contributions are virtually negligible, amounting to 0.004 eV and zero, respectively. On the other
hand, the two–body increment ’2+4’, which describes the complete carbon ring, gives a large contribution
of 0.543 eV. Hence the inclusion of the entire ring system is essential for a quantitative description. This
analysis shows that the incremental scheme might not only beused as a method to reduce numerical cost,
but could at the same time serve as an analytic tool with a local resolution.

c© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 Conclusions

This work introduces an incremental scheme based on local HForbitals to construct the self energy and
ultimately the Green function with correlations included in anab initio way. The scheme has been car-
ried over from the case of translationally invariant systems to heterogeneous systems such as molecular
junctions. The theory combines different ideas into a feasible procedure and has been put forth in detail.
The construction of the Green function and related quantities was exemplified by calculations on para–
and meta–dithiolbenzene. The correlation correction of the HOMO-LUMO gap was discussed in terms of
incremental contributions, and a rapid convergence of the incremental series was found. In the frame of a
simple model, the so called wide band approximation, the molecule was then linked to gold electrodes, and
the Landauer theory was used to calculate the transmission coefficient across the thus modeled molecular
junction. This simple analysis demonstrates how the incremental construction of the Green function could
be put to use for the investigation of unconventional systems of high interest. The rapid convergence of
the incremental series when applied to the transmission wasestablished. Furthermore the usefulness of the
incremental scheme as a local analytic tool became manifest.

In sum the presented approach allows to efficiently assess correlation effects in heterogeneous systems
such as molecular junctions and allows to focus on particular parts of the system. We believe the presented
technical analysis allows to start with a series of calculations comparing the transmission profile of different
molecules in the same environmental context and could thus lead to new insights into the understanding
and engineering of molecular junctions.
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Table 1 Correlation correctionγ of the HF-HOMO-LUMO gap of meta–dithiolbenzene (Column 2–4. The values
are given in eV).γdiag labels the correlation correction obtained by full diagonalization. The last column containsT
at the Fermi-level. Coupling to the electrodes is accountedfor by applyingδ with a value of 3 eV.

increments: γMP2 γEN2 γdiag TMP2

HF (HOMO-LUMO gap: 12.019 eV) 0.108
all S 2.414 2.789 3.900 0.176
all S + nn-D 2.773 — — —
all S + D 2.919 3.436 — 0.179
full correlation contribution 2.921 3.439 4.636 0.179
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Table 2 Incremental scheme for the correlation correctionγ to the HOMO-LUMO gap. with different coupling
constantsδ (in eV). Row ’S’ gives the correlated results with all one–body increments included, row ’S+D’ also takes
into account all two–body increments.

increment narrowing of the gap ∆

HF HF-gap= 11.619
S 5.712 5.712

S+D 7.423 1.711
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Table 3 Incremental scheme for the transmission coefficientT at the Fermi–level with different coupling constants
δ. Row ’S’ gives the correlated results with all one–body increments included, row ’S+D’ also takes into account all
two–body increments.

δ = 4.0 δ = 6.0 δ = 10.0

HF 0.474 0.576 0.603
S 0.526 0.624 0.635
S+D 0.534 0.631 0.640
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Table 4 Incremental scheme for the transmission coefficientT at the Fermi–level and for the correlation correction
γ to the HOMO-LUMO gap (in eV) calculated at a coupling constants δ = 2eV . Row ’S’ gives the correlated results
with all one–body increments included, row ’S+D’ also takesinto account all two–body increments while ’S+D+T’
states the results up to three–body increments.∆ and∆T monitor the incremental improvement.

increment narrowing of the gap ∆ T ∆T

HF gap=11.309 0.274
all singles 6.021 6.021 0.328 0.054

1+2 6.021 0.000
1+4 6.024 0.004
2+4 6.564 0.543

all doubles 7.062 1.041 0.322 -0.006
all triples 7.059 −0.003 0.321 -0.001
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Fig. 1 Sketch of meta–dithiolbenzene illustrating the principlearrangement of so-called molecular junctions.
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Fig. 2 Sketch of the incremental scheme, exemplifying a possible partitioning of the meta–dithiolbenzene (left panel)
and para–dithiolbenzene (right panel) comprising four parts denoted as I, II, III and IV.
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Fig. 3 Transmission coefficientT at the Fermi–level for the meta–dithiolbenzene in dependence of the contact pa-
rameterδ for the HF-results (dashed) as well as for the correlated results with one–body– and two–body increments
included (solid).
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