
Spin interference effects in ring conductors subject to Rashba coupling

Diego Frustaglia*
Institut für Theoretische Festkörperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

Klaus Richter
Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

(Received 9 September 2003; revised manuscript received 11 February 2004; published 10 June 2004)

Quantum interference effects in rings provide suitable means for controlling spin at mesoscopic scales. Here
we apply such control mechanisms to coherent spin-dependent transport in one- and two-dimensional rings
subject to Rashba spin-orbit coupling. We first study the spin-induced modulation of unpolarized currents as a
function of the Rashba coupling strength. The results suggest the possibility of all-electrical spintronic devices.
Moreover, we find signatures of Berry phases in the conductance previously unnoticed. Second, we show that
the polarization direction of initially polarized, transmitted spins can be tuned via an additional small magnetic
control flux. In particular, this enables to precisely reverse the polarization direction at half a flux quantum. We
present full numerical calculations for realistic two-dimensional ballistic microstructures and explain our
findings in a simple analytical model for one-dimensional rings.
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I. INTRODUCTION

In the last decade the field ofquantum electronics1,2 has
received extraordinary attention from both experimental and
theoretical physics communities. Special effort has been
made towards control and engineering of the spin degree of
freedom at the mesoscopic scale, usually referred to as
spintronics.3,4 The major problem faced in this field is the
generation of spin-polarized carriers and their appropriate
manipulation in a controllable environment, preferably in
semiconductors. Since the original proposal of the spin field
effect transistor by Datta and Das,5 significant progress has
been made6 though the realization of a spin transistor still
remains as a challenge. Setups based on intrinsic spin-
dependent properties of semiconductors, as the Rashba
effect7,8 for a two-dimensional electron gas confined to an
asymmetric potential well, appear to be of particular interest
owing to the convenient means of all-electrical control
through additional gate voltages.9 In addition, coherent ring
conductors enable to exploit the distinct interference effects
of electron spinandcharge which arise in these doubly con-
nected geometries. This opens up the area of spin-dependent
Aharonov-Bohm physics, including topics such as Berry
phases,10,11 spin-related conductance modulation,12,13 persis-
tent currents,14,15 spin filters16 and detectors,17 spin
rotation,18,19 and spin switching mechanisms.20–22

In this paper we focus on two different aspects of spin
interference in ballistic one- and two-dimensional(1D and
2D) ring geometries subject to Rashba spin-orbit coupling.29

First, motivated by the work of Nittaet al.,12 in Sec. II we
revisit the subject of spin-induced modulation of unpolarized
currents using the Hamiltonian for 1D rings recently intro-
duced by Meijeret al.,32 which sligtly differs from the one
used previously.12,24,33Taking into account the corresponding
appropriate eigenstates, we derive in Sec. III the modulation
profile of the conductance as a function of the Rashba cou-
pling strength and extract distinct effects due to the presence
of Berry phases which have not been recognized in earlier

work.12 The 1D results are later compared with independent
fully numerical calculations for 2D rings. The imprints of the
Rashba coupling(strength) on the overall conductance is re-
markable, pointing towards the possibility of all-electrical
spintronics devices.

Second, and motivated by our previous work on spin con-
trol in the presence of external inhomogeneous magnetic
fields,20 we study in Sec. IV the magnetoconductance of ini-
tially spin-polarized carriers traversing a ring geometry with
Rashba spin-orbit interaction. We demonstrate by means of
numerical calculations for 2D ring systems that the spin ori-
entation of polarized carriers can be tuned and even reversed
by means of an additional small magnetic control field. This
implies a spin-switching mechanism which is probably more
convenient for experimental realizations than our previous
proposal,20 since the originally suggested external inhomoge-
neous magnetic field is now replaced by the intrinsic effec-
tive field due to the Rashba interaction.

After a short summary in Sec. V we present details of our
analytical approach in an Appendix.

II. MODEL AND RELEVANT PARAMETERS

A. Hamiltonian

The 2D quantum Hamiltonian for particles of charge
−e se.0d and effective massm* subject to Zeeman and
Rashba coupling with coupling constantsm andaR, respec-
tively, reads

H2D =
1

2m* P2 + mB · s +
aR

"
ss 3 Pdz + Vsr d, s1d

where s is the vector of the Pauli spin matrices,P=p
+se/cdA, andB= = 3A. The electrostatic potentialVsr d de-
fines, e.g., the confining potential of a 2D ballistic conductor.
Recently it has been shown32 that taking the limit from 2D to
1D rings[Fig. 1] has to be performed by carefully consider-
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ing in the above Hamiltonian(1) the radial wave functions in
the presence of a narrow confinement. As a consequence, the
corresponding 1D Hamiltonian for a ring of radiusr0 in the
presence of a vertical magnetic fieldB=s0,0,Bd reads32,34

H1D =
"v0

2
S− i

]

] w
+

f

f0
D2

+
"vB

2
sz

+
"vR

2
scosw sx + sin w sydS− i

]

] w
+

f

f0
D

− i
"vR

4
scosw sy − sin w sxd, s2d

where we have introduced the polar anglew, the frequencies
v0=" / sm*r0

2d, vB=2mB/", and vR=2aR/ s"r0d, and the
magnetic fluxesf=pr0

2B andf0=hc/e.
The 1D eigenstates of Eq.(2) have the general form

Cl,n
s swd = expsilnwdxl,n

s ; xl,n
s = S x1

x2 eiw D . s3d

Here, the spin componentsx1,2 depend, in principle, on the
travel directionl= ±1, orbital quantum numbernù0 (n in-
teger), and spins= ±1. The spin carriers being subject toH1D
experience an effective magnetic fieldBeff=B+BR composed
of the external fieldB and the momentum dependent fieldBR
arising from the Rashba coupling.BR lies in the plane of the
ring. Beff encloses a tilt anglea with the z axis given by
tan a=BR/B=vRsn8+1/2d /vB with n8=ln+f /f0 (see the
Appendix for further details). The exact orientation ofBR is
determined by the magnitude and sign of the momentum,
namely ln, i.e., spins traveling in opposite directions are
subject to a differentBR. Moreover, Eq.(2) implies that the
orientation ofBeff varies spatially.35 This means that, in gen-
eral, the corresponding spin eigenstates(3) are not aligned
with Beff [see Fig. 1(b)]. On the contrary, they are character-
ized by a different tilt angleg determined by the relative
magnitude of the spinor componentsx1 andx2. However, in
the limit of strong spin-orbit coupling, the so-calledadia-
batic regime, the spin eigenstates follow the local direction
of the effective field, andg→a (leading to Berry phases10).
This limit is reached if the adiabaticity parameterQ=QB
+QR satisfies Q@1,23,24 where we have definedQB
=vB/ sv0un8+1/2ud andQR, particularly relevant here, as

QR = vR/v0. s4d

Hence, the adiabatic limit corresponds to the situation where
a spin precesses many times during a full travel around the
ring.

B. 1D eigenstates in the absence of an external magnetic field

For B=0 we havevB=0 and f=0 in Eq. (2), and the
Hamiltonian H1D simplifies considerably. The resulting ef-
fective field reduces to the in-plane fieldBeff=BR with tilt
anglea=p /2. In this situation, the 1D eigenstates(3) take
the simple form(see the Appendix for details)

C+,n
↑ swd = expsinwdS sin g/2

cosg/2 eiw D , s5d

C+,n
↓ swd = expsinwdS cosg/2

− sin g/2 eiw D , s6d

C−,n
↑ swd = exps− inwdS cosg/2

− sin g/2 eiw D , s7d

C−,n
↓ swd = exps− inwdS sin g/2

cosg/2 eiw D . s8d

The corresponding tilt angleg is given by tang=QR, satis-
fying g→a=p /2 in the adiabatic limitQR→`. Hence, we
note that the spinorsxl,n

s in Eqs. (5)–(8) do not actually
depend onn. Moreover, the associated eigenenergies read

El,n
s =

"v0

2
FSln +

1

2
D2

+
1

4
+ sUln +

1

2
UÎ1 + QR

2G . s9d

The above spin eigenstates Eqs.(5)–(8), are defined in such
a way that the eigenenergies(9) are maximum for spin-up
states. We will make use of these results in the following
section for the study of transport properties.

III. RASHBA MODULATION OF UNPOLARIZED
CURRENTS

We first consider the case where the 1D ring of Sec. II B
is symmetrically coupled to two contact leads[Fig. 1(a)] in
order to study the transport properties of the system subject
to a constant, low bias voltage(linear regime). To this end
we calculate the zero-temperature conductanceG based on
the Landauer formula36

G =
e2

h
o

m8,m=1

M

o
s8,s

Tm8m
s8s , s10d

whereTm8m
s8s denotes the quantum probability of transmission

between incomingsm,sd and outgoingsm8 ,s8d asymptotic
states defined on semi-infinite ballistic leads. The labels
m,m8 and s ,s8 refer to the corresponding mode and spin
quantum numbers, respectively. For 1D rings[M =1 in Eq.
(10)] the transmission coefficients can be approximated to
first order as follows: In the presence of Rashba coupling the

FIG. 1. (a) 1D ring of radiusr0 subject to Rashba coupling in
the presence of an additional, vertical magnetic fieldB (flux f
=pr0

2B). Spin carriers traveling around the ring see a momentum
skd dependent in-plane Rashba fieldBR, which is orientationally
inhomogeneous.(b) Up and down spin eigenstates do not generally
align with the total effective fieldBeff=B+BR.
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energy splitting is such that particles with Fermi energyEF
can traverse the ring with four different wave numbersnl

s,
depending on spinssd and direction of motionsld. The quan-
tities nl

s are obtained by solvingEl,n
s =EF in Eq. (9) and do

not require to be integer. Moreover, in this simple approach
we assume perfect coupling between leads and ring(i.e.,
fully transparent contacts), neglecting backscattering effects
leading to resonances. Thus, incoming spinsusl entering the
ring at w=0 propagate coherently along the four available
channels and interfere atw=p, leaving the ring in a mixed
spin stateusoutl=ol,s kxl

ss0duslexpsinl
spduxl

sspdl.37 Choosing
a complete basis of incoming and outgoing spin states, the
spin-resolved transmission probabilities are obtained as
Ts8s= uks8 usoutlu2. After summation over the spin indicess
ands8, we obtain for the total conductance

G =
e2

h
F1 +

1

2
fcospsn−

↓ − n+
↑d + cospsn−

↑ − n+
↓dgG . s11d

Note that the phase difference acquired by opposite spin
states traveling in opposite directions plays an important role
for the modulation of the conductance.38 The spin-dependent
phases are signatures of the Aharonov-Casher effect39 for
spins traveling in the presence of an electric field, which is
the electromagnetic dual of the Aharonov-Bohm effect.

By imposingEl,n
s =EF in Eq. (9) we obtain

sn−
↓ − n+

↑d = 1 +Î1 + QR
2 , s12d

sn−
↑ − n+

↓d = 1 −Î1 + QR
2 . s13d

Inserting the above expressions into Eq.(11) one finds the
total conductance as a function of the dimensionless Rashba
coupling strengthQR,

G =
e2

h
h1 + cosfpsÎ1 + QR

2 − 1dgj s14d

=
e2

h
h1 + cosfpQR sin g − ps1 − cosgdgj, s15d

where we used tang=QR, cosg=1/Î1+QR
2, and sing

=QR/Î1+QR
2. Comparing Eq.(14) with the corresponding

result of Nitta, Meijer, and Takayanagi,12

GNMT =
e2

h
f1 + cosspQRdg, s16d

we recognize two main contributions to the phase in Eq.
(15): One is the Rashba phasewR=pQR sin g. This is similar
to the phasepQR (Ref. 40) appearing inGNMT, Eq. (16), but
corrected by a factor sing accounting for the fact that the
spinors are generally not aligned withBeff. In the limit of
adiabatic spin transport both phases coincide(since sing
→1 asQR→`). Moreover, we find an additional Aharonov-
Anandan phase42 contributionwAA =ps1−cosgd to Eq. (15)
absent inGNMT and related to the solid angle accumulated by
the change of spinor orientation during transport. In the adia-
batic limit, wAA tends to the corresponding Berry phasewB
=ps1−cosad as cosg→cosa (where cosa=0, i.e., wB

=p in the present case).

In Fig. 2 we plot for comparison our result, Eq.(14), for
G together withGNMT, Eq. (16), as a function of the Rashba
strengthQR. There we observe that whileGNMT (dashed line)
shows regular oscillations of period 2 inQR units, our result
(solid line) exhibits quasiperiodic oscillations of period
larger than 2 reflecting the fact that nonadiabatic spin trans-
port ssin g,1d takes place for smallQR. For QR@1 the
period is tending to 2 as the adiabatic limit is approached. In
addition, a relative phase shift of magnitudep survives be-
tweenG andGNMT for largeQR, coinciding with the appear-
ance of the Berry phasewB=p. As a consequence, minima in
G are obtained for even integers ofÎQR

2 +1, i.e., QR
=Î3,Î15, . . ..These minima are reminiscent of those found
for the conductance of rings subject to Zeeman spin-coupling
to in-plane circular magnetic fields(instead of Rashba cou-
pling) as a function of the corresponding adiabaticity
parameter.20 Moreover, we note that Eq.(16), predicting uni-
form oscillations as a function of the coupling strength, ac-
tually corresponds to the conductance of a 1D ring subject to
a radial electric field of constant magnitude(instead of a
vertical one as in the case of Rashba coupling).33,43

To complete the above discussion we present in the fol-
lowing the results of independent numerical calculations cor-
responding to more realistic 2D ring structures(Fig. 3). To
this end we calculate the zero-temperature conductanceG
based on the Landauer formula(10) by using a spin-
dependent recursive Green-function technique44 applied to
the 2D Hamiltonian(1). Unless otherwise stated, our numeri-
cal calculations correspond to a quantum transmission aver-

FIG. 2. Conductance-modulation profile of 1D rings[Fig. 1(a)]
as a function of the dimensionless Rashba strengthQR in the ab-
sence of external magnetic fieldsB=0d. The curves show our result
(14) for G (solid line) compared to the originally incompleteGNMT

of Eq. (16) (dashed line).

FIG. 3. 2D ring of mean radiusr0 and widthw used for numeri-
cal calculations of the conductance. The gray zone corresponds to
the region subject to a finite Rashba coupling. This is switched on
and off adiabatically within the leads by using a linear function. An
additional, vertical magnetic fieldB generates a fluxf=pr0

2B.
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aged within a small energy window47 in order to smooth out
energy-dependent oscillations related to resonances in the
ring structure. Moreover, the Rashba coupling is switched on
and off adiabatically48 within the leads by using a linear
function.49 Figure 4(solid line) shows the result for a single-
mode ring of mean radiusr0 and width w (aspect ratio
w/ r0<0.3) symmetrically coupled to two leads of the same
width (see Fig. 3). This result is to be compared with that for
the strictly 1D ring of Eq.(14) (dashed line; overall scaling
factor included). Both curves present similar features on the
whole. We observe that the first minimum ofG in Fig. 4
coincides for both 1D and 2D calculations. However, asQR
increases the 2D minima(solid line) undergo a small relative
shift with respect to the 1D result(dashed line) and get less
pronounced. This can be related to the finite aspect ratio of
the ring: The strengthQR can actually be written asQR
=sr0/wddR, wheredR=aRs2m* /"2dw is the parameter defin-
ing the strength of the Rashba coupling in 2D conducting
wires of width w.5,41 The weak-coupling regime character-
ized by spin subband separation is defined fordR!1. For the
case of 1D wires and rings, this condition is always satisfied
sincew=0. For finite width(represented by the finitew/ r0 in
our case) the situation is different, as we verify in our results
of Fig. 4. There, the first minimum atQR=Î3 (fitting the
above 1D result) corresponds to a relatively small coupling
strength dR<0.5. However, at the second minimum,QR
<4.Î15, we already enter the strong-coupling regime with
dR<1.2. As a consequence deviations from the 1D case in
the corresponding conductance-modulation profile arise. This
tendency is less pronounced asw/ r0→0 and the parameter
dR losses relevance.

Moreover, we note that in Fig. 4 the conductance minima
of finite width rings (solid line) suffer the shift tolarger
values ofQR with respect to the 1D results(dashed line) as
QR increases. This suggests that the radial motion in 2D
rings obstructs the approach to the regime of adiabatic spin
transport, since a relatively larger couplingQR would be nec-
essary for obtaining the same spinor tilt angleg according to
the structure of the phase(15).

Additionally, numerical results50 not presented here indi-
cate that the conductance of 2D ring structures supporting
several open channels shows a modulation pattern similar to
that of Fig. 4 provided that(i) the incoming and outgoing
leads support just one open channel and(ii ) the correspond-

ing aspect ratio is smallsw/ r0!1d. Furthermore, ring struc-
tures of irregular shape(leading to ballistic backscattering
enhancement) exhibit a halfing of the period inGsQRd modu-
lation profiles when compared with that of Fig. 4, similar to
what is predicted for disordered systems.43,51,52

IV. MAGNETOCONDUCTANCE OF SPIN-POLARIZED
CURRENTS AND SPIN SWITCHING

In this section we discuss the possibility of controlling the
spin orientation ofspin-polarizedcarriers by means of dis-
tinct interference effects in mesoscopic ring structures due to
(charge and spin) quantum coherence. Motivated by our pre-
vious work on spin switching in the presence of in-plane
circular magnetic fields20 we study here the magnetoconduc-
tance of incoming spin-polarized carriers,53 now subject to
Rashba interaction.

The setup proposed is that of Fig. 3, representing a 2D
ring (aspect ratiow/ r0<0.3) subject to Rashba coupling
symmetrically coupled to two leads. In addition, a weak
magnetic fieldB is applied along the vertical axis leading to
a flux f. Incoming and outgoing spin states are defined along
the vertical axis as shown in Fig. 3. We consider spin-up
polarized incoming particles54 (equivalent results are ob-
tained for spin-down incoming states). Using the recursive
Green-function technique introduced in Sec. III we calculate
numerically the spin-resolved conductancesG↑↑ and G↓↑,
corresponding to outgoing spin-up and -down channels, re-
spectively (see Fig. 3). In order to smooth out energy-
dependent oscillations, the present numerical calculations
correspond to an energy-averaged quantum transmission in a
small energy window.47 Our main results for a single-mode
ring are summarized in Fig. 5, showing the overall conduc-

FIG. 4. Numerical calculation of the conductance-modulation
profile (solid line) of a single-mode 2D ring(Fig. 3, aspect ratio
w/ r0<0.3) as a function of the dimensionless Rashba strengthQR

in the absence of an external magnetic fieldsB=0d. Dashed line:
corresponding 1D result, Eq.(14) (same as the solid line in Fig. 2)
including a fitting prefactor atQR=0 for comparison.

FIG. 5. Numerical results for the conductance of spin-up polar-
ized incoming carriers(see Fig. 3) through a single-mode 2D ring
(aspect ratiow/ r0<0.3) as a function of a fluxf=pr0

2B in the
presence of Rashba coupling of increasing strength:QR<0.2 (a),
1.0 (b), and 1.7(c) (see Fig. 4 for comparison atf=0). The overall
conductance(solid line) is split into its componentsG↑↑ (dashed)
andG↓↑ (dotted). Note the continuous change of the spin polariza-
tion with f and the spin switching atf=f0/2.
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tance(solid line) split into its componentsG↑↑ (dashed line)
andG↓↑ (dotted line) as a function of the magnetic fluxf for
three different scaled Rashba strengthsQR<0.2, 1.0, and
1.7. In the weak-coupling limit, Fig. 5(a), the overall conduc-
tance(solid line) shows the usual AB oscillations of period
f0 and is dominated byG↑↑ (dashed line). As expected for
weak spin coupling, the spin polarization is almost conserved
during transport.

More interesting features appear for the case of moderate
coupling depicted in panel(b). There, both componentsG↑↑
(dashed line) andG↓↑ (dotted line) contribute similarly to the
overall conductance(solid line). However, the spin polariza-
tion of the transmitted carriers changes continuously as a
function of the magnetic fluxf: We note thatG↓↑=0 at f
=0, while G↑↑=0 atf=f0/2. Hence, for zero flux all trans-
mitted carriers conserve their original(incoming) spin orien-
tation, while for f=f0/2 the transmitted particles reverse
their spin polarization. That means that by tuning the mag-
netic flux from 0 tof0/2 we can reverse the spin polariza-
tion of transmitted particles in a controlled way. The setup of
Fig. 3 (i.e., AB ring subject to Rashba coupling) acts as a
tunable spin switch, similar to our previous proposal for AB
rings subject to inhomogeneous magnetic fields20 with the
advantage that in the present system the spin-dependent
(Rashba) coupling can be electrically controlled.9 Moreover,
such spin-switching mechanism is independent of the
strengthQR, which determines only the amplitude of the
spin-reversed current(see below).

In addition to the above results we present in Fig. 5(c)
calculations for a little larger strengthQR<1.7, correspond-
ing to the vicinity of the first minimum in Fig. 4 for zero
flux. There we see that the AB oscillations in the overall
conductance(solid line) suffer a shift off0/2 with respect to
the weak-coupling case of panel(a). This is due to the addi-
tional phase of orderp acquired by the carriers forQR
<Î3 [see Eq.(14) and related paragraphs]. Moreover, the
overall conductance is dominated by the spin-reversed com-
ponent G↓↑ (dotted line), while the complementaryG↑↑
(dashed line) is suppressed due to quantum interference.

As the coupling strengthQR increases, we obtain a se-
quence of magnetoconductance profiles which reproduce pe-
riodically the different panels of Fig. 5, following the order
sad→ sbd→ scd→ sbd→ sad→ sbd→ scd. . .. Such periodical
feature is related to the unbounded accumulation of the
Rashba phase in Eq.(15) as a function ofQR. As a conse-
quence, Fig. 5(a) is related to values ofQR corresponding to
maxima of the conductance in Fig. 4, while Fig. 5(c) is as-
sociated with the vicinity of the minima in Fig. 4. Figure
5(b), where the spin-switching effect appears most clearly,
corresponds to intermediate values ofQR lying between
maxima and minima of the conductance in Fig. 4.

We point out that this mechanism for reversing the spin
polarization does not rely on the spin coupling to the mag-
netic field B generating the control flux, as exploited via
Zeeman splitting in spin filters. It is a pure quantum interfer-
ence effect due to the cooperation between change and spin
coherence during transport, which also exists for the nonav-
eraged conductance at a given energy. We further find that
this effect also pertains for large values of the Rashba
strengthdR associated to wires of finite widthw, indicating

that radial motion does not affect the control mechanism for
spin switching.

Additionally, further numerical calculations50 for 2D ring
structures supporting several open modes show features
similar to that of Fig. 5 for single-mode rings, as long as(i)
the incoming and outgoing leads support just one open chan-
nel and (ii ) the corresponding aspect ratio is smallsw/ r0

!1d. Deviations from, e.g., Fig. 5(b) arise asw/ r0 increases,
manifested by a less defined minimum inG↑↑ at f=f0/2 due
to the relatively large fraction of fluxf penetrating the
finite-width ring in that case. Moreover, asymmetric rings
with arms of different effective length can also show a flux-
modulated spin polarization similar to that of Fig. 5(b). How-
ever, the spin switching is not complete, and it does not
necessarily take place atf=f0/2.

Analytical results for the spin switching in 1D rings can
be, in principle, obtained by studying the spin-resolved trans-
mission probabilitiesTs8s as defined in Sec. III.

V. CONCLUSIONS

We have studied coherent spin-dependent transport in bal-
listic 1D and 2D ring geometries subject to(spin-orbit)
Rashba coupling. We first obtained, via analytical(1D) and
numerical (2D) calculations, the spin-related conductance-
modulation profile ofunpolarizedspin carriers as a function
of the scaled Rashba strengthQR, which also acts as a mea-
sure defining adiabatic spin transport forQR@1. The con-
ductance appears to be quite sensitive toQR, suggesting the
possibility of all-electrical spintronic devices. Moreover, we
point out the role played by Aharonov-Anandan and Berry
phases unnoticed in a previous proposal.12 In addition, we
also studied the magnetoconductance of spin-polarized carri-
ers to assess possibilities for controlling the spin orientation
in the presence of Rashba coupling. We demonstrate that an
additional small fluxf can be used as a control parameter for
inducing spin flips. The mechanism arises from cooperative
quantum interference of charge and spin degrees of freedom
in coherent transport. Combined with a spin detector such a
device may be used for controlling spin-polarized currents
alternative to the Datta-Das transistor.5 Moreover, we note
that the Dresselhaus spin-orbit coupling,30 not studied here,
could lead to similar conductance-modulation and spin-
switching effects. However, its interplay with the Rashba
coupling in systems where both contributions are comparable
can produce further effects of interest.31,55
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APPENDIX: ID SPIN EIGENSTATES AND EFFECTIVE
RASHBA FIELD

The components of the eigenstatesCl,n
s of the 1D Hamil-

tonian (2), which are given in Eq.(3) (spin s= ±1, travel
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direction l= ±1, integer orbital numbernù0), satisfy the
matrix equation

1
"v0

2
n82 +

"vB

2

"vR

2
Sn8 +

1

2
D

"vR

2
Sn8 +

1

2
D "v0

2
sn8 + 1d2 −

"vB

2
2x = El,n

s x,

sA1d

where the normalized spinors read

x = Sx1

x2
D =

1

Î1 + sDl,n
s d2

S 1

Dl,n
s D , sA2d

with

Dl,n
s =

El,n
s − s"v0/2dn82

s"vR/2dsn8 + 1/2d
, sA3d

n8=ln+f /f0, and eigenvalues given by

El,n
s =

"v0

2
HFSn8 +

1

2
D2

+
1

4
G

+ sÎFSn8 +
1

2
D −

vB

v0
G2

+ SvR

v0
D2Sn8 +

1

2
D2J .

sA4d

The off-diagonal elements in the left-hand side of Eq.(A1)
determine the magnitude and orientation of the in-plane ef-
fective Rashba fieldBR. The resulting overall effective field
Beff=B+BR has a tilt anglea with respect to thez axis
satisfying tana=vRsn8+1/2d /vB. Moreover, the presence
of the kinetic terms in the diagonal elements of Eq.(A1)
prevent the spinorsx to align with Beff. Instead, they are
characterized by a tilt angleg which tends toa only for
strong spin coupling(adiabatic limit).

For illustration we discuss the spin-up casess=1d and the
dependence on the travel directionl in the absence of Zee-
man coupling(vB=0, a=p /2) provided that a finite fluxf is
present. Then we find from Eq.(A2)

x1
↑ =

QR

Î2fQn8 + QR
2g1/2

, sA5d

x2
↑ =

Qn8
Î2fQn8 + QR

2g1/2
, sA6d

where Qn8=1+sgnfn8+1/2gÎ1+QR
2. The dimensionless

Rashba strengthQR is defined in Eq.(4). In the adiabatic,
strong-coupling limitsQR@1d we obtain from Eqs.(A5) and
(A6)

x↑ →
QR@15 S1/Î2−

1/Î2+D if sgn fn8 + 1/2g = 1

S 1/Î2+

− 1/Î2+D if sgn fn8 + 1/2g = − 1

sA7d

indicating that the spinors are contained within the plane
defined by the ring and pointing alongBR. On the other
hand, in the opposite limit of weak couplingsQR!1d, we
arrive at

x↑ →
QR!15 S0+

1−D if sgn fn8 + 1/2g = 1

S1−

0−D if sgn fn8 + 1/2g = − 1

sA8d

highlighting the influence of the traveling direction on the
relative orientation of the spinors. As a consequence we find
that the up spinors can be written as

x↑ =5 Ssin g/2

cosg/2
D if sgnfn8 + 1/2g = 1

S cosg/2

− sin g/2
D if sgnfn8 + 1/2g = − 1

sA9d

with tan g=QR. Following a similar procedure forf=0sn8
=lnd we find the eigenstates listed in Sec. II B.

*Present address: NEST-INFM & Scuola Normale Superiore,
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