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We study the spin-dependent conductance of ballistic mesoscopic ring systems in the presence of an
inhomogeneous magnetic field. We show that, for the setup proposed, even a small Zeeman splitting
can lead to a considerable spin polarisation of the current. Making use of a spin-switch effect [1]
we propose a device of two rings connected in series that in principle allows for both creating and
coherently controlling spin polarized currents at low temperatures.

Since the proposal of the Datta-Das transistor [2] over
a decade ago, much effort has been spent on finding an
effective mechanism for achieving spin-polarized electron
injection into semiconductors [3]. The ability to inject
and detect spin-polarized currents in a semiconducting
material widens the field of usual magneto-electronics in
metals and opens up the intriguing program of perform-
ing spin electronics [4] based on nonmagnetic semicon-
ductor devices. Due to the obstacle of the conductivity
mismatch [5] it has so far proved difficult to demonstrate
polarized spin injection from a ferromagnetic metallic
contact into a semiconductor. An alternative approach,
which is based on magnetic semiconductors [6,7], gives
excellent results concerning the injection efficiencies but
has the drawback that it is, at least up to now, restricted
to low temperatures. The mechanisms commonly used
for creating spin-polarized currents rely on magnetic ma-
terials or a large Zeeman splitting in a homogeneous mag-
netic field [8]. In this work we study ballistic mesoscopic
rings with inhomogeneous magnetic fields and show that
even a small Zeeman splitting (compared to the Fermi
energy) can lead to a considerable spin-polarisation of
the current. Usually the Zeeman splitting is exploited to
align the spin to the energetically favourable lower Zee-
man level. Here we demonstrate that for the presented
field texture the electron spin, which occupies the higher

Zeeman level, is more likely to align itself with the lo-
cal field direction and thus contributes to a larger degree
to the current. The described effect is most pronounced
in the adiabatic regime of strong fields where the elec-
tron spin follows the spatially varying direction of the
magnetic field. But our numerical calculations show that
there also exists a region of moderate field strengths for
which a spin-polarisation of about 30% can be achieved.
Such spin-injection efficiencies could be realised using
GaAs/AlGaAs heterostructures with low carrier densi-
ties. This has the advantage that both the injector and a
possible spin controlling device, such as the spin-switch
[1], can be fabricated from the same material and nega-
tive interface effects would be avoided.

To be more specific we consider symmetric 1d and
2d ballistic mesoscopic rings with two attached leads as

shown in Fig. 1. The chosen magnetic field texture is
illustrated in Fig. 2.
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FIG. 1. (a) Example of a quasi 1d ring structure with mean
radius r0 and width d as used for the numerical calculations.
(b) Illustration of the ring with circular in-plane field and
flux Φ through the ring. We assume electrons coming from
the right and define the spin polarisation with respect to the
y-axis.
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FIG. 2. The total magnetic field ~B(r0) in the ring of Fig. 1
is composed of an inhomogeneous in-plane field ~Bi = Bi(r0) ϕ̂
and a perpendicular homogeneous field ~B0 = B0 ẑ.

For the inhomogeneous magnetic field we assume a
circular configuration ~Bi(~r) ∼ 1/r ϕ̂ (in polar coordi-
nates) centered around the inner disk of the microstruc-
ture. Such a field can be viewed as being generated by a
perpendicular electrical current through the disk [9]. The
magnetic flux through the ring can be varied via a homo-
geneous field ~B0 = B0 ẑ pointing in the z-direction. The
Hamiltonian for noninteracting electrons with effective
mass m∗ and charge −e, in the presence of a magnetic
field ~B(~r) = ∇× ~A(~r), reads
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H =
1

2m∗

[

~p+
e

c
~A(~r)

]2

+ V (~r) + µ~B(~r) · ~σ. (1)

The coupling of the electron spin to the magnetic field
enters via the Zeeman term µ~B(~r)·~σ, where ~σ is the Pauli
spin vector and µ = g∗e~/(4m0c) the magnetic moment
with g∗ the gyromagnetic ratio. The electrostatic po-
tential V (~r) defines the confinement of the ballistic con-
ductor. At T = 0 the spin-dependent conductance of a
mesoscopic system with two attached leads is given by
the Landauer formula [10]

G(E,B) =
e2

h

M
∑

m′,m=1

∑

s′,s=±1

|tm′m
s′s |2 . (2)

The coefficient tm
′m

s′s denotes the transmission amplitude
from an incoming quantum channel m with spin s to an
outgoing channel with respective quantum numbers m′

and s′. We calculate tm
′m

s′s by projecting the correspond-
ing Green function matrix onto the asymptotic spinors
in the leads. As shown in Fig. 1 we define the spin di-
rections with respect to the y-axis. In the case of zero
flux through the ring the asymptotic spinors are therefore
eigenstates of the Hamiltonian when entering and exit-
ing the ring structure. In the following we focus on the
case, where the two leads of width w support only one
open channel (M=Int[kFw/π] = 1). We compute the
Green function for the Hamiltonian (1) numerically, us-
ing a generalized version of the recursive Green function
technique based on a tight-binding model [10] including
spin [1].

For a ballistic 1d ring it is feasible to obtain the
eigenstates of the Hamiltonian (1) analytically [11,12].
They read Ψn,s = exp(inϕ) ⊗ ψs

n(ϕ) where the first
factor desribes the motion along the ring and the sec-
ond refers to the spin state s =↑, ↓. The Zeeman term
causes a slight difference in the kinetic energy of spin-
↑ and spin-↓ electrons travelling clockwise and counter-
clockwise around the ring so that we must distinguish
four different orbital quantum numbers n : n↑

j , n
↓
j (j =

1, 2). They are given by n′ ≡ n+ φ e/h where the n′ are
the solutions of the equation

ẼF = n′2 + n′ + 1/2 (3)

±
√

(n′ + 1/2)2 + (2n′ + 1)µ̃B cosα+ (µ̃B)2.

Here, ẼF = (2m∗r20/~
2)EF is the scaled Fermi energy,

µ̃ = (2m∗r20/~
2)µ, and α the tilt angle of the textured

magnetic field with respect to the z-axis (Fig. 2). For
the purpose of this paper we can specialize on very small
homogeneous fields so that the total field is almost in-
plane (α ≈ π/2). In that case the cosα-term under the
square root is negligible, and we get for counter-clockwise
travelling waves [13] the eigenvalues

n′↑

1 = −1

2
+

1

2

√

1 + 4Ẽ − 4

√

(µ̃B)2 + Ẽ, (4)

n′↓

1 = −1

2
+

1

2

√

1 + 4Ẽ + 4

√

(µ̃B)2 + Ẽ. (5)

The spin indices are chosen in such a way that spin-↑ (↓)
labels the smaller (larger) quantum number n1. In the
adiabatic limit this corresponds to a spin being paral-
lel (antiparallel) to the local field axis. In the general,
nonadiabatic case the electron spin is not aligned with
the local field direction. Instead, two angles γ↑1 , γ

↓
1 ≤ α

take the role of α and characterize the spin eigenstates
which read

ψ↑
n1

=

(

sin
γ
↑
1

2

ieiϕ cos
γ
↑
1

2

)

, ψ↓
n1

=

(

cos
γ
↓
1

2

−ieiϕ sin
γ
↓
1

2

)

(6)

with

tan γ
↑(↓)
1 =

µ̃B

n′↑(↓)
1 + 1/2

. (7)

In the nonadiabatic limit of a weak magnetic field the
polarisation of the electron spin remains unchanged and

it is γ
↑(↓)
1 → 0. In the opposite limit of strong coupling

between the spin and the field the solutions (6) become
eigenstates of the Zeeman term in the Hamiltonian (1).
Hence, the adiabatic limit can be defined by the require-

ment γ
↑(↓)
1 → α = π/2 or tanγ

↑(↓)
1 → ∞. Expanding

Eq. (4) and (5) in µ̃B/ẼF and inserting them in Eq. (7)
gives in zeroth order a criterion for the adiabatic regime
which is independent of the spin direction:

Q ≡ µ̃B
√

ẼF

≫ 1 . (8)

Eq. (8) coincides with the condition for adiabaticity in
1d rings, which was previously deduced by decomposing
the Hamiltonian (1) into an adiabatic and nonadiabatic
part [11]. Using the first order approximation

n′↑(↓)
1 ≈ −1

2
+

√

ẼF ∓ 1

2

√

Q2 + 1 (9)

we recognize that the condition for adiabaticity now be-
comes spin-dependent and reads, for

√

Q2 + 1 ≈ Q,

spin− ↑: Q

1 − 1
2 µ̃B/ẼF

≫ 1 , (10)

spin− ↓: Q

1 + 1
2 µ̃B/ ẼF

≫ 1 . (11)

This means that spin-up electrons can reach the adia-
batic regime already for lower magnetic fields compared
to spin-down electrons. The physical origin of this behav-
ior can be understood as follows. In the weak adiabatic
regime Q & 1 the electron spin is to a certain extent
aligned with the local field direction (0 ≪ γ1 < α) and
nonadiabatic spin flips are rare. Spin-↑ (↓) electrons,
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which occupy the higher (lower) Zeeman level, have a

smaller (larger) kinetic energy E
↑(↓)
kin ≈ EF ∓µB (Fig. 3).

But an electron that transverses the ring with a smaller
velocity has more time to align its spin with the local
field direction and hence will reach the adiabatic regime
more easily.

energy

spin−up

spin−down

lead ring xlead

EF EF
E↑

kin

E↓
kin

µB

FIG. 3. An electron with fixed Fermi energy in the leads
has different kinetic energies in the ring depending on its spin
state E↑

kin
< EF < E↓

kin
.

We now show how this spin-splitting in the adiabaticity
parameter can lead to a spin polarized current in meso-
scopic quasi 1d rings as illustrated in Fig. 1. For this
purpose we calculate numerically the spin-resolved trans-
mission Ts,s′ = |ts,s′ |2 (s, s′ =↑, ↓). It has been shown [1]
(see also Fig. 6) that in ballistic symmetric ring struc-
tures supporting only one open transverse mode in the
leads the nonadiabatic components T↑↑ and T↓↓ vanish if
the magnetic flux is φ = 0.5φ0 (flux quantum φ0 = h/e).
The remaining adiabatic components T↑↓ and T↓↑, with
the spin following the field, are functions of the adiabatic-
ity parameter and increase when increasing Q.

Our numerical results for the spin-resolved transmis-
sion as a function of Q for a ring with aspect ratio
d/r0 = 0.33 and flux φ = 0.5φ0 are depicted in Fig.
4 (a). We have performed an energy average over half of
the first channel (kFW/π = 1.41 − 1.91) to avoid strong
energy dependencies due to the quantization of the an-
gular momentum.

The adiabatic transmission components show a clear
spin splitting T↓↑ > T↑↓ for Q ≤ 9. As discussed be-
fore this behavior can qualitatively be understood using
Eq. (10) and (11). Electrons occupying the upper Zee-
man level travel with smaller velocity and hence reach
the adiabatic regime of maximum transmission T↓↑ at
smaller Q-values compared to spin-down electrons which
have transmission T↑↓. This effect leads to a spin po-
larisation P = (T↓↑ − T↑↓)/(T↓↑ + T↑↓ + T↑↑ + T↓↓) of
up to 45 % (for the geometry used) at an energy ratio
µB ≈ 0.25 EF (Fig. 4 (b)). Note that in Fig 4 (b) one
does observe another, sharply peaked polarisation max-
imum in the nonadiabatic regime Q < 1, which cannot
exclusively be attributed to the spin-dependent scaling of
the adiabaticity parameter Q, as elucidated above. How-
ever, the numerical calculations show a maximum value
of 30 % spin polarisation at a very small energy ratio
µB ≈ 0.025 EF .

Energy ratios of that order of magnitude might also be-
come of experimental relevance. For a 2DEG built from a
GaAs/AlGaAS heterostructure with carrier densities as
low as ns = 1.8 1010 cm−2 [14] this energy ratio trans-
lates into a required in-plane magnetic field of B ≈ 500
mT. Circular inhomogeneous fields of that magnitude are
well within the means of present experimental setups.
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FIG. 4. (a) Energy averaged transmission components T↓↑

(solid) and T↑↓ (dashed) as a function of the scaled magnetic
field Q for a ring with aspect ratio d/r0 = 0.33, φ = 0.5φ0 and
one open channel kF W/π = 1.41 − 1.91. The nonadiabatic
components T↑↑ and T↓↓ (dotted) almost vanish. (b) Result-
ing polarisation of the current as a function of the energy ratio
µB/EF .

On the other hand, reaching the extended region of
about 40 % spin-polarisation (Fig. 4 (b)) would require
magnetic field strengths which are an order of magni-
tude larger. This regime could be reached using diluted
magnetic semiconductors (DMS) which exhibit a huge
g-factor and therefore lead to a large Zeeman splitting
[15].

The depicted spin filter effect does not continue to exist
for arbitrary high Zeeman splitting. In Fig. 4 (b) we ob-
serve a crossover to negative values of the polarisation at
µB ≈ 0.45 EF , a phenomenon which becomes more pro-
nounced with increasing field strength B. This counter-
acting effect results from the fact that for µB & EF the
Zeeman splitting acts as a barrier for spin-up electrons
leading to enhanced backscattering and finally filtering
of this spin state.
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We note that the nonadiabatic components T↑↑ and T↓↓
are symmetric (T↑↑ = T↓↓) and do not show spin splitting
behavior. In accordance with the theoretical expectation
T↑↑ and T↓↓ vanish for almost any Q-value.

We now study whether the spin filtering effect depends
on the chosen geometry (size and aspect ratio d/r0) of the
ring. Numerical results for the spin-dependent transmis-
sion through a ring with d/r0 = 0.22 are presented in
Fig. 5 (a). Plotting the resulting polarisation of the cur-
rent (Fig. 5 (b)) we obtain a spin filter behavior which is
pretty much alike the previous one for the smaller ring.
The second polarisation maximum is now at µB ≈ 0.4EF

and reaches only a value of P ≈ 0.3. The first maximum
is also smaller compared to Fig. 4 (b) but is now found
at µB ≈ 0.01EF thus reducing the required field strength
by a factor of two. Further numerical simulations show
that the described spin filter effect exists independent of
the size of the ring with a maximum spin polarisation
ranging between 30 % and 45 %.
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FIG. 5. (a) Energy averaged transmission components T↓↑

(solid) and T↑↓ (dashed) as a function of the scaled magnetic
field Q for a ring with aspect ratio d/r0 = 0.22. The nonadi-
abatic components T↑↑ and T↓↓ (dotted) almost vanish. (b)
Resulting polarisation of the current as function of the energy
ratio µB/EF .

Symmetric 1d rings do not only show a spin filter ef-
fect for Zeeman energies µB < EF . Together with the
spin-switch effect described in Ref. [1] a serial connec-
tion of these structures allows both for spin filtering and
tuning of the polarisation of the current. The spin-switch

mechanism of Ref. [1] is most efficient in a region of mod-
erate magnetic fields described by Q ≈ 1. This coincides
approximately with the Q values for which the first po-
larisation maximum of up to 30 % arises. As illustrated
in Fig. 6 for spin-up incoming electrons, applying zero
flux leaves the spin polarisation unchanged. For half a
flux quantum the polarisation is reversed and the elec-
tron exits in a spin-down state. Analogous results hold
for spin-down incoming electrons.
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 0  0.5  1

〈T
(E

,φ
)〉

E

φ/φo

↑↑

↓↑

↑↑ + ↓↑

FIG. 6. Energy averaged transmission T↓↑ (dashed) and
T↑↑ (dotted) for spin-up incoming electrons through a 1d ring
(Fig. 1) as a function of magnetic flux. The polarisation of
the exiting current can be tuned from spin-up (φ = 0) to
spin-down (φ = 0.5). The total transmission T↓↑ +T↑↑ (solid)
remains almost constant (from [1]).

In Fig. 7 we propose a configuration of two ballistic
1d rings as in Fig. 1 that could serve as a device to co-
herently create and control spin-polarized currents. The
inhomogeneous magnetic field in both rings can be cho-
sen approximately equal and in such a way that Q ≈ 1.
Applying a fixed flux φ = 0.5φ0 to the ring on the right
hand side will create a partially spin-down polarized cur-
rent. The flux through the second ring is tunable between
φ = 0 and φ = 0.5φ0 and controls the direction of the
polarisation.

y

xφφ

incomingoutgoing

fixed fluxtunable flux

or

partially

down−polarized unpolarizedup−polarized

down−polarized

FIG. 7. Scheme for a serial combination of two 1d rings
that could serve as integrated system for both creating and
controlling spin-polarized currents at low temperatures. The
flux through the ring on the right hand side should be fixed
at φ = 0.5φ0 leading to a partially down polarized current.
The direction of the polarisation can be changed in the second
ring by applying a tunable flux between φ = 0 and φ = 0.5φ0.

4



We note that an analogous scheme could also be real-
ized using radial inhomogeneous magnetic fields ( ~B ∼ r̂ )
instead of circular ones. Such fields can be created by
placing a micromagnet in the center of the disk [16]. In
that case the polarisation of the current would be defined
with respect to the x-axis.

However, we do not expect the described spin filter
effect to exist for inhomogeneous effective fields result-
ing from a strong spin-orbit Rashba coupling [17]. The
Rashba effect leads to a spin splitting in the dispersion
relation but electrons occupying the two spin branches
travel with equal group velocity and hence have the same
adiabaticity parameter Q.

Finally we summarize the conditions which have to be
met to make the scheme of Fig. 7 work. Both the filter
and switching mechanism are based on coherent trans-
port and hence exist only at low temperatures. The bal-
listic ring structures have to be symmetric with respect
to the x-axis and may only support one open channel in
the leads. There is no restriction on the number of trans-
verse modes in the ring arms themselves.
Although our proposed setup is based on a ballistic sys-
tem we have numerical evidence that the observed spin
filter effect also exists in disordered rings, however, it is
less pronounced. Since the random distribution of the
impurity potential breaks the symmetry of the ring, the
nonadiabatic transmission components no longer vanish
independently of the value of the adiabaticity parameter
Q . Especially for Q < 1 they give a strong contribution
to the transmission and thus decrease the polarisation
considerably. Given that the mean free path ℓ depends
on the (spin-dependent) travelling velocity of the elec-
trons (weak scattering limit) the maximum value of the
spin polarisation in the adiabatic limit is also lowered.
The reason is that the adiabaticity parameter in the dif-
fusive regime scales with the inverse square root of the
mean number of scattering events (Q/

√
N ∼ Q ℓ/L) [18]

which counteracts the spin-dependent scaling of Q de-
scribed above.

To summarize we have studied the spin-dependent
transport properties of ballistic symmetric 1d ring struc-
tures subject to an inhomogeneous magnetic field. Our
numerical calculations show that a moderate Zeeman
splitting compared to the Fermi energy can lead to an
enhanced transmission probability for electrons occupy-
ing the upper Zeeman level, which results in a spin polar-
ization of the current of up to 45%. This effect exists in
the adiabatic regime and can qualitatively be understood
in terms of a spin-dependent adiabaticity parameter Q.
Further increase of the strength of the inhomogeneous
field leads finally to a reversal of the effect, because it
is counteracted by the usual spin filtering of the charge
carriers at a large Zeeman barrier.
For very small Zeeman spitting our numerical calcula-
tions indicate the existence of another, sharply peaked
polarisation maximum of up to 30 %. This effect, which is

not yet fully understood, could be observed for a strength
of the inhomogeneous field that is well within the means
of present experimental setups.
Moreover we make use of the predicted spin-switch ef-
fect in such a system and propose an integrated device
consisting of two rings connected in series that in prin-
ciple can serve both as spin filter and spin controller for
currents at low temperatures.
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