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Abstract. We examine the nodal structure of accurate helium wavefunctions calculated by 
direct diagonalization of the full six-dimensional problem. It is shown that for fixed 
interelectronic distance R (or hyperspherical radius %) the symmetric doubly-excited 
resonant States have well-defined A, p nodal structure indicating a near separability in 
prolate spheroidal coordinates. For fixed A, however, a clear mixing of R, p nodes is 
demonstrated. This corresponds to a breakdown of the adiabatic approximation and can 
be understood in terms of the classical two-electron motion. 

1. Introduction 

Evidence for approximate symmetries of doubly-excited resonant states of atoms has 
accumulated slowly over the past 25 years. As soon as it was recognized that these 
states represent a severe breakdown of the single-particle model (Fano 1983) alternative 
symmetries were proposed. The first of these was the 'plus-minus' classification of 
Cooper et a/ (1963) in which states of helium lying just below the Het( N = 2) +e- 
break-up threshold were described as linear combinations (2snp+2pns). Later Wulf- 
man and Sukeyuki (1973) and Sinanoglu and Herrick (1973) began a search for internal 
symmetries based on a reduction of the SO,OSO, group classification of the non- 
interacting two-electron problem. This approach was examined exhaustively by Herrick 
and co-workers in a series of papers (Herrick and Sinanoglu 1975, Herrick 1975, 
Herrick and Kellman 1980, Herrick et a/ 1980, Kellman and Herrick 1980) the results 
of which are summarized in a major review article by Herrick (1983). These results 
set the framework for much subsequent analysis of symmetry properties, based either 
on an empirical examination of calculated wavefunctions or on model Hamiltonians 
(Lin and Macek 1984, Ho and Callaway 1984, Komninos and Nicolaides 1986, Yuh 
et a /  1981, Makrewicz 1989). 

The important results of Herrick's analysis may be summarized as follows. 
(i) Each state in a given N manifold can be assigned internal quantum numbers 

(K, T, A) .  The quantum number K was shown to characterize the expectation value 
of cos 0, where 0 is the angle between the vectors r I ,  r2 of the two electrons with 
respect to the nucleus. The quantum number T arises from quantizing the projection 
L .  E of the total angular momentum vector along the direction of B = b,  - b, ,  the 
differenceoftbe independent-electron Runge-Lenzvectors b,  , b2.The quautumnumber 
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A = f l  describes the even or odd symmetry of the wavefunction with respect to the 
line r, = r, and reflects the Pauli principle. 

(ii) Sequences of intrashell resonant states (i.e. both electrons with the same 
principal quantum number N )  of different spin S, total angular momentum L and 
parity ?I may be grouped into 'rotor' series. 

(iii) States can also be assigned a 'vibrational' quantum number n, = 
f(N- K - T- 1) .  This latter property emphasizes one weakness of Herrick's analysis, 
namely, that the quantum numbers are not all independent of each other. 
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In addition to (iii) one has A= ? 1 ( - 1 ) ~ " .  
An ostensibly completely different approach to the symmetry of doubly-excited 

resonances was proposed by Feagin and Briggs (1986, 1988) based on earlier work on  
singly excited states (Hunter and Pritchard 1967). In this method the interelectronic 
axis R = r ,  - r, is treated as an adiabatic 'molecular' axis in analogy to the internuclear 
axis in diatomic molecules (the important point is that the adiabatic axis is that between 
particles having a repulsive interaction). In the molecular approach the following 
symmetries of doubly excited states emerge (Feagin and Briggs 1986, 1988, Rost et al  
1990, Rost and Briggs 1990). 

(i) In the body fixed frame the interelectronic centre-of-mass (ECM) motion 
described by r = ( r , + r 2 ) / 2  is separable for fixed R. The separation is in prolate 
spheroidal coordinates A, p, 'p and the associated quantum numbers are the molecular 
quantum numbers n,, nw, m, where the latter denotes the projection of the ECM angular 
momentum and the total angular momentum along the body-fixed axis R. 

(ii) Rotational structure appears naturally in the molecular model and the rotor 
series of Herrick are sequences of states of different L and S built on a single MO. 

(iii) The gerade-ungerade character of the MO is a preserved symmetry of the full 
problem according as ~ ( - 1 ) '  is even or odd. 

(iv) The spheroidal nodal surfaces become spherical or paraboloidal in the limits 
R --f 0 and R + m respectively: The number of nodal surfaces is conserved for all R. 

In the latter series of papers it has been shown also that the independent MO 

quantum numbers n,, n,.. m contain and explain the Herrick quantum numbers K ,  T, 
A and n,. The latter quantum numbers are simply combinations of the parabolic 
quantum numbers describing a polarized state in the single-electron N-manifold 
resuiting from the removai oi one eiectron to infinity whiist the other remains bound. 
These parabolic nodal surfaces, with quantum numbers n,, nz, m, are conserved as 
spheroidal surfaces for finite R and give the connection 

Furthermore 

A = (-1)"- (10) 

n, = n, = n, ( I b )  

T = m  (IC) 

K (n, - ( I  - A ) / 2 ) / 2 -  nA n,- n,. ( I d )  

the quantum number K can also be associated with the asymptotic 
( R  + m) value of the separation constant in the A, f i  equations; the separability itself 
being due to the presence of an extra constant of the motion connected with the SO4 

The validity of the approximate MO separability has been only indirectly supported 
until recently. For example MO potential curves, scaled from those of H;, show a 
striking similarity (Feagin and Briggs 1986) to hyperspherical (HS) potential curves 
calculated numerically by a diagonalization in five space dimensions still under an 
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adiabatic assumption regarding the hyper-radius. The (KTA) quantum numbers empiri- 
cally assigned to the HS curves (Lin 1984) correspond exactly to the MO designation 
according to (1). Propensity rules arising from the MO classification of states (Rost 
and Briggs 1990, hereafter referred to as RE) have been shown to explain relative 
transition rates. It has also been shown that the adiabatic MO energies become accurate 
for high-lying states (Rost 1990). Recently convincing new evidence for the MO 

separability has emerged. A calculation of HS wavefunctions for the ( N  'Po) intrashell 
resonant sequence in H- has been performed by diagonalization of the adiabatic 
hyperspherical problem in a large basis set (Sadeghpour and Greene 1990). The contour 
plots ofthis wavefunction for fixed hyper-radius 3 = ( r i+  r;)1'2 show well pronounced 
nodal surfaces which have been shown to agree exactly in number and shape with 
those to be expected from a A, p separability (Rost et al 1991). Until now, however, 
a similar analysis of accurate wavefunctions from a full diagonalization of the six- 
dimensional problem has been lacking. Here we present for the first time such an 
analysis. The conclusion is that numerically accurate intrashell resonant wavefunctions 
(Gersbacher and Broad 1990) also show the A, p nodal structure indicating near- 
separability. The separability is not complete, however, and particularly there appears 
a mixing of the R and the p motions. This is shown to be due to a breakdown of the 
adiabatic assumption. In  addition, the nodal structure of the two-electron wavefunc- 
tions will be shown to be connected intimately with the occurrence of a near-stable 
periodic orbit in the classical mechanics of the Coulomb three-body problem. This is 
a first indication that the structure of the three-body resonant states will reflect the 
underlying classical mechanics in exactly the same way as has now been demonstrated 
in great detail in the case of a hydrogen atom in a magnetic field (Friedrich and 
Wintgen 1989, Hasegawa et a1 1989). 

2. The spheroidal nodal structure 

In  terms of single-electron coordinates in the body-fixed frame the spheroidal coordin- 
ates are 

A = ( r ,  + r2)/R ( 2 0 )  

p = ( r l  -r2)/R ( 2 6 )  
and the associated nodal surfaces are ellipsoids and hyperboloids of revolution respec- 
tively about the interelectronic axis. In the case of 'Po symmetry Sadeghpour and 
Greene (1990) have calculated HS 'inner' wavefunctions @(a,  0, 3) in the two variables 
a =tan-'(r,/r2), 0 =cos-'($, . t2) for fixed hyper-radius 9 for the intrashell sequences 
with principal quantum number N S  11. The density of the lowest two members of 
the N = 6 manifold for 9 = 80 au (roughly the position of maximum probability in 
3) are shown in figure 1. Clearly the nodal lines do not correspond to a or 0 nodes, 
i.e. a =constant or 0 =constant. However, a simple mapping 

(where the + sign denotes A and the - sign denotes p )  allows the nodal lines 
A =constant and p =constant to be overdrawn in the plot of figure 1 and these nodal 
lines show almost perfect agreement with the calculation (Rost et a/  1991). Not only 
that, the number of nodal lines shows that the states are built on the lOmrr, MO with 
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Figure 1.  The contour plot of ‘P adiabatic two-electron densities in the N = 6  manifold 
at 8 =80au taken from Sadegphaur and Greene (1990). The nodal (continwus) and 
antinodal (dashed)  lines in A ,  f i  coordinates for ( a )  the state with (n,n,m) = (081) and 
( b )  the state with (n,n,m) = (161). 

nt. = 0; nr = 8; m = 1 (figure l(a)) and the 9h, MO with nr. = 1; nr = 6 ;  m = I (fizure 
l ( b ) ) .  When translated into K ,  T and A according to (1) the resulting assignment 
agrees with that of Sadeghpour and Greene (1990). 

Although the MO nodal structure of the adiabatic HS wavefunction is striking, 
Sadeghpour and Greene assumed that the single-channel adiabatic approximation is 
valid and justified their assumption by the close agreement of their calculated energies 
with other calculations and with experiment. Despite this agreement, it is not clear to 
what extent the near-separability demonstrated in figure 1 depends upon the adiabatic 
assumption. 

Therefore we consider it necessary to compare with completely independent, full 
diagonalization wavefunctions to test the A, /A separability. 

Gersbacher and Broad (1990) have calculated accurate wavefunctions for low-lying 
doubly-excited states by direct diagonalization in a Sturmian basis based upon indepen- 
dent-electron coordinates r , ,  r , .  The accuracy of their calculation is indicated by close 
agreement not only with measured resonance energies but also with the detailed shape 
of the Fano profile (Kossmann et ai 1988). Accordingly we have taken the wavefunction 
of Gersbacher and Broad (1990) and plotted their probability density in various ways 
by keeping certain variables constant. The results, shown in figures 2-5 confirm the 
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near-separability of the complete wavefunction ' P ( r , ,  r2 ) (2s+1Lw)  in A,  p internal 
coordinates. 

The first example is the lowest N = 4 'Po intrashell resonance. This is of T(-1)' = 
odd, i.e. ungerade MO character .built on the n, = 0, np = 4, m = 1 (parabolic-n, = 0, 
n z = 2 , m = l , A = + l  andthereforeK, T,A=2 ,1 ,1 )  ~06h~..Infigure2theprobability 
density 

P ( W , Q , a ) = 1 ~ ~ 2 d V ( % , o , ~ )  (4) 

is plotted for fixed hyper-radius % and averaged over Euler angles relating the 
space-fixed to the body-fixed frame, to compare directly with the hyperspherical 
adiabatic density of figure 1.  One sees that the nodal structure of this accurate 
wavefunction is of the same character as the H S  wavefunction of figure 1. The nodes 
agree in number and shape with the (n,n,m) = (041) classification, i.e. the 6h71, MO. 

The next example is the lowest N = 3 'Se intrashell resonance. This state has 
~ ( - 1 ) ' = + l  and therefore is of gerade character and based on the 5g0 ,  MO with 
n, = 0, nr = 4, m = 0. The probability density of this state is shown in figure 3 for fixed 
hyper-radii W = 8 and % = 6 au again as a function of a and Q to compare with the 
plots of internal HS wavefunctions (figure 1). The close similarity is evident and provides 
support for the adiabatic picture in a body-fixed frame. Again the number of nodes 
n, = 0, nQ = 4 confirm the molecular coordinate separation. Such a symmetric 'in-saddle' 
state (RE) should have its maximum density on the saddle (rI  = r2, tan LY = ~ / 4 )  at a 
radius ?j? =8  au and this is seen clearly in figure 3(b) .  At smaller hyper-radius, density 
shifts off the saddle as shown in figure 3 ( a )  but still the A, p nodal structure is preserved. 

9 ,  

0.00 0.25 0 50 

a h  

Figure 2. The two-electron density for the 'P" N = 4  resonance with (n,n,m)=(041) at 
3 = 18 au from full diagonalization. 

0 00 0 25 0 50 0 00 0 25  0 50 
a/. a h  

Figure 3. Same as in figure 2 but for the IS' N = 3  resonance with (n ,n ,m)=(040) :  
( a ) a t 9 1 = 6 a u a n d ( b ) a t 9 1 = 8 a u .  
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This is emphasized in figure 4(a)  where the same densities are plotted against A, 
for fixed hyper-radius. As expected the nodal lines are perpendicular to the p axis, 

Although the HS adiabatic wavefunction shows A, LL nodal structure, the adiabatic 
HS Hamiltonian is not directly separable in A,/ coordinates. The adiabatic MO 

Hamiltonian with electron separation R fixed is separable, however. Therefore in figure 
4(b) the exact probability density of the lowest N = 3 'Se intrashell resonance is shown 
in molecular coordinates, where the interelectronic axis R is held fixed and the density 
is plntted as a function nf A and p~ No!e thz! the hyperspherica! r2dl.s 3 CBE be 
rewritten .% = (4r2+R2)1'2/& and since, in the states plotted in figures 1-5, the ECM 

motion is strongly localized, i.e. r << R, then 3 = RI&. Hence a plot at constant .% is 
almost a plot at constant R which is clearly seen from figure 4. In a single-channel 
MO adiabatic calculation, wavefunctions at constant R show, by definition, A, p 
separability. The electron densities from the MO wavefunctions (figure 4(c)) agree 
qualitatively with the exact contours of figure 4(b). 

In figure 5 ( a )  we show plots of the probability density for fixed R of the second 
'S intrashell resonance below the N = 3 threshold. This state is excited in the bending 
mode, i.e. has n, = 1 and the residual excitation is in the p direction with nr = 2. The 
internal MO is therefore the 4du, state which is a member of the 2su8, 4du8, 6gug, , . in- 
saddle sequence (RB). The nodal lines are almost perfect straight lines now in p and 
A as can be seen in figure 5 ( a ) .  This behaviour is expected from the adiabatic MO 

density (figure 5 ( b ) )  which again agrees qualitatively with the exact contours of 
figure 5(a) .  
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0 

P I-1 P 

Figure 4. The Same state as in figure 3 but in A, p coordinates. The density ( a )  from full 
diagonalization at fixed hyper-radius 52 = 6 au and ( b )  at fined interelectronic distance 
R = 9  a", ( c )  from lhe adiabatic MO approximation at R = 9  a". 
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m 
P P 

Figure 5. The IS' N = 3 resonance with (n,n,m) = (120) at R = 8 au ( a )  from full diagonal- 
ization and ( b )  in the MO approximation. 
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In summary, for the first time we have shown that accurate numerically-calculated 
six-dimensional wavefunctions for the intrashell resonant states of helium show a nodal 
structure indicating an approximate separability in MO A, p coordinates. 

3. Adiabatic and diabatic motion 

The accuracy of the ca!cu!a!ed sing!e-channe! hyperspherica! rescmince eaergies 
(Sadeghpour and Greene 1990) presented in section 2 would indicate that the adiabatic 
treatment in 9 or R is essentially valid. However, it has also been shown (Rost and 
Briggs 1988, 1989) that a single diabatic potential curve connecting 'saddle sequences' 
of MO can be used to calculate, in an extremely simple way, accurate resonant energies 
for complete Rydberg sequences of doubly excited states. In the adiabatic description, 
each state of the sequence of lowest intrashell resonances in a manifold N is built on 
a given internal MO motion. For the N = 3 state considered in section 2 this was the 
5g0 ,  MO, the third member of the lsug, 3dug, 5gug, 7iug,. . . , in-saddle series shown 
in figure 6. The resonant state would be the lowest (nodeless) vibrational state in the 
5gug potential well. Hence the corresponding total wavefunction should have four 
nodes in p and zero nodes in R. This corresponds to an asymmetric stretch motion of 
the ECM over the saddle point of the adiabatic potential (see figures 6 ( c )  and 6 ( d )  of 
Rost and Briggs 1989). By contrast the resonant states in the pure diabatic potential 
(which has the nodal structure of the lowest MO of the saddle sequence, in the example 
considered here, the nodeless hug MO with n, = nr = m = 0) have increasing number 
of R nodes. This motion corresponds to a symmetric stretch in which the ECM sits on 
the saddlepoint r ,  = - r2 .  

h 

a: 
v .. .. 
z" 

0- 

R (au) 

0.00 100.00 %OO.OO 

Figure 6. The in-saddle sequence of adiabatic MO Isu,, 3du 8 . . .  with ( n , , n , , m ) =  
(O,Z(N-  I ) ,  0) .  The adiabatic potential energy is i n  units of N . . = J - Z / U ( R ) .  

The adiabatic and diabatic pictures correspond to the two extreme limits of infinitely 
slow or infinitely fast R motion in the region of the avoided crossings. Both pictures 
give accurate values of the resonant positions approximated as bound states. Clearly 
neither is correct since the resonances are known to decay. It is also clear that decay 
of the state is connected intimately with the R or p motion parallel to the direction 
of negative curvature at the saddle point. We demonstrate in figure 7 the fragility of 
p nodes with plots ofthe probability density of the lowest 'Se N = 4intrashell resonance, 
the fourth member of the in-saddle series of figure 6. The state built on the 7iug MO 
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Figure 7. The 'S' N = 4  resonance with (nAn,m)=(060) from full diagonalization a1 
R = 9 a u  (a), R =  I2au ( b ) ,  R = 13au (c) ,  R =  l 5 a u  ( d ) ,  R=17au ( e )  and R = 2 0 a u  (f 1. 

with (nAn,m) = (060) has six p nodes. They can be identified on the figures 7 ( d - f )  
which show the contours in the region R = 20 where the resonance is localized. But 
for smaller R values (figures 7 ( a - c ) )  only four p nodes are present. The obvious 
change in the number of p nodes is expected when the avoided crossing (figure 7) 
between the Sgu, MO (040) and the 7iu, MO (060) is traversed diabatically. The diabatic 
behaviour of the exact wavefunction in the region of avoided crossings couples R and 
p motion. 

By contrast, bending vibration connected with the excitation along the direction 
of positive curvature at the saddle point, i.e. in A (figure 6(b )  of Rost and Briggs 19891, 
couples weakly to decay. Accordingly the number of A nodes is preserved for all R. 
This observation is the origin of the decay propensity rules of RE. The second 'S' N = 3 
intrashell resonance with nodal structure (120) arising from the 4du, MO has already 
been shown in figure 5. The additional plots of figure 8 indicate the change of p nodes 
due to the avoided crossing between the members 2su, (100) and 4du, (120) of the 

9 
0 

0 0 
X N  X N  

9 - 9 - 
-1.0 0.0 1.0 

IiJ 0.0 1.0 

-1.0 

P P 
Figure 8. Same as in figure 5(a) but ( a )  at R = 1 a" and ( b )  al R = 5 a". 
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corresponding saddle sequence. For smaller R values (figure 8 ( a ) )  the two p nodes 
disappear but the single A node remains. This is again the expected behaviour when 
the avoided crossing is traversed diabatically. 

4. Classical periodic orbits 

Recently, periodic orbits have been used to analyse complex spectra (Friedrich and 
Wintgen 1989) and to understand the dynamical localization of wavefunctions (Heller 
1984). The classical mechanics of the three-body atomic Coulomb problem has been 
studied quantitatively by Klar (1986), by Poirier (1989) and by Richter and Wintgen 
(1990). In figure 9 a collinear periodic orbit is shown underlying the major part of the 
electron probability distribution of the lowest N = 4 'Se intrashell resonance in helium 
(see also figure 7). The trajectory is analogous to the asymmetric stretch mode in 
molecules and corresponds to localization of the wavefunction in the R, p plane as 
can be seen in figure 9. It is only weakly unstable and this is due to the relatively large 
interelectronic separation maintained along this orbit. In contrast the bending vibration 
is classically stable. Excitation of this mode would quantum mechanically result in A 
nodes; see for example figure 5 .  

n 

-1 0 0.0 IO 
P 

Figure 9. Same as in figure 1 but for fixed A = 1.01 i n  the ( R ,  
line is  a collinear classical periodic arbit scaled to the resonance energy (see text). 

plane. The continuous 

The separate behaviour of r l ( r ) ,  r 2 ( f )  in this periodic orbit is shown in figure 10. 
When one electron is far from the nucleus, the other is very close as would be obtained 
in an asymmetric stretch mode, i.e. the electrons oscillate out of phase. Hence although 
one electron is close to the nucleus (and hence the ECM is way off the saddle point) 
the orbit does not decay since the interelectronic distance is large and energy not 
readiiy exchanged. That the orbit is not pure asymmetric stretch is ais0 ciear. Such a 
mode would correspond to constant hyperspherical radius which is not the case for 
the orbit shown in figure 9. Nevertheless in the region r ,  = r2 near the saddle point the 
ECM has the lowest velocity within a period (figure lO(6)) and it is this feature that 
results in a maximum of probability of the state on the Wannier saddle. Note that this 
orhit bears no resemblance to the symmetric stretch motion ( r , ( t )  = r , ( t ) )  along the 
wannier ridge with which the iowest inirasheii resonances 'nave been associated for a 
long time (Fano 1983). Similar conclusions have been drawn by Ezra (1990) based on 
studies of a collinear helium model. 

Remarkably one sees in figure 9 that nodal lines are approximately diagonal in the 
R, p plane. A rotation of the axes about 45" would give a nodal pattern parallel to 

._. 
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t (4 
Figure 10. The time dependence of vectors of the classical periodic orbit from Ggure 9: 
( a )  thesingle-electronvectors 41) = r , ,  i = I ,  2 and ( b j  themoiecularcoordinatesx( t )  = r ( l j  
oFiiir ECM (roiidj and x( i j= i i ( i )  oiihe iniereiectronic axis (dainedj. 

the new axes x, y = R (  1 k p ) .  These coordinates have been known for decades in the 
two-electron problem (James and Coolidge 1937) and were already used by Pekeris 
(1958) for the ground states of the helium isoelectronic sequence. Presently they are 
used in a new computer code for the direct calculation of highly doubly-excited states 
(Winigen i99ij. Tine equai mixture of I? and p nodes in figure 9 again emphasizes 
that the nodal structure of numerical full diagonalized wavefunctions differs from that 
derived within an adiabatic approximation as discussed in section 3. On the other 
hand the interelectronic velocity (d/dt)R(t)  is on average much smaller than the ECM 

velocity (d/dt)r(t)  (figure 10(b)). This may explain why these intrashell resonances 
can be treated adiabatically in R or % to good approximation. 

5. Conclusions 

We have examined the nodal structure of numerically exact wavefunctions for intrashell 
doubly excited states of Is' and 'P" symmetry. We have shown that for fixed intereiec- 

has also been shown previously (Rost er a/  1991) for adiabatic HS wavefunctions 
plotted at constant hyper-radius %. However, when A is held constant one sees that 
the R and p nodal structures are not pure. This proves that the bending vibration, if 
described in the coordinate A, separates from motion in the plane of asymmetric and 

**-.,:- "~ ......,.. :..- D .I.- ... "..-c *:....- "I. -... ^^ -,..-"a L ^ ^ 1 ^ 1  --..-- - -:- u u ~ n i r  rcpaiarruri n LLLC wavCiiuiic.uvm ~ I W W  a i  aiiiivaL p u r ~  A, p wuai ~ L L L L C ~ L ~ .  l r m  



Nodal siruciure of helium wavefunctions 2465 

symmetric stretch modes. The mixing of the latter modes, corresponding in R, p 
coordinates to the avoided crossings between adiabatic MO potentials (figure 6 ) ,  implies 
that neither a full adiabatic nor a full diabatic motion describes the complete structure 
of intrashell states. The reason that both pictures have led to the calculation of accurate 
energies lies in the fact that in both approximations the maximum probability density 
occurs near r 1 = r 2  as in the exact wavefunctions. This indicates that the energy 
eigenvalue alone is not a particularly sensitive test of the goodness of a wavefunction. 

It has been shown that the exact wavefunction for fixed A = 1 has high probability 
along a particular collinear classical periodic orbit. In this orbit the electrons oscillate 
out of phase such that when one is close to the nucleus the other is near the outer 
turning point but they spend a considerable fraction of the orbital period near r ,  = r, 
consistent with the build up of probability density of wavefunctions in this region. 

The major result of this work is that although for fixed R or 92 the wavefunctions 
have A,  p nodal structure over a wide range of R, there is no separability in R and p 
for fixed A. This suggests that the known adiabatic single-channel wavefunctions for 
doubly excited intrashell states are not a good approximation to the true wavefunction 
in the whole configuration space. 
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