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CIRCULAR SETS OF PRIMES OF IMAGINARY
QUADRATIC NUMBER FIELDS

DENIS VOGEL

Abstract. Let p be an odd prime number and let K be an imaginary
quadratic number field whose class number is not divisible by p. For
a set S of primes of K whose norm is congruent to 1 modulo p, we
introduce the notion of strict circularity. We show that if S is strictly
circular, then the group G(KS(p)/K) is of cohomological dimension 2
and give some explicit examples.

1. Introduction

Let K be a number field, p a prime number and S a finite set of primes
of K not containing any primes dividing p. Only little has been known on
the structure of the Galois group G(KS(p)/K) of the maximal p-extension
of K unramified outside S, in particular there has been no result on the
cohomological dimension of G(KS(p)/K). Recently, Labute [La] showed
that pro-p-groups whose presentation in terms of generators and relations is
of a certain type, so-called mild pro-p-groups, are of cohomological dimen-
sion 2. If K = Q, Labute used results of Koch on the relation structure
of G(QS(p)/Q) and ended up with a criterion on the set S for the group
G(QS(p)/Q) to be of cohomological dimension 2. Schmidt [S] extended the
result of Labute by arithmetic methods and weakened Labute’s condition
on S.

The objective of this paper is to study the case where K is an imaginary
quadratic number field whose class number is not divisible by p. In the first
section we introduce the notions of the linking number of two primes and
of strict circularity of a set of primes of K, all of this in complete analogy
with the case K = Q. Using Labute’s results we obtain the criterion that if
S is strictly circular then G(KS(p)/K) is a mild pro-p-group and hence of
cohomological dimension 2. In the following section we give some explicit
examples of strictly circular sets of primes, and in section 4 we study how
a strictly circular set T can be enlarged to set S of primes of K, such that
G(KS(p)/K) has cohomological dimension 2 as well.

2. Linking numbers and strictly circular sets

Let p be an odd prime number and K an imaginary quadratic number
field whose class number is not divisible by p, and which is different from
Q(
√−3) if p = 3. Let S = {q1, . . . , qn} be a set of primes of K whose

norm is congruent to 1 mod p. For a subset T of S, we denote the maximal
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p-extension of K unramified outside T by KT (p), and we put GT (p) =
G(KT (p)/K).

Let IK denote the idèle group of K, and for a subset T of S let UT be the
subgroup of IK consisting of those idèles whose components for q ∈ T are 1
and for q 6∈ T are units. For q ∈ S we denote by Kq the completion of K
at q and by Uq the unit group of Kq. Furthermore, let πq be a uniformizer
of Kq and let αq be a generator of the cyclic group Uq/Up

q . Let Q be an
extension of q to KS(p). We let σq be an element of GS(p) with the following
properties:

(1) σq is a lift of the Frobenius automorphism of Q;
(2) the restriction of σq to the maximal abelian subextension K̃/K of

KS(p)/K is equal to (π̂q, K̃/K), where π̂q denotes the idèle whose
q-component equals πq and all other components are 1.

Let τq denote an element of GS(p) such that
(1) τq is an element of the inertia group TQ of Q in KS(p)/K;
(2) the restriction of τq to K̃/K equals (α̂q, K̃/K), where αq denotes

the idèle whose q-component equals αq and all other components
are equal to 1.

For any subset T of S, class field theory provides an isomorphism

IK/(UT Ip
KK×) ∼= GT (p)/GT (p)p[GT (p), GT (p)] = H1(GT (p),Z/pZ).

Let VT denote the Kummer group

VT = {a ∈ K× | a ∈ K×m
q for q ∈ T and a ∈ UqK

×m
q for q 6∈ T}

We remark that due to [NSW], 8.7.2, we have an exact sequence

0 → O×K/p → V∅(K) → pCl(K) → 0.

By our assumptions, this yields that V∅(K) = 0, and since VT (K) ⊂ V∅(K)
we have VT (K) = 0. This implies that the dual of the Kummer group
BT (K) = VT (K)∨ is trivial. The group on the left hand side of the above
isomorphism is therefore given by

IK/(UT Ip
KK×) ∼= U∅/UT Up

∅ =
∏

q∈T

Uq/Up
q = (Z/pZ)#T

(see [Ko], §11.3). In particular, the automorphism τq restricts to a generator
of the cyclic group H1(G{q}(p),Z/pZ). We use this fact for the definition of
the linking numbers.

Definition 2.1. For two primes qi, qj ∈ S, the linking number `ij ∈ Z/pZ
of qi and qj is defined by the formula

σqi ≡ τ
`ij
qj

mod G{qj}(p)p[G{qj}(p), G{qj}(p)].

In other words, `ij is the image of the Frobenius automorphism σqi ∈
GS(p) in H1(G{qj}(p),Z/pZ) which we identify with Z/pZ by means of its
generator τqj . Note that `ii = 0 for all i = 1, . . . , n. The linking number
`ij is independent of the choice of the uniformizer πqi of Kqi (this follows
from the above isomorphism for the case T = {qj}), but it depends on the
choice of αqj . If αqj would be replaced by αs

qj
, where s is prime to p, then
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`ij would be multiplied by s. Of course, the defining equation of the linking
number `ij is equivalent to

π̂qi ≡ α̂
`ij
qj

mod USIp
KK×

which makes it possible to calculate the linking numbers in some examples,
see section 3.

Let us pause here for a moment to explain the analogy to link theory.
Assume we are given two disjoint knots I and J in S3. Then the linking
number lk(I, J) is defined as follows. The knot I is a loop in S3 − J , hence
it represents an element of π1(S3 − J). After a choice of a generator of the
infinite cyclic group H1(S3 − J), lk(I, J) is defined as the image of I under
the map

π1(S3 − J) ³ πab
1 (S3 − J) ∼= H1(S3 − J) ∼= Z.

In the number theoretical context described above, the linking number `ij

is given by the image of the Frobenius automorphism σi under the map

πet
1 (X − S) ³ πet

1 (X − {qj}) ³ H1(X − {qj},Z/pZ)=H1(G{qj}(p),Z/pZ)
∼= Z/pZ

where X = Spec(OK) and we have chosen a generator of the cyclic group
H1(X − {qj},Z/pZ).

We denote by ΓS(p) the directed graph with vertices the primes of S and
a directed edge qiqj from qi to qj if `ij 6= 0. The graph ΓS(p), together with
the `ij is called the linking diagram of S.

Definition 2.2. A finite set of primes of K whose norm is congruent to 1
modulo p is called strictly circular with respect to p (and ΓS(p) a non-
singular circuit) if there exists an ordering S = {q1, . . . , qn} of the primes
in S such that the following conditions are fulfilled:

(1) The vertices q1, . . . , qn of ΓS(p) form a circuit q1q2 . . . qnq1.
(2) If i, j are both odd, then qiqj is not an edge of ΓS(p).
(3) `12`23 . . . `n−1,n`n1 6= `1n`21 . . . `n,n−1.

We remark that condition (1) implies that n is even and ≥ 4. Note that
condition (3) does not depend on the choice of the αqj . It is satisfied if there
exists an edge qiqj of the circuit q1q2 . . . qnq1 such that qjqi is not an edge
of ΓS(p).

We will now show that G has representation of Koch type.

Proposition 2.3 (Koch). The group GS(p) has a presentation of Koch type,
i.e. we have a minimal presentation GS(p) = F/R where F is the free pro-
p-group on generators x1, . . . , xn, and R is minimally generated as a normal
subgroup of F by relations r1, . . . , rn which are given modulo F(3) by

ri ≡ x
N(qi)−1
i

n∏

j=1
j 6=i

[xi, xj ]`ij mod F(3), i = 1, . . . , n.

Here F(3) denotes the third step of the descending p-central series of F .
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Proof. We have already seen above that GS(p) has a minimal generating
system consisting of the n elements τq1 , . . . , τqn . The abelianization GS(p)ab

of GS(p) is a finitely generated abelian pro-p-group. If GS(p)ab were in-
finite, it would have a quotient isomorphic to Zp, which corresponds to a
Zp-extension K∞ of K inside KS(p). By [NSW], Thm. 10.3.20(ii), a Zp-
extension of K is ramified at at least one prime dividing p. This contradicts
K∞ ⊂ KS(p), hence GS(p)ab is finite. In particular, GS(p) has at least as
many relations as generators. From [NSW], 8.7.11 we obtain the inequality

dimZ/pZH1(GS(p),Z/pZ) ≥ dimZ/pZH2(GS(p),Z/pZ),

which implies that a minimal system of generators of R as a normal subgroup
of F consists of n elements. Such a system is given by the set of relations

ri = x
N(qi)−1
i [x−1

i , y−1
i ], i = 1, . . . , n,

where yi ∈ F denotes a preimage of σqi , see [Ko], §11.4. The definition of
the +linking numbers yields

yi ≡
n∏

j=1
j 6=i

x
`ij

j mod F(2).

Hence we obtain

ri ≡ x
N(qi)−1
i [xi, yi] ≡ x

N(qi)−1
i [xi,

n∏

j=1
j 6=i

x
`ij

j ] ≡ x
N(qi)−1
i

n∏

j=1
j 6=i

[xi, xj ]`ij mod F(3),

which finishes the proof. ¤
Since GS(p) is of Koch a type, a result of Labute, ([La], Thm. 1.6.),

applies, which states that GS(p) is a mild pro-p-group if S is strictly circular
with respect to p. Then, in particular, GS(p) has cohomological dimension 2.
We summarize our considerations in the following

Theorem 2.4. Let p be an odd prime number and let K be an imaginary
quadratic number field whose class number is not divisible by p, and which is
different from Q(

√−3) if p = 3. Let S = {q1, . . . , qn} be a set of primes of
K whose norm is congruent to 1 mod p. Is S is strictly circular with respect
to p, then G(KS(p)/K) is a mild pro-p-group and hence of cohomological
dimension 2.

3. Some examples

We use the same notation as in section 1. We let S = {q1, . . . , qn}, and
denote by qi the prime of Z lying below qi.

We firstly consider the case where each qi is inert in K/Q. Then πqi = qi

is a uniformizer of Kqi , and an element of Uq for all primes q 6= qi of K.
Hence, the idèle π̂qi , when considered modulo USIp

KK×, is equivalent to the
idèle whose q-component is equal to 1 for q 6∈ S and q = qi, and equal to
q−1
i for q ∈ S \ {qi}. This means that, after a choice of a generator αqj of

Uqj/Up
qj

, `ij is given by by

qi = α
−`ij
qj

mod Up
qj

.
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Equivalently, we can choose a primitive root εj of κ×qj
, where κqj denotes the

residue field of qj . Then `ij is the image in Z/pZ of any integer c satisfying

qi = ε−c
j mod qj .

In particular, `ij = 0 if and only if qi is a p-th power modulo qj . This is
equivalent to qi being a p-th power modulo qj : if qi ≡ xp mod qj for some
x ∈ OK , then q2

i ≡ NK/Q(x)p mod qj , and the claim follows. This implies
in the case under consideration, that S = {q1, . . . , qn} is strictly circular
with respect to p if and only if SQ = {q1, . . . , qn} is strictly circular (over
Q) with respect to p.

Example 3.1. (cf. the example after Thm 2.1 in [S]) Let K = Q(
√−359),

p = 3. The class number of K equals 19. The prime numbers 7, 19, 61, 163
are inert in K/Q. We set

q1 = (61), q2 = (19), q3 = (163), q4 = (7)

and S = {q1, q2, q3, q4}. The linking diagram has the following shape:

q2

²²

··
q1

44

**

q3

ttq4

TT JJ

Hence, S is a circular set of primes and cdG(KS(3)/K) = 2.

In the calculations above we have made use of two things: the uniformizers
πqi have been chosen in K×, and πqi has been a unit in Uq for all q ∈ S\{qi}.
Another case in which this is easily achieved is the case when the ideal
class group of K is trivial. Then we can take a generator of qj as the
uniformizer πqj and `ij can be obtained from the same equations as above
with qj replaced by πqj .

Example 3.2. Let K = Q(i), p = 3. We put

q1 = (2 + 15i), q2 = (4 + 15i), q3 = q1, q4 = q2

and S = {q1, q2, q3, q4}. Then we have q1 = q3 = 229, q2 = q4 = 241, and
we set

πq1 = 2 + 15i, πq2 = 4 + 15i, πq3 = πq1 , πq4 = πq2

The linking diagram has the following shape:
q2

··
q1

44

q3

ttq4

TT

Hence cdG(KS(3)/K) = 2. Note that, by [Ko], Ex. 11.15, G(Q{q1,q2}(3)/Q)
is finite.
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The last example raises the following question. There are no examples
known of prime numbers q1, q2 congruent to 1 modulo p where one can show
that the cohomological dimension of G(Q{q1,q2}(p)/Q) equals 2. Is it possible
to obtain such an example by considering strictly circular sets of primes
{q1, q2, q1, q2} of an imaginary quadratic number field K of class number
one, in combination with some kind of descent argument? Unfortunately,
the answer to this question is negative as the following considerations show.
Let q1, q2 be prime numbers congruent to 1 modulo p, and assume there
exists an imaginary quadratic number field of class number one in which q1,
q2 are completely decomposed:

q1OK = q1q3, q2OK = q2q4.

This definition of the primes qi implies (for an appropriate choice of the
primitive roots) the following equations for the linking numbers:

`12 = `34, `23 = `41, `13 = `31, `24 = `42.

Since we want to avoid that the group G(Q{q1,q2}(p)/Q) is finite, we have
to make sure that the conditions of [Ko], Ex. 11.15 are not fulfilled, and
therefore we have in addition to assume that q1 is a p-th power modulo q2

and that q2 is a p-th power modulo q1. It is easily seen that this puts the
following restraints on the linking numbers:

`12 + `32 = 0, `14 + `34 = 0, `21 + `41 = 0, `23 + `43 = 0.

If ρi denotes the initial form of the image of ri in the graded Lie algebra
associated to the descending p-central series of F , the above conditions yield
the equation

`23ρ1 − `12ρ2 + `23ρ3 − `12ρ4 = 0.

This means that the sequence ρ1, . . . , ρ4 is not strongly free (cf. the de-
finition of strong freeness in [La]), which implies, in particular, that the set
{q1, q2, q3, q4} is not strictly circular, and this holds true as well if we make
a different choice of the primitive roots.

4. Enlarging the set of primes

Proposition 4.1. Let p be an odd prime number and and K an imaginary
quadratic number field whose class number is not divisible by p, and which
is different from Q(

√−3) if p = 3. Let S = {q1, . . . , qn} be a set of primes
of K whose norm is congruent to 1 mod p. If cd G(KS(p)/K) ≤ 2, then the
scheme X = Spec(OK)− S is a K(π, 1) for the étale topology, i.e. for any
discrete p-primary G(KS(p)/K)-module M , considered as a locally constant
étale sheaf on X, the natural homomorphism

H i(G(KS(p)/K),M) → H i
et(X, M)

is an isomorphism for all i.

Proof. We put G = G(KS(p)/K). In the same way as in the proof of [S],
Prop. 3.2., the Hochschild-Serre spectral sequence

Epq
2 = Hp(G,Hq

et(X̃,Z/pZ)) ⇒ Hp+q
et (X,Z/pZ),

where X̃ denotes the universal p-covering of X, implies isomorphisms

H i(G,Z/pZ) ∼= H i
et(X,Z/pZ), i = 0, 1
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and a short exact sequence

0 → H2(G,Z/pZ)
φ→ H2

et(X,Z/pZ) → H2
et(X̃,Z/pZ)G → 0.

We set X̄ = SpecOK . By the flat duality theorem of Artin-Mazur, ([Mi],
III, Thm. 3.1), we have

H3
et(X̄,Z/pZ) = HomX̄(Z/pZ,Gm)∨ = 0

and
H2

et(X̄,Z/pZ)∨ = Ext1X̄(Z/pZ,Gm),
the latter group sitting in an exact sequence

0 → O×K/p → Ext1X̄(Z/pZ,Gm) → p Cl(K) → 0.

Our assumptions on K implies

H2
et(X̄,Z/pZ) = 0.

The excision sequence for the pair (X̄,X) yields an isomorphism

H2
et(X,Z/pZ) =

⊕

q∈S

H3
{q}(SpecOh

q ,Z/pZ),

where Oh
q denotes the henselization of the local ring of X̄ at q. The local

duality theorem ([Mi], II, Thm. 1.8) gives

H3
{q}(SpecOh

q ,Z/pZ) ∼= HomSpecOh
q
(Z/pZ,Gm)∨.

As we have assumed that for all q ∈ S, the norm of q is congruent to 1
modulo p, we obtain dimZ/pZH2

et(X,Z/pZ) = n. Hence, by the proof of
Lemma 2.3, φ is an isomorphism, and therefore

H2
et(X̃,Z/pZ)G = 0.

The proof is then concluded as in [S], Prop. 3.2. ¤
Theorem 4.2. Let p be an odd prime number and let K be an imaginary
quadratic number field whose class number is not divisible by p, and which
is different from Q(

√−3) if p = 3. Let S be a set of primes of K whose
norm is congruent 1 mod p. Assume that cdG(KS(p)/K) = 2. Let l 6∈ S be
a prime whose norm is congruent to 1 modulo p, and which does not split
completely in the extension KS(p)/K. Then

cdG(KS∪{l}/K) = 2.

Proof. The proof is the same as the proof of [S], Thm. 2.3, we just have to
replace Prop. 3.2. of (loc.cit.) by Prop. 4.1. above. ¤
Corollary 4.3. Assume that S contains a strictly circular subset T such
for each q ∈ S \ T there exists an edge from q to a prime of T . Then
cd(G(KS(p)/K)) = 2.

Proof. We only need to remark that if we are given a prime q ∈ S such
that the linking number of q and a certain prime l of T is nontrivial, then
q does not split completely in KT (p)/K. To see this, we fix an extension Q

of q to L = K{l}(p)ab. Since the linking number of q and l is nontrivial, the
Frobenius of Q in L/K generates the whole Galois group G(L/K) ∼= Z/pZ.
Hence q does not split completely in L/K, which proves the claim. ¤
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Example 4.4. Let K = Q(
√−359), p = 3. The prime number l = 113 is

inert in K/Q, and if we put q5 = lOK , and S = {q1, q2, q3, q4, q5} where
q1, q2, q3, q4 are given as in Example 3.1, the linking diagram looks as follows:

q2

²²

··

q5

~~}}
}}

}}
}}

q1

44

**

q3

ttq4

TT JJ

Hence, by Cor. 4.3 we have cd G(KS(p)/K) = 2 (although S is not strictly
circular with respect to p).

Example 4.5. Let K = Q(
√−359), p = 3 and S = {q1, q2, q3, q4}, where

q1, q2, q3, q4 are given as in Example 3.1. Wet set l = (37, 14+
√−359). Note

that l|37, and 37 is completely decomposed in K/Q. The unique subfield L
of degree 3 over K of the extension K(µ7)/K is a subfield of KS(p)/K, and
the prime l of K is inert in L. Therefore, we obtain by Thm. 4.2 that
cdG(KS∪{l}/K) = 2.

Another result from [S] which carries over to our situation with identical
proof is given by the following theorem.

Theorem 4.6. Let p be an odd prime number and let K be an imaginary
quadratic number field whose class number is not divisible by p, and which is
different from Q(

√−3) if p = 3. Let S be a set of primes of K whose norm is
congruent to 1 mod p. Assume that G(KS(p)/K) 6= 1 and cdG(KS(p)/K) ≤
2. Then scd G(KS(p)/K) = 3 and G(KS(p)/K) is a pro-p duality group.
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