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Abstract

We present a variational formulation of combined motion by minus the Lapla-
cian of curvature and mean curvature flow, as well as related flows. The proposed
scheme covers both the closed curve case, as well as the case of curves that are
connected via triple or quadruple junction points or intersect the external bound-
ary. On introducing a parametric finite element approximation, we prove stability
bounds and compare our scheme with existing approaches. The presented scheme
has very good properties with respect to the equidistribution of mesh points and, if
applicable, area conservation.

Key words. surface diffusion, (inverse) mean curvature flow, surface attachment
limited kinetics, nonlinear curve evolution, triple junctions, parametric finite elements,
Schur complement, tangential movement
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1 Introduction

The motion of curves or surfaces driven by second or fourth order geometric evolution
equations arises in many applications in materials science and, of course, in differential
geometry. Well known is the mean curvature flow, where a hypersurface moves in the
direction of its mean curvature vector. Also evolution laws where the normal speed of an
evolving hypersurface is given as a function of mean curvature often arises in applications,
e.g. in image processing or mathematical physics. In mathematical physics the inverse
mean curvature flow plays a role in the context of the positive mass conjecture. In
materials science the motion of networks of curves or surfaces is also often important.
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The evolution of grain networks — arising in polycrystalline materials — is given by mean
curvature flow, where at junctions angle conditions have to hold.

Fourth order geometric evolution equations also frequently arise in geometry and ma-
terials science. The situation that the normal velocity of a hypersurface is given by minus
the Laplacian of mean curvature is called surface diffusion. This evolution law arises
in situations where the diffusion of material is restricted to interfacial regions, see e.g.
Mullins (1958). When many phases appear, networks also have to be taken into account.
As the evolution law is of fourth order, additional conditions, which act as boundary
conditions for the evolution law on the curves or surfaces, respectively, have to hold.

The goal of this paper is to propose and analyze a new approach to numerically
solve geometrical evolution laws of second and fourth order. The numerical method is
variational and very flexible. In particular, it is possible to couple fourth and second order
laws on the surfaces or at triple junctions in a straightforward way.

There exist numerous methods to numerically solve geometric evolution equations.
Approaches are based on e.g. the parametric formulation, the graph formulation, the
level set method or the phase field approach. We do not intend to give an outline of
all these methods, but rather refer to Deckelnick, Dziuk, and Elliott (2005) for a recent
review on all of these numerical approaches. Our approach makes use of a fundamental
idea of Dziuk (1991) which used the identity

AT = 7, (1.1)

where A, is the surface Laplacian, 7 is the position vector and 3¢ is the mean curvature
vector, for the first time in order to design a finite element method for geometric partial
differential equations and mean curvature flow, see also Dziuk (1994). A second major
idea stems from a paper by Bénsch, Morin, and Nochetto (2005) which came up with
a splitting method, and employed a Schur complement approach, in order to compute
solutions of the surface diffusion law

V= —-A,x, (1.2)

where 3¢ is the sum of the principal curvatures of I' and V is the normal velocity of the
surface.

The approaches of Dziuk and Bansch, Morin and Nochetto both require that the pa-
rameterization evolves only in the normal direction. In the recent paper Barrett, Garcke,
and Niirnberg (2005a), the authors introduced a novel parametric finite element approx-
imation for surface diffusion that also allowed for a tangential movement of mesh points,
which of course does not change the geometry. This new approach has the advantage that
the discretization has very good properties with respect to the equidistribution of mesh
points. In the case of surface diffusion of curves, a semidiscrete version of this scheme,
i.e. a scheme where one discretizes only with respect to space, leads to a precise equidis-
tribution of mesh points. With the new ansatz it is also possible to formulate the rather
complicated conditions that need to hold at triple junction points in a natural variational



way. In this paper we want do demonstrate that the ideas developed in Barrett, Garcke,
and Niirnberg (2005a) can also be used to compute other geometric evolution laws both
of second and fourth order. For instance, the inverse mean curvature flow and an evolu-
tion flow which couples mean curvature flow to surface diffusion at triple junctions, see
e.g. Cahn and Novick-Cohen (1994), can be approximated in the spirit of the approach
proposed in Barrett, Garcke, and Niirnberg (2005a).

In this paper, we will consider evolution laws that couple fourth and second order
geometric evolution laws. The coupling can be either through triple junctions or through
a coupling that combines mean curvature flow and the fourth order surface diffusion flow
via an appropriate interpolation, see Taylor and Cahn (1994) for applications of this
flow in materials science. Let us introduce first the case of pure second order geometric
evolution equations, that means in our context situations where the normal velocity is
given by a function of mean curvature. For a closed hypersurface I' in R¢, mean curvature
flow is given by

V = x, (1.3)
or more generally, we are also going to consider flows of the form
V = f(»), (1.4)

where f : (a,b) =& R with —co < a < b < o0, is a strictly monotonically increasing
continuous function, e.g.

fr)=1rl"'r, BERs, (1.5)

see Mikula and Sevcovic (2001) and the references therein. For example, the evolution
law (1.4), with (1.5) for 8 = £, has been studied in Alvarez, Guichard, Lions, and Morel
(1993), Sapiro and Tannenbaum (1994) and Angenent, Sapiro, and Tannenbaum (1998).

We will also consider computations for (1.4) with

flr):=—-r1 (1.6)

i.e. the inverse mean curvature flow, see e.g. Geroch (1973) and Jang (1976) for the origins
of this flow in mathematical physics; and Huisken and Ilmanen (2001), and the references
therein, for a consideration of this flow in differential geometry. To our knowledge, the
only numerical results in the literature for (1.4) with (1.6) can be found in Pasch (1998)
and Feng and Prohl (2005), where a finite volume and a finite element approximation,
respectively, of a regularized level set formulation of (1.4) with (1.6) are employed. We
know of no direct approach for the approximation of the inverse mean curvature flow in
the literature.

For a parameterization Z(p,t) € R? of I', (1.4) can be written as a second order
equation:
Vi=3. 7= f(5), wi= AT, (1.7)

where 7/ is a unit normal to I'. Note that because the tangential component z; — (Z;. V) v/
of the velocity Z; is not prescribed in (1.7), there exists a whole family of solutions 7, even
though the evolution of I' is uniquely determined by (1.3). Our numerical scheme will
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directly discretize (1.7) in contrast to the scheme considered by Dziuk, see Dziuk (1991)
and Dziuk (1994), which discretizes

—

ft:Asx

and hence, on noting (1.1) and that 5z = s 7/, enforces a movement of the parameterization
Z in the normal direction only.

A version of (1.4) that preserves the enclosed volume is given by

B Jr f(3¢) ds
fr1ds ’

the so called conserved mean curvature flow, also called surface attachment limited kinetics
(SALK), if f(r) := r. An intermediate law between (1.4), with f(r) := r, and (1.2) is the
following evolution law

V=f(x) (1.8)

V=-A,(; -0 (1.9)
where o, £ € Ryg. The flow (1.9) interpolates between surfaces diffusion (1.2) and SALK,
(1.8) with f(r) := r, and was first discussed in Taylor and Cahn (1994); see also Elliott
and Garcke (1997). It is similar to (1.2) and (1.8) in that the enclosed volume is conserved
while the area of the hypersurface decreases. We observe that for « — oo and & = 1, the
solutions to (1.9) should converge to solutions of (1.8) with f(r) := r, while £ — oo and
« = 1 corresponds to the law (1.2). Given a parameterization Z(p,t) € R? of T, (1.9) can
be written as a system of second order equations:

T .U =—A,vy, (é—%As)yzz, wiV=A, 1. (1.10)

Analogously surface diffusion can be rewritten as
s U= —A, wlV=A7. (1.11)

In Section 2, we will consider a finite element approximation of a variational formulation
of (1.11), as well as (1.7), (1.8) and (1.10), where throughout we will restrict our attention
to the case d = 2, i.e. curves in the plane. In addition, we will compare our approximation
of (1.3), with two other parametric approximations in the literature, namely Dziuk (1994)
and Deckelnick and Dziuk (1995).

A network of curves under motion by mean curvature with triple junctions can also be
considered. In the example network in Figure 1, let I';, I's, I's be the given curves in R?,
d = 2, that intersect at two triple junction points A; and A,. Then the normal velocity
for each curve is given by

where s is the curvature of T'; and o; is the surface energy density of I';. Let 75 € R? be
the unit tangent to I'; pointing away from the triple junction point A; and towards point
As. The curvature is said to be positive if I'; is curved in the direction of the normal
7; € RY, which is the unique unit vector such that (7,#;) forms a positively orientated



Figure 1: The setup of I' = (I'y, 'y, I'3).

orthonormal system. For parameterizations #; : [0,1] x [0,7] — R? of T;, i = 1 — 3,
(1.12) can be written as a system of second order equations:

(@) Vi =0i5, G = AT (1.13)

Then, in addition to (1.12), the following conditions have to hold at the triple junction
points A; and A,:

the triple junction does not pull apart, (1.14a)
017+ 02T + 037 =0. (1.14b)

The condition (1.14a) is an attachment condition and (1.14b) is Young’s law which is a
balance of force equation at the triple junction. Young’s law is equivalent to the angle

condition ) ) ]
sinf; sinf, sinfs

g1 (o)) (oF:]

Y

where
91 = <I(7—"2,7-')3), 92 = <I(7_'§,,7_"1) and 03 = <f(7_"1,7_"2) . (115)

A variational formulation of (1.13) with (1.14a,b) will form the basis for our scheme that
we present in Section 2.

In most physical applications only triple junctions are of interest. However, in certain
situations also quadruple junctions are possible. In the case that four interfaces meet at
a quadruple junction the balance of force condition of the quadruple junction is

01F1+027?2+037:§+04ﬁ:6, (1.16)

where we use an analogous notation as in (1.14b), e.g. the four curves I';, i = 1 — 4,
meeting at the quadruple junction are parameterized such that the tangent vectors point
away from the junction. In this case the angles at the quadruple junction are not specified,
and in fact there is one degree of freedom. For details we refer to Cahn (1991), Cahn,
Holm, and Srolovitz (1992) and Freudenberger (1997).

In Barrett, Garcke, and Niirnberg (2005a) the possibility of curve intersections with a
fixed external boundary 02, where  is a domain in R?, was not considered (see Figure 2
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Figure 2: The second possible setup of I' = (I', 'y, T'3).

for an example). To state the necessary conditions that have to hold at an intersection
with the external boundary we assume that 0 is given by a function F' € C*(R¢) such
that

N={7eR":F(z)=0} and |VF(@)|=1 VZe€0dN. (1.17)

Then, for three given curves I';, i = 1 — 3, evolving according to (1.12) the conditions
(1.14a,b) only need to hold at the triple junction A = #;(0), ¢ = 1 — 3, while at the
boundary intersection points 7;(1), i = 1 — 3, the following conditions have to hold:

the curve endpoint remains attached to 02, (1.18a)
ALV P =0, (1.18b)

where -+ denotes the clockwise rotation by 7. The second condition, (1.18b), requires that
forces at the outer boundary can act only normal to the boundary, which is equivalent
to a 90° angle condition. This is the case when the two phases that meet the external
boundary have the same contact energy with the boundary. If this is not the case then
condition (1.18b) has to be replaced by the angle condition

7t =7-[VF(#(1))]" = cos o, (1.19)

where £ is a unit tangent to 9. Condition (1.19) states that the curve I'; intersects the
outer boundary with a given angle o, see e.g. Finn (1986) for the physical background.

Before coupling fourth and second order geometric evolution equations at triple junc-
tions, we now turn our attention to a network evolving according to surface diffusion.
Using the same notation as above we rewrite the evolution laws

V= —0o; As ;, 1=1—3, (120)

as
(@)s -0 = —0i Ag o, i = AT (1.21)

These equations are coupled at triple junctions and have to fulfil boundary conditions at
points that intersect the external boundary. At the triple junction we require in addition

6



to (1.14a,b) the conditions

0121 + 09360 + 03353 = 0, (1.22a)

0'1’7_"1.V5%1:027_"2.V3%2:0'37_"3.V5%3, (122b)

where Vi |r,= 7 % with s being the arclength. The equation (1.22a) follows from the
continuity of chemical potentials and (1.22b) is a flux balance condition, see Garcke and
Novick-Cohen (2000) for details. At an intersection with an external boundary we require
(1.18a,b) and the following no flux condition at the external boundary,

Vs =0. (1.23)

Finally, another possible setup is to require motion by mean curvature only on a subset
of the given curves, while the remaining curves move by motion by surface diffusion.
This is of relevance e.g. in thermal grooving (Mullins (1958)), in interface motion in
polycrystalline two-phase materials (Cahn (1991)) and in the evolution of boundaries in
the electromigration of intergranular voids (see Barrett, Garcke, and Niirnberg (2005b)).
For parameterizations 7; : [0,1] x [0,7] — R? of [';, i = 1 — K¢, this gives rise to the
following system of equations:

(fz)tljz = 0; ; =1 —)7:0, (f,)tlj, = _UiAs%i 2220+1 —>Kc,

subject to the triple junction conditions (1.14a,b). In addition we require that at triple
junctions
0; T3 . Vst = 0575 . Vy 3 (1.25a)

for all interfaces i,j € {io+ 1,..., K¢} which are present at the junction. In addition we
require that

D 0ix =0, (1.25b)

1€Tsp

where Tsp C {ig+1,..., K¢} are the interfaces present at the triple junction which move
according to surface diffusion. We note that for practical applications of (1.24) only triple
junctions, where one curve that moves by mean curvature flow and two curves moving
by surface diffusion meet, are of interest. A variational formulation of (1.24) with the
appropriate conditions at triple junctions and along the fixed external boundary will also
be considered in Section 2.

As for previous work on the approximation of curve networks, we refer to Bronsard and
Wetton (1995), Thaddey (1999) and Neubauer (2002). Also relevant is the paper Bronsard
and Reitich (1993), where (1.12) and (1.14a,b) are derived from an Allen-Cahn system.
A parametric finite element approximation of the mean curvature flow of a curve that
intersects an external boundary was considered in Deckelnick and Elliott (1998). A level
set approach for mean curvature flow of curve networks has been considered in Merriman,
Bence, and Osher (1994), Zhao, Merriman, Osher, and Wang (1998) and Smith, Solis, and
Chopp (2002). A phase field model for the combined motion of mean curvature flow and
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surface diffusion, as well as surface attachment limited kinetics (SALK), was considered
in Barrett, Garcke, and Niirnberg (2005b). A phase field model for a mean curvature flow
system is considered in Garcke, Nestler, and Stoth (2000), and a surface diffusion flow
system in Barrett, Garcke, and Niirnberg (2006).

This paper is organised as follows. In Section 2 we formulate a finite element ap-
proximation of problem (1.13) and derive stability bounds. Here we first introduce our
approximation for the simpler case of a closed curve, (1.7), and then generalize that scheme
to cover (1.8), as well as (1.21) and (1.14a,b) in the case of a triple junction configuration
as in Figure 1. We indicate how to generalize the approach to a configuration as in Fig-
ure 2, as well as to an arbitrary setup of curves, triple junctions and external boundary
intersections. We will also indicate on how to combine this approach with the algorithm
presented in Barrett, Garcke, and Niirnberg (2005a) to yield a scheme for combined mean
curvature flow and surface diffusion. Finally, we consider the adaption of our scheme to
approximate, (1.10). In Section 3 we present a large number of numerical computations
and compare our results, where possible, with those from other parametric algorithms in
the literature.

2 Finite Element Approximation

2.1 Closed curves

We introduce the following finite element approximation. Let J := R/Z = Ujvzl J;,
N > 2, be a decomposition of J into intervals given by the nodes ¢;, J; = [gj-1,¢;].
Let h; = |J;| and h = max;—;_,n h; be the maximal length of a grid element. Then the
necessary finite element spaces are defined as follows.

Vi:={xeC(,R"): x|, islinear V j =1— N} =: [W* C H'(J,R?), (2.1)

where W C H'(J,R) is the space of scalar continuous (periodic) piecewise linear func-
tions, with {¢;}V, denoting the standard basis of W{. Throughout this paper, we make
use of the periodicity of J, i.e. ¢v = qo, gnv+1 = ¢1 and so on.

In addition, let 0 = 4y < t; < ... < ty—1 < tyy = T be a partitioning of [0, T]
into possibly variable time steps 7, = tmyi1 — tm, m = 0 — M — 1. We set 7 :=
MaX,,—oa—1 Tm. Let X™ € KS‘ be an approximation to Z(-, ), and similarly k™ € W
for s(-,t).

For scalar and vector functions u,v € L?(.J,R¥) we introduce the L? inner product
(-,-)m over the current polygonal curve I'™, which is described by the vector function
X™ e V¢, as follows

(u,v)m:=/mu.vds=/]u.v|)zgn|dp.



Here and throughout this paper, p € [0, 1] is the parameterization variable and -(*) denotes
an expression with or without the superscript *, and similarly for subscripts. In addition,
if u,v are piecewise continuous, with possible jumps at the nodes {g;}};, we define the

mass lumped inner product (-, >fn as

Jj=b

Z ‘Xm qJ (qJ 1)| [(U . U)(qj_) + (u. U)(Q;'rq)} ) (2.2)

where we define u(g7) := limu(g; & €). Furthermore, we note that
J e\0 J

—

e (E

Up . Vp

Vsu.Viv =

e M Xyl
p p

We propose the following approximation to (1.7): Find {X™! x™t1} e VI x W
such that
X‘m—}-l _ Xm
(K" iph 4 (V, X D, =0 Y ije VD (2.3b)

where, as noted above, the inner products (-, )$l? as well as V; depend on m.

In order to approximate (1.8), we adapt (2.3a) to

Xm—kl _)Z"m b <f(K,m) 1>h

(———— X7 — (f(5™), x )m=—T;T”<1,x)m VxEWs. (24)

Tm

Before we can proceed to prove existence and uniqueness to (2.3a,b), we have to make
the following very mild assumption.

(Ap) Let |)?;”| > 0 for almost all p € J. For j =1— N, let 7", := (‘Xm| |1;, and set
L IRP(g) - X7(ge)| 7, + X7 (gpe) - K7(ay) 7
o=
! X (g;) — X"‘(qa D]+ 1X7(gj41) — X (g5)]
Xm — Xm

L
[ X™(g5) — Xm(qg D]+ [ X (qy+1) X (g5)|
Then we further assume that dim span{J7* =d=

REMARK. 2.1. We note that one can interpret wjm as a weighted normal defined at the

node X™(q;) of the curve I'™, where in general |7 < 1. In addition, we note that (Ao)
15 only violated in very rare occasions. For example, it always holds for curves without
self intersections, see Barrett, Garcke, and Nirnberg (2005a, Remark 2.2) for details.
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THEOREM. 2.1. Let the assumption (Ap) hold and assume that f : (a,b) — R with
—00 < a <0< b< oo is strictly increasing, continuous and such that f((a,b)) = R.
Then there exists a unique solution {X™ k™Y € VI x W to the system (2.3a,b).

Proof. For later developments involving networks of curves, we first discuss the linear
case when f(r) := r; and so existence follows from uniqueness. To investigate the latter,
we consider the system: Find {X,x} € V x W{ such that

(X, X T = Ton (B XY =0 ¥ x € W, (2.6a)
(K7™ D+ (V, X, Vi =0 ViFeVh (2.6b)

Choosing x = k € W in (2.6a) and 7= X € V" in (2.6b) yields that

(V, )?,Vs X)m-i-Tm (k, k)" =0. (2.7)

It follows from (2.7) that x = 0 and X = X¢ € R%; and hence that
(Xe,x7™h =0 Vxe W (2.8)

Choosing x = ¢; in (2.8) yields that X¢.@" = 0 for all j = 1 — N. It follows from
assumption (Ag) that X¢ = 0. Hence we have shown that (2.3a,b) with f(r) := r has a
unique solution {X™*1, k™1 € VA x W

For a general function f : (a,b) — R fulfilling the assumptions of the theorem, we can
rewrite (2.3a,b), on noting (2.2) and (2.5), as: Find X™*!' € V" such that

Xm—l—l _ Xm

Tm

(V, XV i + (f ( cﬁm) 7. ™ =0 ViieVh (2.9)

where ™ = Z;\;l @*¢;j. Then k™1 € WP is uniquely determined from

X+ (g;) — X™(g5)

Tm

K™ () = f1 ( wm> j=1-—N. (2.10)

On noting our assumption (Ap), similarly as in the linear case above, it follows that (2.9)
is the Euler-Lagrange variation of the strictly convex minimization problem:

2 gm
min [%(Vs 7, M + T (@ (" wm) ,1>§;] , (2.11)

7evh m

where ® is an antiderivative of f~'. We note that ® : R — R is strictly convex with
®'(f(0)) = f~Y(f(0)) = 0 and hence we obtain that ® is bounded from below and
coercive. Therefore there exists a unique solution X™* € V" to (2.9), and hence a
unique solution {X™+' k™1} € VA x Wk to (2.3a,b). QO
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The above proof immediately applies to the case when (2.3a) is replaced by (2.4). We
remark also that we still obtain uniqueness for strictly increasing continuous functions
f:(a,b) = R with —oco < a < b < oo. This follows, since ® defined as above is still
strictly convex. Existence cannot be established as easily as above, because ® is not
coercive any longer. This discussion is relevant, e.g. for f(r) = —r~! with r € (—o0,0),
which is the case of the inverse mean curvature flow if s¢(-,0) < 0. In this case we obtain
that @ : (0,00) — R is defined as ®(r) = —In|r|.

In addition, stability results for (2.3a,b) and the variants involving (2.4) can be estab-
lished in certain cases; see Theorem 2.4, and the ensuing comment, below. For example,
the term (k™! k™) in the analogue of (2.44) is replaced by (f(k™'), k™) "which
once again is non-negative if f is monotonically increasing with f(0) = 0. Of course, it
may be computationally more convenient to consider a linearized version of (2.3a). For
example, for (1.5) with 8 > 1 one could replace (2.3a) by

Xm—l—l _ Xm KM
A - L i gh 0 vyewp. i)
Tm KM
Once again, it is then straightforward to prove existence and uniqueness, and derive a
stability result for this scheme.

In order to solve the (nonlinear) algebraic systems arising from (2.3a,b) and its gen-
eralisations, we apply a Schur complement approach. For later developments involving
network of curves, we describe it here for the linear case when f(r) := r. However, it
easily caries over to nonlinear f, see (2.16a,b) below. Let Id, € (R¥4)"*" be the identity
matrix, and similarly for Id, € R™". We introduce also the matrices Ny € (R%)N*N,
My € RN*N and A,y € (R¥*4)V*N with entries

[Molkt = (r, o), [Nolw := /r ok i) 7™ ds,  [Agle = (Vedks Vedi)m 1dy , (2-13)

where 7" : C(J,R) — W is the standard interpolation operator at the nodes {g;}/_.
We can then formulate (2.3a,b) with f(r) := r as: Find {§X™+! xm™1} € (RY)N x RY

such that
My — N’T m+1
Tm—» 0 —'O K;—' == —'0 — 3 (214)
Ny Ao dxX™mH —Ap X™
where, with the obvious abuse of notation, §X™+ = (6X7+!, ... 6X7+))T and g™t =
(k1 KT are the vectors of coefficients with respect to the standard basis for

Xmtl _ Xm and k™! respectively. We can transform (2.14) to
K= L Mt NG sX (2.15a)
(Ao + £ No My" NJ) 6X™H = — 4, X™. (2.15b)

As (2.15Db) is clearly symmetric and positive definite under our assumption (A4,), there
exists a unique solution to (2.15b). Moreover, the solution to (2.15a,b) uniquely solves
(2.3a,b) with f(r) :=r.
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For later purposes, we note that for the approximation (2.3a,b) with nonlinear f, the
linear Schur system (2.15a,b) has to be replaced by the corresponding nonlinear system:

KM= fUL Myt NG XY, (2.16a)

Ag6X™H 4 Ny fHE My N §X™H ) = —4y X™, (2.16b)

1
where f1(z) € RY is defined by [f 1(2)]; := f *(2:),i=1— N, for any z € RV.

REMARK. 2.2. In Section 3, we will report on computations for our scheme (2.3a,b) and
compare our results in the case of f(r) := r with two other schemes in the literature. The
first scheme is from Dziuk (1994) and can be formulated as: Find X™! € Kg such that

(————— M+ (WX Vi, =0 VeV (2.17)

Tm
The system (2.17) is a discretization of the variational formulation of
Ty = i, wi=nU=A,T, (2.18)

as opposed to (1.7) with f(r) := r. From (2.10), we see that our scheme (2.3a,b) with
f(r) :=r can be rewritten as: Find X™*' € VI such that

Xm—kl _ Xm .

(@™, MY+ (Vo X" Vi =0 VeV, (2.19)
which clearly highlights the key difference between the two schemes. The second scheme

is from Deckelnick and Dziuk (1995) and can be formulated as follows: Find X™* ¢ V!
such that

cmz _p | X =X el D
| X" 1] dp+ | X" .7, dp=0 VieVy; (2.20)
J J

m

or equivalently

Xm+1 _ Xm

Tm

(17

; D+ (| XV XM Vi =0V ije Vi (2:21)
We note that the scheme (2.17) changes the approzimation of ¥ predominantly in the
normal direction, recall (2.18); whereas the scheme (2.3a,b) proposed in this paper, as well
as (2.20), also induce tangential changes. This is a crucial difference. Without movement
in the tangential direction clustering and coalescence of nodes can occur, which leads to
a breakdown of the algorithm. In addition, we note that the schemes (2.17) and (2.20)
do not easily generalise to the case of nonlinear f, in contrast to our scheme (2.3a,b).
However, it should be noted that the numerical analysis of the schemes (2.17) and (2.20)
is well developed, in that error bounds have been derived; see Dziuk (1994) and Deckelnick
and Dziuk (1995). Something that we hope to achieve for our scheme in the future.
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REMARK. 2.3. Similarly to Barrett, Garcke, and Nirnberg (2005a, Remark 2.3), one can
consider a continuous in time semidiscrete version of our scheme (2.3a,b). In particular,
we let

(X x )" = (f(r),x)" =0 VxeWy, (2.22a)

(k" "+ (V, X, Vi) =0 VeV (2.22b)

where we always integrate over the current curve " described by )Z, and so V" = (\)if)lL
P

and {-,-Y") is the same as (-, )2? with T™ and X™ replaced by T" and X, respectively.
It is then possible to show that the scheme (2.22a,b) will always equidistribute the nodes
along T if the corresponding intervals are not locally parallel; see Barrett, Garcke, and
Niirnberg (2005a) for details. Although it does not appear possible to prove an analogue for
the fully discrete scheme (2.3a,b), in practice we see that the nodes are moved tangentially
so that they will eventually be equidistributed; see Section 3 for details.

While the scheme (2.20) from Deckelnick and Dziuk (1995) also induces a tangential
movement of vertices, it does not appear possible to show an analogous result for that
scheme.

2.1.1 Intermediate evolution laws

In this subsection we consider the intermediate motion (1.10). We introduce the following
approximation to (1.10). Find {X™ y™+1 xmH+11 € VI x [W[]? such that

(M,Xﬁm)ﬁl (VY™ Vo) =0  VxeW, (2.23a)
LYV 0+ L~ (0 =0 Ve g, (223)

(K™ 7 i (VX V D =0 Vije VR (2.23c)

REMARK. 2.4. The scheme (2.23a—c) is close in concept to the approzimation for (1.11)

in Barrett, Garcke, and Nirnberg (2005a): Find {X™! k™) € VA x Wl such that

j?m+1__}?m
(X T (V™ VX)) =0 Y x EW, (2.24a)

m

(5™ T i+ (Vo XM Vi, =0 Vije Vi (2.24b)

A semidiscrete version of (2.24a,b) enjoys exact area conservation and an equidistribu-
tion of vertices, see Barrett, Garcke, and Nirnberg (2005a, Remark 2.8) for the relevant
details. We note that the same holds true for the semidiscrete analogue of (2.23a—c).

THEOREM. 2.2. Let the assumption (Ay) hold. Then there exists a unique solution
{XmA1 ymtl omtY e Vo (WP to the system (2.23a-c). Moreover, we have that

k-1 k—1
D+ LY VY™ 46 6 = Ly < T (2:25)
m=0 m=0
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for allk =1— M, where |- |, = (:, .

Proof. The uniqueness proof is a straightforward adaption of the proof to Theorem 2.1.
As (2.23a—c) is linear, existence follows from uniqueness, and the latter is easily established
for the relevant equations

(X, x 7™ =1 VY, Vo X)m =0 ¥V x € Wl
£ (VY Vo X)m + 5 (Y. 0m — (K, X)m =0V x €Wy,
(K7™ D+ (V, X, V=0 VeV

on choosing x = ¢ K, X = T (ak—Y) and 77 = %X , respectively. Combining yields that

r=0. (2.27)

m

%(VSX,VS)Z'>m+%”(VSY,VSY>m+%m(a/€—Y,a/$—Y>

It follows from (2.27) that X = X¢ € R, Y = Y¢ € R and k = = € R, and hence,
similarly to (2.8) on recalling assumption (Ag) that X¢ = ( and Y = 0. Hence we have
existence of a unique solution {X™+! Y™+l g+l e VA 5 [Wh]2 to the system (2.23a-
c). Finally, choosing x = ¢ K™ x = T (k™ — Y™ and 77 = %(X:””r1 — X™) in
(2.23a—c) gives, similarly to (2.27), that

(V, XV, (X — X))+ 2 [V Y2 4 7y [T — LYy 2 =0, (2.28)
Combining (2.28) with the closed curve analogue of (2.46), below, yields (2.25). QO

On recalling the definitions (2.13) and on similarly introducing the matrix Ay € RV*V
we can reformulate (2.23a—c) as: Find {§X™+1 ymtl gmt1l ¢ (RN x [RN]2, such that

0 Tm Ao —NOT gL 0
~My (A +LIM, 0 ymi=1 0 |, (2.29)
No 0 Ay, | \sxmH — Ay Xm

where, with the obvious abuse of notation, §.X T“, Y”i“ and k™! are the vectors of

coefficients with respect to the standard basis of X™ 1 - X™ Y™F! and k™!, respectively.

Introducing the inverse Sy of Ay restricted on the set (ker Ag)* = (span{1})*, where 1 :=

(1,...,1)T € RY and noting that the first equation in (2.29) implies that 17 NI §X™ ! =
0, one can transform (2.29) to

Y= L Gy Ny o X 4 1, (2.30a)

K= L (LSy+ My ) NJ XM 4+ 21 (2.30b)

(Ao + - No (£ So+ § My '] Ni) 6 X+ = A Xm— LNyl  (6X™)T Nol = 0;
(2.30c)

where p = % € R is unknown. We introduce also the orthogonal projection Iiy onto
RE = {X € (RY)YN : XTN,1 = 0} by [ := Idy — TT where @ := Nyl. Then (2.30c),

on noting that [y 6X™*! = §X™*! is replaced by
Mo (Ao + L No [£ So + £ My | NY) Thp 6 X+ = —Tip Ao X™ (2.31)
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As (2.23a—c) has a unique solution, it is easily established that there exists a unique
solution to (2.31). Moreover, the system (2.31) is symmetric and positive definite on Rj-.
For details of a similar situation involving surface diffusion and triple junctions, we refer
to Barrett, Garcke, and Niirnberg (2005a, Theorem 2.4).

2.2 Triple junctions

In this section, we consider the case where a network of curves meeting at triple junction
points moves under motion by mean curvature. Here the curves can meet at triple junction
points or can intersect the external boundary 0€2. For ease of exposition, from now on we
consider the two cases of three curves (I'y, 'y, I's) with surface energies o := (01, 09,03)
meeting either at two triple junction points A; and As, as in Figure 1; or meeting at
a single triple junction point A and each intersecting the external boundary 0f2, as in
Figure 2. In particular, we note the stated choices of the direction of the unit tangents.
We will outline also how the ideas presented for these cases can be carried over to an
arbitrary setup of curves, see Remark 2.7 below.

We begin with the first setup. The main idea for the necessary trial (= test) spaces
is to make sure, that the conditions (1.14a,b) hold either essentially or weakly at the
triple junctions. Here we will enforce condition (1.14a) explicitly through the trial space,
whereas condition (1.14b) will be enforced weakly, similarly to a Neumann boundary
condition for a standard second order elliptic PDE.

Let I :=[0,1] be the unit interval and let I = U;V:’I I;:, i =1 — 3, be decompositions
of I into intervals I} = [g_;,¢}] based on the nodes {¢}), N; > 2. Let hi = |I!| and
h = max;—;_,3 max;_,n;, h;- be the maximal length of a grid element. Let

Vi={(X1, X2, X3) € [C(I,R)]*: X1 = Xo = X3 on OI}

and
W = {(x1, X2, x3) € [C(I, R’}
The appropriate finite element spaces are then defined by

V" = {(X1, X2, X3) €V : X ;i islinear Vj=1—N;, i=1-3}CV (2.32)
and similarly for the space of scalar functions W C Wyy.

Recall the time partitioning {7, }_, and let X™ € V" be an approximation to Z(-, t,,),
and similarly k™ € W, for »(-,t,). We introduce the L? inner product (,-),, and the
mass lumped inner product (-,-)® over the current surface I'* := (I'",T'3*, I'}*), which

is described by the vector function Xm ¢ V", for scalar and vector functions u,v €
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[L2(I,R)]3 as follows:

(Vou.Vy0)[pp= ~— 20 =~ 2 =13, (2.34)

We then propose the following approximation to (1.13) with (1.14a,b): Find {X™*! k™11 €
Vhx W/’\‘,[ such that

Xm—kl _ Xm
<7_—7 Xﬂmxln - <U K:m+1: X)?n =0 v X € W./}\lAﬂ (2353)
(K™ 4 (V, XV, =0 VeV (2.35b)

Observe that (2.35a,b) was derived from (1.13) using integration by parts and the defi-
nition of the space V". On noting that (V, X™*1) rm approximates 7;, 1 = 1 — 3, we
see that (2.35b) weakly approximates Young’s law (1.14b) at the triple junction points
A1 and AQ.

An extension of the scheme (2.20) that incorporates intersections with an external
boundary was given in Deckelnick and Elliott (1998). The authors considered a setup,
where a single curve intersects a fixed external boundary, and, for their fully discrete
scheme, introduced the following trial and test space; for a given XmeC (I, R?):

V(X™ :={xeCU,RY): ¢.VF(X™) =0 on dl}, (2.36)

and in addition V*(X™) := {¥ € V(X™) : ¥ [p islinearV j = 1 — Ny,} C V(X™).
Then their fully discrete approximation can be formulated as: Find §X™+! € Eh()? ™,
where X™*! := X™ 4 §X™*! gych that

m

vm 5}2m—|—1 — M — ~ 17 m
/\X,, |27Th[ — .7 dﬂ+/X,,+1-77pdp=0 Vije VHX™. (2.37)
1 1

We now adapt the definition (2.36) to the setup as depicted in Figure 2. For a given
X™ e [C(I,RY)?, let

Vo(X™) = {(X1, X2, X3) € [C(LR)P : %1(0) = X2(0) = ¥3(0

: X )
(). VE(X™(1)=0 Vi=1- 3}
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The finite element space V%(X™) is then defined accordingly, similarly to (2.32). More-
over, the system (2.35a,b) is then adapted to: Find {§X™*! x™+'} € VA(X™) x Wh,
where X™t! := X™ 4+ §X™*! such that

gXm+1
( XTI — (@K™ X =0V x € Wy, (2.38a)
(™7 ph 4 (V, X V) =0 Ve VHX™). (2.38b)

Once again (2.38a,b) was derived from (1.13) using integration by parts and the definition
of the space zg(im) On noting that (V; Xm+1) rm approximates 73, 1 = 1 — 3, we see
that (2.38b) weakly approximates Young’s law (1.14b) at the triple junction point A and
(1.18b) at the boundary intersections. In order to approximate the general contact angle
condition (1.19), we need to replace (2.38b) by

3 s
. VEEP)) o
mtl pm +(V, X"V, )y = oi[ . (1) cosay Y i e VEX™).
(m il + M=o my O e VEm)

(2.39)
Furthermore, the constraint 6X™+ € V%(X™) weakly enforces (1.18a), as it is a linearized
approximation of these constraints. In particular, for curved boundaries the equations
F(X'im“(l)) = 0,7 =1 — 3, are only approximately satisfied. Similarly to Deckelnick and
Elliott (1998, p. 651) it formally follows, on assuming that F(X°(1)) = 0 for i = 1 — 3,
that

|F(Xm+(1) zm: (XF11)) - F(XFQ) | = 0(r), i=1—3. (2.40)

Hence, for small time steps the endpoints of the curve segments should stay close to 0f2;
and this is what one observes in practice, see Section 3 for details. However, one could also
employ a projection step that orthogonally projects X™ on to 9 at every time step,
which would have the advantage of satisfying (1.18a) exactly throughout the evolution.
But since this complicates the numerical analysis, we opted not to use this approach.

We remark that as the parameterization X™+1 does not “see” the boundary for p < 1,
it is possible that the evolving curves touch the external boundary at some interior point,
in which case the evolution is no longer described by the approximation. We note that for
a convex domain this cannot happen for mean curvature flow, see Rubinstein, Sternberg,
and Keller (1989). However, in the surface diffusion case this can happen even for convex
domains.

REMARK. 2.5. We note that, as stated in Deckelnick and Elliott (1998, p. 640), it is not
clear how to naturally generalize the scheme (2.37) to triple junctions, as there are severe
difficulties on how to approximate the condition (1.14b) within that scheme.

Before we can proceed to prove existence and uniqueness to (2.35a,b), we have to make
the following very mild assumption, the analogue of (Ay) for a network of curves:

17



(A) Let \(X'Zm)p\ > 0 for almost all p € I, i =1 — 3. Let 7™ 1 gfn)” |I, j =
| X (gh) =X (qi_ )| 7™ _ 1+ XM (gh )~ X (ql )|u
1 — N; and set &}y := P T iy W T hity ,j=1— N;—1,

X (@) =X (a5 )| X (g ) =X (d)))]
i =1— 3. Then we assume further that dim span{{égf‘j}ﬁf 1B, =d=2.

The assumption (A) basically assures that none of the the curves I'", i = 1 — 3, is a

“zig zagging” connection between the two triple junctions points A; and A,. A sufficient
condition for (A) to hold is that at least one of the three curves is not a “saw tooth” like
curve, similarly to the one in Barrett, Garcke, and Niirnberg (2005a, Fig. 2), where all
the vertex normals &%, j =1 — N; — 1, are linearly dependent.

THEOREM. 2.3. Let the assumption (A) hold. Then there erists a unique solution
{XmH1 gmt1) € VI x WP to the system (2.35a,b).

Proof. As (2.35a,b) is linear, existence follows from uniqueness. To investigate the
latter, we consider the system: Find {X, s} € V" x W, such that

(X, x 7™ =t ok Xl =0 ¥ x €W, (2.41a)
(k7™ D+ (V, X, V,m =0 VijeV (2.41b)

Similarly to (2.6a,b), choosing x =k € W2, in (2.41a) and 77 = X eV'in (2.41b) yields
that . .
(Vs X,V X) + T (0 K, 6)E = 0. (2.42)

It follows from (2.42) that x = 0 and X = X°¢ = (X¢, Xg, X9)T € (R?)3 with X¢ = X¢ =
X§; and hence
(Xe,xT™"h =0 VxeWh,. (2.43)

Similarly to (2.8), choosing x = ¢ in (2.43) and noting that X¢ = X¢ = X¢ yields that
Xe@m=0 Vj=1-N,—1,i=1-3.

Assumption (A) then yields that X¢ =0, and hence X¢ = (. Hence we have shown that
(2.35a,b) has a unique solution {X™* k™+1} € V* x Wh,. a

The proof immediately carries over to the system (2.38a,b).

Furthermore, we can establish that our scheme is unconditionally stable.

THEOREM. 2.4. Let {X™ k™}M_, be the solution of (2.35a,b). Then for all k =1— M
we have that

—1
ITF 4+ 7 (o 6™ TR < (IO (2.44)

where [TF|:= [, 1ds = S0 0i|T¥| on recalling the definition (2.33).
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Proof. Choosing x = ™™ € W}, in (2.35a) and 7] = y € V" in (2.35b) yields
that

(V, XL v, (X — X™)),0 4 1 (0 6™ kMR = (2.45)

We now analyse the first term in (2.45), using the techniques in Dziuk (1999). Let

—

hi™ = X™(qi,y) — X™(¢%). Then it holds that

(V, Xy, (XmH — Xm) Zal / LX)y, (X - X)) ds

1 1
3 N;— [ hz ,m+ ‘2 h;_,m—l— h;,m]

pILP3 o
5™
3 -1

>Za, Z 1Byt — [y

Combining (2.45) and (2.46) yields that

] — D™+ | (2.46)

T™ | — T™] + 7,y / o k™2 ds <0. (2.47)

Summing (2.47) for m = 0 — k — 1 yields the desired result. a

The proof above is written explicitly for (2.35a,b) but as it depends solely on a specific
choice of test functions it immediately carries over to (2.38a,b), as well as (2.3a,b) with
the changes, in the case of nonlinear f, stated after Theorem 2.1.

Let N := Y% (N; +1). We define the orthogonal projection P : (RH)N — X :=
{(51,52,53) € (Rd)N : [51]0 = [52]0 = [53]0, [Zl]Nl = [52]]\]2 = [53]]\]3} onto the Euclidean
space associated with V.

In order to give a matrix formulation for (2.35a,b) we introduce the matrices M* €
ROVHDX(NiAD) N @ (RE)NAHDX (Nt 1) gi @ RVGHDX(NiD) and fi @ (REXE)Nit)x(Nit1)

1 =1 — 3, defined by
Mijmoi [ alloiolas,  Ni=o [ aligie]om as,
rm rm
Al =0 | VL. Vigids, AL = AL, (2.48)
ry

where {¢i}%i, is the standard basis of S! := {x € C(I,R) : X|IJZ; is linear V j = 1 — N;}

and 7l : C(I,R) — S! is the standard interpolation operator at the nodes {q}}%,. Then
on introducing the matrices

o M' 0 0 A0 0 N 0 0
M = 0 o,M?2 0 JA=|0 A2 o|,N=|0 N2 0],
0 0 o3 M3 0 0 A3 0 0 N3
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where M : RY — RV, A: (RY)N — (R?)N and N : RV — (R%)¥, the system of equations
(2.35a,b) can be written as: Find {6 X™"! ™1} € X x RY such that

TmM —NTP KM\ 0 (2.50)
Fy pap ) \sgme) = \_papgn) '

Here, with the obvious abuse of notation similarly to (2.14), K™ = (k7" k7T KPTHT

with €741 = (™Yo, ..., [K™N,), i = 1 — 3, and 6X™F1 = (6X 7+ X+ §XH)T
with X" = ([0X™,...,[6X™]n,), i« = 1 — 3, are the vectors of coefficients
with respect to the standard basis {{#i}V }?_, of k™! and X™+! — X™ in (2.35a,b),

respectively.

As M is non-singular, we can reformulate (2.50), similarly to (2.15a,b), as

K =L MU NTP X (2.51a)
(PAP+ L PN M~ N"P)§X™! = —PAPX™ (2.51b)

THEOREM. 2.5. Let {6X™ k™+1} € X x RN be the unique solution to (2.50). Then

SX™+L yniquely solves (2.51b). Moreover, the operator in (2.51b) is symmetric positive
definite.

Proof. The proof is straightforward. 0

The system (2.51a,b) is easily adapted to cover the approximation (2.38a,b) of the
setup displayed in Figure 2. In particular, we need to introduce the orthogonal pgojection
Py: (RN = X, = {(%, 5, %) € R)Y : [2]o = [B]o = [Blo and [F], . VF((X"]y,) =
0 Vi=1— 3} onto the Euclidean spaces associated with V%(X™). Then (2.51b) is
readily replaced by

(ByABy + = By M~ N1 Py X+ = B AXm (2.52)

We note that (2.15b) and (2.52) can easily be generalized to curve networks with an
arbitrary number of triple junctions and external boundary intersections; see Remark 2.7
below for the relevant details.

2.2.1 Surface diffusion of curve networks

We recall the following approximation to (1.20), with (1.14a,b) and (1.22a,b), as proposed
in Barrett, Garcke, and Niirnberg (2005a): Find {X™*! x™*+1} € V* x W" such that
X’m—f—l _ X’m
(T X T™ oV k™ Vo) =0V x € WP, (2.53a)

m

(KT (VX Vi, =0 VeV (2.53b)
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where
Wh = {(XlaXQ,X3) eW: Xi ‘IJ’ is linear V .7 =1— Nia 1=1— 3} cw (254)
and

W = {(x1, X2, x3) € [C(I,R)]? : 01 X1 + 02 xo + 033 =0 on 9I}.

We recall further that the system (2.53a,b) can be solved by applying a Schur complement
approach and then solving

fiF(d+ L NKSKN")PisXm = i PAP X (2.55)

for $X™+! € X. Here
3 3
K:RV -5 X:= {(2’1, 22,23) e RV : ZO'Z' [ZZ]() = ZO’i [ZZ]NZ = 0}
i=1 =1

and S is the inverse of KAK, where A is defined similarly to (2.49) using A in (2.48),
on the space (ker KAK)L. Also IT : (R*)Y — R+ is the orthogonal projection onto R*t,
where R := span {PNKe;:i=1-—2} = {PNKv :v € ker KAK} C X with {e;}2,,
er = (51, —-12,0) € X and ey = (0, -1%, —-1%) € X, where 1" := (1,...,1)" €
RNi+1 i =1 — 3, being a basis of the space E = ker ANX.

We now want to adapt the above scheme to include possible boundary intersections.

Naturally in the case of (1.18b), (2.53a,b) is changed to: Find {§X™! x™t1} € VA(X™)x
W} such that

§Xm !
( XTI — oV K™ VX)) m =0 ¥ x € WE (2.56a)
(KM T i (V, X VD, =0 Vi e VE(X™); (2.56b)

where

Wa := {(x1, X2, x3) € [C(I,R)]’ : 01 x1(0) + 02 x2(0) + 03 x3(0) = 0}

and W} is defined similarly to (2.54). On defining the orthogonal projection Ky : RN —
X = {(21, 22, 23) € RV : 23:1 o; [2i]o = 0} and using the projection P, defined earlier,
we can apply a Schur complement approach to yield

- = = =

ﬁa ﬁa (A’—f— % NK@ Ss KaNT) ﬁa ﬁa 5Xm+1 =—Ilg PRAX™, (257)

where Sj is the inverse of K3AKj on the space (kerKyAKj)+ and Ii; is the orthogonal
projection from RY onto Rj with Ry := PyNK, (kerKyAKjp). In fact for the setup in

Figure 2, I, =10 However, in general this is not always the case; see Remark 2.8 below.
Of course, the above is extended to (1.19) by replacing (2.56b) by (2.39).
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REMARK. 2.6. A possible definition for the projection s T == ldy — @QT where
imG =R and QTQ = Idy. ILe. the columns of Q € (Rd)N><2 are an orthonormal basis
of the subspace R C (RY)N spanned by PNKe; = PN e;, wheree; € X, 1 =1 — 2, are
the above mentioned null vectors of KAK. We note that the definitions ofP and N yield
that dim R = 2. Hence 11 is the orthogonal projection from (RY)N onto (im Q)+ = R*.

REMARK. 2.7. The definitions of the spaces V. and W can easily be generalized to a
situation with Kp bubbles (enclosed areas), K¢ curves and Krp triple junction points.
Note that Euler’s formula yields that 6 (Kp—1) = 2 K¢ = 3 Kt in the absence of external
boundary intersections. For example, Ky = 2, K¢ = 3 and Ky = 2 in Figure 1. In
particular, we would have that

K = {(Xb R 7XK0) € [C(Ia Rd)]KC : X’ij (pj,’ij) = le (pj,lj)’ 1=2- 37 v -7 =1—- KT}’
3

W= {0 Xke) € [CULRIRE = S (<196 0y X (piy) = 0 ¥ j = 1 — Kr}.
=1

(2.58)

Hereij € {1,..., K¢}, i =1— 3, denotes the 3 curves meeting at triple junction j, while
pji; € 10,1} denotes whether these curves start (p;;; = 0) or end (p;;; = 1) at the triple
junction point j. Le. |[{i;:i=1—=3} =3 forallj=1— Kr, |{j:i; =c} =2 for all
c=1— K¢ andZ]IiTlpj,cz 1 foralc=1— K¢.

The above definitions are easily generalized to the possible presence of external bound-
ary intersections. Let Kp denote the number of bubbles (enclosed areas), Kt the number of
triple junctions, Ko the number of curves and Ky the number of intersections with the ex-
ternal boundary. Then Euler’s formula yields that 6 (Kp—1) = 2 (Kc+ K1) = 3 (Kr+Kj).
(Note that the special case Kr = 0 corresponds to the formula given above.) For example,
Kg=3, Kc =3, Kr =1 and K; = 3 in Figure 2. The corresponding precise definitions
of the spaces Ka(f ™) and Wy are straightforward, and we omit the details here.

REMARK. 2.8. The definition ofﬁ can easily be adapted to a situation with Kg bubbles.
In the case of no external boundary intersections, the subspace E := XNker A of the kernel
of KAK has dimension Kg, and a possible basis consists of vectors that each “describe an
admissible orientation of the boundary of a bubble” in terms of the given K¢ curves. For
example, if Kg = 3 and one area is enclosed by curves 1,2,4 and curve 2 is parameterized
in the opposite direction to curves 1 and 4, then the corresponding eigenvector would be
(0—1111,——12 0, 14 0,0). See the Appendiz in Barrett, Garcke, and Nirnberg (2005a)
for a more rzgorous definition.

When boundary intersections are present, the subspace E has dimension Kg — 1, and
a possible basis consists of vectors that each “describe an admissible orientation of the
boundary of a bubble” (ignoring the boundary part of any bubble that is made up by the
external boundary 052) in terms of the given K¢ curves. Similarly to Barrett, Garcke, and
Niirnberg (2005a, Appendiz) one can show that it indeed holds that dim F = Ko — Kr =
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One can interpret each set of basis vectors of E as a linearly independent collection of
regions that preserve their areas. Then it is intuitive, that the respective dimensions of E
in the two described cases are Kg and Kg — 1, respectively.

2.2.2 Combined surface diffusion and mean curvature flow

We now adapt (2.53a,b) so that it approximates the evolution law (1.24), with (1.14a,b)
and (1.25a,b). Choosing V" based on V, as defined in Remark 2.7, and W" based on,
recall (2.58),

Wy :={(x1, - - Xx0) € [C(L,R)]* :

3
> Mgk i) [(=1)7 03, xi;(pjg;)] =0 V j =1 Kr},

i=1
where H # is the indicator function for the set F, yields the following approximation: Find
{Xm+l gmHY € YV x W such that

)z'm—}-l _ Xm
<T—axﬁn)¢n_ <Uﬁm+1ax>:n:0 VXGWIL’ (2593)
(K™ it 4+ (V, X Vi =0 Ve Vh (2.59b)

where

(e, x)r, == (o n|pmme, X|pm,Mc)fn + {0 Vsn|rmsp, Vs X |pmsp)m Y1, x € Wf

Here [™MC .= |Ji, I and I"™5P .= Uficm 1 I, The above (weakly) approximates
the correct conditions at the triple junctions, (1.14a,b) and (1.25a,b). Once again, it is a
straightforward matter to derive an existence and uniqueness result, and a stability result

for (2.59a,b) under an appropriate mild assumption.

Using the natural extensions from the setup in Figure 1 to K¢ curves of the matrices
defined earlier, recall (2.48) and (2.49), and introducing

— d; 1 i to+1 K
A*.—dlag(glM,...,O'Z'OMO,O'Z'0+1A0 ,...,O'KCA C),

extending the associated operators and introducing the orthogonal projection K, onto
the Euclidean space X, associated with W"; we can derive the following equations for the
extended coefficient vectors:

T K ALK, —KNTPY [ ™1 0 (2:60)
PNK, PAP SXmHl ] T\ —PAPXm ]|’ '
Introducing the inverse S, of K, A, K, restricted on the set (ker K, A, K,)* = X, Nker A,,

ie. S, KLAK, v = KLAK,S,v = v for all v € X, N ker A, we can employ a Schur
complement approach in order to transform (2.60) to
K = LS K NTPSX™! 42, z€ X, Nker A,, (2.61a)

— - = = =

I,(PAP + L PNK, S, K,N"P)II, 6X™"' = T, PAP X™, (2.61D)
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where ﬁ* : (]Rd)N — ’Rf is the orthogonal projection onto Rf with R, := ﬁNK* E, and
E, =X NkerA,.

REMARK. 2.9. A basis of R, can be found similarly to the pure surface diffusion case,
see Remark 2.8. The corresponding basis of E, 1s now made up of vectors that assign
orientations for bubble boundaries to linear independent collections of curves I';" with 1 >
io- Of course, one can extend the approximation (2.59a,b) to include external boundaries
in the natural way. Although we omit the details here, some numerical results are given
in Section 3.

2.3 Quadruple junctions

A further generalization of the schemes (2.38a,b), (2.56a,b) and (2.59a,b) in this paper is
the extension from triple junction points to quadruple junction points. This needs only a
minor change to the introduced finite element spaces, and we omit the exact details here.
However, numerical results for this practically interesting situation can be found in the
next section.

3 Results

The Schur complement systems (2.15b), (2.30c), (2.51b), (2.52), (2.55), (2.57) and (2.61b)
can be easily solved with a conjugate gradient solver. Where necessary, the solution of
KAK y = x and its variants in order to compute Sz, Syz, Sy z and Sy x, respectively,
can be obtained with an (inner loop) CG solver without a projection, as the right hand
side vector x always satisfies the necessary compatibility condition, e.g. z € (ker KAK)*.
See Hestenes (1975) for a justification of using a CG solver for a positive semidefinite
system.

The system (2.16b), on the other hand, can be solved with an inexact Newton method.
When f is given by (1.6), because of the singularity of f~! = f at the origin, the discrete
system (2.16b) needs to be solved with a damped inexact Newton method, where as initial
guess for the Newton iteration we choose X™10 := Ny1. Moreover, we only perform
computations for (1.7) with (1.6), where the evolution is well defined for all times, e.g.
where the initial data Z(-,0) is such that that s¢(-,0) < 0. In practice, the damped
Newton method always converged in these cases and we always observed that ™ < 0,
m=0— M.

Throughout this section we use uniform time steps 7,, =7, m =0 — M — 1. For later
purposes, we define

—

X(t) = Hmea Xm g tut gme t € [tm1,tm] ™ > 1.

T
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(2.17) (2.20) (2.19)

N T=§T T=T-r1 T=§T T=T-r1 T:§T T=T-r1
16 | 3.9879e-02 | 1.3476e-01 | 4.2132e-02 | 1.3978e-01 | 3.1574e-02 | 1.1731e-01
32 | 1.2994e-02 | 1.2155e-01 | 1.3973e-02 | 1.2496e-01 | 1.0287e-02 | 1.1149e-01
64 | 3.4556e-03 | 8.4151e-02 | 3.7408e-03 | 8.5576e-02 | 2.7043e-03 | 7.8982¢-02
128 | 8.7924e-04 | 5.3324e-02 | 9.5359e-04 | 5.3825e-02 | 6.8469¢e-04 | 5.0839e-02
256 | 2.2112e-04 | 3.1728e-02 | 2.3963e-04 | 3.1887e-02 | 1.7184e-04 | 3.0545e-02
512 | 5.5339e-05 | 1.8217e-02 | 5.6193e-05 | 1.8270e-02 | 4.2953e-05 | 1.7655e-02
1024 | 1.3846e-05 | 1.0227e-02 | 1.4049e-05 | 1.0245e-02 | 1.0735e-05 | 9.9610e-03

Table 1: Absolute errors || X — ||z for the test problem, with T = :T = 0.25 and
T =T — 1, respectively.

3.1 Closed curves

Here we compare our scheme (2.3a,b) with f(r) := r, i.e. (2.19), with two other algorithms
in the literature, namely the schemes (2.17) from Dziuk (1994) and (2.20) from Deckelnick
and Dziuk (1995). As a first test, we repeated the computations for a true solution as
given in Dziuk (1994, p. 604). An exact solution to (1.7) with f(r) := r, so that the
resulting I'(-) solves (1.3), is given by

Z(p,t) = (1 —28)2 (cos g(p),sing(p))”, slp,t)=(1—28)"2, te[0,T), T =0.5;

(3.1)
where ¢g(p) = 27p + 0.1 sin (27p) in order to make the initial distribution of nodes
non-uniform. We note that Z;.7 = 0 for the solution (3.1). We compare our results
from (2.19) to the schemes (2.17) and (2.20), see Table 1. We used 7 = 0.5h? and
either T = 1T or T = T — 7. Here and in what follows we always compute the er-
ror || X — &||pe = maxg,—1um || X (6n) — Z(-, tm) ||z, where | X (t,) — Z(-,tm) ||z ==
max;—i_,y minye; | X™(q;) — Z(p, t;m)| between X and the true solution on the interval
[0,7]. We note that the experiments indicate that the convergence rate for the error
away from the singularity is O(h?), and up to the singularity at time T is of order less
than O(h), for all three schemes; as is to be expected.

The next experiment is for a mild ellipse. The parameters were chosen as follows. N =
128, 7 = 1072, T = 1.5 and the initial curve is a 3:1 ellipse with a unit semi-minor axis. In
order to highlight one difference between the three schemes in consideration, we plot for
each of them the ratio r := h g /€g¢n, where hg,, := max,—i,n | X™(q;) — X™(gj_1)| and
lgp ==minj_ N \)?m(qj) —)zm(qj,l)|, over time. The evolution of our scheme (2.19) can
be seen in Figure 3. Plots of the ratio r for the three schemes can be seen in Figure 4. One
can clearly see that the ratio increases for scheme (2.17), while the tangential movement
of vertices induced by the other two schemes, as discussed in Remark 2.3, results in a
decrease of the ratio r, which approaches the optimal value 1. In order to underline this
point further, we conducted an experiment for area preserving mean curvature flow, (1.8).
The initial curve for our approximation (2.4), with f(r) := r, and (2.3b) consists of a semi-
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Figure 3: A plot of X (t) at times t =0, 0.1,...,1.5 and at time ¢ = T (scaled).

5 B

Figure 4: A plot of the ratio r = hg,, /¢, for the three schemes (2.17), (2.20) and (2.19).

circle and a single additional node on the periphery of the circle with unit radius. We used
the parameters N = 100, T = 10 and 7 = 10~%. In Figure 5 we show X (t) at different
times, as well as a plot of |I'(¢)| and logr(t) over time. One can clearly see that although
an approximation to the true steady state, a circle, is reached very quickly (at around
time ¢ = 0.6), in the remaining time the vertices are continually moved tangentially, which
results in a further decrease in the ratio r that eventually approaches the optimal value
1.

For the first experiment for the nonlinear approximation (2.3a,b) we used the exact

Figure 5: Plots of X (t) at times ¢ = 0,0.1,...,T = 10, [T'(¢)| for ¢ € [0,1] and logr(t) for
t € [0,T] on a logarithmic scale.
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B=3 B=3
N| T=iT |7=T-r| 7=1T |T=T-+
16 | 1.8812e-02 | 8.4620e-02 | 1.2804e-02 | 6.0554e-02
32 | 5.4838e-03 | 6.0185e-02 | 3.3827e-03 | 3.8905e-02
64 | 1.4210e-03 | 3.4475e-02 | 8.6680e-04 | 1.9613e-02
128 | 3.5637e-04 | 1.7774e-02 | 2.1613e-04 | 9.0762e-03
256 | 8.9173e-05 | 8.6226e-03 | 5.3925e-05 | 3.9824e-03
512 | 2.2226e-05 | 4.0244e-03 | 1.3431e-05 | 1.6607e-03
Table 2: Absolute errors || X — ||z for the test problem, with 7 = 1T = s and

T =T — 7, respectively.

solution to (1.4) with (1.5):

#(p,t) = (1= (B+ 1) )7 (cos g(p), sing(p))", se(p,t) = (1= (B+ 1)) 7, te[0,T);

B+1
report on a corresponding error table for 4 = % and 8 = 1

2 3
T =0.5h?

where T = and g is given as in (3.1). We note once again that here Z;.7 = 0. We

in Table 2, where we used

_ Next, we considered (2.3a,b) with (1.5) for the initial curve as given in Mikula and
Sevcovi¢ (2001, p. 1494) for the three different choices 5 =1, %, % I.e. we chose
Z(p,0) = (cos go(p), 5 sin go(p) + sin (cos go(p)) + sin go(p) [5 + sin go(p) sin® go(3 p)])",

where go(p) = 27 p, and set X° = 7" Z(-,0) for a uniform partitioning of J. The initial
parameterization X 0 for N = 256, together with the parameterization X (0.6) for g = %,
is shown in Figure 6. The numerical results for the approximation (2.3a,b) can be seen
in Figure 7, where we used N = 256 and 7 = 1073. It should be noted that Mikula and
Sevcovié (2001) introduce a system of second order partial differential equations to model
(1.4), which introduces a tangential movement that locally equidistributes nodes under
discretisation by a finite difference approximation. However, the system and subsequent
approximation is far more complicated than our simple approximation (2.3a,b).

3.1.1 Inverse mean curvature flow

Here we consider the flow (1.4) with (1.6). First, we performed a convergence test for
the approximation (2.3a,b) with f given by (1.6). A true solution to (1.7) and (1.6) with
Zy.T =0, is given by

Z(p,t) = exp(t) (cos g(p),sing(p))", »(p,t) = exp(~t), t € [0,00);

where g is defined as in (3.1). We report on the corresponding errors for 7 = 0.5 h?
in Table 3. The evolution for N = 256 can be seen on the left of Figure 8. The next
experiment is for a 3:1 ellipse that expands to a circle. The discretization parameters are
N =128, 7= 1072 and T = 1, see the right hand side of Figure 8.
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Figure 6: The initial parameterization X° (left) and X (0.6) for § = 5 (scaled, right).

Figure 7: V = 5, with 8 = 1,1,35. We plot X(t) at times ¢t = 0,0.05,...,7, with

T = 0.3,0.5 and 0.6, respectively.

N | f(r)y=-r!
16 | 2.6054e-01
32 | 7.5559%e-02
64 | 1.9709e-02
128 | 4.9869e-03
256 | 1.2502e-03
512 | 3.1255e-04

Table 3: Absolute errors || X — Z|| . for the test problem, with 7' = 1.
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Figure 8: X ) for t = 0,0.1,...,7 = 1 for the inverse mean curvature flow of a circle
(left) and an elhpse (r1ght).

Figure 9: Different evolutions for surface diffusion, area preserving mean curvature flow
and the intermediate flow (1.9), with @« = £ = 1. In each case, we plot X(¢) for t =
0,1,...,7 =20 and |I'(¢)| for ¢t € [0,T].

3.1.2 Intermediate evolution laws

In this subsection, we report on numerical results for our approximation (2.23a—c) of the
intermediate evolution law (1.10). First, we compare the different evolutions of (1.2),
(1.8) with f(r) := r, and (1.9) with « = £ = 1, for an initial curve that is given by
an elongated tube of dimensions 10 x 1. As discretization parameters for the schemes
(2.24a,b); (2.4) with (2.3b) and f(r) :=r, and (2.23a—) we used N = 256, 7 = 103 and
T = 20, and the corresponding results are shown in Figure 9. One can clearly see that
while the curve that moves under area preserving mean curvature flow remains convex
throughout the evolution, this is not the case for the other two evolution laws. The area
losses for the respective schemes were 0.004%, 0.016% and 0.002%. Furthermore, we give
a plot of |I'(¢)| over time in each case in the same figure. As noted before for @ — oo and
¢ =1, the solutions to (1.9) should converge to solutions of (1.8), while { - co and o =1
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Figure 10: The flow (1.9) with £ = 1, a = 1000 (left) and & = 1000, @ = 1 (right). In
each case, we plot X (¢) for t =0,1,...,7 =20 and |I'(¢)| for ¢ € [0, 7.

corresponds to the law (1.2). We now investigate this property numerically. To this end,
we repeat the above experiments for (2.23a—c) with £ = 1, @ = 1000 and ¢ = 1000, o = 1,
respectively. The results, for which the respective area losses were 0.008% and 0.004%,
can be seen in Figure 10. One can clearly see the similarity between these evolutions and
their corresponding limits in Figure 9. We note also that the curve in the first evolution
remains convex, while the curve for the second evolution does not.

3.2 Triple junctions

In the first experiment for triple junctions, see Figure 11, we simulate how two initially
elliptic bubbles move under motion by mean curvature. Throughout, we assume equal
surface energies, o; = 1, 1 = 1 — K¢, unless stated otherwise. The plot on the left hand
side of Figure 11 shows the evolution for two equal area bubbles, while the a non equal
area case is displayed on the right hand side. The chosen parameters were N = 128,
7 =0.01 and 7" = 0.4. The initial shapes are given by two segments of a 2:1 ellipse with
unit semi-minor axis and a straight line, or a semi-circle together with an elliptic segment
from the above ellipse and a straight line, respectively. We repeated the experiment on
the left hand side of Figure 11 for different surface energies. The surface energies were
chosen to be (o1, 09,03) = (1,1, %) and (1,1, E), respectively. That means that the length
of the curve I's is weighted more in the overall energy |I'|, so that it will shorten faster
during the evolution, see Figure 12.

The next experiment is for motion by surface diffusion. The initial setup, as depicted
in Figure 13, consists of a segmentation of the [—1,1]? square, with the middle segments
having width 0.3. Our discretization parameters were N = 256, 7 = 102 and 7' = 0.04.
The evolution leads to one curve segment shrinking to a single point. Of course, our
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BIC

Figure 11: X (t) fort = 0,0.2,7 = 0.4. An equal area double bubble under mean curvature
flow on the left, with a non equal area case on the right.

0) (C

Figure 12: X () fort = 0,0.2, 7 = 0.4. An equal area double bubble under mean curvature

flow for surface energies (1,1, %) and (1,1, i), respectively.

approximation cannot compute beyond that singularity. However, on the right hand
side of Figure 13 we show how, after a topological change, the evolution continues to a
numerically steady state.

3.3 Boundary intersections

In the first experiment for curve networks with triple junctions and intersections with the
external boundary, see Figure 14, we simulate how an initial “letter Y” inside the unit
circle moves under motion by mean curvature. We varied the initial angle #5 between
the two upper curves, which meet at the origin. Here and throughout 6 := (6, 65, 65) is
defined as the angles formed by the three curve segments meeting at a triple junction and
0;, i = 1 — 3, denotes the angle opposite the curve I'; at a triple junction, recall (1.15).

The values used for 3 are 120°, 125° and 115° with 6; = 65. The first setup is
a steady state for this law of motion, while the other two experiments show that the
symmetric boundary intersections will either move up or down the unit circle. The chosen
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Figure 13: A curve shrinks to a point: X (t) for ¢ = 0,7 (left). The eventual numerically
steady state after a change of topology. (right)

Figure 14: A triple junction inside the unit circle moving under mean curvature flow.

discretization parameters were N = 128, 7 = 0.01 and 7" = 1,2.6 and 2, respectively.
The times shown in Figure 14 are ¢ = 0,0.2,...,7. The maximum distance dgq :=
max;_;_,3 dist(X (1), 9Q) of the curve endpoints at time T was dyo = 0, 8.6 x 1073 and
1.8 x 1073, respectively. Moreover, note that eventually the solution for the latter two
experiments becomes either a single point (on the boundary 09) or a single straight line.

We repeated the last experiment inside the square [—1,1]%. Here no steady state
solution exists for this law of motion. For the results see Figure 15, where we chose as
angles A3 = 180°, 95°, 85° and integrated until time 7" = 1.4, 2, and 0.4, respectively.
We observe that in the first two cases the solution exhibits a travelling wave character. In

\/

i
il

Figure 15: A triple junction inside the square [—1, 1] moving under mean curvature flow.
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N | || X — Z||z | Angles 6 = (01, 6,,65)
16 | 3.1156e-02 | (115.9, 115.9, 128.1)
32 | 8.7298¢-03 | (118.2,118.2, 123.7)
64 | 2.2632e-03 119.2, 119.2, 121.6)
128 | 5.7263e-04 | (119.6, 119.6, 120.7)
)
)

256 | 1.4362e-04 | (119.8, 119.8, 120.4
512 | 3.5954e-05 | (119.9, 119.9, 120.2

e N N R e

Table 4: Absolute errors || X — ||« and triple junction angles for the test problem.

Figure 16: An approximation of the exact solution (3.2) for ¢ =0,0.2,...,3.

fact, an exact solution can be found for this setup, see Garcke, Nestler, and Stoth (2000,
p. 313). Let v(p,t) := & log(cos(¥ (1 —p))) — Tt +1 and

T

. [ P i. _[ r 7 —(1_ 0 0}
xl(p,t)—<7(p’t)), 2(p; 1) (7(,0’0), 3(p, 1) = (1 - p) (7(0,t))+'0<—1>

(3.2)
Then & := (&, &y, ¥3) is a solution to (1.12), (1.14a,b) and (1.18a,b). We used this exact
solution to perform a convergence test for our approximation (2.38a,b). See Table 4,
where we show the error || X — Z|| on the time interval [0, 7] for T = 3 and 7 = 0.5 A2
Here || X — ||z = maxmetou | X (tm) — Z(, tm)|lpe with || X (tn) — Z(-, tm)||pe =
Max;—1_,3 MAX,j—g_, N, MiN,er |)Z"Z”(q;) — Zi(p,tm)| is computed by employing a Newton
method for the curved segments of the true solution. The evolution for N = 128 is
shown in Figure 16.

3.3.1 Surface diffusion with boundary intersections

We repeated the above type of experiments for motion by surface diffusion, i.e. the ap-
proximation (2.56a,b) of the system (1.20)—(1.23) and (1.18a,b). In the first experiment
we simulate how an initial “letter Y” inside the unit circle moves under motion by surface
diffusion. We varied the initial angle 5 between the two upper curves at the origin with
values 120°, 180° and 45°. While the first setup is already a steady state for this law
of motion, the other two experiments soon reach a steady state. The chosen parameters
were N =128, 7 = 10~* and T = 0.05. In Figure 17 we show X (¢) at times t = 0, 7.
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Figure 17: A triple junction inside the unit circle moving under motion by surface diffu-

sion.
— J—

Figure 18: A triple junction inside the square [—1,1]> moving under motion by surface
diffusion.

Note that the maximum distance of the curve endpoints to the external boundary 0f2
at time T was dgq = 0, 3 x 107® and 8 x 107°, respectively. The results for the same
experiments inside the domain 2 = [—1,1]? can be found in Figure 18. We note that here
daoa = 0 in each case, as the external boundary consists of straight lines.

We repeated the experiment on the left hand side of Figure 17 for different surface
energies. The surface energies were chosen to be (o1,09,03) = (1,1, %) and (1,1,%),
respectively. We observe that as the length of the curve I's is weighted more in the overall
energy |['|, it shortens in comparison to the other two curves during the evolution, see
Figure 19. The observed angles at the triple junction are # = (138.4,138.4,83.2) and
6 = (150.6,150.6,58.8). (Note that Young’s law yields # = (138.6,138.6,82.8) and 6 =
(151,151, 57.9), respectively, for the exact solution.) Finally, we give the same evolution
for the surface energies (1,1, 2) on the right hand side of Figure 19. Here in the true steady
state the curve I's has shrunk to a point on the boundary 02, which, as it represents a
change of topology, our approximation cannot compute to. We give a plot of X (T) for

T = 0.5, when the observed triple junctions angles are § = (178.2,178.2,3.7).

An example with only two enclosed areas can be seen in Figure 20. Here the initial
curve is given by a straight line through the origin that forms an angle of 10° with the
z-axis inside a 2:1 elliptic domain {2 with unit semi-minor axis. The chosen parameters
were N = 128, 7 = 1074, T = 2. On the left hand side of Figure 20 we plot X'(t) at
times ¢t = 0,0.05,...,7 = 2. The right hand side shows a similar experiment, where the
initial curve goes through the point (0, —%)T. The parameters were N = 32, 7 = 1072 and

T = 10; and we display X(t) at times t = 0,0.5,...,7 = 10. In both cases the evolution
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Figure 19: A triple junction inside the unit circle moving under motion by surface diffusion

for surface energies (1,1,2), (1,1, 1) and (1,1, 2).

Figure 20: A curve inside an elliptic domain moving under motion by surface diffusion.

finds the minimum of a corresponding partitioning problem in which the length of the
interface between two phases is minimized subject to an area constraint for the phases.

Next, we investigate numerically the stability of some of the setups discussed in Garcke,
Ito, and Kohsaka (2005). We start by considering a domain € that has a boundary with
piecewise constant curvature. The analysis in Garcke, Ito, and Kohsaka (2005, Fig. 6)
predicts that a straight line inside €2 is only stable, if it is sufficiently short. In the
situation considered in Figure 21, it must not exceed twice the radius of the two arcs. In
the first experiment, the total dimensions of the domain are 4 x 2. The initial line has a
slope of 0.1°, and as the straight line on the z;-axis is not stable, it evolves to a straight
line on the zg-axis. If, however, the dimensions of the domain are only % X 2, then the

Figure 21: Initially straight lines that are unstable (left), neutral (middle) or stable
(right). On the left, X (¢) at times ¢ = 0,2,...,16. The remaining plots show X (t) at
times ¢t = 0, 6.
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Figure 22: Stable (left) and unstable (right) setup. In the middle a neutral situation is
shown. Each plot shows X (t) at times ¢t = 0, 1.

O
N

Figure 23: Steady state solutions for different angles 6.

straight line is stable, and this is seen in the corresponding experiment. The case where
the domain is a circle is neutral, as any straight line through the origin is a steady state
solution. As an example, we show an initially straight line with slope 5°, that does not
change under the surface diffusion flow. The final solutions depicted in Figure 21 are all
numerically steady states.

The next experiment investigates the behaviour for the setup in Garcke, Ito, and
Kohsaka (2005, Fig. 7). In each case, we use a domain where the lower boundary follows
a sine shape. In particular, the lower boundary is given by zo = —1 + % sin(2m x1).
The initial profile is always a semi-circle with radius 0.5. Depending on the sign of
the curvature of the domain boundary, that solution is either stable or unstable. We
investigate the stability numerically, by using 2 = (70.24, —1 & §) as the centre of the
half-circle. Note that z' = (:Fi, -1+ %) corresponds to a steady state. The results are
shown in Figure 22, where we also include the neutral case of a semi-circle attached to a
straight part of the boundary.

Next, we performed computations with three enclosed areas and two vertices on the
external boundary 0X, see Figure 23. Starting with an initially circular area (with radius
0.75) that is connected by two straight lines to the external boundary inside a 2 : 1
rectangular domain, we observe different steady state solutions depending on the chosen
surface energies 0 = (071, 09, 03,04). We note that for a physically relevant setup oy = oy,
where I'; and T'y are the straight line curve segments. We used the values o = (1, A\, A, 1)
with A =1, g, (g)%, corresponding to Barrett, Garcke, and Niirnberg (2005b, Fig. 3, 8),
so that the true triple junction angle is #; = 120°, 135°, 102°, respectively. The chosen
discretization parameters for each experiment were N = 256, 7 = 10~* and 7 = 0.2. The
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Figure 24: Steady state solution for circular setup inside an elliptic domain.

Figure 25: A triple junction inside the unit circle with different contact angles at the
external boundary.

observed angles inside the circular area where 6; = 118.6°, 133.9° and 100.2°, respectively.

We repeated the first experiment in Figure 23, but now inside a 2:1 elliptic domain
and with the initial profile at the height y = —0.2, see Figure 24. The chosen parameters
were N = 128, 7 = 1073 and T = 2, by which time the numerical solution has reached a
steady state.

Next we report on some experiments for (2.56a) and (2.39), i.e. for the surface diffusion
of a curve network with specified contact angles «; that the curves form with the external
boundary 0f). Here we use as initial data a “letter Y” inside the unit circle, similarly
to Figure 14. We varied the angle o;, ¢ = 1 — 3, that the three curves form with the
external boundary. In Figure 25 we show the solution X (t) at times ¢t = 0, T for the
values oy = a9 = a3 = a with o = 60°, 30° and 5°. The chosen discretization parameters
were N =128 7= 1072 and T = 0.1. The same experiments inside the square [—1,1]%
where the initial profile is now a “letter T” can be seen in Figure 26.

We note that in practice we observe a tangential movement of mesh points away
from the boundary intersection towards the triple junction. On the other hand, we have
mentioned in Remark 2.3 that it was shown in Barrett, Garcke, and Niirnberg (2005a)
that for a semidiscrete in time approximation the vertices equidistribute along each curve
I';, : =1 — 3. Hence for 7 sufficiently small, we expect the parameterizations )Z'Zm to
become more and more uniform. We investigate this behaviour with the following set
of experiments. We repeat the last experiment in Figure 25 and integrate until time
T = 1 for different choices of 7 = 107, k = 2 — 5. In Figure 27 we see clearly that the
distribution of vertices improves as 7 decreases.
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Figure 26: A triple junction inside the square [—1,1]? with different contact angles at the
external boundary.

Figure 27: Tangential movement and boundary vertex mislocation for different time step
sizes, 7 =107%, k =2 — 5.

Finally, we provide an experiment for a steady state inside the domain = [—1, 1]2.
The chosen contact angles are a; = 60°, ap = 120° and a3 = 90°, so that the initial
“letter Y” is a true steady state solution. We confirm this with a numerical experiment
where we choose N = 128, 7 = 1072 and T = 0.5, see Figure 28, where we complement
this result with the corresponding evolution inside the unit circle.

3.3.2 Combined surface diffusion and mean curvature flow

In this subsection, we report on numerical results for the approximation (2.59a,b) of
(1.24). First, we repeated the experiment in Figure 24, but now for a combined motion of

Figure 28: A steady state solution for given boundary contact angles inside the square
[—1,1]?%; and the corresponding evolution inside the unit circle.
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Figure 29: Solution for circular setup for combined mean curvature and surface diffusion
inside an elliptic domain. On the left X™(¢) at times ¢ = 0,0.5,...,2 and on the right
X™(T) at T = 40.

surface diffusion and mean curvature flow. In particular, we prescribe surface diffusion on
the two initially circular curves, while the initially straight lined curves experience motion
by mean curvature. See Figure 29 for the results, where we plot X™(t) at different times.
The chosen parameters were N = 128, 7 = 1073 and 7" = 40. One can clearly see the
very different evolution compared to Figure 24, and note in particular that each of the
two curves moving under motion by mean curvature now shrink to a single point (on the

boundary 092).

The next experiment is motivated by the considerations on a travelling wave solution
to (1.24) that was first mentioned in Mullins (1958) and which plays a major role in the
study of grain boundary motion, see also Kanel, Novick-Cohen, and Vilenkin (2004) and
Barrett, Garcke, and Niirnberg (2005b, Fig. 7). The computations shown in Figure 30
start with three curves meeting at a single triple junction, of which the two horizontal
ones experience motion by surface diffusion, while the third curve undergoes motion by
mean curvature. As surface energies we chose 0 = (1,1,03) with 03 = 1 and o3 = %,
respectively. Moreover, the evolution law for the curve moving under motion by mean
curvature is here given by V3 = 3 03 753 in place of (1.12), where for the mobility we chose
either u3 = 1 or uz = 2. Note that our approximation (2.59a,b) can be easily adapted to
this situation by replacing o3 with pu3 o3 in (2.59a). The domain Q is an 8 x 2 rectangle.
The chosen discretization parameters were N = 256 and 7 = 1073.

3.4 Quadruple junctions

Here we consider a setup of three enclosed areas meeting at two triple junctions and one
quadruple junction. A physical interpretation of this configuration is an alloy material
with two grains and two phases, similarly to the situation considered in Cahn (1991) and
Garcke, Nestler, and Stinner (2004). For the initial curves depicted in Figure 31 this
means that the two left enclosed areas represent phase B, while the rest of the plane
is made up of phase A. Moreover, the lower two enclosed areas represent grain I with
the rest of the domain being grain I/. Then we have motion by surface diffusion for the
interfaces I'; and I's separating the two phases and mean curvature flow for the interfaces
['s and I'y between the two grains. The surface energies were chosen to be ogp = 1 for the
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Figure 30: Travelling wave solutions )_(’m(t) at times ¢t =0,0.1,...,7, with T =1, 0.6, 0.7
and 0.4, respectively. Surface energies are o3 = 1 (left) and o3 = % (right), with mobilities
uz =1 (top) and pz = 2 (bottom).

curves moving by surface diffusion and ;¢ = A for the remaining curves. Two evolutions
for A = % and A = %, where the initial curves create a collection of 3:1 rectangles, can be
seen in Figure 31. The discretization parameters were N = 128, 7 = 1072 and T' = 0.49
and 7" = 1.2, respectively. In both evolutions we can see that the two curves enclosing
grain I in phase A eventually shrink to a point. The change of topology needed to continue
the evolution is beyond the scope of our direct parametric approximation. We also give
the corresponding numerical steady states for the pure surface diffusion flow version of
this experiment in Figure 32. The discretization parameters were N = 128, 7 = 10~% and
T =28.

Finally, we remark that, on recalling osp = 1 and oyp;¢c = A, the balance of forces

€\

LG, 220

Figure 31: X(t) for t = 0,0.1,...,T for an experiment with a quadruple junction with
A =2 (left) and A = 2 (right).

-

40



@’\ g
R\, P
N R

Figure 32: X (t) for t = 0,T for an experiment with a quadruple junction with A = %
(left) and A = 2 (right).

equation (1.16) becomes
(7L 4+ T3) + A(Ta+74) =0. (3.3)

It follows from (3.3) that 6; = 03 and 6, = 6,, where §; := <(7;, Tj41), e =1 — 3, and 04 :=
(T4, T1), as adding the four vectors 71, A T2, 73, A 74 in the plane leads to a 4-polygon with
two opposite sides having length 1 and two opposite sides having length A. This implies
that the 4-polygon is a parallelogram and hence opposite angles in the parallelogram
have to be equal. This fact can be seen clearly in the numerical computations. For
example, on labelling the curves anti-clockwise starting from the top most one, the angles
observed in Figure 32 at the quadruple junction are § = (133.1,44.6,133.7,48.6) and
6 = (107.5,69.6,105.8,77.1), respectively, i.e. the stated angle condition is approximately
satisfied.

4 Conclusions

We have presented a fully practical finite element approximation for the (combined) mo-
tion by mean curvature and motion by surface diffusion of curves in R?, as well as for
other related second and fourth order geometric evolution equations. Our scheme can
handle both triple and quadruple junction points between different curves, and intersec-
tions of curves with a fixed external boundary 0€2. To our knowledge, this is the first such
scheme in the literature. Moreover, the presented scheme intrinsically moves the vertices
tangentially along the curves, so that no artificial redistribution of vertices is necessary
in practice. Finally, we note that extending the presented scheme to include the case of
fully anisotropic surface energies is the subject of our ongoing research in this area.
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