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Abstract

Healthcare resource allocation decisions are commonly informed by com-

puter model predictions of population mean costs and health effects. It is

common to quantify the uncertainty in the prediction due to uncertain

model inputs, but methods for quantifying uncertainty due to inadequacies

in model structure are less well developed. We introduce an example of a

model that aims to predict the costs and health effects of a physical activ-

ity promoting intervention. Our goal is to develop a framework in which

we can manage our uncertainty about the costs and health effects due to

deficiencies in the model structure. We describe the concept of ‘model dis-

crepancy’: the difference between the model evaluated at its true inputs,

and the true costs and health effects. We then propose a method for quanti-

fying discrepancy based on decomposing the cost-effectiveness model into a

series of sub-functions, and considering potential error at each sub-function.

We use a variance based sensitivity analysis to locate important sources of

discrepancy within the model in order to guide model refinement. The re-

sulting improved model is judged to contain less structural error, and the

distribution on the model output better reflects our true uncertainty about

the costs and effects of the intervention.

KEYWORDS: computer model, elicitation, health economics, model uncertainty,

sensitivity analysis, uncertainty analysis
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1 Introduction

Mathematical “cost-effectiveness” models are routinely used to aid healthcare re-

source allocation decisions. Such models estimate the population mean costs and

health effects of a range of decisions, and will be most helpful when their results are

unbiased and uncertainty about their estimated costs and consequences is prop-

erly specified. Two sources of uncertainty in model predictions are uncertainty

about the model input values and uncertainty about model structure.

These models are typically ‘law-driven’ (based on our knowledge of the system)

rather than ‘data-driven’ (fitted to data), following the distinction given in Saltelli

et al. (2008). Indeed, such models are built because of a lack of data on long term

costs and health consequences. The law-driven nature of the cost-effectiveness

model has important implications for our choice of technique for managing struc-

tural uncertainty, as we discuss later.

To quantify input uncertainty, one can specify a probability distribution for the

true values of the inputs, and propagate this distribution through the model, typi-

cally using Monte Carlo sampling. In health economic modelling, this is known as

probabilistic sensitivity analysis (PSA) (Claxton et al., 2005). The danger with

reporting uncertainty based only on a PSA is that this may be interpreted as

quantifying uncertainty about the costs and health effects of the various decision

options. However, PSA only quantifies uncertainty in the model output due to un-

certainty in model inputs. To properly represent uncertainty about the costs and

health effects we must also consider uncertainty in the model structure. However,

quantifying uncertainty in model structure is hard since it requires judgements

about a model’s ability to faithfully represent a complex real life decision prob-

lem.

Model averaging methods can be used to assess structural uncertainty if a

complete set of plausible competing models can be built and weighted according

to some measure of model adequacy. The weighting may be based, for example,

on the posterior probability that the model is ‘correct’, or the predictive power

of the model in a cross-validation framework. See Kadane and Lazar (2004) for a

general discussion on this topic and Jackson et al. (2009, 2010) for more focussed

discussions with respect to health economic decision model uncertainty. Model

averaging does however have limitations. If model weights are dependent on ob-

served data then we must be able to write down a likelihood function linking the

model output to the data. This will be difficult unless we have observations on
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the output of the model itself, which in the health economic context we almost

never have. If we have observations on a surrogate endpoint (say, drug efficacy at

two years in the context of wishing to predict efficacy at ten years) then we can

construct weights that relate to certain structural choices within the model, but

crucially the data will not guide our choice of the whole model structure. Hence

there may be elements within each model that lead to different predictions of the

output, but are untested in the model averaging framework.

The problem of model structure uncertainty has also been addressed in the

computer models literature, but from a different perspective. Rather than focusing

on generating weights for models within some set, methods are directed towards

making inferences about model “discrepancy”: the difference between the model

run at its ‘best’ or ‘true’ input, and the true value of the output quantity (Kennedy

and O’Hagan, 2001). Given a model, written as a function f , with (uncertain)

inputs X, the key expression is equation (1), which links the model output Y =

f(X) to the true, but unknown value of the target quantity we wish to predict,

Z:

Z = f(X) + δz, (1)

The discrepancy term, δz, quantifies the structural error : the difference between

the output of the model evaluated at its true inputs and the true target quantity.

We are explicitly recognising in equation (1) that our model may be deficient,

but note that when we speak about model deficiency we are not concerned with

mistakes, ‘slips’, ‘lapses’ or other errors of implementation (for a discussion on this

topic see Chilcott et al., 2010b). Rather, we are concerned with deficiencies arising

as a result of the gap between our model of reality, and reality itself. Obtaining a

joint distribution that reflects our beliefs about inputs and discrepancies, p(X, δz),

allows us then to fully quantify our uncertainty in the target quantity due to

both uncertain inputs and uncertain structure. This approach has the important

advantage that only a single model need be built, though methods for making

inferences about discrepancy in the context of multiple models have also been

explored (Goldstein and Rougier, 2009).

In our paper we explore the feasibility of the discrepancy method in assessing

structural uncertainty in a cost effectiveness model for a physical activity pro-

moting intervention. In section 2 we describe our ‘base case’ model and report

results without any assessment of structural uncertainty. In section 3 we describe

our proposed method for quantifying the model discrepancy δz. We describe the

application of the method to our model in section 4 and present results in section
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5. We discuss implications and potential further developments in the final section.

2 Case study: a physical activity intervention

cost effectiveness model

We based our case study on a cost-effectiveness model that was developed to

support the National Institute for Health and Clinical Excellence (NICE) physical

activity guidance (NICE, 2006). NICE is the organisation in the UK that makes

recommendations to the National Health Service and other care providers on the

clinical and cost effectiveness of interventions for promoting health and treating

disease. The majority of NICE’s recommendations and guidance products are

informed by mathematical model predictions.

Our simplified version of the NICE model aims to predict the incremental net

benefit of two competing decision options: exercise on prescription (e.g. from

a general medical practitioner) to promote physical activity (the ‘intervention’),

and a ‘do nothing’ scenario (‘no intervention’). Incremental net benefit, measured

in monetary units, is defined as

Z = λ(E2 − E1)− (C2 − C1) = λ∆E −∆C, (2)

where Ed and Cd are respectively the population mean health effects and costs

associated with decisions d = 1, 2, and λ is the value in monetary units that the

decision maker places on one unit of health effect. We assume that the intervention

impacts on health by reducing the risks of three diseases: coronary heart disease

(CHD), stroke and diabetes. The health effects included in the model are those

that relate to these three diseases, and we count costs that accrue as a result of

the treatment of the three diseases, as well as those that relate to the intervention

itself.

2.1 Description of ‘base case’ model - no assessment of

structural uncertainty

Our model is a simple static cohort model which can be viewed as a decision tree

(figure 1). The left-most node represents the two decision options, d = 1, no

intervention, and d = 2, the exercise prescription intervention. The first chance

node represents the probability of new exercise under each decision option, with
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Figure 1: The model expressed as a decision tree

the second node representing the probability of maintenance of exercise conditional

on new exercise. The third node represents the probability of eight mutually

exclusive health states conditional on each of the three outcomes from the first

two nodes: exercise that is maintained, exercise that is not maintained, and no

exercise (sedentary lifestyle).

The structure of the model represents our beliefs about the causal links be-

tween the intervention and exercise, and exercise and health outcomes. There are

no data available that relate to the model outputs; we have not observed costs

and health outcomes for control and treatment groups on the exercise interven-

tion. However, separate data sources are available regarding the effectiveness of

the intervention in promoting exercise, and the risks of the various disease out-

comes for active versus sedentary patients, and the availability of such data has

guided the choice of model structure.

In our model each comorbid health state (e.g. the state of CHD and stroke)

is treated as having a single onset point in time. Individuals do not progress, say,

from the disease free state, to CHD and then to CHD plus stroke as they might

do in reality. This is clearly unrealistic and is a consequence of the choice to use a

very simple decision tree structure. Modelling sequential events is possible using a

decision tree structure, but the number of terminal tree branches quickly becomes

very large in all but the simplest of problems (Sonnenberg and Beck, 1993). A

Markov or discrete event model structure would be more suited to addressing our

decision problem (see Karnon (2003) for a comparison of these methods), but
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we have chosen to retain the important features of the structure of the model

published by NICE, upon which our case study is based (NICE, 2006).

We denote the set of eight health states, disease free, CHD alone, stroke alone,

diabetes alone, CHD and stroke, CHD and diabetes, stroke and diabetes, CHD and

stroke and diabetes as H = {hj, j = 1, . . . , 8}, where j indexes the set in the order

given above. Each of the eight health states hj ∈ H, under each decision option d,

has a cost cdj (measured in £), a health effect (measured in Quality Adjusted Life

Years) qdj, and a probability of occurrence pdj (as approximated by the relative

frequency with which this health state occurs within a large cohort). Total costs

and total health effects for decision d are obtained by summing over health states,

i.e. Cd =
∑8

j=1 cdjpdj and Qd =
∑8

j=1 qdjpdj. Given these, the model predicted

incremental net benefit, Y is

Y = λ(Q2 −Q1)− (C2 − C1) = λ∆Q−∆C. (3)

The costs cdj, health effects qdj, and health state probabilities pdj are not

themselves input parameters in the model, but instead are functions of input

parameters. There are 24 uncertain and three fixed input parameters that relate

to the costs, quality of life and epidemiology of CHD, stroke and diabetes, and the

effectiveness of the intervention in increasing physical activity. These inputs are

denotedX = X1, . . . , X27, and uncertainty is represented via the joint distribution

p(X). The input quantities and their distributions are described in tables 2 and

3 in appendix A.

Finally, we denote the deterministic function that links the model inputs to

the model output as f , i.e. Y = f(X), and call this the base case model.

2.2 Base case model results

The model function (which we describe in detail in section 4) was implemented in

R (R Development Core Team, 2010). We sampled the input space and ran the

model 100,000 times. The mean of the model output, Y , at λ=£20,000/QALY

was £247 and the 95% credible interval was (-£315, £1002). The probability that

the intervention is cost-effective, P (INB > 0), at λ =£20,000 was 0.77. Results

for the base case model are shown graphically in figure 2 (note that figure 2 also

includes the results for the ‘with discrepancy’ and ‘after remodelling’ analyses that

are reported in section 5.1).

Figure 2a shows the cost-effectiveness plane (with 100 Monte Carlo samples).

The sloped line shows the willingness to pay threshold of £20,000 per QALY. To
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aid clarity figure 2b is a contour plot representation of the cost effectiveness plane,

showing the 95th percentile of an empirical kernal density estimate of the joint dis-

tribution of costs and effects. Figure 2c shows the cost-effectiveness acceptability

curve (i.e. a plot of P (INB > 0) against λ) for values of λ from £0/QALY to

£40,000/QALY. Finally, figure 2d shows the kernel density estimate for Y , the

base case model estimate of the incremental net benefit at λ =£20,000.

A mean incremental net benefit of £247 at λ=£20,000/QALY implies that, on

average, the intervention will accrue costs and health effects that have a positive

net value of £247 per person treated. The probabilistic sensitivity analysis implies

that, at λ=£20,000/QALY, a choice to recommend the intervention would have

a probability of 0.77 of being better than the choice not to recommend.

3 Managing uncertainty due to structure: a dis-

crepancy approach

For the decision maker to base their decision on the model output, the model must

have credibility. The model must be judged good enough to support the decision

being made. The primary goal of our analysis is therefore to provide a means

for quantifying judgements about structural error and specifically to determine

the relative importance of structural compared to input uncertainty in addressing

the decision problem. If uncertainty about structural error is large then we may

wish to review the model structure. Conversely, if we can demonstrate that the

uncertainty about structural error is small in comparison to that due to input

uncertainty, then we have a stronger claim to have built a credible model.

In building the base case model we made a series of assumptions, for example

we assumed that occurrences of CHD, stroke and diabetes are independent at the

level of the individual and therefore that disease risks act multiplicatively. Such

assumptions drive the structural choices that we make when formulating a model,

and incorrect assumptions will lead to structural error. We must therefore focus

our attention on the assumptions within a model if we are to assess its adequacy

and properly quantify our uncertainty about the target quantity.

In the model averaging framework new models would be built to incorporate

the set of alternative assumptions believed plausible (with new models possibly

being just minor variants of the existing model). The models would then be

weighted according to some measure of adequacy in relation to data, D. Given
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‘with discrepancy’ analysis (section 5.1) and ‘after remodelling’ analysis (section

5.6).
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a set of models {Mi, i ∈ I} and adequacy measure ω(·), the distribution of the

target incremental net benefit is given by

p(Z|D) =
∑
i∈I

p(Z|Mi, D)ω(Mi|D). (4)

If we believe that one of the models in our set is true (i.e. that {Mi, i ∈ I} is “M-

closed” in the terminology of Bernardo and Smith, 1994), and can specify prior

model probabilities p(Mi), then the models can be weighted by their posterior

probabilities given the data,

p(Mi|D) =
p(D|Mi)p(Mi)∑
i∈I p(D|Mi)p(Mi)

, (5)

For the M-closed case this is a consistent estimation procedure, in the sense that

as more data are collected the posterior probability of the true model will converge

to 1. However, if we believe that none of the models is correct (i.e. we have an

“M-open” set) then this approach is no longer consistent. In the M-open case

Jackson et al. (2010) propose instead that weights are based on the predictive

probability of Mi given a replicate data set.

A more fundamental problem in the context of health economic decision mod-

elling is the usual absence of data against which to measure the adequacy of the

model in its entirety. We do not measure overall costs and health effects over

extended time periods under competing decision options. In the absence of ob-

servations on the model output Z, weights could be based on the judgement of

the modeller and/or decision maker, though making probability statements about

models, which are by definition abstract non-observables is likely to be very diffi-

cult.

We therefore propose a different approach based on specifying a distribution

for the model discrepancy, δz, as defined in equation (1). In contrast to the model

averaging approach we do not attempt to make assessments about the adequacy

of the model structure in relation to alternative structures; we instead assess how

large an error might be due to the structure of the model at hand.

3.1 Discrepancy between model output and reality

In many applications in the physical sciences the target quantity predicted by a

model can be partitioned asZ = {Zo,Zu}, where there are (noisy) observationsw
on Zo, but no observations of Zu. For example, we may have historic observations
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on the output variable, and wish to predict future observations (forecasting),

or we may have observations at a set of points in space and wish to predict

values at locations in between (interpolation). Kennedy and O’Hagan (2001)

propose a method for fully accounting for the uncertainty in Z, given w, via

the model discrepancy within a Bayesian framework. However, in the context of

health economics, we do not measure the costs and health consequences of sets

of competing decisions, making this data driven method impossible. Specifying

p(δz) directly therefore requires some form of elicitation of beliefs. See Garthwaite

et al. (2005) and O’Hagan et al. (2006) for a discussion of methods.

Making meaningful judgements about the model discrepancy will be difficult,

though it should always be possible to make a crude evaluation of a plausible

range of orders of magnitude of δz, for example by asking questions like ‘could

the true incremental net benefit of decision 1 over decision 2 be a billion pounds

greater than that predicted by the model, or a million pounds greater, or only a

hundred pounds greater?’ However, it may be easier to make judgements about δz

indirectly. If we consider f in more detail we may be able to determine where in

the model structural errors are likely to be located, and what their consequences

might be. We therefore propose making judgements about discrepancy at the

sub-function level.

3.2 Discrepancy at the ‘sub-function’ level

Any model f , except the most trivial, can be decomposed into a series of sub-

functions that link the model inputs to the model output. So for example, a

decomposition of the hypothetical model

Y = f(X1, . . . , X7) =

{
(X1X2 +X3X4)

(
1

1 +X5

)−X6
}

−X7, (6)

might be in terms of sub-functions f1, f2 and f3, with Y1 = f1(X1, . . . , X4) =

X1X2+X3X4, Y2 = f2(X5, X6) =
(

1
1+X5

)−X6

and Y = f3(Y1, Y2, X7) = Y1Y2−X7.

The sub-functions f1, f2 and f3 could be decomposed into further sub-functions,

and so on. The inputs to each sub-function may contain both elements of the

original input vector X = (X1, . . . , X7) and outputs from other sub-functions in

the decomposition. We call the output of each sub-function (unless it is the final

model output, Y ) an intermediate parameter.

For each sub-function, we ask the question ‘would this sub-function, if evalu-

ated at the true values of its inputs, result in the true value of the sub-function
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output?’ If not then we recognise potential structural error and introduce an un-

certain discrepancy term, δi, either on the additive scale, i.e. Yi = fi(·) + δi, or

multiplicative scale, i.e. log(Yi) = log{fi(·)} + log(δi). The idea is that, because

each sub-function represents a much simpler process than the full model f , making

judgements about discrepancy in fi will be easier than making judgements about

discrepancy in f .

Repeating the process for all sub-functions in the model will leave us with a

series of n discrepancy terms, which we denote δ = (δ1, . . . , δn). Note that for

some sub-functions we will judge there is no structural error, usually when an

intermediate parameter is by definition equal to the sub-function that generates

it.

There will not usually be a unique decomposition of the model f into a series

of sub-functions that links the model inputs X to the model output Y . However,

some decompositions will be more useful than others for assessing discrepancy.

Following the advice that it is preferable to elicit beliefs about observable quanti-

ties (O’Hagan et al., 2006), we search for decompositions where both inputs and

outputs of the sub-functions are observable.

Once we have introduced discrepancy terms at the locations within the model

where we judge there is potential structural error, we must make judgements about

the discrepancies via the specification of the joint probability distribution p(X, δ).

We assume in our case study that discrepancies are independent of inputs, such

that we can factorise the joint density p(X, δ)=p(X)p(δ). This independence

assumption does not need to hold for the discrepancy method to be valid, but

specification of p(δ) independent of p(X) will clearly be easier than specifying

p(X, δ).

We next consider the mean and variance for each discrepancy term δi, i =

1, . . . , n. We make judgements about the sizes of the discrepancies relative to the

mean values of the corresponding intermediate parameters, and set variances such

that
√
var(δi) = vi|E(Yi)|, with vi chosen to reflect our judgements. Determining

plausible values for vi may not be a trivial task, a point to which we return in the

discussion. We treat each δi as independent of all other uncertain quantities, unless

there are constraints that prevent this (a constraint would arise, for example, in

relation to a set of population proportion parameters that must sum to one) or

unless there are good reasons to assume strong correlation between terms. Finally

we select appropriate distributions with the specified means and variances.

Propagating the uncertainty we have specified for δ through the model, along
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with the uncertainty in the inputs, X, allows us to check that the uncertainty in

Z that our specification of p(δ) implies is plausible. If this is not the case then

we must rethink our choice of distributions for the components of δ, most easily

through altering our choices for vi.

The sub-function discrepancy approach has two important consequences. Firstly,

if we can adequately make judgements about all the discrepancy terms in the

model (there may be many) then we will derive p(δz) and hence be able to make

statements about our uncertainty about the incremental net benefit that incorpo-

rates beliefs about both inputs and structure. Perhaps more usefully though, we

can use sensitivity analysis techniques to investigate the relative importance of the

different structural errors, allowing us improve the parts of the model where this

is most needed. If, after repeating the sensitivity analysis in our improved model,

we find that discrepancies now have a lesser impact on the output uncertainty,

then we have in an important sense built a more robust model structure.

4 Applying the sub-function discrepancy method

to our physical activity model

We return to our base case physical activity model, and beginning at the net

benefit equation (3), work ‘backwards’ through the model, assessing potential

structural error at each sub-function.

4.1 Assessment of sub-function generating the output pa-

rameter Y

The model output, Y predicts the incremental net benefit, as defined in equation

(3). Evaluation of equation (3) at the true values of ∆Q and ∆C would, by

definition, result in the true value of the incremental net benefit, Z, so there is no

structural error at this point in the model, and therefore no discrepancy term.
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4.2 Assessment of sub-function generating the intermedi-

ate parameter ∆Q

The incremental health effect of the intervention over the non-intervention, ∆Q

is

∆Q =
8∑

j=1

p2jq2j −
8∑

j=1

p1jq1j, (7)

where pdj and qdj are the probabilities and discounted health effects in QALYs

respectively for health state hj under decision d. Future health effects (and future

costs) are discounted to reflect time preference whereby higher value is placed

on benefits that occur in the near future than on those occurring in the distant

future. See Krahn and Gafni (1993) for a discussion of the role of discounting in

health economic evaluation.

Health effects for each state are assumed to be equal regardless of the decision,

i.e. that q1j = q2j = qj, and therefore that

∆Q =
8∑

j=1

(p2j − p1j)qj =
8∑

j=1

(p2j − p1j)(qj − q1) =
8∑

j=1

(p2j − p1j)q
(dec)
j , (8)

where the final term is a re-expression in terms of the decremental health effect,

q
(dec)
j relative to the disease free state j = 1.

We ask the question, ‘given the true values of pdj and qj, does (8) result in

the true value of ∆Q?’ Because we imagine that the intervention could have an

impact on a number of diseases other than CHD, stroke and diabetes we recognise

potential structural error and introduce an uncertain additive discrepancy term,

δ∆Q into (8), which becomes

∆Q =
8∑

j=1

(p2j − p1j)q
(dec)
j + δ∆Q. (9)

Since exercise can result in poor health outcomes as well as good outcomes,

for example through musculo-skeletal injuries or accidents, we specify a mean of

zero for δ∆Q. We could assume a non-zero mean for δ∆Q if we felt that increased

exercise was likely to be on balance beneficial. This will have the effect of shifting

the mean of the model output unless the sub-function related to the discrepancy

is entirely unimportant. Introducing discrepancy terms that have non-zero mean

may well be reasonable, but by doing so we are effectively making a judgement

that the base case model is ‘wrong’.
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We judge that δ∆Q is unlikely to be more than ±10% of ∆Q, and we represent

our beliefs about δ∆Q using a normal distribution with a standard deviation equal

to 5% of the mean of ∆Q, i.e. δ∆Q ∼ N[0, {0.05× E(∆Q)}2].

4.3 Assessment of sub-function generating the intermedi-

ate parameter ∆C

The incremental cost of the intervention over the non-intervention, ∆C is

∆C =
8∑

j=1

p2jc2j −
8∑

j=1

p1jc1j, (10)

where pdj and cdj are the probabilities and discounted costs respectively that are

associated with health state hj under decision d.

Costs, not including the cost of the intervention itself c0, are assumed to be

equal across decision arms, i.e. that c2j = c1j + c0, and therefore that

∆C =
8∑

j=1

p2j(c1j + c0)−
8∑

j=1

p1jc1j = c0 +
8∑

j=1

(p2j − p1j)c1j, (11)

where c0 is a model input.

As above, there may be costs that relate to diseases other than CHD, stroke

and diabetes that are not included in ∆C and we therefore introduce an additive

discrepancy term, δ∆C , and specify that δ∆C ∼ N[0, {0.05× E(∆C)}2].

4.4 Assessment of sub-function generating the intermedi-

ate parameters c1j

The intermediate parameters c1j represent the discounted cost associated with

the eight health states. In the base case model the costs for the eight states are

derived from the costs associated with the three individual diseases, with costs for

comorbid states assumed to be the sum of the costs for the constituent diseases,

so for example

c1,8 = cchd + cstr + cdm. (12)

Costs may not be additive in this way, so we introduce additive discrepancy terms,

δcj , for the intermediate parameters that relate to the comorbid states, c1j j =

5, . . . , 8.
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We judge that comorbid state costs could be higher or lower than the sum of the

constituent costs, so we assumed a mean of zero for each discrepancy term, δcj , j =

5, . . . , 8. We represent beliefs about δcj via δcj ∼ N[0, {0.05 × E(cj)}2], j =

5, . . . , 8.

4.5 Assessment of sub-function generating the intermedi-

ate parameters cchd, cstr and cdm

The discounted costs for CHD, stroke and diabetes are

ck = c∗k × αk, (13)

where k indexes the set {CHD, stroke, diabetes}. Costs (other than the cost of the

intervention) are assumed to occur at some time in the future, and are discounted

at 3.5% per year. The parameters c∗k represent undiscounted costs, and αk, are

the discounting factors for the length of time between the intervention and the

occurrence of the relevant health outcomes.

Given true values for c∗k and αk equation (13) will result in a true value for ck,

and there is no structural error at this point.

4.6 Assessment of sub-function generating the intermedi-

ate parameters c∗chd, c
∗
str and c∗dm

The undiscounted mean per-person lifetime costs for CHD, stroke and diabetes

are

c∗k =
tk
nk

(
age

(dth)
k − age

(onst)
k

)
, (14)

where k indexes the set {CHD, stroke, diabetes}, and where tk are total annual

NHS costs for disease k, and where nk are UK prevalent cases of disease k for the

same year. The parameters tk, nk, age
(dth)
k and age(onst) are model inputs.

Mean per person undiscounted costs are calculated as the mean per person

annual NHS cost multiplied by the mean length of time in the disease state. If

the per person per year cost of disease is dependent on the length of time the

individual spends in the disease state (e.g. if costs are greater near to the end of

life), then c∗chd, c
∗
str and c∗dm as calculated will not equal the mean per person per

year costs. To properly calculate the mean we need to know the joint distribution

of the costs and length of time in the disease state. To account for the difference

we introduce discrepancy terms δc∗k .
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We judge that disease costs could in reality be higher or lower than the mod-

elled costs as a result of the structural error, so we assume a mean of zero for

each discrepancy term, δc∗k . We represent beliefs about δc∗k via δc∗k ∼ N[0, {0.05×
E(c∗k)}2].

4.7 Assessment of sub-function generating the intermedi-

ate parameters αchd, αstr and αdm

The discounting factors for CHD, stroke and diabetes are

αk =

(
1

1 + θ

)lk

, (15)

where lk is the mean length of life remaining at the time of intervention for disease

k ∈ {CHD, stroke, diabetes}, and θ is the per-year discount rate for both costs

and health effects. The mean length of life remaining, lk, is given by

lk =
1

2

(
age

(onst)
k + age

(dth)
k

)
− age(int), (16)

where age
(onst)
k is the mean age of onset of disease k, age

(dth)
k is the mean age of

death from disease k and age(int) is the mean age of the cohort at the time of the

intervention. The parameters θ, age
(dth)
k , age(onst) and age(int) are model inputs.

In the base case model we assume that the costs of each disease will be realised

at a time midway between the average age of disease onset, and the average age

of death from that disease. This is not necessarily true and we introduce additive

discrepancy terms δαk
.

Discount factors must lie in (0, 1], and so discrepancies must lie in (−αk, 1−αk].

To satisfy this constraint we assume that αk + δαk
follows a beta distribution. We

have no reason to believe that the true values of the discount rates will be higher

or lower than the modelled values, so we assume that δαk
has mean zero for all k.

As above, we assume that the standard deviation is 5% of the mean value of the

intermediate parameter, i.e. that
√

var(δαk
) = 0.05E(αk).

See Appendix C for details of the calculation of Dirichlet distribution hyperpa-

rameters that satisfy these requirements. The more general Dirichlet distribution

specification of uncertainty is required for other discrepancy terms in the model,

so for brevity we treat αk+ δαk
and 1− (αk+ δαk

) as ‘sum-to-one’ parameters and

the beta distribution as a special case of the Dirichlet distribution.
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4.8 Assessment of sub-function generating the intermedi-

ate parameters q
(dec)
j

The intermediate parameters q
(dec)
j represent the discounted decremental health

effects (in QALYs) associated with the eight health states. In the base case model

these terms are derived from the discounted decremental health effects associated

with the three individual diseases, with decremental effects for comorbid states

assumed to be the sum of the decremental effects for the constituent diseases.

This means that, for example

q
(dec)
8 = q

(dec)
chd + q

(dec)
str + q

(dec)
dm , (17)

where the parameters q
(dec)
chd , q

(dec)
str and q

(dec)
dm are model inputs. Decremental health

effects may not be additive in this way, so we introduce discrepancy terms δqj for

the comorbid health states j = 5, . . . , 8.

We judge that comorbid state decremental health effects could be higher or

lower than the sum of the constituent terms, so assume a mean of zero for each

discrepancy term, δqj , j = 5, . . . , 8. We represent beliefs about δqj via δqj ∼
N[0, {0.05× E(qj)}2], j = 5, . . . , 8.

4.9 Assessment of sub-function generating the intermedi-

ate parameters pdj

The proportions of the population who are expected to experience each disease

state j = 1, . . . , 8 under decision options d = 1, 2 are

pdj = p
(ex)
d p

(mnt)
d r

(ex)
j + p

(ex)
d

(
1− p

(mnt)
d

)
r
(sed)
j +

(
1− p

(ex)
d

)
r
(sed)
j , (18)

where r
(ex)
j and r

(sed)
j are the risks of disease state j in those who exercise and

in those who are sedentary, respectively. The probability of new exercise under

decision option d is p
(ex)
d , and the probability of maintenance of exercise is p

(mnt)
d .

The parameters p
(ex)
d and p

(mnt)
d are model inputs.

Parameters defining health state probabilities lie in [0, 1], and must sum to

one over j, so discrepancies must lie in [−pdj, 1− pdj], and must sum to zero over

j. To satisfy this constraint we assume a Dirichlet distribution for pdj + δpdj .

We have no reason to believe that the true values of the health state prob-

abilities would be higher or lower than the modelled values, so we assume that
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E(δpdj) = 0, ∀d, j. We assume that the standard deviation was 5% of the mean

value of the intermediate parameter, i.e.

1

8

8∑
j=1

√
var(δpdj)

E(pdj)
= 0.05. (19)

See Appendix C for details of the calculation of the Dirichlet hyperparameters

that satisfy these requirements.

4.10 Assessment of sub-function generating the interme-

diate parameters r
(ex)
j and r

(sed)
j

The parameters r
(ex)
j and r

(sed)
j represent the risks of health state j in a population

that exercises and in a sedentary population, respectively. In the base case model

we assume that occurrences of CHD, stroke and diabetes are independent, and

therefore that the r
(ex)
chd , r

(ex)
str and r

(ex)
dm act multiplicatively to generate the r

(ex)
j

(and similarly multiplicatively in the sedentary population). So for example,

r
(ex)
1 = (1− r

(ex)
chd )(1− r

(ex)
str )(1− r

(ex)
dm ). (20)

We assume that occurrences of CHD, stroke and diabetes are independent,

which may not be true, so we introduce additive discrepancy terms δ
r
(sed)
j

and δ
r
(ex)
j

.

Following the same argument as that in 4.9 we assume a Dirichlet distributions

for r
(ex)
j + δ

r
(ex)
j

and for r
(sed)
j + δ

r
(sed)
j

. We have no reason to believe that the true

values of the disease risks would be higher or lower than the modelled values,

so we assume that E(δ
r
(ex)
j

) = E(δ
r
(sed)
j

) = 0, ∀j. We assume that the standard

deviations were 5% of the mean values of the intermediate parameters, i.e.

1

8

8∑
j=1

√
var

(
δ
r
(ex)
j

)
E
(
r
(ex)
j

) =
1

8

8∑
j=1

√
var

(
δ
r
(sed)
j

)
E
(
r
(sed)
j

) = 0.05. (21)

4.11 Assessment of sub-function generating the interme-

diate parameters r
(ex)
k

The parameters r
(ex)
k where k indexes the set {CHD, stroke, diabetes} represent

the risks of CHD, stroke and diabetes in those who exercise. They are calculated

by multiplying baseline risk by the relative risk of disease given exercise, i.e.

r
(ex)
k = r

(sed)
k ×RRk, (22)
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where r
(sed)
k and RRk are model inputs.

Given true values for r
(sed)
k and RRk, sub-function (22) will result in the true

value of r
(ex)
k by definition of a relative risk, so there is no structural error at this

point.

5 Results of discrepancy analysis

A total of 48 discrepancy terms were introduced into the model. The addition of

the discrepancy terms ‘corrects’ any structural error, and allows us now to write

Z = f ∗(X, δ), (23)

where f ∗ takes the same functional form as f , but with the inclusion of the

discrepancy terms as described in section 4.

5.1 Model output after inclusion of discrepancy terms

We sampled the input and discrepancy distributions and ran the model f ∗ 100,000

times. This resulted in a predicted mean incremental net benefit of £247, which is

equal to the that predicted by the base case model. The 95% credible interval was

-£886 to £1444, which is wider than that of the base case model, reflecting the

recognition of our additional uncertainty about the true incremental net benefit

due to possible model structural error.

Returning to figure 2, we note the larger cloud of points on the cost-effectiveness

plane (figures 2a and 2b), reflecting the additional uncertainty. The additional

uncertainty has reduced the probability that the intervention is cost-effective,

P (INB > 0), at λ =£20,000 to 0.66 (closer to the value of 0.5 that represents com-

plete uncertainty), and flattened the cost effectiveness acceptability curve towards

the horizontal line at P (INB > 0) = 0.5 (figure 2c). The additional uncertainty

is also reflected in the wider empirical distribution in figure 2d.

5.2 Determining important structural errors via variance

based sensitivity analysis

Following our analysis of structural error we may then wish to make improvements

to the model. It is unlikely that all the sub-model discrepancy terms are equally

‘important’, by which we mean that some terms may be located in parts of the
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model in which structural errors contribute very little to uncertainty about Z, the

incremental net benefit. If we can identify the most important discrepancy terms,

we can consider reducing structural errors through better modelling, perhaps by

relaxing certain assumptions, or by including features that were omitted initially.

Similarly, identifying unimportant discrepancy terms will tell us where it is not

worth improving the model.

Note that any re-modelling following a sensitivity analysis may not reduce

uncertainty about Z, for example if the improved model structure introduces

new, uncertain parameters. In this situation we are effectively ‘transferring’ our

uncertainty from structure to inputs. This may be helpful simply because input

uncertainty is generally easier to manage, but in any case we believe that a formal

consideration of the balance between uncertainty due to model structure and

uncertainty due to model inputs is desirable.

We can identify a set of important discrepancy terms using standard sensitivity

analysis techniques. A considerable number of methods exist (Saltelli et al., 2008),

but for our purposes we have chosen to use a variance based sensitivity analysis

approach. In this approach the measure of importance for each discrepancy term,

δi i = 1, . . . , n, is defined as its ‘main effect index’,

varδi{E(Z|δi)}
var(Z)

. (24)

Given the identity var(Z) = varδi{E(Z|δi)}+Eδi{var(Z|δi)} the main effect index

gives the expected reduction in the variance of Z obtained by learning the value

of δi.

The main effect index for uncorrelated discrepancy terms is straightforward to

calculate using Monte Carlo methods. In this case E(Z|δi) can be approximated

by

E(Z|δi) ≈
1

S

S∑
s=1

f ∗(xs, δ−i,s, δi), (25)

where {(xs, δ−i,s), s = 1, . . . , S} is a (large) sample from the distribution p(X, δ−i).

However, if δi is correlated with other discrepancy terms or inputs, then

this method would require us to draw samples from the conditional distribution

p(X, δ−i|δi). Such conditional distributions may not be known, so we propose an

alternative approximation method. See appendix B.

Following a variance based sensitivity analysis of the discrepancy terms in our

model, eight of the terms appeared to be important, having main effects > 5%.
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The pattern of importance suggests that re-expressing the sub-functions for the

parameters pdj is key to reducing structural error (table 1).

Table 1: Main effect indexes for discrepancy terms (> 5% in bold)

Discrepancy Main effect Discrepancy Main effect Discrepancy Main effect

δ
r
(ex)
1

0.002 δp1,1 0.266 δc∗chd 0.002

δ
r
(ex)
2

0.002 δp1,2 0.128 δc∗str 0.002

δ
r
(ex)
3

0.003 δp1,3 0.076 δc∗dm 0.001

δ
r
(ex)
4

0.002 δp1,4 0.002 δdchd 0.002

δ
r
(ex)
5

0.003 δp1,5 0.054 δdstr 0.002

δ
r
(ex)
6

0.002 δp1,6 0.025 δddm 0.002

δ
r
(ex)
7

0.003 δp1,7 0.014 δq5 0.002

δ
r
(ex)
8

0.004 δp1,8 0.010 δq6 0.002

δ
r
(sed)
1

0.002 δp2,1 0.257 δq7 0.002

δ
r
(sed)
2

0.002 δp2,2 0.124 δq8 0.002

δ
r
(sed)
3

0.002 δp2,3 0.076 δc5 0.002

δ
r
(sed)
4

0.002 δp2,4 0.002 δc6 0.002

δ
r
(sed)
5

0.002 δp2,5 0.049 δc7 0.002

δ
r
(sed)
6

0.002 δp2,6 0.025 δc8 0.002

δ
r
(sed)
7

0.002 δp2,7 0.013 δ∆q 0.003

δ
r
(sed)
8

0.002 δp2,8 0.008 δ∆c 0.001

5.3 The relative importance of parameter to structural

error uncertainty

We may also wish to understand the relative importance of the contributions of

uncertainty about structural error and uncertainty about input parameters to the

overall uncertainty in Z. We can measure this using the structural parameter

uncertainty ratio, which we define as

varδ{EX(Z|δ)}
varX{Eδ(Z|X)}

. (26)

This is straightforward to calculate if δ is independent of X since EX(Z|δ = δ′) =

EX{f ∗(X, δ)|δ = δ′} = EX{f∗(X, δ′)} and Eδ(Z|X = x) = Eδ{f ∗(X, δ)|X =
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x} = Eδ{f∗(x, δ)}. If δ and X are not independent calculating the conditional

expectations is more difficult, though methods are available (Oakley and O’Hagan,

2004).

The structural parameter uncertainty ratio in our model is 2.0 indicating that,

given our specification of discrepancy, learning the discrepancy terms would result

in double the expected reduction in the variance of the output compared with

the expected reduction in variance on learning the true values of all the input

parameters.

5.4 Analysis of robustness to different choices of vi

In our case study we set vi (the ratio of the discrepancy standard deviation to

the mean of the corresponding intermediate parameter) to 5% equally for all dis-

crepancy terms, judging this to be an appropriate reflection of the likely range

of structural error. The resulting additional uncertainty in the model output was

plausible, and the variance based sensitivity analysis implied that there was impor-

tant structural error in the sub-model that generates the health state probability

parameters, pdj (section 4.9).

In order to test the robustness of our conclusion to minor variations in the

specification of the discrepancies we altered values for vi over a plausible range. We

grouped the discrepancy terms into four sets: terms relating to cost parameters,

terms relating to health effect parameters, terms relating to population proportion

parameters, and terms relating to the discount factors. Within each set the values

for vi were either doubled, halved or maintained at 5%. Given three levels for vi

and four sets of discrepancy terms there are 34 = 81 combinations of choices for

vi including our original specification of vi = 5% for all i.

In all 81 cases a very similar pattern of main effect indexes to that reported

in table 1 was observed, with the δpdj terms dominating, indicating robustness to

choices of vi over the range 2.5% to 10%.

5.5 Remodelling the sub-functions where there is impor-

tant structural error

Variance based sensitivity analysis has identified δpdj to be important discrepancy

terms, indicating that we have important structural error in the sub-model that

generates the health state probability parameters, pdj.
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In the base case model the proportion of people who begin and then maintain

exercise is assumed constant over time. If we believe that there will be a decline

in the proportion of people who exercise over time then we could re-structure the

model sub-function to reflect this. We could, for example, assume an exponential

decline, whereby the proportion exercising at each year in the future is equal

to the proportion exercising in the previous year multiplied by some (uncertain)

constant. If the risk of each disease state j decreased (increased for the well state)

linearly from r
(sed)
j to r

(ex)
j with increasing time spent exercising (with a threshold

achieved after, say, four years exercise), then we could write

pdj =
(
1− p

(ex)
d

)
r
(sed)
j + p

(ex)
d (1−md) r

(sed)
j

+ p
(ex)
d

(
md −m2

d

)(1

4
r
(ex)
j +

3

4
r
(sed)
j

)
+ p

(ex)
d

(
m2

d −m3
d

)(1

2
r
(ex)
j +

1

2
r
(sed)
j

)
+ p

(ex)
d

(
m3

d −m4
d

)(3

4
r
(ex)
j +

1

4
r
(sed)
j

)
+ p

(ex)
d m4

dr
(ex)
j , (27)

where md is the proportion of the population who exercised in year t who continue

to exercise in year t+ 1, under decision d.

To complete the new model specification we need to specify distributions for

m1 and m2. We assume that m1 and m2 are jointly normally distributed with

means of 0.5, variances of 0.01 and a correlation of 0.9.

5.6 Results following sub-function remodelling

The mean net benefit following remodelling was £71 (-£273 to £572), with the

probability that the intervention is cost-effective, P (INB > 0), at λ =£20,000

equal to 0.59. Returning again to figure 2 we see that there is now a smaller cloud

a points on the cost-effectiveness plane, and that these are shifted towards the left

and the line of no effect (at ∆Q = 0). The cost-effectiveness acceptability curve

(figure 2c) suggests that following remodelling we predict that the intervention

has a lower probability of being cost-effective than predicted by the base case

model at all values of λ. The leftwards shift of the incremental net benefit density

towards zero supports this (figure 2d).

By re-structuring the important sub-function in the model to better incor-

porate our beliefs about real-world processes, we find that the incremental net

benefit distribution is shifted downwards. This is due to our judgement that a

proportion of those who begin new exercise will cease exercising, and that instead

of this drop being a single step change, the fall will be exponential over time.
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This results in a lower proportion of maintained exercise in both the intervention

and non-intervention groups, and a lower absolute reduction in disease risk and

smaller incremental benefit.

6 Discussion

We have presented a discrepancy modelling approach that allows us to quantify

our judgements about how close model predictions will be to reality. We incorpo-

rate our beliefs about structural error through the addition of discrepancy terms

at the sub-function level throughout the model, and following this we are able

to determine the sources of structural error that have an important impact on

the output uncertainty. Without the model decomposition and variance based

sensitivity analysis it may not be at all obvious which are the most important

sources of structural error, and so the method reveals features of the model that

are otherwise hidden.

As is clear from our description of the model in section 2.1, a model’s struc-

ture rests upon a series of assumptions regarding the relationships between the

inputs, the intermediate parameters and the output. In any modelling process it

is unavoidable that such assumptions are made, and in one sense model building

is just a formal representation of a set of assumptions in mathematical functional

form. Health economic modellers sometimes explore the sensitivity of the model

prediction to underlying assumptions in a “what if” scenario analysis in which sets

of alternative assumptions are modelled (see Bojke et al. (2009) for a review of

the methods that are currently used to manage health economic evaluation model

uncertainty, and Kim et al. (2010) for a specific example of modelling alternative

scenarios). However, this process cannot in any formal sense quantify the sen-

sitivity of the results to the assumptions, and nor can it quantify any resulting

prediction uncertainty. Our method is an attempt to formally quantify the effect

of all assumptions in the model about which we do not have complete certainty.

The method is most useful as a sensitivity analysis tool, highlighting areas

of the model that may require further thought. However, if the modeller can

satisfactorily specify a joint distribution for the inputs and the discrepancies,

then the method results in a proper quantification of uncertainty about the ‘true’

incremental net benefit of one decision over an alternative, taking into account

judgements about both parameters and structure.
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6.1 Model complexity and parsimony

Current good practice guidance on modelling for health economic evaluation states

that a model should only be as complex as necessary (Weinstein et al., 2003), but

this well intentioned advice does not actually help us make judgements about

how complex any particular model should be. Another guiding principle is the

requirement for a model to be comprehensible to the non-modeller: a decision

maker’s trust in a model can easily be eroded if the model is so complicated that

its features cannot be easily communicated (Taylor-Robinson et al., 2008).

Our view is that, in the health economic context, increasing the model com-

plexity has the effect of transferring uncertainty about structural error, which we

express through the specification of model discrepancy terms, to uncertainty about

model input parameters. Structural error arises when a simple model is used to

a model a complex real world process, thereby omitting aspects that could effect

costs or consequences. If we make the model more complex by including such

omitted features, typically we will then have more input parameters in the model.

Increasing the complexity of a model will therefore be desirable if the addi-

tional complexity relates to parts of the model in which discrepancy terms are

influential, and if we have suitable data to tell us about any extra parameters

that are required. This is because, to the decision-maker, data-driven probability

distributions for model parameters will be preferable to distributions on (plausibly

large) discrepancy terms based solely on subjective judgements of the modeller.

Our framework can help guide the choice of model complexity by identifying

which discrepancy terms are likely to be important. If we are satisfied that a

structural error will have little effect on the model output, then increasing the

complexity of the model to reduce such an error is likely to have little benefit.

6.2 Extension to a scenario with more than two decision

options

In our case study there were two competing decisions, and therefore a single ob-

vious scalar model output quantity: the incremental net benefit. This allowed

a straightforward analysis of sub-function discrepancy importance using the vari-

ance based sensitivity method. However, when there are more than two competing

decisions there is no single, scalar model output that is equivalent of the incremen-

tal net benefit, and therefore it is not immediately obvious how to proceed with

variance based sensitivity methods. One solution would be to work instead within
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an expected value of information framework, defining important model sub-unit

discrepancy terms as those which have an expected value above some threshold.

6.3 How might this work in practice?

We envisage that the sub-function discrepancy approach has the greatest poten-

tial if used prospectively during model building. This will allow the modeller to

incorporate judgements about structural error as they construct the model, en-

couraging an explicit recognition of the potential impact of the structural choices.

Model development is a sequential, hierarchical, iterative process of uncovering

and evaluating options regarding structure, parameterisation and incorporation of

evidence (Chilcott et al., 2010a). The process depends on the modeller developing

an understanding of the decision problem, which is by its nature subjective. This

understanding of the decision problem is the foundation upon which judgements

are made in the model building process, and also provides the basis for making

judgements about the likely discrepancy inherent in different model formulations.

The essence of the discrepancy approach is that it allows a formal quantification

of the impact of the choices made throughout the model building process.

Ultimately, the validity of the method relies on the ability to meaningfully

specify the joint distribution of inputs and discrepancies, p(X, δ). In our study

we represented our beliefs about p(X, δ) fairly crudely, making assumptions of

independence between inputs and discrepancies and independence between groups

of discrepancies that were not otherwise constrained. Key to the specification of

the discrepancy in our case study was the choice of values for vi that control the

variance of δi relative to the mean of the corresponding intermediate parameter.

We determined a value for each vi by informally eliciting our own judgements

about the plausible range for the structural error relative to the size of the in-

termediate parameter. We then examined the effect of making different sets of

choices in a sensitivity analysis.

Whilst we felt that this was sufficient in our case study for the purposes of

identifying important model sub-functions we recognise that making defensible

judgements about model discrepancies is in general likely to be difficult. If we wish

to proceed to a full quantification of our uncertainty about the target quantity

via Z = f ∗(X, δ) then a more sophisticated specification of p(X, δ) will typically

be required. Developing practical methods for making helpful judgements about

p(X, δ) is an area for future research.
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Appendix A - Base case model input parameters

Table 2: Uncertain inputs and their distributions
Input Label Description Distribution Hyperparameters

X1 c0 Intervention cost (£) gamma shape=100; scale=1

X2 tchd Total NHS costs (2005) for CHD (£) gamma sh=3.677×109; sc=1

X3 tstr Total NHS costs (2005) for stroke (£) gamma sh=2.872×109; sc=1

X4 tdm Total NHS costs (2005) for diabetes (£) gamma sh=5.314×109; sc=1

X5 nchd Number of UK cases of CHD Poisson µ = 2.60× 106

X6 nstr Number of UK cases of stroke Poisson µ = 1.40× 106

X7 ndm Number of UK cases of diabetes Poisson µ = 1.53× 106

X8 q
(dec)
chd Discounted decremental health effect for CHD

(QALYs)

normal µ = 6.71; σ = 0.048

X9 q
(dec)
str Discounted decremental health effect for stroke

(QALYs)

normal µ = 10.23; σ = 0.048

X10 q
(dec)
dm Discounted decremental health effect for DM

(QALYs)

normal µ = 2.08; σ = 0.048

X11 p
(ex)
1 Probability of new exercise - non-intervention group

MVN
µ = 0.246; σ = 0.038

ρ = 0.5
X12 p

(ex)
2 Probability of new exercise - intervention group µ = 0.294; σ = 0.040

X13 p
(mnt)
1 Probability exercise is maintained - non-intervention

MVN
µ = 0.5; σ = 0.1

ρ = 0.9
X14 p

(mnt)
2 Probability exercise is maintained - intervention µ = 0.5; σ = 0.1

X15 r
(sed)
chd Risk of CHD in a sedentary group beta α = 80; β = 385

X16 r
(sed)
str Risk of stroke in a sedentary group beta α = 226; β = 4072

X17 r
(sed)
dm Risk of diabetes in a sedentary group beta α = 346; β = 3344

X18 RRchd Relative risk of CHD in active vs sedentary pop lognormal µ = 0.666; σ = 0.130

X19 RRstr Relative risk of stroke in active vs sedentary pop lognormal µ = 0.720; σ = 0.343

X20 RRdm Relative risk of diabetes in active vs sedentary pop lognormal µ = 0.710; σ = 0.123

X21 age(onst) Average age of onset of disease (same for all diseases) normal µ = 57.5; σ = 2

X22 age
(dth)
chd Average age of death for CHD (years) normal µ = 71; σ = 2

X23 age
(dth)
str Average age of death for stroke (years) normal µ = 59; σ = 2

X24 age
(dth)
dm Average age of death for diabetes (years) normal µ = 61; σ = 2

Table 3: Fixed inputs
Input Label Description Value

X25 age(int) Average age of cohort at time of intervention (years) 50

X26 θ Discount rate (per year) 0.035

X27 λ Willingness to pay (£/QALY) 20,000
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Appendix B - Algorithm for calculating main ef-

fect index when model inputs are correlated

We have a model y = f(x) with p inputs, x = {x1, . . . , xp} and a scalar output

y. We are uncertain about the input values, and therefore write X and represent

beliefs via p(X). Note that to use this method to determine the main effect

indexes for the discrepancy terms, δ, we treat the discrepancies as just another

set of uncertain model inputs, so in the description below, δ would be included in

the vector of all uncertain input quantities, X.

We are interested in the sensitivity of the model output to the p model inputs

and measure this using the ‘main effect index’, defined for input Xi as

varXi
{EX−i

(Y |Xi)}
var(Y )

, (28)

where X−i = {X1, . . . , Xi−1, Xi+1 . . . , Xp}.
At first sight this is non-trivial via Monte Carlo methods if Xi is not indepen-

dent of X−i since calculating EX−i
(Y |Xi) requires sampling from the conditional

distribution X−i|Xi, which may not be explicitly known. We therefore suggest

the following alternative method, which does not require us to sample from the

conditional distributions.

We first obtain a single Monte Carlo sampleM = {(xs, ys), s = 1, . . . , S} where
xs are drawn from the joint distribution of the inputs, p(X), and ys = f(xs) are

evaluations of the model output. We represent M as the matrix

M =


x1,1 x2,1 . . . xi,1 . . . xp,1 y1

x1,2 x2,2 . . . xi,2 . . . xp,2 y2
...

...
...

...
...

...
...

x1,S x2,S . . . xi,S . . . xp,S yS

 . (29)

We then extract the xi and y columns and then reorder this matrix row-wise with

respect to xi, giving

M∗
i =


xi,(1) y(1)

xi,(2) y(2)
...

...

xi,(S) y(S)

 , (30)

where xi,(1) ≤ xi,(2) ≤ . . . ≤ xi,(S), and y(s) is the model evaluated at x(s).
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Next, we divide the output y(1), . . . , y(S) into K vectors, each of length b so

that S = Kb, i.e. {y(1), . . . , y(b)}, {y(b+1), . . . , y(2b)}, . . . , {y(S−b+1), . . . , y(S)}. The

‘bandwidth’ b is chosen to be small compared with the size of S.

We can obtain the main effect index either directly from the variance of the

conditional expectation, or from the expectation of the conditional variance via

the identity varXi
{EX−i

(Y |Xi)} = var(Y ) − EXi
{varX−i

(Y |Xi)}. Numerical sta-

bility of the algorithm with respect to the choice of d is improved if the expectation

of the conditional variance, rather than the variance of the conditional expecta-

tion is approximated, and we therefore calculate EXi
{varX−i

(Y |Xi)}, which we

approximate as

EXi
{varX−i

(Y |Xi)} ≈ 1

K

K∑
k=1

1

b

bk∑
j=b(k−1)+1

(
y(j) − ȳk

)2 , (31)

where ȳk =
1
b

∑dk
j=b(k−1)+1 y(j).

By re-ordering each Mi with respect to xi, the main effect indexes for all p

inputs can be obtained from a single Monte Carlo sample M .
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Appendix C - Distribution for sum-to-one param-

eters

We denote a sum-to-one intermediate parameter as Y = (Y1, . . . , Yn), where Yj ∈
[0, 1] ∀j and

∑n
j=1 Yj = 1.

The true unknown value of the intermediate parameter is denotedZ = (Z1, . . . , Zn)

where Z = Y + δY and δY = (δY1 , . . . , δYn). The same constraints apply to Z as

to Y , i.e. Zj ∈ [0, 1] ∀j and
∑n

j=1 Zj = 1.

We state the following beliefs about δY . Firstly, that E(δYj
) = 0 ∀j, and

secondly that the mean of the ratio of the standard deviation of the discrepancy

to the expected value of the parameter is some constant v, i.e. that

1

n

n∑
j=1

√
var(δYj

)

E(Yj)
= v. (32)

We generate a sample from p(Z) as follows. Firstly, we sample {ys, s =

1, . . . , S} from p(Y ). Conditional on Y we then generate a sample {zs, s =

1, . . . , S} from p(Z), where each zs is a single draw from p(Z|Y = ys). The

conditional distribution of Z|Y = ys is Dirichlet with hyperparameter vector

γys = (γy1,s, . . . , γyn,s).

The expectation of δYj
is

E(δYj
) = E(Zj)− E(Yj) = EYi

{EZj
(Zj|Yj)} − E(Yj) = 0, (33)

as required. The variance of δYj
is

var(δYj
) = var(Zj) + var(Yj)− 2Cov(Zj, Yj) (34)

= EYj
{varZj

(Zj|Yj)}+ varYj
{EZj

(Zj|Yj)}+ var(Yj)− 2cov(Zj, Yj)(35)

= EYj
{varZj

(Zj|Yj)}+ varYj
{EZj

(Zj|Yj)}+ var(Yj)− 2var(Yj) (36)

= EYj
{varZj

(Zj|Yj)}+ var(Yj) + var(Yj)− 2var(Yj) (37)

= EYj
{varZj

(Zj|Yj)} (38)

= EYj

{
(Yj(1− Yj)

γ + 1

}
(39)

=
E(Yj){1− E(Yj)}

γ + 1
− var(Yj)

γ + 1
(40)

≈ E(Yj){1− E(Yj)}
γ + 1

. (41)

The final step follows because
var(Yj)

γ+1
is small relative to

E(Yj){1−E(Yj)}
γ+1

.
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The hyperparameter γ is chosen such that the mean of the ratio of the standard

deviation to the expected value of the parameter is v, i.e. so that

1

n

n∑
j=1

√
var(δYj

)

E(Yj)
=

1

n

n∑
j=1

√
E(Yj){1−E(Yj)}

γ+1

E(Yj)
= v. (42)

Approximating E(Yj) by the sample mean ȳj and rearranging gives

γ =
1

v2

{
1

n

n∑
j=1

√
1− ȳj
ȳj

}2

− 1. (43)
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