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CIRCLE-EQUIVARIANT CLASSIFYING SPACES AND THE RATIONAL

EQUIVARIANT SIGMA GENUS

MATTHEW ANDO AND J.P.C.GREENLEES

Abstract. We analyze the circle-equivariant spectrum MStringC which is the equivariant ana-
logue of the cobordism spectrum MU〈6〉 of stably almost complex manifolds with c1 = c2 = 0.
In [Gre05], the second author showed how to construct the ring T-spectrum EC representing the
T-equivariant elliptic cohomology associated to a rational elliptic curve C. In the case that C is a
complex elliptic curve, we construct a map of ring T-spectra

MStringC → EC

which is the rational equivariant analogue of the sigma orientation of [AHS01]. Our method gives
a proof of a conjecture of the first author in [And03b].
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1. Introduction.

In this article we construct a T-equivariant version of the sigma orientation of Ando-Hopkins-
Strickland [AHS01], taking values in the equivariant elliptic cohomology EC constructed by the
second author in [Gre05], at least in the case of a complex elliptic curve C = C/Λ. More precisely,
let BU denote the classifying space for stable T-equivariant complex vector bundles, and let BSU
denote the classifying space for stable T-equivariant complex vector bundles with trivial determi-
nant. It turns out that BSU is the cover of BU trivializing the first Borel Chern class cB1 . Now let
BStringC be the cover of BU trivializing the first and second Borel Chern classes cB1 and cB2 ; we
call a virtual complex T-vector bundle with a lift of its classifying map to BStringC a “StringC

bundle.” Let MStringC be the associated bordism spectrum. We construct a map of ring T-spectra

MStringC −→ EC

which specializes to the sigma orientation of Ando-Hopkins-Strickland [AHS01] in Borel-equivariant
elliptic cohomology.

Our argument offers several improvements over the papers [AB02, And03b], which construct
a canonical and natural Thom isomorphism for StringC bundles (and their real analogues) over
compact T-spaces in Grojnowski’s equivariant elliptic cohomology [Gro07]. For one thing, our use
of the spectrum EC of [Gre05] entitles us to work directly with the classifying spaces for equivariant
bundles and their Thom spectra. More importantly, we are able for the first time to give a simple
and conceptual formula for the Thom class of a StringC-bundle. Briefly, for a ∈ C and a T-space
X, let

Xa =

{
XT[n] if a has finite order n

XT otherwise.

The long exact sequence (6.6) shows how to assemble EC∗
T(X) from the groups

H∗
T(Xa;O∧

C,a)

for a ∈ C, where the “coordinate data” of the elliptic curve C are used to give O∧
C,a the structure

of an H∗(BT)-algebra (see Section 6). If V is a virtual T-equivariant vector bundle over X, then
the groups relevant for EC∗

T(XV ) are

H∗
T((XV )a;O∧

C,a).

The Thom class ψ(V ) near a must then be a unit multiple of ThomT(V a), the Thom class of V a

in Borel-equivariant cohomology associated to the Weierstrass sigma function (see §7.C). In order
to assemble a Thom class for V as a varies, we expect that

ψ(V )a = ThomT(V a)eT(V/V a), (1.1)

where V/V a is defined so that
V |Xa ∼= V a ⊕ (V/V a),

and eT denotes the Borel-equivariant Euler class associated to the Weierstrass sigma function.

One of the virtues of our approach is that our Thom class is given precisely by the formula (1.1);
see (7.20) and Theorem 7.23. The reader is invited to compare these formulae with the formulae
following Theorem 9.1 of [And03b] or (6.11), (6.17), and (6.23) of [AB02] to get an idea of the
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improvement (1.1) represents. It remains to show that, if V is a StringC-bundle, then the proposed
Thom class ψ(V ) has the necessary properties. We do this in Section 8. The argument uses
characteristic classes which were, in some sense, the main discovery of [And03b], but by working
universally we give a better account of them and so put them to more effective use.

In Part 3 we use our analysis of the equivariant elliptic cohomology of BSU(d) to prove a
conjecture in [And03b, And03a], giving a conceptual construction of the sigma orientation, for
elliptic curves of the form C = C/Λ. To a T-space X we associate a sort of ringed space (actually a
diagram of ringed spaces) F(X), which determines EC∗

T(X). Associated to a complex vector bundle

V over X, we construct a line bundle F(XV ) over F(X), which determines EC∗
T(XV ).

Let T be the usual maximal torus of SU(d), with Weyl group W , and let Ť = Hom(T, T ).
Looijenga [Loo76] used the second Chern class to construct a line bundleL = L(c2) over (Ť⊗ZC)/W.
The Weierstrass sigma function determines a section σ of L, and so a trivialization of L⊗I, where I
is the ideal sheaf of zeroes of σ.1 We show that a T-equivariant SU(d)-bundle V over X determines
a pull-back diagram

L(V )⊗F(XV ) //

��

L ⊗ I

��

F(X)
h //

σ(V )

YY

(Ť ⊗ C)/W,

σ

[[

where L(V ) = h∗L and σ(V ) = h∗σ. In particular σ(V ) is a trivialization of L(V )⊗F(XV ).

It turns out that if V 0 and V 1 are two T-equivariant SU(d)-bundles over X such that

cB2 (V 0 − V 1) = 0,

then

L(V 0) ∼= L(V 1),

so σ(V 0)⊗ σ(V 1)−1 is a trivialization of

L(V 0)⊗F(XV0)

L(V 1)⊗F(XV 1)
∼= F(XV 0−V 1

).

This is our Thom class.

We note that Jacob Lurie [Lur05] has, independently of this paper and [And03b], announced a
proof of the analogous integral result for his oriented derived elliptic spectra. Our results may be
viewed as a classical analogue his work, relating it to the invariant theory of [Loo76] and highlighting
the role of the Weierstrass sigma function. David Gepner has outlined to us the relationship between
Lurie’s equivariant derived elliptic spectra and the T-equivariant elliptic spectra constructed by the
second author in [Gre05]. Once his results become available, we expect to be able to show that
these constructions of the equivariant sigma orientation are consistent.

Our work on this project has led us to a clearer understanding of the relationship between the T-
equivariant elliptic cohomology theories constructed by Grojnowski [Gro07] and Greenlees [Gre05].
In both cases, EC∗

T(X) is assembled from the groups

H∗
T(Xa;O∧

C,a)

1As explained in [And00], characters of representations of level k of the loop group LSU(d) give sections of Lk.

Up to a normalization, σ corresponds to the unique irreducible representation of LSU(d) of level 1
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for a ∈ C. In order to make sense of this expression, one must give O∧
C,a the structure of an

H∗(BT) ∼= Q[z]-algebra 2. Grojnowski does this for a complex elliptic curve in the form C/Λ, using
the covering

C→ C/Λ, (1.2)

the structure of OC as an H∗(BT)-algebra, and translation in the elliptic curve. One of the starting
points of [Gre05] is the observation that, if C〈n〉 denotes the divisor of points of C of order n and
k = degC〈n〉, then

C〈n〉 − k(0)

is the divisor of a function tn on C, which is uniquely determined by its image in the appropriate
power ω−k of the cotangent bundle and serves as a coordinate at a ∈ C〈n〉. We discuss this in
Section 6, particularly before Lemma 6.3 and in Remark 6.7.

The paper is divided into three parts.

Part 1 is about equivariant classifying spaces and equivariant characteristic classes in general.
In Section 2, we begin the study of the classifying spaces for equivariant vector bundles which arise
in this work. In Sections 3 and 4 we discuss characteristic classes for these bundles. In Section
5 we use these characteristic classes to describe the Borel-equivariant ordinary cohomology of our
classifying spaces. We make repeated use of a Universal Coefficient Theorem for Borel cohomology,
which we discuss in the appendix.

Part 2 focuses on elliptic cohomology, introduces the sigma orientation and establishes the Thom
isomorphism. In Section 6 we recall from [Gre05] the properties of equivariant elliptic cohomology
which we need for our work. In Section 7 we recall the basic facts about the Weierstrass sigma
function, and use it to give the formula for the Thom isomorphism over T-fixed spaces. The
behaviour for points with finite isotropy is given in Proposition 7.22, and proved in Section 8.
Together, these give the Thom isomorphism: the main result is Theorem 7.23.

In Part 3 we reformulate the results of Part 2 in geometric terms. We explain our Thom iso-
morphism using the analytic geometry of the elliptic curve C and the invariant theory of [Loo76],
proving the conjecture of [And03b] in this case. We also rephrase some of these ideas in terms of the
algebraic geometry of C. We hope that these ideas will eventually lead to an algebraic version of
our results. Section 9 gives a convenient sheaf theoretic formulation of the separation of behaviour
over T-fixed points and generic points of the curve from points with finite isotropy and torsion
points on the curve. In Section 10 we give the geometric interpretation of the situation over the
T-fixed points of BSU(d), and in Section 11 we extend this to all of BSU(d). Finally in Section
12 we give a moduli interpretation in terms of divisors.

The appendix describes a universal coefficient theorem for Borel homology and cohomology.

Part 1. Equivariant classifying spaces and characteristic classes.

In this part we discuss equivariant classifying spaces and characteristic classes from several
different points of view. In Section 2, we discuss the classifying spaces both via moduli and through
specific models. In Section 3 we discuss characteristic classes via the splitting principle and formal
roots. In Section 4 we apply the earlier sections to calculate the cohomology of the first few covers
of BU .

2The generator of H2(BT) is denoted z here because we are thinking of it as a complex function on C. When we
think of it as the first Chern class of the canonical bundle we write c for the same generator
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2. Classifying spaces for equivariant vector bundles.

Let G be a compact Lie group. In this section, we review various aspects of the classifying
spaces for G-equivariant complex vector bundles. Initially we allow G to be an arbitrary compact
Lie group, but our applications use the special case G = T, and we will specialize to that case when
it is convenient to do so. Much of this material is well-known; see for example [May96].

2.A. The classifying space for equivariant complex vector bundles of finite rank. Just
as in the non-equivariant case, we may pass between U(n)-free G× U(n)-spaces, or G-equivariant
principal U(n)-bundles, and G-equivariant complex vector bundles of rank n. This gives two models
for their classifying G-space BU(n).

On the one hand, BU(n) can be constructed as the quotient EU(n)/U(n), where EU(n) is a
G× U(n) space with the property that, for all K ⊂ G× U(n),

EU(n)K ≃ ∗ if K ∩ U(n) = 1

EU(n)K = ∅ otherwise.

On the other hand, BU(n) can be modeled as the Grassmannian Grn(U) of n-dimensional subspaces
of a complete complex G-universe. Thus

BU(n) = EU(n)/U(n) ≃ Grn(U).

We have omitted the G from the notation for BU(n), because for H ⊆ G, the H-space underlying
BU(n) is the classifying H-space for H-equivariant U(n)-bundles, as one can check using either
description of BU(n).

Remark 2.1. Note that if X is a G-space, and H is a subgroup, then NGH/H acts on XH . In
particular, if G = T and H = A is a finite subgroup, then T/A acts on BU(n)A.

2.B. The classifying space for stable bundles. We will need to have a clear understand-
ing of the stabilization process. For this, we let U denote a complete complex G-universe, and
U, V,W,X, . . . denote finite dimensional subrepresentations of dimensions u, v, w, x, . . ..

Let BU(V ) = Grv(U ⊕ V ), and let γV be the tautological bundle over this. These spaces form a
direct system with structure maps

BU(V ) = Grv(U ⊕ V )
⊕W
−→ Grv+w(U ⊕ V ⊕W ) = BU(V ⊕W ).

Let

BU = colimW BU(W ).

We let γ denote the universal bundle over BU , so that γ|BU(W ) = γW − W . The G-space BU
classifies stable vector bundles of virtual dimension 0, and the G-space BU × Z classifies arbitrary
stable vector bundles.

2.C. Fixed points. It is straightforward to identify the H-fixed points of BU(n), BU(W ), and
BU . We do this two ways, by analyzing the Grassmannian model and by analyzing the homotopy
functor represented by BU(n)H .

If H is a compact Lie group, we write H∨ for the set of isomorphism classes of simple (complex)
representations of H, so that if A is an abelian group then A∨ ∼= Hom(A,T) is its group of
characters.
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For a representation V of H we make the following definitions. We write U(V ) for the group of
vector space automorphisms of V , and we write Z(V ) for the centralizer of H in U(V ), so

Z(V ) = AutH(V ) = {x ∈ U(V )|xhx−1 = h for all h ∈ H}.

For S ∈ H∨, we define VS to be the S-isotypical summand, so

V ∼=
⊕

S∈H∨

VS ,

and we set
dS,V = dim Hom(S, V ).

By Schur’s Lemma we have an isomorphism of H-modules

HomH(S, V )⊗ S ∼= VS,

where H acts trivially on HomH(S, V ), and an isomorphism of groups

AutH(V ) ∼=
∏

S∈H∨

Aut(HomH(S, V )) ∼=
∏

S∈H∨

U(dS,V ). (2.2)

The set of isomorphism classes of n-dimensional representations of H is

Hom(H,U(n))/conjugacy.

It is convenient to choose a set of representatives

Repn(H) ⊆ Hom(H,U(n)).

An H-fixed point of Grw(U ⊕W ) is an H-module of rank w, and so we have the function

BU(W )H = Gr(U ⊕W )H → Repw(H)

which sends a point to the representative of its isomorphism class. The function is surjective since
U is complete, and the codomain is discrete, so for V ∈ Repw(H) we define

GrHV (U ⊕W ) ⊆ Gr(U ⊕W )H

to be the component mapping to V . Specifying a point of GrHV (U ⊕W ) is equivalent to specifying

a point of GrHVS
(US ⊕WS) for each S ∈ H∨.

Proposition 2.3. For any compact Lie group H there is an equivalence of nonequivariant spaces

BU(n)H ≃
∐

V ∈Repn(H)

BZ(V ) =
∐

V ∈Repn(H)

∏

S∈H∨

BU(dS,V ). (2.4)

For the Grassmannian BU(W )H , we have

BU(W )H = Grw(U ⊕W )H =
∐

V ∈Repw(H)

GrHV (U ⊕W )

and
GrHV (U ⊕W ) =

∏

S∈H∨

GrHVS
(US ⊕WS) ≃

∏

S∈H∨

BU(HomH(S, V )).

First proof. The displayed equalities for the Grassmannian model give proofs. The only equivalence
which has not already been spelled out is the last. Over

GrHVS
(US ⊕WS)

we have, forgetting the action of H, a contractible principal Aut(VS) bundle. The sub-group of
automorphisms commuting with H is just U(HomH(S, V )). �
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Second proof. Since the H-space underlying BU(n) classifies H-equivariant principal U(n)-bundles,
it is clear that BU(n)H classifies H-equivariant principal U(n)-bundles over H-fixed spaces Z. It
suffices to consider one component at a time, so let us suppose we are given such a bundle π : P → Z,
with Z connected.

Recall that
Aut(P/Z) ∼= Γ(P ×U(n) U(n)c → Z),

where U(n)c denotes U(n) with the adjoint action. It follows that an action of H on P/Z is given
by a section s of

P ×U(n) Hom(H,U(n)c)→ Z. (2.5)

The set Hom(H,U(n)c) is discrete, and so the function

m : Z
s
−→ P ×U(n) Hom(H,U(n)c) −→ ∗ ×U(n) Hom(H,U(n)c)

∼=
←− Repn(H)

is locally constant, and so constant.

Let Z(m) be the centralizer

Z(m) = {x ∈ U(n)|xm(h)x−1 = m(h) for all h ∈ H},

and let
Q = {p ∈ P |s(π(p)) = (p,m)},

where (p,m) denotes the class in the Borel construction. Then

π|Q : Q→ Z

is a principal Z(m) bundle, classified by a map

f : Z → BZ(m).

It follows that
BU(n)H ≃

∐

V ∈Repn(H)

BZ(V ),

and the more detailed description in (2.4) follows from the isomorphism (2.2). �

Remark 2.6. In §4.A we use this analysis of BU(n)H to give a splitting principle for T-equivariant
vector bundles.

Passing to limits we find the fixed points in the stable case. We define JU(H) to be the ideal of
virtual representations of rank 0 in the complex representation ring R(H).

Proposition 2.7. There is an equivalence of nonequivariant spaces

BUH ≃ JU(H)×
∏

α∈H∨

BU, (2.8)

where the product is topologized as the direct limit of the finite products.

First proof. The stabilization map is

BU(V )H =
∐

U∈Repv(H)

GrHU (U ⊕ V )
⊕W
−→

∐

U ′∈Repv+w(H)

GrHU ′(U ⊕ V ⊕W ) = BU(V ⊕W )H .

Thus the components of BUH are labelled by virtual representations of rank 0, the component
GrHU (U ⊕ V ) being labelled by U − V . The stabilization map is the product over S ∈ H∨ of

BU(dS,U) ∼= GrHUS
(US ⊕ VS)→ GrUS⊕WS

(US ⊕ VS ⊕WS) ∼= BU(dS,U+W ).

For each factor, the colimit is BU. �
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Second proof. We classify virtual H-equivariant bundles V on H-fixed spaces Z. It suffices to
consider one component at a time, and so we suppose that Z is connected. Schur’s Lemma provides
a decomposition

V ∼=
⊕

α∈H∨

HomH(α, V )⊗ α

where now

HomH(α, V )

is a virtual bundle of rank dα,V (say). We then have the map

f : Z −→
∏

α∈H∨

BU (2.9)

which on the α factor classifies the virtual bundle of rank 0

HomH(α, V )− dα,V ǫ,

where ǫ is the trivial complex line bundle of rank one, with trivial H-action.

If ξα denotes the tautological bundle of rank 0 over the α factor in (2.9), then

f∗
(∑

ξα ⊗ α
)
∼= V −

∑
dα,V α.

To recover V , then, we must add the element
∑
dα,V α ∈ R(H). This shows that

(BU × Z)H ∼= R(H)×
∏

α∈H∨

BU,

with the universal bundle over the (
∑

α dαα) summand being
∑

α

(ξα + dα)⊗ α.

V has virtual dimension zero if and only if
∑

α

dα,V rankα = 0,

and so

BUH ∼= JU(H)×
∏

α∈H∨

BU.

�

2.D. Classifying spaces for SU-bundles. Next we consider the classifying space BSU(n) of n-
dimensional bundles with determinant 1. This can be constructed as ESU(n)/SU(n) whereESU(n)
is the universal SU(n)-free G× SU(n)-space. Alternatively, there is a fibration

BSU(n) −→ BU(n) −→ BU(1)

of G-spaces, where the map BU(n) −→ BU(1) classifies the determinant. The H-fixed points can
be calculated in the same manner as in Proposition 2.3. Let

SRepn(H) ⊂ Hom(H,SU(n))

be a set of representatives for Hom(H,SU(n))/conjugacy; and for V ∈ SRepn(H) let Z(V ) be its
centralizer in SU(n). The analysis leading to Proposition 2.3 gives the following.

8



Proposition 2.10. For any compact Lie group H there is an equivalence

BSU(n)H ≃
∐

V ∈SRepn(H)

BZ(V ). (2.11)

�

Once again we may form the stable classifying space BSU as a direct limit

BSU
def
= colimnBSU(n),

where the limit is now formed over addition of a cofinal collection of representations with deter-
minant the trivial 1-dimensional representation ǫ, such as those of form V ⊕ V ∗. Again there is a
fibration

BSU −→ BU −→ BU(1).

Taking H-fixed points we have

BSUH −→ BUH −→ BU(1)H .

If BU(1)Hǫ is the component of BU(1)H corresponding to the trivial representation,

JU2(G) = {V ∈ JU(G)|det V ∼= ǫ}

is the subgroup of JU(G) consisting of virtual representations with trivial determinant, and BUGS
is the set of components of BUH corresponding to representations with determinant ǫ, then we
have a fibration

BSUH −→ BUHS −→ BU(1)Hǫ (2.12)

with connected base, and an equivalence

BUGS ≃ JU2(G)×
∏

α

BU.

Again, the components of BSUH are all equivalent, and, taking components of zero, there is a
fibration

BSUH0 −→ BUH0 −→ BU(1)Hǫ
of connected spaces.

2.E. The tower over BU × Z. In the next two sections we study characteristic classes for equi-
variant vector bundles, in light of the preceding analysis of their classifying spaces. One reason to
do so is better to understand the spaces BU{2k} over BU×Z defined by the vanishing of the Borel
Chern classes cB0 , c

B
1 , and cB2 . It is the Thom spectrum associated to BU{6} which maps to elliptic

cohomology.

It is perhaps surprising that the vanishing of Borel Chern classes plays such an important role in
the relationship to elliptic cohomology. We note that the spaces BU{2k} also occur as representing
spaces for the equivariant version of connective K-theory constructed in [Gre04]; see §3.F. This
equivariant version of connective K-theory is complex orientable, and its coefficient ring classifies
multiplicative equivariant formal group laws for products of two topologically cyclic groups (and
in particular for the circle and all its subgroups).

Nonequivariantly, BU = BU〈2〉 is the 1-connected cover of BU × Z, BSU = BU〈4〉 is the fibre
of

BU
c1−→ K(Z, 2),

and BStringC = BU〈6〉 is the fibre of the second Chern class

BSU
c2−→ K(Z, 4).

9



Borel cohomology classes, that is elements of Hn(X ×G EG), correspond to G-maps

f : X −→ map(EG,K(Z, n)).

We define spaces BU{2k} by the following diagram, in which the indicated horizontal arrows are
Borel Chern classes, and each vertical arrow is the fibre of the following horizontal arrow.

BStringC BU{6}

��

BSU
≃ // BU{4}

cB2 //

��

map(EG,K(Z, 4))

BU BU{2}
cB1 //

��

map(EG,K(Z, 2))

BU × Z BU{0}
cB0 // map(EG,K(Z, 0)).

(2.13)

We have used the notation BU{2k} instead of BU〈2k〉 because the spaces in question are not
equivariantly connected. We show in §3.E that BU and BSU occur as indicated in (2.13). We
define BStringC to be BU{6}.

To analyze H-fixed points, we use the equivalence

map(EG,K(Z, n))H ≃ map(BH,K(Z, n)) ≃
n∏

i=0

K(H i(BH), n− i). (2.14)

We are particularly interested in the case that G is the circle, and H = A ⊆ T is a closed subgroup.
Such groups A have integral cohomology only in even degrees, so we obtain the following.

Proposition 2.15. Taking A-fixed points in the diagram (2.13) yields a diagram

BStringAC

��

BSUA
{c02,c

2
2,c

4
2} //

��

K(H0(BA), 4) ×K(H2(BA), 2) ×K(H4(BA), 0)

BUA

��

{c01,c
2
1} // K(H0(BA), 2) ×K(H2(BA), 0)

BUA × Z
c00 // K(H0(BA), 0)

of T/A-spaces, in which again each vertical arrow is the fibre of the following horizontal one. �

We will describe the maps cik as characteristic classes in Lemma 4.13.

3. Characteristic classes of equivariant bundles.

In this section we briefly discuss characteristic classes for a general compact Lie group of equiv-
ariance, and we show that BSU ≃ BU{4}. In the next section we analyze more closely the case of
a circle.

10



3.A. Nonequivariant Chern classes. We write ci for the usual Chern class in H2iBU , so

H∗(BU) = Z[c1, c2, . . .].

We write
c•(V ) = 1 + c1(V ) + c2(V ) + · · ·

for the total Chern class, and recall that it is exponential in the sense that

c•(V ⊕W ) = c•(V ) · c•(W ),

so we may extend c• to virtual vector bundles by the formula

c•(V −W ) = c•(V )c•(W )−1.

Remark 3.1. It is convenient to record the behaviour of c1 and c2 on a difference of actual bundles.
It is immediate that c1 is additive, so that

c1(U − V ) = c1(U)− c1(V ).

For c2 there is a correction term:

c2(U − V ) = c2(U)− c2(V )− c1(V )c1(U − V ),

but this simplifies to additivity when c1(U − V ) = 0.

3.B. Chern classes assembled from isotypical summands. Let X be a G-space, and suppose
that ξ is a complex G-bundle ξ of rank n over X. If it happens that X is H-fixed, then we have
an isomorphism of H-bundles

ξ ∼=
⊕

α∈H∨

Hom(α, ξ) ⊗ α,

where on the one hand α is trivial as a non-equivariant bundle over X and on the other Hom(α, ξ)
carries a trivial H-action. We may define Chern classes cαi (ξ) by the formula

cαi (ξ)
def
= ci(Hom(α, ξ)). (3.2)

If ξ is a virtual complex vector bundle of rank 0 over X, then it is classified by a map

[ξ] : X → BU.

If H acts trivially on X, then we write

[ξ,H] : X → BUH

for the indicated factorization. The decomposition

BUH ∼= JU(H)×
∏

α∈H∨

BU,

of Proposition 2.7 gives an isomorphism

H∗(BUH) ∼=
∏

V ∈JU(H)

Z[[cα1 , c
α
2 , . . . |α ∈ H

∨]]. (3.3)

The notation in (3.3) is consistent with the notation in (3.2) in the sense that

cαi (ξ) = [ξ,H]∗(cαi );

where on the right cαi is taken from the appropriate factor of BUH . The double brackets in (3.3)
refer to the completion arising from the fact (see Proposition 2.7) that the topology on the product
in the description of BUH is the direct limit of finite products. So

∑

α∈T∨

cα1 ∈ H
2(BUT)

11



is allowed, but
∑

n

cαn

is not.

3.C. Borel Chern classes. The G-Borel construction on ξ is a virtual complex vector bundle
ξ ×G EG over X ×G EG, classified by

[[ξ]] : X ×G EG −→ BU. (3.4)

The Borel Chern classes of ξ are defined to be

cBi (ξ)
def
= [[ξ]]∗(ci).

If X is H-fixed, then there is a standard way to relate the Borel Chern classes to the cαi . Notice
that there is an isomorphism

B : Rep1(H) = Hom(H,T)
∼=
−→ [BH,BT] = H2(BH), (3.5)

via which we have, for α ∈ H∨,

cB1 (α) = B detα. (3.6)

Lemma 3.7. If ξ is an equivariant G-bundle over an H-fixed space X, then in H2(X × BH) we
have

cB1 (ξ) =
∑

α∈H∨

rank(α)cα1 (ξ) + rank(Hom(α, ξ))B det(α). (3.8)

Proof. By reducing to the universal case X = BU(n)H , we may assume that H1X = 0. Recall that
we have the isomorphism of H-bundles over X

⊕

α∈H∨

Hom(α, ξ) ⊗ α ∼= ξ.

This gives

ξ ×H EH ∼=
⊕

α∈H∨

Hom(α, ξ) ⊗ (α×H EH)

since H acts trivially on Hom(α, ξ). Taking determinants gives

det(ξ ×H EH) ∼=
∏

α∈H∨

det(Hom(α, ξ) ⊗ (α×H EH)). (3.9)

By definition, cα1 (ξ) = c1(Hom(α, ξ)), so the result follows from (3.6), (3.9), and the formula

c1(V ⊗W ) = rankV c1W + c1V rankW.

�
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3.D. BU as a split G-space. The Borel Chern classes have another less familiar description which
will be useful in §3.F. Let BU be the stable Grassmannian associated to the trivial G-universe UG,
so that Z×BU is a representing space for non-equivariant K-theory. The inclusion

UG → U

induces an equivariant map

η : BU → BU,

which is easily seen to be a non-equivariant weak equivalence: this is a space-level expression of
the fact that the equivariant complex K-theory spectrum is a split ring spectrum. It follows that
the induced map

η∗ : H∗
G(BU)→ H∗

G(BU) ∼= H∗(BU ×BG)

is an isomorphism.

If ξ denotes the tautological bundle over BU , then the map [[ξ]] in (3.4) can be regarded as a
map

[[ξ]] : BU ×G EG→ BU,

and it is easy to check that the diagram

BU ×BG
projection

%%LLLLLLLLLL

��

BU ×G EG // BU

commutes up to homotopy. Thus we have the following.

Proposition 3.10. The Borel Chern classes cB are uniquely characterized by the fact that, under
the splitting

η : BU → BU,

they pull back to the ordinary Chern classes. That is, for each k we have

η∗cBk = ck

in H2k(BU ×BG). �

3.E. Comparison of BSU and BU{4}. We explain how the G-spaces BU × Z, BU and BSU
fit into a diagram as displayed in §2.E. Since map(EG,K(Z, 0)) ≃ K(Z, 0), cB0 is a bijection on
components, and so the space BU is the fibre of cB0 .

For the next stage, observe that if L is the tautological line bundle over BU(1), then

cB1 (L) ∈ H2(BU(1)×G EG) ∼= [BU(1),map(EG,K(Z, 2))].

The definition of the first Borel Chern class implies that the diagram

BU
det //

cB1 ''OOOOOOOOOOOO BU(1)

cB1 (L)
��

map(EG,K(Z, 2))

(3.11)

commutes.
13



Proposition 3.12. [StrAfg] The G-map

BU(1) −→ map(EG,K(Z, 2))

corresponding to cB1 (L) is a weak equivalence, and so induces a weak equivalence

BSU ≃ BU{4}.

Proof. Proposition 2.3 shows that, for each compact subgroup H ⊆ G,

BU(1)H ≃ Rep1(H)×K(Z, 2).

At the same time, since H is compact, H1(BH) = 0, and we have

map(EG,K(Z, 2))H ≃ K(H2(BH), 0)×K(Z, 2).

In terms of these isomorphisms, Lemma 3.7 shows that

(cB1 )H = B × id : Rep1(H)×K(Z, 2)→ K(H2(BH), 0) ×K(Z, 2),

where B is the isomorphism (3.5). �

Remark 3.13. This gives another proof that the natural map

PicG(X)→ H2
G(X; Z)

is an isomorphism, where PicG(X) is the group of equivariant line bundles over X (Atiyah and
Segal [AS]).

3.F. The spectrum MStringC. Associated to the spaces BU, BSU, and BStringC over BU we
have Thom spectra MU , MSU and MStringC. The spectrum MU is easily seen to be an E∞

ring spectrum since it comes with an action of the linear isometries operad. We turn to MSU and
MStringC.

Proposition 3.14. The spectra MSU and MStringC are E∞-ring spectra.

Proof. It suffices to show that BSU and BStringC are infinite loop spaces over BU, and so it
suffices to show that the Borel Chern classes cB1 and cB2 arise from maps of spectra.

In [Gre04], the second listed author defined the G-equivariant connective K-theory spectrum ku
to be the pull-back in the right square of the diagram

ku //

&&MMMMMMMMMMMM ku //

��

K

��

map∗(EG+, ku) // map∗(EG+,K).

(3.15)

Here ku (respectively K) is the inflation of the non-equivariant connective K-theory spectrum
(respectively the equivariant periodic K-theory spectrum), and the bottom arrow is induced by the
composition

ku→ K → K,

obtained using the fact that periodic complex K-theory is split. Note that the construction implies
that, as we have indicated, ku is split.

As explained in [Gre04], by looping down the diagram (3.15) we obtain diagrams of the form

BU //

''NNNNNNNNNNNN BU //

α1

��

BU

��

map∗(EG+, BU) // map∗(EG+, BU)
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and

BSU //

''PPPPPPPPPPPP
BSU //

α2

��

BU

��

map∗(EG+, BSU) // map∗(EG+, BU)

Already this exhibits BSU as an infinite loop space over BU , but to compare to the tower for
BU{4}, we observe that the map

BU → BU
α1−→ map∗(EG+, BU) −→ map∗(EG+,K(Z, 2))

represents c1 ⊗ 1 in H2(BU ×BG), and so Proposition 3.10 implies that the composition

BU
α1−→ map∗(EG+, BU) −→ map∗(EG+,K(Z, 2))

represents cB1 , as required. An analogous argument shows that the composition

BSU
α2−→ map∗(EG+, BSU) −→ map∗(EG+,K(Z, 4))

represents cB2 . In particular, this is an infinite loop map, and so exhibits BStringC as an infinite
loop space over BSU. �

4. Characteristic classes for T-vector bundles.

In this section, we focus on the special case G = T, and we write A for a general closed subgroup
of T. We have two goals. The first is to give an equivariant form of the splitting principle, so that
in §8.B we can identify some characteristic classes of A-equivariant bundles over A-fixed spaces.
The second is to record the calculation of the Borel Chern classes. These will be used throughout
the remainder of the paper.

Because we use multiplicative notation in A∗ and additive notation in H2(BA) we write

log : A∗ ∼=
−→ H2(BA; Z)

for the isomorphism between them.

We write z for the generator of H2BT, and also for its restriction to H∗BA. Over a T-fixed
base, we always have

H∗(X ×T ET) = H∗(X)⊗H∗BT ∼= H∗(X)[z],

and our notation will reflect this. If A = T[n] and X = XA, we still have

H∗(X ×A EA) ∼= H∗X[z]/nz,

provided H∗X is concentrated in even degrees.

4.A. Reductions and the splitting principle. In this section we describe the cohomology rings
H∗(BU(n)A) and H∗(BSU(n)A; Q) using the splitting principle. We start with U(n). Since A is
abelian, we may choose our representatives m ∈ Repn(A) of Hom(A,U(n)c)/U(n) to be of the form

m : A→ T, (4.1)

where T is the maximal torus of diagonal matrices. If m is such a homomorphism, then its central-
izer

Z(m) = {g ∈ U(n)|gmg−1 = m} ∼=
∏

α∈A∨

U(rankHom(α,m))

is a product of unitary matrices. In particular, it is connected, with maximal torus T . We define
W (m) to be the Weyl group of Z(m) with respect to the torus T ; it is a subgroup of the Weyl
group W of T in U(n). With these choices, Proposition 2.3 takes the following form.
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Proposition 4.2.

BU(n)A ≃
∐

m∈Repn(A)

BZ(m),

and so
H∗BU(n)A ∼=

∏

m∈Repn(A)

H∗(BT )W (m). �

Example 4.3. Any homomorphism T→ U(n) is conjugate to one of the form

z 7→ m(z) = diag(zm1 , . . . , zm1 , zm2 , . . . , zm2 , . . . , zmk , . . . , zmk),

where the mi are integers, mi < mj for i < j, mi occurs di times, and
∑

di = n.

Then Z(m) is the group of block-diagonal matrices
∏
U(di), with maximal torus T and Weyl group∏

Σdi
.

Recall that in the isomorphism of A-bundles

V ∼=
⊕

α∈A∨

Hom(α, V )⊗ α,

A acts trivially on Hom(α, V ), while the bundle underlying α is a topologically trivial line bundle.
Thus if

Hom(α, V ) ∼= L1 ⊕ · · · ⊕ Ld
as a non-equivariant bundle, then

Hom(α, V )⊗ α ∼= L1 ⊗ α⊕ · · · ⊕ Ld ⊗ α

as a bundle with A-action. Proposition 4.2 implies the following form of the splitting principle.

Lemma 4.4. Let V be an A-equivariant vector bundle over an A-fixed space X. The splitting
principle holds in the sense that there is another A-fixed space X ′ and a cohomology monomorphism
X ′ −→ X so that over X ′ we may write

V ∼=
⊕

α∈A∨

dα⊕

i=1

Lα,i ⊗ α,

where Lα,i is a line bundle with trivial action, and α describes the A-action. Moreover in the
universal case, if xα,i = c1Lα,i, then the image of H∗X in H∗X ′ consists of the expressions in the
xα,is which are invariant under the evident action of

∏

α

Σdα
.

�

Proposition 4.2, like its parent, is phrased in terms of a choice of representatives for Hom(A,U(n)c)/U(n).
For us it will be important to have a more invariant expression, which by the way also applies to
SU(n). So let G stand for one of these groups, and let T be a maximal torus, with Weyl group W .

Suppose that
π : P −→ X

is an A-equivariant principal G-bundle, over a trivial A-space X. The action of A on P corresponds
to a section

s : X −→ P ×G Hom(A,Gc).
16



giving a function

f : X −→ P ×G Hom(A,Gc) −→ Hom(A,Gc)/conjugacy.

Definition 4.5. A reduction of the action of A on P/X is a function

m : π0X −→ Hom(A,T )

making the diagram

X
f

−−−−→ Hom(A,Gc)/G
y

x

π0X
m

−−−−→ Hom(A,T )

commute. Note that a reduction always exists, because the right vertical arrow is a surjection of
discrete spaces.

This definition is convenient for analyzing principal G-bundles over not-necessarily connected
spaces. In the following discussion, though, we suppose that X is connected, leaving the modifica-
tions for general X to the reader.

Let Z(m) ⊆ G be the centralizer of m in G. It is important to note the following.

Lemma 4.6. For any m : A→ T, Z(m) is connected, with maximal torus T .

Proof. For G = U(n) this is clear, since Z(m) is a product of unitary groups (see Example 4.3). For
SU(n), it is a result of Bott and Samelson [BS58, BT89] that for any simply connected compact Lie
group G, the centralizer of any element is connected. The maximal torus is T , since T is maximal
in G. �

Let W (m) be the Weyl group of Z(m); it is a subgroup of W . Any other reduction m′ : A→ T
is of the form

m′ = wm

where w ∈W , and
wm = m

if and only if w ∈W (m).

The reduction m determines a principal Z(m)-bundle Q(m) over X, by the formula

Q(m) = {p ∈ P |sπ(p) = (p,m)}.

This is classified by a map
gm : X −→ BZ(m).

By the splitting principle,

H∗(BZ(m); Q) ∼= H∗(BT ; Q)W (m),

and so an element Ξ of the right hand side gives an element

g∗mΞ ∈ H∗(X; Q).

Proposition 4.7. Let G = U(n) or SU(n) as above. Let A be a closed subgroup of T. Then
H∗(BGA; Q) is isomorphic to the ring

HomW (Hom(A,T ),H∗(BT ; Q))

of W -equivariant functions. More explicitly, it consists of functions

Ξ : Hom(A,T )→ H∗(BT ; Q)

such that
17



(1) for each m ∈ Hom(A,T ), Ξ(m) ∈ H∗(BT ; Q)W (m); and
(2) for w ∈W ,

Ξ(m) = w∗Ξ(wm) ∈ H∗(BT ; Q)W (m).

In particular, any such function Ξ determines a characteristic class of A-equivariant complex vector
bundles over A-fixed spaces, by the formula

Ξ(V ) = g∗mΞ(m),

where m : π0X → Hom(A,T ) is any choice of reduction of the action of A on V/X. For G = U(n),
the analogous statements for integral cohomology are true as well.

Proof. Another choice of reduction m′ determines Z(m′), Q(m′), and gm′ as above, and there is an
element

w ∈W (m′)\W/W (m),

determined by the formula

m′ = wm ∈ Hom(A,T )

and making the diagram

X
gm

//

gm′
##GGGGGGGG

G
BZ(m)

w

��

BZ(m′)

commute. Thus if

Ξ(m) = w∗Ξ(m′) ∈ H∗(BT )W (m),

then

(gm′)∗Ξ(m′) = g∗mΞ(m) ∈ H∗X.

�

Remark 4.8. The main ingredient in the argument is the splitting principle for BZ(m), so one
needs to know that Z(m) is a connected compact Lie group. Thus the result of Bott and Samelson
[BS58] implies that the Proposition holds rationally for any simply-connected compact Lie group.

Remark 4.9. The results of this section and of Proposition 2.3 say that the components of BGA

are labelled by elements of

Hom(A,Gc)/G,

where Gc denotes G as a G-space with the conjugation action. A choice of representative m : A→ G
identifies the corresponding component with BZ(m). One way to work with BGA, then, is to
fix a set of representatives. Elsewhere in this paper, particularly from Section 7 onwards, it is
essential not to do so, because we must understand the behaviour of our characteristic classes
under restriction

BGT → BGA,

which leads us to consider diagrams like

T
m̃ // T

A.

OO

m

>>
}}

}
}}

}
}

Our approach is to give formulae which work for any m : A → T and which are compatible with
the action of W by conjugation. Proposition 4.7 tells us how to do this. When we write that a
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homomorphism m : A→ G “labels a component of BGA”, we mean that we use m to identify its
component with BZ(m).

4.B. Chern classes of T-bundles. Our calculation of Chern classes uses the splitting principle
(Lemma 4.4) to deduce the general case from the following result, which is a specialization of
Lemma 3.7.

Lemma 4.10. If L is a line bundle over an A-fixed space, and if α ∈ A∗, then

cB1 (L⊗ α) = c1(L) + log(α) · z. �

Proof. The only point is to observe that, under the decomposition

BUA ≃ JU(A)×
∏

β∈A∨

BU,

the map classifying L⊗ α maps to the α factor of BU as the map classifying L, and to the other
factors trivially. That is,

cα1 (L⊗ α) = c1L,

while
cβ1L = 0

for β 6= α. �

Now suppose that V is an A-equivariant vector bundle over an A-fixed space, and that after
pulling back along a cohomology monomorphism X ′ → X we have

V ∼= L1 ⊗ α1 + · · ·+ Ln ⊗ αn.

Then
cB• (V ) =

∏

i

(1 + c1(Li) + log(αi)z). (4.11)

This gives a calculation of the first and second Borel Chern classes. In order to state the result,
we introduce the following quantities. Suppose that m = (m1, . . . ,md) and m′ = (m′

1, . . . ,m
′
d) are

arrays of elements of B ∼= Z or Z/n (in our applications, m,m′ ∈ Hom(A,T )). Let

φ(m)
def
= −

∑

i<j

mimj

I(m,m′)
def
= −

∑

i6=j

mim
′
j .

Similarly, if (x1, . . . , xd) are elements of a B-module X, then

I(m,x)
def
= −

∑

i6=j

mixj.

We have chosen the signs of φ and I so that the right hand sides appear with positive sign in
the following.

Lemma 4.12. (1) φ is quadratic, I is symmetric and bilinear, and

φ(m+m′) = φ(m) + I(m,m′) + φ(m′).

(2) If
∑
mi = 0, then

I(m,x) =
∑

i

mixi.

19



(3) If
∑
mi = 0 then, then

2φ(m) =
∑

i

m2
i .

�

Lemma 4.13. Writing mi = log(αi) and xi = c1(Li), we have

cB1 (ξ) = c1(ξ) + (
∑

i

mi) · z

and

cB2 (ξ) = c2(ξ)− I(m,x)z − φ(m)z2.

In particular,

c01(ξ) = c1(ξ)

c21(ξ) =
∑

i

mi

c02(ξ) = c2(ξ)

c22(ξ) = −I(m,x)

c42(ξ) = −φ(m).

If cB1 (ξ) = 0 then

c22(ξ) = −
∑

mixi. (4.14)

If cB1 (ξ) = 0 and A = T, then

c42(ξ) = −
1

2

∑

i

m2
i . (4.15)

Proof. The expressions for cB1 and cB2 follow easily from the product formula (4.11). If cB1 (ξ) = 0,
then

∑
imi = 0, and the formula (4.14) follows from Lemma 4.12. Finally, if we note that in the

universal case 2 is not a zero divisor, (4.15) also follows from Lemma 4.12. �

Applying Lemma 4.13 to the universal bundle ξ over

BUA ≃ JU(A)×
∏

β∈A∨

BU, (4.16)

we have the following, which will be useful in Section 5.

Proposition 4.17. Let

V =
∑

α∈A∨

dαα

be an element of JU(A). In the V factor of

H∗(BUA) ∼=
∏

V ∈JU(A)

Z[[cα1 , c
α
2 , . . . |α ∈ A

∨]],

we have

c01(ξ) =
∑

α

cα1

c21(ξ) =
∑

α

dα log(α).
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If V ∈ JU2(A), then in the V factor of BSUA, we have (for any fixed ordering on A∨)

c02(ξ) =
∑

α

cα2 +
∑

α<β

cα1 c
β
1

c22(ξ) =
∑

α

log(α)cα1 .

Proof. Let ξα denote the universal bundle (of rank 0) over the α factor of BU in (4.16). Then the
universal bundle over the V component of BUA is (see the second proof of Proposition 2.7)

ξ =
∑

α

ξα ⊗ α+
∑

α

dαα.

The formulae in the Proposition follow from this and Lemma 4.13. �

5. The cohomology of covers of BU × Z.

The long exact sequence (6.4) we use to calculate the T-equivariant elliptic cohomology of X
involves the (rational) Borel (co)homology of XA. In this section we carry out the calculation
for BU{2k} with k = 0, 1, 2, 3. The main point is that the ordinary (rational in case k = 3)
cohomology of the fixed set is concentrated in even degrees, so the Serre spectral sequence for the
Borel cohomology collapses.

5.A. Components and simple connectivity. Let G be a compact Lie group. We recall that
JU(G) is the augmentation ideal of representations of virtual dimension zero in the complex rep-
resentation ring RU(G) of G.

Lemma 5.1. If A is finite cyclic or the circle group then

π0(BU{2k}
A) = JUk(A) for k = 0, 1, 2, 3.

All components of BU{2k}A are homotopy equivalent.

Remark 5.2. For general groups G it is more natural to expect

π0(BU{2k}
G) = JUk(G) for k = 0, 1, 2, 3,

where JUk(G) is the ideal generated by the representation-theoretic Chern classes cl(V ) for l ≥ k.
If G is abelian then JUk(G) = JU(G)k.

Proof. The equivalence between the components comes from the H-space structures. We carry out
the π0 calculations. Since all homotopy groups of map(BA,K(Z, 2n)) are in even degree, we have

0 −→ π0(BU{2k + 2}) −→ π0(BU{2k})
c2k
k−→ H2k(BA)

as in the diagram of Proposition 2.15. By definition c00 is the dimension and surjective, and so
π0(BU

A) = JU(A).

Lemma 4.13 implies that

c21 : JU(A) = π0(BU
A) −→ H2(BA) = A∗

is the determinant. This is surjective, and π0(BSU
A) is the ideal JU ′

2(A) consisting of elements of
JU(A) with determinant 1. It is easy to check

JU(A)2 ⊆ JU2(A) ⊆ JU ′
2(A),

and it remains to show that JU ′
2(A) ⊆ JU(A)2.
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We may do this explicitly as follows (the argument is due to Neil Strickland). First note that an
arbitrary element x of JU ′

2(A) is of the form

x = α1 ⊕ · · · ⊕ αs − β1 ⊕ · · · ⊕ βs,

where the αi and βi are the classes of one-dimensional representations, and
∏

βi =
∏

αi.

Notice that

(1− β1)(1 − β2) + (1− β1β2)(1− β3) = 2− β1 − β2 − β3 + β1β2β3

This has the generalization

s−1∑

j=1

(1−

j∏

k=1

βk)(1 − βj+1) = (s − 1)− β1 − · · · − βs +

s∏

j=1

βj.

Let us write n(β1, . . . , βs) for this element of JU(A)2. Then

x = n(β1, . . . , βs)− n(α1, . . . , αs) ∈ JU(A)2.

Finally we have

c42 : JU2(A) = π0(BSU
A) −→ H4(BA) = Symm2(A∗). (5.3)

When A is a compact abelian group, the isomorphism

RU(A) ∼= Z[A∗],

identifies JU(A) with the augmentation ideal I(A∗), and it is not difficult to check that the map

c42 : JU(A)2 → H4BA

factors as

I(A∗)2
c42 //

can.
''OOOOOOOOOOO

Symm2A∗

��

I(A∗)2/I(A∗)3,

(5.4)

where the vertical map is the one induced by the fact that, for any abelian group B, the map

B ×B → I(B)2/I(B)3

sending (x, y) to the class of (1− x)(1 − y) is symmetric and bilinear. For any abelian group, this
vertical map is an isomorphism [Pas79, Theorem 8.6], and so the kernel of the horizontal map is
I(A∗)3 ∼= JU(A)3. �

Remark 5.5. For general G and k = 2 we may prove the result indicated in Remark 5.2 as follows.
Using the fact JU2 is an ideal we may assume detU = detV = 1 and hence x = (U − n) + (n− V )

is a sum of two elements of JU ′
2. Now U − n is the pullback from SU(n) of Ũ − n where Ũ is

the natural representation, and this is the pullback of Ũ − (δ + n − 1) from U(n), where δ is the

determinant of Ũ . This universal case follows from the calculation of ku
U(n)
∗ in [Gre04].

Lemma 5.6. If A is finite cyclic or the circle group, all components of BU{2k}A are simply
connected.
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Proof. The non-equivariant simple connectivity of BU is well known, and implies that of the com-
ponents of BUA × Z and BUA. For BSUA it follows from the surjectivity of

c01 : BUA → K(H0(BA), 2)

in π2, which is a consequence of Lemma 4.10 and the well-known non-equivariant case. For BU{6}A

it suffices to show the surjectivity of

π2(c
2
2) : π2BSU

A → π2K(H2(BA), 2) = H2(BA).

Notice that the map
BT→ K(H2BT, 2)

corresponding to a generator of H2BT is an equivalence, and that the natural map

K(H2BT, 2)→ K(H2BA, 2)

is an epimorphism in π2. In particular, for every element x ∈ π2K(H2BA, 2) = H2BA, there is a
line bundle L over S2 such that the map

S2 L
−→ BT→ K(H2BA, 2)

represents −x.

Recall that we have chosen a generator z of H2BT, and let α ∈ A∗ be a generator, so that

Bα∗z ∈ H2BA

is a generator (which we will also call z). Now consider the A-bundle

ξ = (1− L)(1− α) = 1− L− α+ L⊗ α.

over S2. Its Borel Chern class is

cB• (ξ) =
1− x+ z

(1− x)(1 + z)
= 1 + xz + degree 6.

In particular, it is an SU bundle whose c22 component is x. Thus we have a commutative diagram

BSUA
c22 // K(H2(BA), 2),

S2

ξ

OO

x

77ooooooooooooo

showing that c22 is surjective in π2. �

5.B. Homology and cohomology of fixed points of BSU . The cohomology ring of BU is well
known to be polynomial on the Chern classes, so that

H∗(BUA) =
∏

V ∈JU(A)

Z[cα1 , c
α
2 , . . . |α ∈ A

∗].

We note that the usual calculation of H∗BU in the nonequivariant case generalizes to give

H∗(BU
A) = SymmH∗(BU(1)A) = Z[βα1 , β

α
2 , . . . |α ∈ A

∗][JU(A)],

where βαi is the basis dual to (cα1 )i in H∗BU(1)A.

For BSU we consider the fibre sequence BSUA −→ BUAS −→ BU(1)Aǫ of (2.12), and note that
the generator of H∗(BU(1)Aǫ ) acts as Σαc

α
1 . It follows that H∗(BUAV ) is flat as a module over

H∗(BU(1)Aǫ ) for each V and hence the Eilenberg-Moore spectral sequence gives

H∗(BSUAV ) = Z⊗H∗(BU(1)A
ǫ ) H

∗(BUAV ).
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This means that each component of BSUA has polynomial cohomology in even degrees. Dually, in
homology we may deal with all components at once to find

H∗(BSU
A) = HomH∗(BU(1)A

ǫ )(Z,H∗(BU
A
S )).

The Serre spectral sequence gives exactly the same calculation if we consider the fibrationK(Z, 1) −→
BSUA −→ BUAS .

5.C. Homology and cohomology of fixed points of BU{6}. To continue, we suppose that A
is either a finite cyclic group C or the circle group T, so that H3(BA) = 0 = H1(BA). Thus have
a fibration

BU{6}A −→ BSUA −→ K(H0(BA), 4) ×K(H2(BA), 2) ×K(H4(BA), 0).

As for BSU , we may trim away the component group in the base by letting BSUAS consist of the
components indexed by representations in

JU(A)3 = Kerπ0BSU
A −→ H4BA.

Then we have a fibration

BU{6}A −→ BSUAS −→ K(H0(BA), 4) ×K(H2(BA), 2)

with connected base. All components are equivalent, and we have a fibration

BU{6}A0 −→ BSUA0 −→ K(H0(BA), 4) ×K(H2(BA), 2)

of connected spaces, where the subscript 0 indicates the component of the 0 bundle.

For the purposes of this paper, it is sufficient to work over the rationals, so that K(H0(BA), 4)
and K(H2(BA), 2) have polynomial cohomology.

We deal separately with the case A = C is finite and the case A = T. In the first we even have
H2(BC; Q) = 0, and so the rational fibration

BU{6}C −→ BSUCS −→ K(Q, 4).

Now H∗(K(Q, 4); Q) = Q[c02], where c02 acts as its name suggests by
∑

α

cα2 +
∑

α<β

cα1 c
β
1 =

∑

α

cα2 −
1

2

∑

α

(cα1 )2

for any fixed ordering on A∗ (see Proposition 4.17). Since c02 can be chosen as a polynomial generator
of H∗(BSUCS ) we obtain

H∗(BU{6}C) = Q⊗Q[c02]
H∗(BSUCS ) = H∗(BSUCS )/(c02)

H∗(BU{6}C0 ) = Q⊗Q[c02]
H∗(BSUC0 ) = H∗(BSUC0 )/(c02)

H∗(BU{6}
C
0 ) = HomQ[c02]

(Q,H∗(BSU
C
0 )).

We note that the cohomology ring of each component is polynomial and in even degree.

When A = T we have

BU{6}T −→ BSUT
S −→ K(Q, 4) ×K(Q, 2),

and note that H∗(K(Q, 4)×K(Q, 2); Q) = Q[c02, c
2
2] where c02 and c22 act as indicated in Proposition

4.17. Since c02 and c22 generate a tensor factor Q[c02, c
2
2] we obtain

H∗(BU{6}TV ) = Q⊗Q[c02,c
2
2]
H∗(BSUT

V ) = H∗(BSUT
S )/(c02, c

2
2)

and
H∗(BU{6}

T
V ) = HomQ[c02,c

2
2]
(Q,H∗(BSU

T
S )).
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Once again, the cohomology ring of each component is polynomial and in even degrees.

5.D. Borel homology and cohomology. The long exact sequence we use to calculate the elliptic
cohomology of BU{2k} involves the rational Borel (co)homology of BU{2k}A. We continue the
convention that A is a finite cyclic group or the circle, and we continue to work with rational
coefficients.

Proposition 5.7. For k ≤ 3, the A-fixed point spaces of X = BU{2k} have cohomology in even
degrees. Each component has polynomial cohomology. As for Borel homology and cohomology, there
are isomorphisms (non-canonical unless A = T)

H∗
T(XA) = H∗(XA)[z]

and

HT
∗ (XA) = H∗(X

A)⊗H∗(BT).

Moreover, the natural map

H∗
T(XA)→ H∗

T(XT) (5.8)

is injective.

Proof. All the spaces XA = BU{2k}A for k ≤ 3 have components whose cohomology is polynomial
and in even degrees. Accordingly the Serre spectral sequence calculating the T-equivariant Borel
cohomology of one component collapses and shows the Borel cohomology is isomorphic to a tensor
product of H∗(BT) and the polynomial cohomology ring. When A is finite, this involves choosing
lifts of the polynomial generators of H∗(XA

V ) to H∗
T(XA

V ). Since the map XT −→ XA is injective
in cohomology, it follows that (5.8) is as well. Similar arguments show that the Borel homology
spectral sequence also collapses to give the isomorphism of H∗(BT)-modules

HT
∗ (XA) ∼= H∗(X

A)⊗H∗(BT).

�

Part 2. Elliptic cohomology and the sigma orientation.

In this part we turn towards elliptic cohomology and the sigma genus. First, in Section 6
we introduce notation for discussing the geometry of an elliptic curve, before summarizing the
relevant properties of equivariant elliptic cohomology from [Gre05]. The sigma genus is most easily
introduced for T-fixed spaces and generic points on the curve, because the role of the topology and
geometry is largely unlinked: we discuss this in Section 7. Finally, in Section 8 we turn to the more
subtle question of how to deal with points with finite isotropy and torsion points on the elliptic
curve.

6. Properties of equivariant elliptic cohomology.

6.A. Geometry of the elliptic curve. In this section we summarize the relevant properties of
the T-equivariant elliptic cohomology defined in [Gre05]. We begin by introducing notation to
describe the elliptic curve. Let C be a rational elliptic curve

C p
// S

0
yy

with identity 0 and structure map p, over an affine Q-scheme S.
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We write O for the structure sheaf of C, and for a divisor D, the sheaf O(D) consists of functions
with Div(f)+D ≥ 0. We write K for the constant sheaf of meromorphic functions on C with poles
only at points of finite order.

For any n ≥ 1 we write C[n] = ker(n : C −→ C) for the subgroup of points of order dividing
n and C〈n〉 for the scheme of points of exact order n. It is convenient to index certain divisors
by representations of T. Given a representation V with V T = 0 we write V =

∑
n anz

n, and take
D(V ) =

∑
n anC[n]. Thus we have

K = colimV T=0O(D(V )).

Next, we write Kn for the functions regular on C〈n〉3 and TnC = K/Kn for the sheaf of principal
parts of functions on C〈n〉; this can also be described as the local cohomology group H1

C〈n〉(C). We
set

TC =
⊕

n

TnC.

For a finite subgroup A = T[n], it is the topology of XA which controls the behaviour of the
equivariant elliptic cohomology of X near C〈n〉. As a consequence we adopt the convention that

C〈A〉 = C〈|A|〉

KA = Kn

TAC = TnC

O∧
A = O∧

C〈A〉.

We write Ω = ΩC for the sheaf of Kähler differentials, and Ωd
C for its dth tensor power. We write

ω = p∗Ω ∼= 0∗Ω

for the OS-module of invariant differentials. Our analysis will involve expressions of the form
f(Dt)k, where f is a meromorphic function on C and Dt is an invariant differential; this may be
regarded as a section of

K ⊗O p
∗ωk ∼= K ⊗O Ωk

C .

We will identify the constant sheaf K and its twists by differentials with their modules of global
sections. That is, we will generally not distinguish in our notation between

K ⊗O Ω∗
C
∼= K ⊗O p

∗ω∗

and

Γ(K ⊗ Ω∗
C) ∼= Γ(K ⊗O p

∗ω∗).

6.B. Coordinate data. We recall that to give an T-equivariant elliptic spectrum we specify not
only an elliptic curve C but also a section t1 of KC which is a coordinate at the identity of C. Note
that it is equivalent to specify a pair (D, ω) where ω is an invariant differential and D is a divisor
satisfying

(1) degD = 0

(2)
∑C [nP ](P ) = 0

(3) nP = 0 unless P is a point of finite order of C
(4) n0 = 1.

3This is also the local ring OC〈n〉.
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The first three conditions imply that there is a meromorphic function t1 ∈ K with Div t1 = D; the
last condition implies that t1 is a coordinate at the identity.

In this paper we work with a complex elliptic curve C ∼= C/Λ, in which case, if P̄ is a choice of
lifts to C of the points of D, then we can take

t1(z) =
∏

P

σ(z − P̄ )nP .

Next, for s > 1 we define ts to be the meromorphic function with the properties

(1) Div(ts) = C〈s〉 − |C〈s〉|(0)

(2) (t
|C〈s〉|
1 ts)(0) = 1.

In our complex case, if C〈s〉 ⊂ C is a set of lifts of the points of C〈s〉, then

ts(z) = λs

∏
p∈C〈s〉 σ(z − p)

σ(z)|C〈s〉|
,

where λs is a constant easily expressed in terms of values of the sigma function.

We use ts/Dt to make TsC⊗ω
∗
C into a torsion Q[c]-module, where Dt is the invariant differential

agreeing with dt1 at the identity: for f ⊗ ω ∈ TsC ⊗ ω
∗
C ,

ckf ⊗ ω = tksf ⊗ (Dt)−kω.

6.C. Spheres and line bundles. Let V be a virtual complex representation of T, and suppose
that V T = 0. The spectrum EC is constructed so that

ECiT(SV ) = H i(C;O(−D(V )))

for i = 0, 1. Twisting by a trivial representation of rank 1 is equivalent to a double suspension, and
as in the non-equivariant case this introduces a twist by the Kähler differentials, giving

ECi−2d
T (SV ) = H i(C;O(−D(V ))⊗ (Ω1

C)⊗d)

ECT
2d−i(S

V ) = H i(C;O(D(V ))⊗ (Ω1
C)⊗d).

6.D. Localization and completion. Elliptic cohomology satisfies a localization theorem and a
completion theorem.

Let F be the family of finite subgroups of T. Recall that there is a universal space EF for
T-spaces with isotropy in F , characterized by the fact that its fixed points under finite subgroups
are contractible, whereas EFT = ∅. This is related to the join ẼF = S0 ∗ EF by the cofibre
sequence

EF+ −→ S0 −→ ẼF .

It is convenient to use the models

EF =
⋃

V T=0

S(V ) and ẼF =
⋃

V T=0

SV ,

where S(V ) is the unit sphere in V and SV ∼= S0 ∗ S(V ) is the one-point compactification of V .
The usefulness of these spaces arises since for any based T-space X, the inclusion XT → X induces
a weak equivalence

XT ∧ ẼF
≃
−→ X ∧ ẼF .

The corresponding statement holds for spectra if we use geometric fixed points, but we restrict to
spaces so we can retain familiar notation.
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Lemma 6.1. For any T-space X we have

ECT
∗ (X ∧ ẼF) = H∗(X

T;K ⊗ Ω∗
C).

Similarly in cohomology for finite complexes X. The corresponding statement holds for spectra if
we use geometric fixed points.

Proof. Since ẼF = colimV T=0 S
V and X ∧ ẼF ≃ XT ∧ ẼF we easily deduce this from the values

on spheres. Indeed, colimV O(D(V )) = K, so that

ECT
2d(ẼF) = K ⊗ (Ω1

C)⊗d.

�

Before stating the completion theorem, we pause briefly to summarize the relationship between
Borel homology and cohomology, which is described in more detail in Appendix A. Given a graded
module M over H∗BT = k[c] for a field k, we can form the Borel cohomology H∗

T(X;M), and in
certain cases there are simple descriptions. (This notation means the cohomology theory represented
by the module over the Borel spectrum, and not a Brown-Comenetz type theory as in [Gre05]; the
distinction is explained further in Remark A.3). If M is flat and X is a finite T-CW complex, we
have

H∗
T(X;M) ∼= H∗

T(X) ⊗H∗BT M.

As usual, homological and cohomological gradings of the same module are related by Mk = M−k,
and c is of cohomological degree 2 and homological degree −2. It is also useful to consider the
torsion H∗BT-module (M [c−1]/M). If c is not a zero-divisor in M , there is a natural map

κ : Hp
T(X;M) −→ Homp

H∗BT(HT
∗X; Σ−2(M [c−1]/M)). (6.2)

If M is a free module, then M [c−1]/M is injective, so we have a natural transformation of cohomol-
ogy theories, and it is easy to check then that the map is completion. Since completion of M does
not affect M [c−1]/M , we see that if M is the completion of a free module then κ is an isomorphism.

For example, if M = H∗BT, then

Σ−2(M [c−1]/M) ∼= H∗BT,

and this is injective, so we have the isomorphism

H∗
T(X;H∗(BT)) ∼= Hom∗

H∗BT(HT
∗X;H∗BT).

For example, let O∧
A be the formal completion of O at C〈A〉, and let M = O∧

A⊗ω
∗ be considered

as an H∗BT-algebra via
c 7→ tA ⊗ (Dt)−1.

Then
(M [c−1]/M) ∼= TAC ⊗ ω

∗,

and this is an injective Q[c]-module. Thus Example (A.10) shows that we have

H∗
T(X;O∧

A ⊗ ω
∗) ∼= HomH∗(BT)(H

T
∗ (X), TAC ⊗ ω

∗).

Lemma 6.3. For any T-space X

EC∗
T(X ∧ EF+) ∼=

∏

A

H∗
T(XA;O∧

A ⊗ ω
∗
C).

If HT
∗ (XA) = H∗(X

A)⊗H∗(BT) for all finite A ⊂ T then

EC∗
T(X ∧ EF+) ∼=

∏

A

H∗(XA;O∧
A ⊗ ω

∗
C).
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The corresponding statement holds for spectra if we use geometric fixed points.

Proof. The first statement amounts to the fact that EC∧ΣEF+ is injective, with coefficients TC⊗
ω∗
C . Now we use the fact that there is a rational splitting EF+ ≃

∨
AE〈A〉 corresponding to TC ≃⊕

A TAC, and that [X,E〈A〉 ∧ Y ]T = [XA, E〈A〉 ∧ Y ]T. Passing to the summand corresponding to
A, the H∗(BT)-module structure on rings of functions is through t|A|/Dt. The second statement
follows since the short exact sequence

0 −→ KA −→ K −→ TAC −→ 0

gives an isomorphism

HomH∗(BT)(H∗(BT), TAC ⊗ ω
∗
C) = ExtH∗(BT)(H∗(BT),KA ⊗ ω

∗
C) = O∧

A ⊗ ω
∗
C .

(See Appendix A for further details.) �

6.E. Periodicity. It is sometimes convenient to define the “periodic ordinary cohomology spec-
trum” by the formula

HP =
∨

k∈Z

Σ2kH

This spectrum has the feature that

spfHP 0CP∞ ∼= Ĝa,

while

HP 0S2 ∼= π2HP ∼= Γ(ω
bGa

).

Note that the coordinate data used to construct EC determine an isomorphism

Ĉ ∼= Ĝa

carrying Dt1 to the standard generator of Ĝa, and so inducing an isomorphism

H∗(X;R ⊗ ω∗) ∼= HP ∗(X;R).

We shall find it convenient simply to define ω∗-periodic cohomology as

HP ∗(X;R)
def
= H∗(X;R ⊗ ω∗

C).

With this notation, the localization and completion isomorphisms above become

ECT
∗ (X ∧ ẼF) ∼= HP∗(X

T;K)

EC∗
T(X ∧ EF+) ∼=

∏

A

HP ∗
T(XA;O∧

A).

6.F. The Hasse square. The localization and completion theorems combine to give an extremely
useful long exact sequence, relating equivariant elliptic cohomology to Borel cohomology and the
elliptic curve. The idea is to take (i) information from the T-fixed point space, generic on the curve
and (ii) information from the A-fixed point space in a neighbourhood of the points of order |A| on
the curve and to splice them together. The idea that points with isotropy of order n in topology are
associated to points of order n on the curve is a recurrent central theme. Topological and geometric
information interacts very little over T-fixed spaces, but much more over points with finite isotropy.

This sequence is [Gre05, 15.3], but we have used Remark A.10 to give it in a more geometrically
transparent form.
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Proposition 6.4. For any T-space X there is a long exact sequence

· · · −→ ECnT(X) −→ Hn(XT;K ⊗ Ω∗
C)×

∏

A

Hn
T(XA;O∧

A ⊗ ω
∗
C) −→

Hn(XT;K∧
F ⊗ ω

∗
C) −→ ECn+1

T (X) −→ · · · , (6.5)

natural in X, where K∧
F =

∏
AO

∧
A ⊗ K. If we are given an isomorphism HT

∗ (XA) ∼= H∗(X
A) ⊗

H∗(BT), then we obtain an isomorphism

Hn
T(XA;O∧

A ⊗ ω
∗
C) ∼= Hn(XA;O∧

A ⊗ ω
∗
C). (6.6)

The corresponding statement holds for spectra if we use geometric fixed points.

Remark 6.7. (1) The first displayed map is a ring homomorphism when X is a space.
(2) For the spaces we care most about, H∗(XT) and H∗

T(XA) are in even degrees for all A, so
that this degenerates to give a pullback square of rings for EC∗

T(X).
(3) We remark that we may arrange that the map

Hn(XT;K ⊗ Ω∗
C)×

∏

A

Hn
T(XA;O∧

A ⊗ ω
∗
C)→ Hn(XT;K∧

F ⊗ ω
∗
C)

from the long exact sequence is the obvious one. On the XT factor, it is induced by the
natural map

K → K∧
F .

On the XA factor, we may arrange that it is restriction along

XT → XA,

composed with the natural map

O∧
A → K

∧
F .

To make sense of this, we arrange that both remaining terms may be interpreted as Borel
cohomology. Indeed, we may make K∧

F ⊗ ω
∗
C into a module over H∗(BT) by letting c act

through t|A|/Dt in the A-factor, and as such we have

Hn(XT;K∧
F ⊗ ω

∗
C) ∼= Hn

T(XT;K∧
F ⊗ ω

∗
C).

It will appear from the proof that the map is as stated by naturality of the completion
theorem.

The exact sequence (6.5) suggests that EC∗
T(X) is related to the cohomology of a sheaf

on C: the Hn(XT;K ⊗ Ω∗
C) factor concerns the behaviour of a section generically on C,

while the Hn
T(XA;O∧

A ⊗ ω
∗
C) factors concern the behaviour in small neighborhoods of the

points of finite order. We shall study the string orientation from this point of view in Part
3.

(4) Indeed, the Borel cohomology groups which appear in (6.5) are essentially those which
describe Grojnowski’s sheaf-valued theory (in the case of a finite complex). Note that
Grojnowski treats the case of an elliptic curve of the form C/Λ, and uses the projection

C→ C/Λ

and translation in the elliptic curve to give O∧
A the structure of an H∗BT-algebra. One of

the innovations of [Gre05] is to handle the algebraic case, using the functions t|A| to make
O∧
A into an H∗BT-algebra.
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Proof. Any T-spectrum E occurs in the Tate homotopy pullback square

E −→ E ∧ ẼF
↓ ↓

F (EF+, E) −→ F (EF+, E) ∧ ẼF

where F is the family of proper subgroups, and applying F (X, ·) we obtain the homotopy pullback
square

F (X,E) −→ F (X,E ∧ ẼF)
↓ ↓

F (X ∧EF+, E) −→ F (X,F (EF+, E) ∧ ẼF).

Note that

[X,Y ∧ ẼF ]T∗ = [ΦTX,ΦTY ]∗ = [XT,ΦTY ]∗,

so that both the right hand terms can be expressed in terms of the geometric fixed points of X. In
the case that E is elliptic cohomology, we apply the localization theorem to see that πT

∗ (F (X,EC ∧
ẼF)) = H∗(XT;K ⊗ ω∗

C) and the completion theorem to see that

πT
∗ (F (X ∧ EF+, EC)) = EC∗

T(X ∧EF+) =
∏

A

H∗
T(XA;O∧

A).

�

7. The sigma orientation.

In this section we describe the construction of our Thom class for the tautological bundle over
BStringC. We implement the strategy for bundles over T-fixed spaces, by showing how to use the
Weierstrass sigma function to construct a Thom class. Details for spaces which are not fixed are
deferred to Section 8.

7.A. The sigma function. First of all, we write σ for the expression

σ(w, q) = (w1/2 − w−1/2)
∏

n≥1

(1− qnw)(1 − qnw−1)

(1− qn)2
.

We can consider σ as a function of (z, τ) ∈ C× h by setting

wr = erz

qr = e2πirτ

for r ∈ Q. It is convenient to consider σ sometimes as a function of w, writing the first argument
multiplicatively, and sometimes as a function of z, writing the first argument additively. We’ll
adopt the convention that the second argument (τ or q) indicates the form of the first argument.

The function σ is holomorphic, vanishes only at lattice points, and has the following properties.

σ(z, τ) = z + o(z2) (7.1)

σ(−z, τ) = −σ(z, τ) (7.2)

σ(z + 2πil + 2πikτ, τ) = (−1)l+ke−kz−πik
2τσ(z, τ) (7.3)

σ(wqk, q) = (−1)kw−kq−
k2

2 σ(w, q). (7.4)
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7.B. The Witten genus and the sigma orientation. We use the expansion of σ in terms of z
in (7.1) to determine an exponential orientation for complex vector bundles. More precisely, if V
is a complex vector bundle over X, then there is a Thom class

Thom(V ) = Thomσ(V ) ∈ H∗(XV ; C), (7.5)

characterized by the property that, if

c•(V ) =
∏

(1 + xi),

then the Euler class associated to Thom(V ) is

e(V, τ)
def
=
∏

σ(xi, τ). (7.6)

As explained in [HBJ92] (see also [Wit87] and [AHS01]), the q-form of σ is the K-theory char-
acteristic series of a multiplicative orientation

σ : MSU → K[[q]]

for SU bundles in integral K-theory, with coefficients in Z[[q]]. The Euler class of V = L1⊕· · ·⊕Ld
is

e(V, q) =
∏

i

σ(Li, q) = ∆−1(V )⊗
⊗

Λ−qn(V − rankV )
⊗

Λ−qn(V̄ − rankV ).

That is, the orientation given by σ is a twist of the Â orientation of Atiyah-Bott-Shapiro. The
associated genus is of an SU -manifold M is

Â(M ;
⊗

n≥1

Sqn(V − rankV )⊗ Sqn(V̄ − rankV )),

which is known as the Witten genus.

In [AHS01], the authors define an elliptic spectrum to be a triple (E,C, t), where E is an even
periodic ring spectrum (and so complex-orientable), C is an elliptic curve over π0E, and t is an
isomorphism of formal groups

t : spf E0CP∞ ∼= Ĉ.

They show that the data of an elliptic spectrum determine a map of (non-equivariant) ring spectra

σ(E,C, t) : MU〈6〉 → E.

called the sigma orientation.

The Tate curve is an elliptic curve CTate over Z[[q]] which provides an arithmetic model for the
multiplicative uniformization of a complex elliptic curve as

C ∼= C/Λ ∼= C×/qZ,

where Λ = 2πiZ + 2πiτZ and q = e2πiτ . It comes with an isomorphism of formal groups

t : Ĝm
∼= ĈTate,

so KTate
def
= (K[[q]], CTate, t) is an elliptic spectrum. It turns out [AHS01, §2.6,2.7] that the sigma

orientation of KTate is just the restriction to MU〈6〉 of the orientation above: that is, the diagram

MU〈6〉
σ(KTate)

$$II
II

III
II

��

MSU σ
// K[[q]]

commutes.
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7.C. The Borel equivariant sigma orientation. If V is a G-equivariant SU -bundle, then there
is similarly an equivariant Thom class

ThomG(V )
def
= Thom(V ×G EG) ∈ H∗

G(XV ), (7.7)

and we write

eG(V )
def
= ζ∗ ThomG(V ) ∈ H∗

G(X) (7.8)

for the associated Euler class. In this section we record some formulae for this class and some
related characteristic classes, in the case of the circle group. In Sections 7 and 8, we use these
formulae to construct the equivariant sigma orientation.

Suppose that V is an T-bundle over an T-fixed space, given as

V ∼= L1 ⊗ α1 ⊕ · · · ⊕ Ld ⊗ αd, (7.9)

where Li is a complex line bundle with Chern class xi and αi ∈ T∨. Let mi = log αi ∈ Z. Then

eT(V, τ) =
∏

i

σ(xi +miz, τ), (7.10)

where z = c1L ∈ H
2(BT). Considering z to be a complex number defines maps

H∗(BT) = C[z]→ OC → C[[z]] = HP 0(BT)

and we observe that eT(V ) defines an element of

HP ∗(X;OC) ⊆ HP ∗(X; C[[z]]) ∼= H∗(X)[[z]] ∼= HP ∗(X ×BT).

When working multiplicatively, we set w = ez .

The manipulations that follow are more manageable if we adopt vector notation, and abbreviate

x = (x1, . . . , xd).

Similarly we’ll write ui = exi and
u = (ex1 , . . . , exd).

If x is such a vector, we define

σ(x, τ)
def
=
∏

j

σ(xj , τ)

and similarly for σ(u, q), so σ(u, q) = σ(x, τ) as in the “scalar” case. Then if

V ∼= L1 ⊕ · · · ⊕ Ld

with
xi = c1Li

and
x = (x1, . . . , xd),

then
e(V, τ) = σ(x, τ).

If
u = (L1, . . . , Ld)

then the corresponding K-theory Euler class is

e(V, q) = σ(u, q);

and these are related by
e(V, τ) = ch e(V, q),

where ch is the Chern character.
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This notation is particularly helpful when we have to deal with the equivariant Euler class. Let
T ⊂ SU(d) ⊂ U(d) be the standard maximal torus, and let

Ť = Hom(T, T )

be its lattice of cocharacters: so

T = {diag(w1, . . . , wd)|
∏

wi = 1},

and
Ť ∼= {m ∈ Zd|

∑
mi = 0}.

Define

I :Ť × Ť → Z

φ :Ť → Z

by the formulae

φ(m) =
1

2

∑
m2
i

I(m,m′) =
∑

i

mim
′
i.

The important points about φ and I are

φ(0) = 0

φ(km) = k2φ(m)

φ(m+m′) = φ(m) + I(m,m′) + φ(m′)

φ(wm) = φ(m)

I(km,m′) = kI(m,m′) = kI(m′,m) etc.

I(wm,wm′) = I(m,m′)

(7.11)

for m,m′ ∈ Ť , k ∈ Z, and w ∈W .

Remark 7.12. Note that Lemma 4.12 shows that, for SU(d), the formulae for φ and I here agree
with those in §4.B.

As above, we continue to suppose that x = (x1, . . . , xd), and u = (u1, . . . , ud) = (ex1 , . . . , exd).
We define

I(x,m) =
∑

mjxj .

and
uI(m) =

∏
umi

i ,

so that
uI(m) = eI(x,m).

If b is a scalar, then the meaning of

mb = bm = (m1b, . . . ,mdb)

is clear. Its multiplicative analogue is

βm = (βm1 , . . . , βmd);

again these are related by

emb = (eb)m.
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With these notations, the functional equations for σ imply the following.

Lemma 7.13. Suppose that λ = 2πil + 2πikτ , that x = (x1, . . . , xd), and u = ex. Suppose that
m ∈ Ť . Then

σ(x+mλ, τ) = e−kI(m,x)−2πiτk2φ(m)σ(x, τ)

σ(uqkm, q) = u−kI(m)q−k
2φ(m)σ(u, q). �

Remark 7.14. The factor of (−1)l+k in (7.3) contributes 1, because it becomes

(−1)(l+k)
P

mi = 1.

Remark 7.15. To work with virtual vector bundles, we may as well extend our abbreviations by
using super -vector notation, and so let

x = (x0, x1), u = (u0, u1),m = (m0,m1),

etc. stand for ordered pairs of quantities as above. So for example

σ(x, τ) =
σ(x0, τ)

σ(x1, τ)
.

Our first use of all this notation is to give the following result about the equivariant Euler class
associated to the sigma orientation. It shows that that characteristic class restriction cB1 = 0 = cB2
suffices to ensure the Euler class descends to a meromorphic function on the elliptic curve. This
observation goes back at least to [Wit87, BT89]. Note that if V is a T-vector bundle over a T-fixed
space, then it admits a decomposition

V ∼= V T ⊕ V ′,

where V ′ ∼= V/V T.

Proposition 7.16. Let m = (m1, . . . ,md) : T→ T be a cocharacter, corresponding to a component
BZ(m) of BSU(d)T, and let ξ be the tautological T-equivariant vector bundle over this space. Let
x = (x1, . . . , xd) be the roots of the total Chern class of ξ. Then

eT(ξ)(z, τ) = σ(x+mz, τ) = σ(uwm, q) ∈ H∗
T(BSU(d)T;OC)

and

eT(ξ/ξT)(z, τ) =
∏

mj 6=0

σ(xj +mjz, τ) =
∏

mj 6=0

σ(ujw
mj , q) ∈ H∗

T(BSU(d)T;OC)

These elements satisfy

eT(ξ)(z + λ, τ) = exp
(
−kI(x,m)− kI(m,m)z − 2πik2φ(m)τ

)
eT(ξ)(z, τ)

eT(ξ/ξT)(z + λ, τ) = exp
(
−kI(x,m)− kI(m,m)z − 2πik2φ(m)τ

)
eT(ξ/ξT)(z, τ)

if λ = 2πil + 2πikτ ; in q-notation this is

eT(ξ)(wqk, q) = u−kI(m)w−kI(m,m)q−k
2φ(m)eT(ξ)(w, q)

eT(ξ/ξT)(wqk, q) = u−kI(m)w−kI(m,m)q−k
2φ(m)eT(ξ/ξT)(w, q)

In particular, if V = V0−V1 is a T-equivariant bundle over a T-fixed space X, with cB1 V = 0 = cB2 V ,
then

eT(V/V T)(z, τ) ∈ H∗
T(X;K×

C )
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Proof. The formula for the equivariant Euler class is just (7.10). The transformation formula follows
from Lemma 7.13. Note that the entries mj = 0 make no contribution to I(x,m) or φ(m). Lemma

4.13 then shows that if V = V0−V1 is a BU{6}-bundle, then eT(V/V T) descends to KC ; it remains
to show that it is non-zero. We have

eT(V/V T) =
eT(V0/V

T
0 )

eT(V1/V T
1 )

=

∏
m0

j 6=0 σ(x0
j +m0

jz, τ)∏
m1

j 6=0 σ(x1
j +m1

jz, τ)
.

Each factor of the product is of the form σ(x +mz, τ). This is holomorphic, and the cohomology
class x takes integer values on homology classes, so it has zeroes only at points of finite order (i.e.,
when a multiple of z is a lattice point). Accordingly, the product takes values which are invertible
meromorphic functions.

�

7.D. The Thom class. In this section we give the formula for our Thom class, although the proof
that it works as we say depends on some results in Section 8.

Let X = BStringC, and let ξ be the tautological bundle over X, so

MStringC = Xξ.

We will use the exact sequence of Proposition 6.4 to specify a class in ECT(Xξ), taking advantage
of the fact, proven in Proposition 5.7, that H∗

TX
A is concentrated in even degrees, so that we have

an exact sequence

0→ EC2n
T (X) −→ H2n(XT;K ⊗ Ω∗

C)×
∏

A

H2n
T (XA;O∧

A ⊗ ω
∗
C)→

H2n(XT;K∧
F ⊗ ω

∗
C)→ EC2n+1

T (X)→ 0. (7.17)

Thus we must specify

ψT(ξ) ∈ H∗
T((XT)ξ

T

;KC)

and, for each finite A ⊆ T, an element

ψA(ξ) ∈ H∗
T((XA)ξ

A

;O∧
A),

with the property that

ψA(ξ)|
(XT)ξT = ψT(ξ) (7.18)

in

H∗
T((XT)ξ

T

;K∧
F ).

The obvious way to produce such a class is to start with

ThomT(ξ) ∈ H∗
T(Xξ), (7.19)

and then for each A to pull back along

(XA)ξ
A

−→ (XA)ξ −→ Xξ.

Thus for all A, finite or not, the formula for ψA is

ψA(ξ) = ThomT(ξA)eT(ξ/ξA). (7.20)
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Here ThomT(ξA), as defined in (7.7), is the Thom class using σ of the T-Borel construction of ξA,
and eT(ξ/ξA) is the Euler class, again using σ, of the T-Borel construction of the “complement”
ξ − ξA ∼= ξ/ξA.

First we note ψT behaves as it should.

Lemma 7.21. The class ψT(ξ) gives an element of

H∗
T((XT)ξ

T

;KC),

and multiplication by ψT(ξ) is an isomorphism

H∗
T(XT;KC)

ψT−→
∼=

H∗
T((XT)ξ

T

;KC).

Proof. It is an isomorphism because ThomT(ξT) = Thom(ξT) is a Thom class, and in Proposition
7.16 it was shown that eT(ξ/ξT) is a unit of H∗

T(XT;KC). �

We turn now to ψA for A ⊂ T a finite subgroup. Our formula gives an element of

H∗
T((XA)ξ

A

;KC)

and we produce from it an element of

H∗
T((XA)ξ

A

,KA)

simply by choosing, for each point a of order n, a lift ã, and then electing to evaluate our element of
KC near ã. Of course the apparent dependence on arbitrary choices is not satisfactory. In Section
8, we shall prove the following result.

Proposition 7.22. The value of ψA(ξ) at ã ∈ C depends only on the image a of ã in C. As such,
multiplication by ψA(ξ) is an isomorphism

H∗
T(XA;OA)

ψA−−→
∼=

H∗
T((XA)ξ

A

;OA).

Thus we have the following.

Theorem 7.23. Let ξ be the tautological T-equivariant complex vector bundle over X = BStringC.
The classes ψA(ξ) for A ⊆ T assemble to give a class ψ(ξ) ∈ ECT(Xξ), and multiplication by ψ(ξ)
is an isomorphism

EC∗
T(X)

ψ(ξ)
−−→
∼=

EC∗
T(Xξ).

Proof. Lemma 7.21 and Proposition 7.22 together with the exact sequence (7.17) show that we have
assembled an element of ψ(ξ) of ECT(Xξ). Moreover, using the exactness of (7.17), its analogue for
ECT(Xξ), the Thom isomorphism in ordinary cohomology, and the Five Lemma, we may conclude
that multiplication by ψ(ξ) is an isomorphism. �

7.E. Multiplicativity. Theorem 7.23 gives a map of spectra

ψ : MStringC −→ EC.

By Proposition 3.14 MStringC is an E∞ ring spectrum, and we would like to know that map is
multiplicative.

Theorem 7.24. The map ψ : MStringC −→ EC is a ring map up to homotopy.
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Proof. The product on MStringC arises from the formula

(X × Y )V⊕W ∼= XV ∧ Y W ,

and the map ψ is multiplicative because it arises from the exponential class ThomT . �

8. Translation of the Thom class by a point of order n.

In this section we assemble a proof of Proposition 7.22. The formula (7.20) for ψA gives an
element of

H∗
T((XA)ξ

A

;KC),

and we must show that this element descends to KA and is holomorphic near a ∈ C〈A〉.

8.A. The strategy via translation. The cohomology ring H∗BT is the ring of functions on the
completion of C at the origin, so to study ψA near a point ã ∈ C〈A〉 = π−1(C〈A〉), we study T ∗

ãψA
near zero. The essential problem is to understand the Euler class

ζ∗T ∗
ãψA ∈ H

∗
T(XA)

near zero. Here ζ denotes the zero section, and T will denote translation in C or C. Using the
description of H∗BSU(d)A in §4.A, we introduce a characteristic class

δA(V ) : C〈A〉 −→ H∗
T(BSUA;KC),

with the property that

δA(V, ã) = ζ∗T ∗
ãψA(V ).

The explicit formula for δA makes it possible to prove Proposition 7.22. For example, we show that
if ξ is a StringC-bundle, then δA(ξ, ã) depends only on π(ã) ∈ C〈A〉: that is, we have a factorization

C〈A〉
δA //___ H∗

TBString
A
C

C〈A〉

π

OO

δA // H∗
TBSU

A.

OO

This argument by translation was introduced by [BT89], and its use in Grojnowski’s equivariant
elliptic cohomology goes back to Rosu [Ros01]. The class δA was introduced in [And03b], to
show that the translation argument could be made independent of the complicated choices in
[BT89, Ros01].

As we note in the introduction, earlier treatments of the Thom class required the translation
argument even to give a formula for ψA. Our formula (7.20) (essentially, (7.19)) does not involve
the translation argument, and so is much simpler than earlier formulae. What we must do is adapt
the translation argument to show that our ψA has the required properties.

8.B. The class δA. Suppose that A = T[n] is a finite subgroup of the circle. We define an element
of H∗(BSU(d)A;OC) as follows. Let V be the tautological over BSU(d). Suppose that

m = (m1, . . . ,md) : A→ T

is a homomorphism, corresponding to a component of BSU(d)A. Thus mi ∈ A
∗ ∼= Z/n, and

∑
mi ≡ 0 mod n.
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Suppose that xj are the Chern roots of V with respect to this decomposition: that is, we suppose
that we have a splitting

V ∼= L1 ⊗ C(m1)⊕ · · ·Ld ⊗ C(md),

where
mj = logαj and xj = c1Lj .

Let a be a point of C of order n, and let ã be a lift of a to C. Define integers k and l by the
formula

nã = λ = 2πil + 2πikτ,

and let λ = 2πil + 2πikτ . Let m̃ be any factorization

T
m̃ // T.

A

OO

m

>>
~~~~~~~~

That is, m̃j is an integer lift of mj .

In order to give q-expansion formulae we also set

ur = erx

αr = era

for r ∈ Q. Finally, let δA = δA(x, m̃, ã) be the expression

δA(x, m̃, ã)
def
= exp

(
k
nI(m̃, x) + k

n ãφ(m̃)
)
σ(x+ m̃ã, τ)

= exp
(
k
n

∑

j

m̃jxj + k
n
ã
2

∑

j

m̃2
j

)∏

j

σ(xj + m̃j ã, τ)

= u
k
n
I(m̃)α

k
n
φ(m̃)σ(uαm̃, q).

(8.1)

Lemma 8.2. The expression δA is independent of the choice of lift m̃. Moreover, it is invariant
under the action of W (m), the Weyl group of Z(m). As such, it defines a characteristic class of
principal Z(m)-bundles.

Proof. Suppose that m̃′ is another lift. Then

m̃′ = m̃+ n∆,

where ∆ ∈ Hom(T, T ). Then

δA(x, m̃′, ã) = exp
(
k
nI(m̃+ n∆, x) + k

n ãφ(m̃+ n∆)
)
σ(x+ (m̃+ n∆)ã, τ)

= exp
(
k
nI(m̃, x) + kI(∆, x) + k

n ãφ(m̃) + kãI(m̃,∆) + knãφ(∆)
)
σ(x+ m̃ã+ ∆λ, τ)

= exp
(
k
nI(m̃, x) + kI(∆, x) + k

n ãφ(m̃) + kãI(m̃,∆) + kλφ(∆)
)

exp
(
−I(x, k∆)− I(m̃, k∆)ã− 2πiτπφ(n∆)

)

σ(x+ m̃ã, τ)

=δA(x, m̃, ã).

Now suppose that w ∈ Z(m) so wm = m: then

wm̃ = m̃+ n∆

for some ∆ ∈ Ť , and a similar argument to the one just given shows that

δA(x, m̃, ã) = δA(wx,wm̃, ã) = δA(wx, m̃+ n∆, ã) = δA(wx, m̃, ã).
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As a related matter, it is easy to understand the action of a general w ∈W (i.e. one which does
not necessarily fix m).

Proposition 8.3. For w ∈W , the Weyl group of SU(d), we have

δA(wx,wm, ã) = δA(x,m, ã).

That is, the family of expressions δ(x,m, ã) for m ∈ Hom(A,T ) satisfies the hypothesis of Propo-
sition 4.7, and so assemble to give an element of H∗BSU(d)A. �

Remark 8.4. As noted in Remark 7.15, the appropriate extension to virtual vector bundles is given
by the same formulae, provided we admit Z/2-graded notation. Thus if x = (x0, x1), m = (m0,m1),
and m̃ = (m̃0, m̃1), then

δA(x, m̃, ã) = δ(x0, m̃0, ã)/δ(x1, m̃1, ã).

Definition 8.5. If V is a virtual T-equivariant vector bundle over an A = T[n]-fixed space X, with

cB1 (V ) = 0,

and if ã is a point of C over a point a of order n in C, then we write

δA(V, ã)

for the class in H∗(X) provided by Proposition 8.3.

Now we investigate the dependence of δA on the lift ã. Suppose ã′ is another lift of a. Then
there are ǫ, δ ∈ Z such that

ã′ = ã+ 2πiǫ+ 2πiδτ,

so
eã

′
= eãqδ,

and
enã

′
= qk+nδ.

Let k′ = k + nδ. Then

w(a, q
1
n )

def
= e−ã+

k
n
τ = e−ã

′+ k′

n
τ

is an nth root of unity which does not depend on the choice of lift ã; in fact it is the Weil pairing
of a with q1/n [KM85, p. 90]. Because it is an nth root of unity, the quantity

w(a, q
1
n )φ(m) def

= w(a, q
1
n )φ(m̃)

does not depend on the lift m̃ of m. The dependence of δA on the choice of lift ã is given by the
following.

Lemma 8.6.

δA(V,m, ã′) = w(a, q
1
n )δφ(m)δA(V,m, ã).

Proof. Let α = eã. In q-notation,

δA(V, m̃, ã′) = u
k′

n
I(m̃)(αqδ)

k′

n
φ(m̃)σ(uαm̃qδm̃, q)

= u
k
n
I(m̃)uδI(m̃)α

k
n
φ(m̃)αδφ(m̃)qδ

k
n
φ(m̃)qδ

2φ(m̃)u−δI(m̃)α−δI(m̃,m̃)q−δ
2φ(m̃)σ(uαm̃, q)

= δA(V, m̃, ã)α−δφ(m̃)qδ
k
n
φ(m̃)α−δI(m̃,m̃).

Noting that
φ(m̃)− I(m̃, m̃) = −φ(m̃),
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the last expression becomes

δA(V, m̃, ã)α−δφ(m̃)qδ
k
n
φ(m̃)α−δI(m̃,m̃) = w(a, q

1
n )δφ(m)δA(V, m̃, ã).

�

Proposition 8.7. If V is a virtual T-equivariant SU -bundle with cB2 (V ) = 0, then class δA(V, ã)
does not depend on the choice of lift ã of a. Equivalently, for any two lifts ã and ã′ of a,

δA(ξ, ã)|BU{6}A = δA(ξ, ã′)|BU{6}A ,

where ξ is the universal bundle over BU{6}A.

Proof. Lemma 4.13 implies that, if m is any reduction of the action of A on V , and if m̃ is a lift of
m, then

φ(m̃) ≡ 0 mod n,

so w(a, q1/n)φ(m) = 1. �

It is important that the class δA has a Borel-equivariant version as well. For if V is a T-
equivariant bundle over an A-fixed space X, then the T-action preserves the decomposition into
isotypical summands for the A-action

V ∼=
⊕

α∈A∨

α⊗Hom(α, V ).

and so the reduction m determines a T-equivariant principal Z(m)-bundle over X. Put another
way, the T-action on BSU(d)A determines one on the component BZ(m), and as such the map
classifying the Borel construction of the tautological bundle factors as

ET ×T BZ(m) //

((PPPPPPPPPPPP
BZ(m)

��

BSU(d)A.

We write δBA(V,m, ã) for the resulting Borel class, in H∗
T(X;OC).

It is important to understand the restriction of δBA to the fixed subspace Y = XT. Since Y ⊆ X,
any reduction

m̃ : π0Y → Hom(T, T )

of the action of T on V |Y is a lift of m. If x = (x1, . . . , xd) are the Chern roots of V |Y , then

δBA(V, ã)|Y = δBA(x, m̃, ã) = exp
(
k
nI(m̃, x+ m̃z) + k

n ãφ(m̃)
)
σ(x+ m̃z + m̃ã, τ) (8.8)

As promised, we can now show that δBA is the translation of the equivariant Euler class associated
to σ.

Proposition 8.9. Let ξ be the tautological bundle over BStringAC . Then

δBA(ξ, ã) = T ∗
ã eT(ξ) ∈ H∗(BStringAC ;KC).

Proof. Let X = BStringC. We showed in Proposition 5.7 that H∗(XA; Q) is concentrated in even
degrees and that

H∗
T(XA) = H∗(XA)[z].

In Proposition 5.7, we showed that

H∗
T(XA;KC)→ H∗

T(XT;KC)
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is injective, and so letting Y = XT, it suffices to prove that

δBA(ξ, ã)|Y = T ∗
ã eT(ξ)|Y .

But under the indicated characteristic class restrictions, we have I(m̃, x) = 0 and φ(m̃) = 0 by
Lemma 4.13, and so equation (8.8) becomes

δBA(ξ, ã)|Y = σ(x+ m̃z + m̃ã, τ) = T ∗
ã eT(ξ)|Y .

�

8.C. Variants. We need two variants of δA, corresponding to the decomposition

V ∼= V A ⊕ V ′,

where V ′ ∼= V/V A. To give formulae we introduce some restricted sums and products.

Let
∑′

i

m̃iyi =
∑

m̃i 6≡0 mod n

m̃iyi

∏′

i

f(yi) =
∏

m̃i 6≡0 mod n

f(yi)

I ′(m,x)
def
=
∑′

i

m̃iyi

φ′(m̃) =
1

2

∑′

i

m̃im̃i

∑′′

i

m̃iyi =
∑

m̃i≡0 mod n

m̃iyi

I ′′(m,x) =
∑′′

i

m̃iyi

φ′′(m̃) =
1

2

∑′′

i

m̃im̃i

∏′′

i

f(yi) =
∏

m̃i≡0 mod n

f(yi),

and let

σ′(y, τ) =
∏′

i

σ(yi, τ)

σ′′(y, τ) =
∏′′

i

σ(yi, τ)

δ′A(x, m̃, ã) = exp(
k

n
I ′(m̃, x) +

k

n
ãφ′(m̃))σ′(x+ m̃ã, τ)

δ′′A(x, m̃, ã) = exp(
k

n
I ′′(m̃, x) +

k

n
ãφ′′(m̃))σ′′(x+ m̃ã, τ).
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Notice that

I = I ′ + I ′′

φ = φ′ + φ′′

δA = δ′Aδ
′′
A.

Our analysis of δA applies to δ′A and δ′′A to give the following.

Proposition 8.10. The classes δ′A(x, m̃, ã) and δ′′A(x, m̃, ã) are independent of the choice of lift m̃,
and are invariant under the action of W (m). Moreover if w ∈W , then

δ′A(wx,wm, ã) = δ′A(x,m, ã),

and similarly for δ′′A. As such, they assemble to give elements of H∗(BU(d)A). As d varies, they
define stable exponential classes δ′A(ξ, ã) and δ′′A(ξ, ã) in H∗(BSUA).

Proof. The arguments for δA in §8.B decouple in this way. The main point is, if V is an A-bundle
or T-bundle over an A-fixed space, then with respect to the equivariant decomposition

V ∼= V A ⊕ V ′,

the “prime” parts above correspond to V ′, while the “prime-prime” parts correspond to V A. �

The behaviour of δ′A and δ′′A with respect to change from ã to ã′ is similar, but there is an
additional subtlety. First of all, note the following.

Lemma 8.11. For any lift m̃ of m, we have

φ′′(m̃) ≡ 0 mod n.

Proof. Recall that φ′′ corresponds to restriction to V A, where each m̃i ≡ 0 mod n. We have

φ′′(m̃) = −
∑′′

i<j

m̃im̃j.

�

Proposition 8.12. If ã′ is another lift of a, and δ is defined by

eã
′
= eãqδ,

then

δ′A(V,m, ã′) = w(a, q
1
n )δφ

′(m)δ′A(V,m, ã)

= w(a, q
1
n )δφ(m)δ′A(V,m, ã)

and

δ′′A(V,m, ã′) = δ′′A(V,m, ã).

In particular, we have a well-defined characteristic class δ′A(ξ, a) of BU{6}-bundles, and a well-
defined characteristic class δ′′A of BSU -bundles. �

The fact that, even for an SU -bundle, δ′′A(V, ã) does not depend on the choice of lift ã is striking,
until it is discovered to be trivial. Recall from (7.6) that, if V is a (virtual) vector bundle, then
e(V ) is its Euler class with respect to the orientation given by σ.
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Proposition 8.13. Let V be the tautological bundle over BSU(d). For any choice ã of lift of a,

δ′′A(V, ã) = e(V A).

and

(δ′′A)B(V, ã) = eT(V A)

Proof. Let α = eã, so

αn = qk.

Let m̃ be a lift of m : A→ T , and define integers ∆i by the rule

∆i =

{
mi

n mi ≡ 0 mod n

0 otherwise.

Let

u = (ex1 , . . . , exd).

We use q-notation.

δ′′A(x, m̃, ã) = u
k
n
I′′(m̃)α

k
n
φ′′(m̃)σ′′(uαm̃)

= u
k
n
I′′(n∆)α

k
n
φ′′(n∆)σ′′(uαn∆)

= ukI
′′(∆)αknφ

′′(∆)σ′′(uqk∆)

= σ′′(u),

as required. The equivariant case is similar. �

Corollary 8.14. We have

T ∗
ã ThomT(V ) = ThomT(V ) ∈ H∗

T((BSU(d)A)V
A

;OC).

That is, the Thom class is invariant under translation by ã.

Proof. Proposition 8.13 gives the result for the corresponding Euler class. In this universal case,
the cohomology of the base BSU(d)A is a domain, and cohomology of the Thom space is a principal
ideal, so the result for the Euler class gives the result for the Thom class. �

For our analysis, a crucial feature of δ′A is that it has no zeros or poles near 0.

Proposition 8.15. The class (δ′A)B(V, ã) gives an element of H∗
T(BSU(d)A;O×

C,0). Moreover, if ξ

is the tautological bundle over BStringAC , then

(δ′A)B(V, ã) = T ∗
a eT(ξ/ξA) ∈ H∗

T(BStringAC ;O×
C,0)

Proof. For the first part, it suffices as in the proof of Proposition 8.9 to check that (δ′A)B(V, ã)

restricts to an element of H∗
T(BSU(d)T;O×

C,0). We have

(δ′A)B(V, m̃, ã)(z, τ) = exp
(
k
nI

′(m̃, x+ m̃z) + k
n ãφ

′(m̃)
) ∏

mj 6=0

σ(xj + m̃jz + m̃j ã, τ).

Recall that ã is a lift of a point a of order n. If m̃j is not divisible by n, then there is a small
neighborhood U of 0 such that m̃j(z + ã) 6∈ Λ for z ∈ U : so σ(m̃jz + m̃j ã) is a unit of OC,0.

Now consider the Taylor series expansion

σ(x+ m̃z + ã, τ) = σ(m̃z + m̃ã, τ) + o(x).
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Since x is a power series variable, this is a unit provided that σ(m̃+m̃ã, τ) is a unit. This proves the
first statement. The proof of the second part proceeds exactly as for the case of δBA in Proposition
8.9. �

8.D. Proof of Proposition 7.22. As in the statement of the Proposition, we let X = BStringC,
and we write ξ for the tautological bundle over X.

To illustrate the argument we give it first for the Euler class associated to ψA. Let ζ : XA →
(XA)ξ

A
be the zero section. Let Tã denote translation by ã in C. Then, as we showed in Proposition

8.9,

T ∗
ã ζ

∗ψA(z) = δBA(ξ, ã)(z),

so to understand the behaviour of ψA near ã, it suffices to understand the behaviour of δBA near

0. But we have shown in Proposition 8.7 that if ξ is a BU{6}-bundle, then the class δBA does not
depend on the choice of lift ã of a. So

T ∗
ã ζ

∗ψA(z) = δBA(ξ, ã)(z) = δBA(ξ, ã′)(z) = T ∗
ã′ζ

∗ψA(z).

The refinement to ψA itself is clear, given the preceding discussion and the fact that, by definition,

ψA = ThomT(ξA)eT(ξ/ξA).

Corollary 8.14 shows that

T ∗
ã ThomT(ξA) = ThomT(ξA)

and so this quantity is independent of ã and for that matter of a. Meanwhile by Proposition 8.15,

T ∗
ã eT(ξ/ξA) = (δ′A)B(ξ, ã),

and Proposition 8.12 shows that this quantity is independent of the lift ã. Thus we have shown
that T ∗

ãψA depends only on a, and not the choice of lift ã.

Finally we must show that multiplication by ψA is an isomorphism

H∗
T(XA;OA)

ψA−−→
∼=

H∗
T((XA)ξ

A

;OA).

Certainly ThomT(ξA) is an isomorphism

H∗
T(XA)→ H∗

T((XA)ξ
A

).

In Proposition 8.15 we showed that

T ∗
ã eT(ξ/ξA) = (δ′A)B(ξ, ã)

is a unit of H∗
T(XA;OC,0). As a ranges over the points of C〈A〉, we find that

eT(ξ/ξA) ∈ H∗
T((XA);O∧

A)×,

as required.

This completes the proof of Proposition 7.22. �
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Part 3. Analytic and algebraic geometry of the sigma orientation

In this part, we give an account of the string orientation in terms of the analytic geometry of the
curve C = C/Λ. In Section 9, we associate to a T-spectrum X a sort of sheaf F(X) on C, whose
sections are calculated by an exact sequence like (6.5). If X is a space, this is a sheaf of rings, and
so gives rise to a ringed space F(X).

We then turn to the analysis of F(BSU(d)) and the line bundle F(BSU(d)V ) over it. As before,
we begin in Section 10 by dealing with T-fixed spaces and generic points on the curve and in Section
11, we turn to the analysis of points with finite isotropy and torsion points on the curve. We show
that our Thom class gives a trivialization of the line bundleF(BStringC(d)V ) over F(BStringC(d)).
Our argument gives a proof of the conjecture in [And03b, And03a] in this setting. We conclude in
Section 12 by rephrasing the situation in algebraic terms; we hope that this will eventually lead
to an algebraic proof for equivariant elliptic cohomology theories associated to arithmetic elliptic
curves.

9. Elliptic cohomology and sheaves of OC-modules.

The sequence (6.5) suggests that EC∗
T(X) is approximately the cohomology of a sheaf on

C: the Hn(XT;K ⊗ Ω∗
C) factor concerns the behaviour of a section generically on C, while the

Hn
T(XA;TAC ⊗ ω

∗
C) factors concern the behaviour in small neighborhoods of the points of finite

order.

In Sections 19–22 of [Gre05], the second author constructs such a sheaf, which we describe in
§9.A, however this does not have the formal properties we need, so in §9.B we construct a more
suitable variant.

9.A. The Grojnowski sheaf. We briefly recall some of the properties of the sheafM(X), (which
is denoted MCF (X,EC). in [Gre05]).

Proposition 9.1. There is a functor M from T-spectra to ω∗-periodic OC-modules enjoying the
following properties.

(1) If W is a virtual complex representation of T, then

M(SW ) ∼= OC(−D(W ))⊗ ω∗.

(2) There is a short exact sequence

0→ ΣH1(C;M(X)) → EC∗
T(X)→ H0(C;M(X)) → 0.

(3)

M(XT) ∼= H∗(XT;OC ⊗ ω
∗)

(4) Let a be a point of C of exact order n, and let A ⊆ T be the subgroup of order n (A = T if
n =∞). For a finite T-space X

M(X)a ∼= EC∗
T(XA)⊗OC,a.

In the case that

HT
∗ (XA) ∼= H∗(X

A)⊗H∗(BT),

then

M(X)a ∼= H∗(XA;OC,a ⊗ ω
∗).
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In the case of finite X and an elliptic curve of the form C = C/Λ, the sheafM(X) is equivalent
to that of [Gro07]; see [Gre05, §22]. As we have already observed, one of the important innovations
of [Gre05] is to realize that this sheaf can be constructed in the case of a rational elliptic curve, by
using the function t|A| rather than the covering C→ C/Λ to make O∧

A into an H∗BT-algebra.

We shall be interested in taking X = BSU(d) or BStringC, in which case it is more difficult to
describe M(X) explicitly. Instead, we introduce a variant of M, which amounts to working with
the sheafM(XT) together with the collection of stalks M(X)a for a of finite order.

The long exact sequence (6.5) shows that the difference between EC∗
T(X) and EC∗

T(XT) is local

on the elliptic curve: the “meromorphic” sections of EC∗
T(X) or EC∗

T(XT) are just the meromor-

phic functions on spec(H∗(XT)) × C, and the question of whether a meromorphic function s is
holomorphic can be checked one point at a time. For XT, this is a question of checking whether
for each a of finite order, sa lives in

HP ∗(XT;O∧
a ) ⊂ HP ∗(XT;K∧

F )

but for X on which T acts non-trivially one must specify for each finite A ⊂ T an element sA of

HP ∗
T(XA;O∧

A)

which restricts to s in

H∗(XT;O∧
A).

To display this situation systematically, we introduce the following.

Definition 9.2. The category of E-sheaves is the category in which an object F consists of

(1) an ω∗-periodic OC -module FT;
(2) for each finite A ⊂ T, an ω∗-periodic module FA over the local ring OA, and a map of
O∧
A-modules

rA : F∧
A → (FT)∧C〈A〉. (9.3)

A morphism F → F ′ consists of maps

FA → F
′
A

for A ⊆ T, which intertwine the maps (9.3).

Definition 9.4. If F is an E-sheaf, then a section s of F consists of sections sA of FA for A ⊆ T,
such that for each finite A,

rAsA = sT.

We write ΓF for the group of sections of F .

We formalize the motivating example.

Example 9.5. If X is a T-spectrum, then M(X) defines an E-sheaf N (X) by taking

N (X)T :=M(XT)

and

N (X)A :=M(X)C〈A〉

with structure map

M(X)∧C〈A〉 →M(XT)∧C〈A〉
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9.B. The completed Grojnowski E-sheaf of a T-space. Our main example, motivated by
Proposition 6.4, is designed to highlight the regularity of various sections we later construct. It
turns out to be a type of completion of the Grojnowski sheaf with convenient formal properties.

Proposition 9.6. There is a functor

F : T-spaces −→ E-sheaves.

It is defined by the formulae

F(X)T = HP ∗(XT;OC)

F(X)A = HP ∗
T(XA;O∧

A) for A finite,

with structure map

F(X)A = HP ∗
T(XA;O∧

A)→ HP ∗
T(XT;O∧

A) ∼= HP ∗(XT;O∧
A) = (F(X)T)∧C〈A〉.

The functor is a naive 2-periodic T-equivariant cohomology theory in the sense that it is homotopy
invariant, exact and satisfies excision and the wedge axiom.

There is a map
N (X) −→ F(X)

natural in X, and it is an isomorphism at T in that F(X)T = M(XT) = N (X)T. If X is finite,
then it is completion at A in that

F(X)A ∼= HP ∗(XA;O∧
A) ∼=M(X)∧C〈A〉.

Proof. For behaviour at T, we need only note that M(X) is associated to the free EC-module
F (XT, EC) of the same rank as HP ∗(XT;OC).

For behaviour at A we need to recall that the stalk of the sheafM(X) at A is defined to be the

homotopy groups of F (X,EC) ∧ Ẽ〈¬A〉, where Ẽ〈¬A〉 is defined by a cofibre sequence

E〈¬A〉 −→ S0 −→ Ẽ〈¬A〉

and
E〈¬A〉 =

∨

B 6=A

E〈B〉.

Now we maps

F (X,EC) ∧ Ẽ〈¬A〉 −→ F (XA, EC) ∧ Ẽ〈¬A〉 −→ F (XA ∧ E〈A〉, EC) ∧ Ẽ〈¬A〉.

The homotopy of the left-hand side isM(X)A, and the homotopy of the right-hand side is

HP ∗
T(XA;O∧

A) = F(X)A

by the completion theorem. The first of the maps is an equivalence when X is finite since X/XA

is built from basic cells corresponding to finite subgroups other than A. The second of the maps is
a completion. �

If X is a space, then it will also be convenient to reverse the arrows and consider the ringed
spaces over C given by

F(X)T
def
= (C,F(X)T)

F(X)A
def
= (C〈A〉,F(X)A).

(9.7)

In this guise the structure map of E is a map of ringed spaces over C∧
C〈A〉

(F(X)T)∧C〈A〉 −→ F(X)∧A. (9.8)
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Definition 9.9. We shall refer to a collection of spaces FA for A ⊆ T, equipped with maps (9.8),
as an E-space. If F is a E-space, then we write OF for its associated E-sheaf.

Proposition 9.10. Suppose that X is an even T-space, that is, for each A ⊆ T, H∗(XA) is
concentrated in even degrees. Then there is a natural monomorphism

Γ(OF(X))→ EC0
T(X).

If X is T-fixed, this is an isomorphism.

Proof. Consider the diagram

0 −−−−→ Γ(F(X)) −−−−→ H0(XT;OC)×
∏
AH

0
T(XA;O∧

A) −−−−→ H0(XT;K∧
F )

y
y

y

0 −−−−→ EC0
T(X) −−−−→ H0(XT;K)×

∏
AH

0
T(XA;O∧

A) −−−−→ H0(XT;K∧
F ) −−−−→ EC1

T(X) −−−−→ 0

(In the interest of space, we have consistently omitted terms of the form ⊗ω∗
C from the coefficients).

The exactness of the top row describes Γ(F(X)). With our hypotheses, the bottom row is exact.
The only difference between the middle terms is the OC , mapping to K in the bottom. The middle
vertical arrow is the obvious map, and it is injective. It is clear that the left vertical arrow exists,
and is injective.

If sT ∈ H
0(XT;K) participates in an element s of the kernel of

H0(XT;K) ×
∏

A

H0
T(XA;O∧

A)→ H0(XT;K∧
F ),

and X is T-fixed then it clearly is in the image of

H0(XT;OC)→ H0(XT;K).

and so s gives an element of Γ(F(X)), showing that the left arrow is also surjective, as required. �

10. Analytic geometry of the sigma orientation I: T-fixed spaces.

In this section we concentrate on T-fixed spaces and generic points on the curve. As before this is
the easiest part since the topology and the geometry are largely unlinked. We begin the analysis of
the Thom space of the tautological bundle V over BSU(d), by considering its retriction to the fixed
point space BSU(d)T. In this section we describe F(BSU(d)T) and F((BSU(d)T)V ). In Section
11, we include the points with finite isotropy and torsion points on the curve, thereby extending
our analysis to a description of F(BSU(d)) and F(BSU(d)V ).

10.A. The E-space associated to the T-fixed points of BSU(d). For brevity we write Y =
BSU(d)T. Since T acts trivially on Y , we have

H∗
T(Y A) = H∗(Y ×BT)

and so Γ(F(Y )) is the kernel in the diagram

0→ Γ(F(Y ))→ HP 0(Y ;OC)×
∏

A

HP 0(Y ;O∧
A)→ HP 0(Y ;K∧

F ), (10.1)

while Γ(F(Y V )) is the kernel in the diagram

0→ Γ(F(Y V ))→ HP 0(Y V T

;OC)×
∏

A

HP 0
T(Y V A

;O∧
A)→ HP 0(Y V T

;K∧
F ). (10.2)
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For each component Z of Y , HP ∗(Z) is a domain, and so each factor in the right of (10.2) is a
principal ideal of the corresponding factor in (10.1), generated by an Euler class. Our goal is to
understand these ideals.

Recall from Proposition 4.7 that elements Ξ ∈ HP 0(Y ) = HP 0(BSU(d)T) are given by compat-
ible elements

Ξ(m) ∈ HP 0(BT )W (m)

where m ranges over Ť = Hom(T, T ). Now

spfHP 0BT ∼= Ĝa,

and the projection

C→ C

gives an isomorphism

Ĝa
∼= Ĉ,

so we have

spfHP 0BT ∼= Ť ⊗ Ĉ.

Thus we may view an element of HP 0(Y ;OC) as a family of functions

(Ť ⊗ Ĉ)/W (m) ×C → C. (10.3)

This suggests that we make the following definitions.

Definition 10.4. For m : T→ T , let Xm be the space

Xm
def
= (Ť ⊗ Ĉ)/W (m)× C.

Note that this is a ringed space over C, so OXm
is an OC -algebra.

For w ∈W , there is an evident isomorphism

w : Xm → Xwm,

which is the identity if w ∈W (m) so that w = wm. Thus let

XT =

(
∐

m:T→T

Xm

)
/W.

Proposition 10.5. For each m : T→ T , there is a canonical isomorphism of OC-algebras

F(BZ(m))T
∼= OXm

,

or equivalently of ringed spaces over C

F(BZ(m))T
∼= Xm.

These assemble to an isomorphism

F(BSU(d)T)T
∼=

(
∏

m:T→T

OXm

)W
,

or equivalently

F(BSU(d)T)T
∼= XT.

�

50



Remark 10.6. For any space Z on which T acts trivially,

F(Z)A ∼= (F(Z)T)∧C〈A〉.

Thus Proposition 10.5 implies that

F(BSU(d)T)A ∼= (XT)∧C〈A〉

for finite A, and we have given a complete description of F(BSU(d)T).

Now we turn to the Thom space Y V . Suppose that m = (m1, . . . ,md) ∈ Ť ⊂ Zd labels a
component BZ(m) of BSU(d)T, and xi ∈ H

2BT are the corresponding generators. The equivariant
Euler class of V in the orientation of ordinary cohomology given by the sigma function is

fm(x, z)
def
= eT(V )|BZ(m) =

∏

i

σ(xi +miz, τ). (10.7)

This defines a holomorphic function

fm : (Ť ⊗ Ĉ)/W (m)× C→ C,

but it does not descend to Xm = (Ť ⊗ Ĉ)/W (m) × C as in (10.3). Instead, it is a holomorphic
section of a line bundle Lm, as we now explain.

10.B. The Loojienga line bundle. There is a line bundle over

Ť ⊗ C = Ť ⊗ (C×/qZ)

given by the formula

(Ť ⊗ C×)× C

(u, λ) ∼ (uqm, λu−I(m)q−φ(m))
, (10.8)

and the Weyl-invariance of I and φ (7.11) imply that this line bundle descends to a line bundle
on (Ť ⊗ C)/W, which we call L; as far as we know it was introduced by Looijenga [Loo76]. The
functional equation

σ(uqn, q) = z−I(m)q−φ(m)σ(u, q)

of Lemma 7.13 implies that the product of sigma functions

σ(u, q) =
∏

i

σ(ui, q)

descends to a holomorphic section of L.

Addition in the abelian group Ť ⊗ C induces a map

µm : Xm = (Ť⊗Ĉ)/W (m)×C
i×m
−−−→ (Ť⊗C)/W (m)×(Ť⊗C)W (m) → (Ť⊗C)/W (m) −→ (Ť⊗C)/W ;

(10.9)

if (a1, . . . , ad) ∈ Ť ⊗ Ĉ represents a point of (Ť ⊗ Ĉ)/W (m) and z ∈ C, then

µm(a1, . . . , ad, z) = (a1 +m1z, . . . , ad +mdz).

This has the following relationship to topology. The Borel construction of V is classified by a map

BZ(m)×BT→ BSU(d),

and so provides a map

µtop
m : (Ť ⊗ Ĉ)/W (m)× Ĉ ∼= spfHP 0BZ(m)×BT→ spfHP 0BSU ∼= (Ť ⊗ Ĉ)/W.

51



Lemma 10.10. The diagram

spfHP 0(BZ(m)×BT)
µtop

m−−−−→ spfHP 0BSU(d)
y

y

(Ť ⊗ Ĉ)/W (m)×C
µm
−−−−→ (Ť ⊗ C)/W

commutes.

Proof. This is an expression of the fact (see (4.11)) that

cB• (V ) =
∏

i

(1 + xi +miz).

�

Definition 10.11. Let Lm be the line bundle

Lm
def
= µ∗mL

over Xm. Explicitly, Lm is obtained from the line bundle

(Ť ⊗ C×)× C× × C

(u, z, λ) ∼ (u, zqk, λu−I(m)z−kI(m,m)q−k2φ(m))
(10.12)

over (Ť ⊗ C×)× C by restriction to

(Ť ⊗ Ĉ)× C

and then descent to Xm.

It is easy to check that the functions fm of (10.7) descend to the holomorphic sections

fm = µ∗mσ

of Lm. By construction, these are compatible as m varies.

Proposition 10.13. For w ∈W , the diagram

Xm
w //

µm
%%KKKKKKKKKK

Xwm

µwm
yyrrrrrrrrrr

(Ť ⊗ C)/W

commutes, and so there are natural isomorphisms

w∗Lwm ∼= Lm,

with respect to which

w∗fwm = fm.

�

By the Proposition, the Lm descend to a line bundle

LT −→ XT,

equipped with a section fT. Because the sigma function has zeroes, fT is not a trivialization of LT.
Instead, let I(fT) be the ideal of zeroes of fT.

Corollary 10.14. The section fT is a trivialization of the line bundle LT ⊗ I(fT). �
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10.C. Trivializing line bundles of string bundles I: T-fixed spaces. We now turn towards
relating this to the sigma orientation, retaining the abbreviation Y = BSU(d)T.

Proposition 10.15. After identifying

F(Y )T
∼= XT,

the map

F(Y V ) −→ F(Y )

induced by the zero section ζ : Y → Y V induces an isomorphism of line bundles over XT

γT : I(fT) ∼= F(Y V )T.

For each finite A ⊂ T, we have

F(Y V )A ∼= (F(Y V )T)∧C〈A〉,

and so γT induces an isomorphism

F(Y V )A ∼= I(fT)∧C〈A〉.

Proof. Let a be a point of C, of order n with 1 ≤ n ≤ ∞. Let

V a = V T[n].

Then

(F(Y )T)∧a
∼= HP 0(Y ;O∧

a ),

while

(F(Y V )T)∧a
∼= HP 0

T(Y V a

;O∧
a ).

Let

m = (m1, . . . ,md) ∈ Ť ⊂ Zd

be a cocharacter, labelling a component Z = BZ(m) of Y . Then H∗
T(ZV

a
) is the ideal in H∗

T(Z)
generated by its Euler class

eT(V a) =
∏

mj≡0 mod n

σ(xj +mjz).

But

fm(V ) = eT(V ) = eT(V a)eT(V/V a),

where
eT(V/V a) =

∏

mj 6≡0 mod n

σ(xj +mjz).

The argument in the proof of Proposition 8.15 applies: the xj are topologically nilpotent, and so
eT(V/V a) is a unit of M(Z)∧a , and fm(V ) generates the same ideal as eT(V a). �

We can display the situation described by the Proposition in the following diagram, in which
each square is a pull-back, and the curved arrows are trivializations of the indicated sheaves.

L(V )⊗F(Y V )
∼= //

��

LT ⊗ I(fT)

��

// L ⊗ I(σ)

��

F(Y )T

∼= //

f(V )

YY

XT

µ
//

fT

ZZ

(Ť ⊗ C)/W

σ

ZZ

Thus a T-equivariant SU(d) bundle V over a T-fixed space Z gives rise to a map

h : F(Z)→ XT,
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and so we can form the line bundles

L(V ) = h∗LT

I(V ) = h∗I(fT)

over F(Z). The section
f(V ) = h∗fT

is a trivialization of L(V )⊗ I(V ), and we have an canonical isomorphism of line bundles

F(ZV ) ∼= I(V ).

In Section 11, we explain how to handle the full space BSU(d), and so spaces Z on which T acts
non-trivially. Before doing so, we discuss the sigma orientation for T-fixed spaces Z.

Suppose that for i = 0, 1, V i is a T-equivariant BSU(d)-bundle over a T-fixed space Z, and let
ξ = V 0 − V 1. We then have two maps

hi : F(Z)→ XT,

and we can form the line bundles L(V i) = h∗iLT with sections f i = f(V i) as above. The ratio

ψ =
f0

f1

is a trivialization of
L(V 0)⊗ I(V 0)

L(V 1)⊗ I(V 1)
∼=
L(V 0)⊗F(Y V 0

)

L(V 1)⊗F(Y V 1)
.

Proposition 10.16. If cB2 (ξ) = 0 then

L(V 0) ∼= L(V 1).

Thus if cB2 (ξ) = 0, then ψ gives a trivialization of

F(ZV
0
)⊗F(ZV

1
)−1

as a F(Z)-module. This is precisely our Thom class ψ from Theorem 7.23.

Proof of Proposition 10.16. We can factor the maps

hi : Z → BSU(d)

as
hi : Z → BZ(mi),

where mi : T → T are cocharacters. Then the formula (10.12) shows that Lm = Lm0 ⊗ L
−1
m1

is
obtained from the line bundle

(Ť ⊗ C×)2 × C× ×C

(u0, u1, z, λ) ∼ (u0, u1, zqk, λu
−kI(m0)
0 u

kI(m1)
1 z−2kφ(m0)+2kφ(m1)q−k2φ(m0)+k2φ(m1))

over
(Ť ⊗ C×)2 × C.

by restricting to (Ť ⊗ Ĉ)2 and then descending to

((Ť ⊗ Ĉ)/W (m0))× ((Ť ⊗ Ĉ)/W (m1))× C.

By Lemma 4.13, if cB2 (ξ) = 0, then
φ(m0) = φ(m1),

and over Z,

u
I(m0)
0 = u

I(m1)
1 ,
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and so this line bundle is trivial. �

11. Analytic geometry of the sigma orientation II: finite isotropy.

In Section 10, we constructed a model

F(BSU(d)T) ∼= XT

and used it to construct a map

µ : F(BSU(d)T) −→ (Ť ⊗ C)/W.

Over (Ť ⊗ C)/W we have a line bundle L, equipped with a holomorphic section σ defined by
products of the Weierstrass sigma function. We showed that

F((BSU(d)T)V )

is the ideal sheaf on F(BSU(d)T) of zeroes of µ∗σ.

Since we always have F(X)T
∼= F(XT)T, the analysis so far describes the Thom isomorphism for

the F(BSU(d))T piece of F(BSU(d)). In this section, we give a similar analysis of F(BSU(d))A
and F(BSU(d)V )A for finite A.

11.A. Overview. It is not hard to describe the basic idea. Let m : A → T label a component
BZ(m) of BSU(d)A. Since H∗BZ(m) is concentrated in even degrees, Lemma 6.3 implies that
there is an isomorphism

H∗
T(BZ(m);TAC) ∼= H∗

T(BZ(m);O∧
A) ∼= H∗(BZ(m);O∧

A) (11.1)

(the first isomorphism is natural and the second involves choices). The right-hand side is the ring
of functions on

(Ť ⊗ Ĉ)/W (m)× C∧
A.

The idea is to construct a map

µm : (Ť ⊗ Ĉ)/W (m)× C∧
A → (Ť ⊗ C)/W, (11.2)

like the map in (10.9). Then we can form the line bundle

Lm = µ∗mL

with section

fm = µ∗mσ,

and identify F(XV )A with I(fm), as in the T-fixed case.

There are two related problems. The first is that the isomorphism (11.1) is not canonical, and we
must be able to construct the map µm compatibly with restriction to BSU(d)T in order to extend
the analysis of Section 10. The second is that the homomorphism

m = (m1, . . . ,md) : A→ T

does not quite determine µm as in (11.2). We do get a homomorphism

C[A]→ (Ť ⊗ C)W (m),

and so a map

µweak
m : (Ť ⊗ C)/W (m)× C[A]

id×m
−−−→ (Ť ⊗ C)/W (m)× (Ť ⊗ C)W (m) −→ Ť ⊗ C/W, (11.3)

analogous to (10.9). The problem is to extend this map to the formal neighborhood C∧
A of C〈A〉.
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11.B. The E-space associated to BSU(d). The T-action on BZ(m) ⊂ BSU(d) (see Remark
2.1) provides the extra information we need. The Borel construction

V ×T ET→ BZ(m)×T ET

is classified by a map

BZ(m)×T ET→ BZ(m),

inducing a map

µm,0 : spfHP 0(BZ(m)×T ET)→ (Ť ⊗ Ĉ)/W (m). (11.4)

A choice of isomorphism

HP 0(BZ(m)×T ET) ∼= HP 0(BZ(m)×BT) (11.5)

permits us to view µm,0 as a map

(Ť ⊗ Ĉ)/W (m)× Ĉ → (Ť ⊗ Ĉ)/W (m)→ (Ť ⊗ C)/W (m),

giving us the desired map (11.2) in a formal neighborhood of 0. We can then define µm at a point
a of exact order n by translation, noting that the diagram

(Ť ⊗ Ĉ)/W (m)×C[A]
µweak

m−−−−→ (Ť ⊗ C)/W (m)

1×Ta

x
xTm(a)

(Ť ⊗ Ĉ)/W (m)×C[A]
µweak

m−−−−→ (Ť ⊗ C)/W (m)

(11.6)

commutes.

In doing so, there is little to be gained by choosing the isomorphism (11.5). Instead, we note

that spfHP 0
T(BZ(m)) is in any case a formal scheme over Ĉ ∼= spfHP 0BT, and so for m : A→ Ť

labelling a component BZ(m) of BSU(d)A, we define Xm to be the formal scheme over C∧
A given

by

Xm
def
=

∐

a∈C〈A〉

T ∗
−a spfHP 0

T(BZ(m)).

By construction, for w ∈W we have natural isomorphisms

Xm → Xwm,

and so setting

XA
def
=

(
∐

m:A→T

Xm

)
/W,

we have an isomorphism

F(BSU(d))A ∼= XA.

Since by Proposition 10.5,

(F(BSU(d))T)∧C〈A〉
∼= XT,

we get a map

XA ∼= F(BSU(d))A −→ (F(BSU(d))T)∧C〈A〉
∼= (XT)∧C〈A〉,

and so X is a E-space. Let

µm : Xm → (Ť ⊗ C)/W (m)

be the map which on the a component of Xm is given by

spfHP 0
T(BZ(m))

µm,0
−−−→ (Ť ⊗ C)/W (m)

Tm(a)
−−−→ (Ť ⊗ C)/W (m).
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It is easy to check that the µm for m : A→ T induce a map

µA : XA → (Ť ⊗ C)/W.

Then we have the following.

Proposition 11.7. For A ⊂ T, the diagram

(XT)∧C〈A〉 −−−−→ XAy
yµA

XT
µT−−−−→ (Ť ⊗C)/W

commutes. Thus we have an isomorphism

F(BSU(d)) ∼= X

of E-spaces over C, and a map
µ : X → (Ť ⊗C)/W.

�

Proof. We consider what is happening over a particular point a ∈ C of exact order |A|. We also
work one component at a time: fix a pair of homomorphisms

T
m̃ // T

A,

OO

m

??
~

~~
~~~

~

labelling a component BZ(m) of BSU(d)A, and a component BZ(m̃) of BZ(m)T. We must show
that the diagram

(Xm̃)∧C〈A〉 −−−−→ Xmy
yµm

Xm̃
µm̃−−−−→ (Ť ⊗C)/W

(11.8)

commutes.

Note that the diagram

(Ť ⊗ C)/W (m̃)× C∧
0

1×Ta−−−−→ (Ť ⊗ C)/W (m̃)× C∧
a

µm̃

y
yµm̃

(Ť ⊗ C)/W (m̃)
Tm̃(a)
−−−−→ (Ť × C)/W (m̃)

commutes: if m̃ = (m1, . . . ,md) ∈ Ť ⊂ Zd, then either composition sends the element of (Ť ⊗
C)/W (m̃)× C∧

0 represented by (x1, . . . , xd, z) ∈ (Ť ⊗ C)×C∧
0 to the class of

(x1 +m1(z + a), . . . , xd +md(z + a))

in (Ť ⊗ C)/W (m̃). Thus the counterclockwise composition in the diagram (11.8) at a may be
replaced by the top row in the diagram

(Xm̃)∧a
1×T−a
−−−−→ (Xm̃)∧0

µm̃,0
−−−−→ (Ť ⊗ C)/W (m̃)

Tm̃(a)
−−−−→ (Ť ⊗ C)/W (m̃)

y
y

y
y

(Xm)a
T ∗
−a

−−−−→ (Xm)0
µm,0
−−−−→ (Ť ⊗ C)/W (m)

Tm(a)
−−−−→ (Ť ⊗ C)/W (m).
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The commutativity of the first square and third squares is straightforward. The commutativity of
the second square follows from Lemma 10.10 and the commutativity of the diagram

BZ(m̃)×T ET //

((RRRRRRRRRRRRR
BZ(m)×T ET

��

BZ(m).

�

11.C. Building the line bundle of the Thom space over BSU(d). Having described the E-
space F(BSU(d)), we turn to the E-sheaf F(BSU(d)V ). As in Section 10, we can define a line
bundle

Lm
def
= µ∗mL

with section

fm
def
= µ∗mσ

over Xm, and

LA
def
= µ∗AL

fA
def
= µ∗Aσ

over XA.

Unlike XT, XA is affine, and so LA is trivializable, and it is easy to check that a trivialization
will induce an isomorphism

γA : LA ⊗ I(fA) ∼= F(BSU(d)V )A (11.9)

of ideals in F(BSU(d))A. The problem is to arrange things so that, in the case of a BStringC-
bundle, γAfA coincides with γTfT.

Suppose that ã is a lift of a to C, and α = eã is the corresponding lift of a to C×. Let m̃ be a
cocharacter making the diagram

T
m̃ // T

A

OO

m

??
��

���
��

commute. The isomorphism
L ∼= 1

of line bundles over
Ť ⊗ C×

induces an isomorphism
g(m̃, α) : T ∗

αm̃L ∼= 1

over Ť ⊗C×. To be precise, we mean that if f : Ť ⊗C× → C is a function, considered as a section
of L, then g(m̃, α)(T ∗

αm̃f) is the section of 1 given by

g(m̃, α)(T ∗
αm̃f)(u) = (u, f(uαm̃)).

In particular
g(m̃, α)(T ∗

αm̃σ)(u) = (u, σ(uαm̃)).

Now g(m̃, α) does not induce an isomorphism

L ⊗ I(σ) ∼= H∗(BZ(m)V ),
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because σ(uαm̃) depends on the choice of m̃, which is not W (m) invariant, and so σ(uαm̃) does
not give an element of H∗(BZ(m)).

To fix this, let

γ(m̃, α) = u
k
n
I(m̃)α

k
n
φ(m̃)g(m̃, α) : T ∗

αm̃L ∼= 1.

Then
γ(m̃, α)(T ∗

αm̃σ)(u) = (u, u
k
n
I(m̃)α

k
n
φ(m̃)σ(uαm̃)) = (u, δA(u, m̃, ã)). (11.10)

We showed in the work leading to Definition 8.5 that this does give an element of H∗(BZ(m)). In
the present setting, this means that we have a well-defined isomorphism

γ(m,α) : T ∗
αmL ⊗ I(σ) ∼= H∗(BZ(m)V )

which, by pulling back along
BZ(m)×T ET→ BZ(m),

gives an isomorphism
γ(m,α) : (Lm ⊗ I(fm))a ∼= (F(BZ(m)V )A)a.

If we assemble the γ(m,α) for various m, we get an isomorphism

γα : (LA ⊗ I(fA))a ∼= (F(BSU(d)V )A)a.

To codify the dependence of γ on the lift α = eã and assemble the γ for various a ∈ C〈A〉, let ℓ
be a lift as in the diagram

C

��

C〈A〉

ℓ

<<y
y

y
y

// // C.

(11.11)

We then can view the γα for various α as giving an isomorphism

γℓ : LA ⊗ I(fA) ∼= F(BZ(m)V )A.

If ℓ and ℓ′ are two such sections, let

d(ℓ′, ℓ) : C〈A〉 → Z

be the function such that
eℓ

′
= eℓqd(ℓ

′,ℓ) : C〈A〉 → C×.

Let
c(ℓ′, ℓ) : XA → {ζ ∈ C×|ζ |A| = 1}

be the function given by the formula

c(ℓ′, ℓ,m, a) = w(a, q1/n)d(ℓ
′,ℓ,a)φ(m̃),

where m : A→ T labels a component of BSU(d)A, m̃ : T→ T is any lift of m, and w(a, q1/n) is the
Weil pairing of the indicated elements of C[A], as in Lemma 8.6. This quantity does not depend
on m̃, because w(a, q1/n)n = 1. It does not depend on the choice of m, because

φ(m̃) = φ(wm̃)

for w ∈W.

Lemma 11.12. If ℓ′ and ℓ are two lifts, then

γℓ′γ
−1
ℓ

is multiplication by
c(ℓ′, ℓ) : XA → C×.
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Proof. This is just a formulation of Lemma 8.6. �

Let BStringC(d) be the pull-back in the diagram

BStringC(d) −−−−→ BStringCy
y

BSU(d)×BSU(d)
V0−V1−−−−→ BSU.

Proposition 8.7 and Lemma 11.12 together imply

Proposition 11.13. c(ℓ, ℓ′)|F(BStringC(d))A
≡ 1. �

11.D. Trivializing line bundles of string bundles II: the global case. Finally, we may draw
the threads together, describing the line bundle given by the E-sheaf of a Thom space and showing
that there is a canonical trivialization for StringC-bundles.

Theorem 11.14. After identifying the E-spaces

F(BSU(d)) ∼= X,

pull-back along the zero section identifies F(BSU(d)V ) with an ideal sheaf of F(BSU(d)). For
A ⊆ T we have given maps

µA : XA → (Ť ⊗ C)/W,

and so we have line bundles LA over XA, equipped with sections

fA = µ∗Aσ.

We have a canonical isomorphism

γT : I(fT) ∼= F(BSU(d)V )T

and, for each lift ℓ as in (11.11), an isomorphism

γℓ : LA ⊗ I(fA) ∼= F(BSU(d)V )A.

�

If X is a T-space, and V is a T-equivariant SU(d)-bundle over X, then the map

X → BSU(d)

classifying V induces maps
h : F(X) −→ X

of E-spaces, so we can form the line bundle

L(V )
def
= h∗L

over F(X), equipped with the section

f(V )
def
= h∗f.

Now suppose that V 0 and V 1 are two T-equivariant SU(d)-bundles over X, (universally, we can
take X = BStringC(d)). Let V = V 0 − V 1 and set

L(V ) = L(V 0)⊗ L(V 1)−1,

and similarly for f and γ.

Theorem 11.15. If V = V 0 − V 1 is a difference of SU(d)-bundles over X and cB2 (V ) = 0 then
the following conclusions hold.
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(1) There is a canonical isomorphism trivialization of L(V )T, so f(V )T may be viewed as triv-
ialization of I(f(V )T), and γT(f(V )T) as a trivialization of F(XV )T.

(2) For each finite A, the isomorphism

γℓ : L(V )A ⊗ I(f(V )A) ∼= F(XV )A,

is independent of ℓ; we call it γA.
(3) Over (F(X)T)∧C〈A〉, we have

L(V )T
∼= L(V )A. (11.16)

Using the trivialization of L(V )T to regard γAf(V )A as a section of I(f(V )A) , we have

γTf(V )T = γAf(V )A

in (F(X)T)∧C〈A〉

The resulting section γf(V ) of the E-sheaf F(XV ) coincides with the Thom class ψ(V ) provided by
Theorem 7.23.

Proof. The proof of the first part is essentially the same as the proof of Proposition 10.15. The
second part follows from Proposition 11.13. For the third part, the isomorphism (11.16) follows
from Proposition 11.7, and the rest is equivalent to the fact that

δBA(V, a)|XT = T ∗
a eT(V ),

which we proved as Corollary 8.14 and Proposition 8.15. The formulae for the sections γf(V ) are
the same as the formulae we have already given for ψ(V ). �

12. Cohomology of unitary groups and moduli spaces of divisors.

We give an account in terms of divisors of the analysis in Section 10. It is illuminating to do so
for its own sake, and it indicates an approach to the T-equivariant sigma orientation for an algebraic
elliptic curve.

12.A. The classical non-equivariant description. The starting point is the observation that
if BU(d) denotes the nonequivariant classifying space for U(d)-bundles, then

spfHP 0BU(d) ∼= Ĉd/Σd
∼= Divd+(Ĉ)

is the scheme of effective divisors of degree d on Ĉ, the formal group of C. (We continue to work
with an elliptic curve in the form

C = C/Λ,

so the projection C → C induces an isomorphism of formal groups Ĉ ∼= Ĝa.) Moreover, the
determinant

BU(d)→ CP∞

corresponds to the map

Divd+(Ĉ)→ Ĉ

which sends a divisor
∑

(P ) to
∑

bC P , so

spfHP 0BSU(d) ∼= Divd+(Ĉ)0

is the scheme of effective divisors which sum to zero in Ĉ. (See Strickland [Str99]).
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12.B. Centralizers. Now we consider the T-equivariant classifying space. Let T be the maximal
torus of U(d), and let

m = (m1, . . . ,md) : T→ T

be a cocharacter, corresponding to a component BZ(m) of BU(d). Let us suppose that we have
arranged m nondecreasing order, so it is of the form

me0+1 = · · · = me1 < me1+1 = · · · = me2

< · · ·

< mer−1+1 = · · · = mer ,

(12.1)

with 0 = e0 < e1 < · · · < er = d. It is convenient also to number this partition by setting
di = ei − ei−1 for 1 ≤ i ≤ r, so

di ≥ 1
r∑

i=1

di = d.

It is clear that every m : T → T is conjugate to exactly one of this form, and so these suffice to
describe BU(d)T. It is also easy to see that

Z(m) ∼= U(d1)× · · · × U(dr),

and so

spfHP 0BZ(m) ∼= Divd1+ (Ĉ)× · · ·Divdr
+ (Ĉ) :

this is the scheme of r effective divisors D1, . . . ,Dr, with degDi = di. Another way to say this is

that if we write the tautological divisor D over Divd+(Ĉ)× C as

D =
∑

i

Pi,

then the array m labels each point Pi with an integer mi, and spfHP 0BZ(m) is the scheme of
effective divisors labelled with integers in this way.

Definition 12.2. Let m : T→ T be a cocharacter as in (12.1). We define

Divm+ (Ĉ)
def
= Divd1+ (Ĉ)× · · ·Divdr

+ (Ĉ),

and we write Dm for the tautological divisor over Divm+ (Ĉ) × C. If P is a point of Dm, then we
write mP for its integer label. We write

Divm+ (Ĉ)0
def
= Divm+ (Ĉ) ∩Divd+(Ĉ)0

for the subscheme consisting of divisors which sum to zero in Ĉ.

Strickland’s ideas, applied to our calculation of H∗BSU(d)T in Proposition 4.7, imply the fol-
lowing.

Proposition 12.3. Let T be the maximal torus of diagonal matrices in SU(d), and let

m : T→ T

be a cocharacter, corresponding to a component BZ(m) of BSU(d)T. Then

spfHP 0BZ(m) ∼= Divm+ (Ĉ)0.

�
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Definition 12.4. If P is a point of C and n is an integer, let D(P, n) be the divisor

D(P, n)
def
=

∑

{a∈C|na+P=0}

(a).

Proposition 12.5. Let

m = (m1, . . . ,md) : T→ T

be a cocharacter of the form (12.1), labelling a component BZ(m) of BSU(d)T. Let V be the
tautological bundle over BZ(m). If we write the tautological divisor over

spfHP 0BZ(m)×C ∼= Divm+ (Ĉ)×C

as

Dm =
∑

i

(Pi),

numbered so that mi = mPi
, then EC∗

T(BZ(m)V ) is the cohomology of the the ideal sheaf of the
divisor ∑

i

D(Pi,mi).

Proof. By Proposition 10.15, it is equivalent to show that

Div fm =
∑

i

D(Pi,mi).

The reduction m corresponds to decomposing V into isotypical summands according to the action
of T. The choice of Pi corresponds to using the splitting principle to decompose the tautological
bundle V over BSU(d) as

V |BZ(m)
∼= L1 ⊗ C(m1)⊕ · · ·Ld ⊗ C(md).

If xi = c1Li, then

fm(x, z) =
∏

i

σ(xi +miz, τ).

The result follows from the fact that σ vanishes to first order at the points of the lattice, and
nowhere else. �

12.C. The global equivariant picture. We now ask, what is the failure of Dm = Div fm to be
the divisor of a function on C? The Riemann-Roch Theorem gives two conditions.

Proposition 12.6. Let m : T → T be a cocharacter, corresponding to a component of BSU(d)T.
Then

deg fm = 2φ(m),

and if we write

Dm =
∑

i

Pi

as in Proposition 12.5, then Dm sums to
∑C

miPi

in the elliptic curve.
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Proof. Let us examine a typical summand D(P, n) of fm. If Q is any point of C such that nQ = P ,
then

D(P, n) =
∑

nb=0

(Q+ b).

This shows that

degD(P, n) = n2,

and it follows that

deg fm = 2φ(m).

Meanwhile, ∑C

nb=0

Q+ b = nP +
∑C

nb=0

b = nP,

and so ∑C

i

D(Pi,mi) =
∑C

i

miPi.

�

Now suppose that for i = 0, 1, V i is a T-equivariant BSU(di)-bundle over a T-fixed space X,
and let ξ = V 0 − V 1. Suppose for simplicity that H∗(X) is concentrated in even degrees, and let

D = spfHP 0X.

Let Di be the divisor on D× C which is obtained by pulling back along the map

D× C → (Ť i ⊗ Ĉ)/W i × C.

Then we have the following.

Theorem 12.7. If cB1 (ξ) = 0 = cB2 (ξ), then D0 −D1 is the divisor of a meromorphic function on
the elliptic curve D×C over D, and this meromorphic function is a trivialization of EC∗

T(XV ) as
an EC∗

T(X)-module.

Proof. Let mi be a reduction of the action of T on V i. By Lemma 4.13, the characteristic class
restrictions imply that

φ(m0) = φ(m1)

and that ∑C

P∈D0

m0
PP =

∑C

Q∈D1

m1
QQ.

�

Appendix A. On the relationship between Borel homology and cohomology.

In the appendix we work with coefficents in k, so that the coefficient ring of Borel cohomology
is H∗(BT) = H∗(BT; k) ∼= k[c]. In our applications, k will be a field, but we make this assumption
explicitly where necessary.

The naive Kronecker pairing

Hp
T(X;N) −→ Hom(HT

pX,N)

relating T-equivariant Borel homology and cohomology with coefficients in a k-module N fails to
take account of the coefficient ring H∗(BT) = H∗(BT; k) ∼= k[c]. In this section we construct a
Kronecker pairing which does reflect this structure. To see what such a sequence might look like,
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we note that the generator c ∈ H2BT lowers degree in HT
∗X, and so all of HT

∗X is c-torsion. Thus
in order to get a reasonable answer, one might hope for a map

κ : Hp
T(X) −→ Homp

H∗BT(HT
∗X,H∗BT),

and we construct such a map.

1. Some algebra. Suppose that M is a (graded) H∗BT-module. Let

Γ(c)M = {r ∈M |ckr = 0 for some k}

be the subgroup of c-power torsion in M . The local cohomology groups of M are defined by the
exact sequence

0 −→ H0
(c)(M) −→M −→M [c−1] −→ H1

(c)(M) −→ 0,

and Grothendieck observed [Gro67] that they calculate the right derived functors of c-power torsion:

H∗
(c)(M) = R∗Γ(c)M.

For example, if M is torsion free,

H1
(c)(M) = M [1/c]/M,

and H0
(c)M = 0. A special case is instructive.

Example A.1. For M = H∗(BT) we have

H1
(c)(H

∗(BT)) = k[c, c−1]/k[c] ∼= Σ2H∗BT.

However, note that the second isomorphism is not natural for ring automorphisms. The natural
statement, given by the residue, involves the Kähler differentials:

H1
(c)(H

∗(BT))⊗H∗(BT) Ω1
H∗(BT)/k

∼= H∗(BT).

In more concrete terms, if α is the automorphism multiplying c by λ, α multiplies H2s(BT) by λ−s,
and the part of H1

(c)(H
∗(BT)) in the corresponding degree (viz 2 + 2s) by λ−s−1.

Note too that, if k is a field, then graded H∗(BT)-modules are injective if and only if they are
divisible. If in addition M is torsion free, then the sequence

0 −→M −→M [1/c] −→ H1
(c)(M) −→ 0

is an injective resolution, giving the following calculation.

Lemma A.2. If the coefficient ring k is a field, L is a torsion module and M is torsion free, we
have

Ext1H∗BT(L,M) ∼= HomH∗BT(L,H1
(c)(M)). �

2. The construction. Let Hk denote the inflation (in the sense of Elmendorf-May [EM97]) of the
nonequivariant spectrum representing ordinary cohomology with coefficients in the commutative
ring k, and let Hb = F (ET+,Hk) be the spectrum representing Borel cohomology with coefficients
in k. These are both strictly commutative ring spectra, so we may consider the triangulated
homotopy category of modules over them. LetHM be anHb-module spectrum with πT

∗ (HM) = M ;
existence and uniqueness are easily checked when k is a field, from the fact that the coefficient ring
is of injective dimension 1 and in even degrees. Borel cohomology with coefficients in M is defined
as usual by

Hp
T(X;M) = [Hb ∧X+,Σ

pHM ]Hb,T ∼= [X+,Σ
pHM ]T.
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Remark A.3. To avoid confusion, we highlight some distinctions. Firstly, if N is a k-module one
may consider the usual cohomology groups

H∗
T(X;N) = H∗(ET×T X;N)

of the Borel construction. This does not coincide with H∗
T(X; ǫ∗N) where ǫ : k[c] −→ k is the

augmentation, but in practice no confusion should arise.

The second distinction is more important. If I is an injective k[c]-module we may define a
Brown-Comenetz type cohomology theory

H∗
T(X; I)BC = HomH∗(BT)(H

T
∗ (X), I).

Note that this is quite different from H∗
T(X; I). For example

H∗
T(pt;H∗(BT)) = H∗(BT) 6∼= H∗(BT) = H∗

T(pt;H∗(BT))BC .

Our present notation conflicts with that used in [Gre05], where the Brown-Comenetz type theory
was used without the subscript BC.

Given a map of Hb-module T-spectra

f : Hb ∧X+ −→ ΣpHM,

we form

Hb ∧X+ ∧ ET+
f∧1
−−→ ΣpHM ∧ ET+. (A.4)

Now apply πT
∗ . The association f 7→ πT

∗ (f ∧ 1) gives a function

Hp
T(X;M) −→ HomH∗BT(πT

∗ (Hb ∧X+ ∧ ET+), πT
∗ (ΣpHM ∧ ET+)).

To interpret the homotopy of the domain of (A.4), use the Adams isomorphism [Ada84, LMSM86]:
if A is T-fixed and B is T-free, we have

[A,B]T = [A,ΣB/T]. (A.5)

Remark A.6. The suspension in (A.5) arises as smashing with Sad, the Thom space of the adjoint
representation of T on its Lie algebra.

In our setting, the Adams isomorphism gives

πT
∗ (Hb ∧X+ ∧ ET+) ∼= HT

∗−1(X) ∼= ΣHT
∗ (X).

To understand the homotopy of the target of (A.4), note that, since c is the Euler class of the
natural representation, applying πT

∗ to the cofibre sequence

HM ∧ ET+ → HM ∧ S0 −→ HM ∧ ẼT

gives a triangle
πT
∗ (HM ∧ ET+) −→M −→M [c−1].

Thus, if M is in even degrees we find

πT
∗ (HM ∧ET+) ∼= H∗

(c)M,

and we have a map
κ : Hp

T(X;M) −→ HomH∗BT(ΣHT
∗X,H

∗
(c)M).

It is easiest to sort out the gradings by example. If c is regular in M , then

πT
k (ΣpHM ∧ ET+) ∼= (M [c−1]/M)k−p+1,

and we have given a map

Hp
T(X;M) −→ HomH∗BT(ΣHT

∗X,Σ
p−1(M [c−1]/M))
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or

Hp
T(X;M) −→ Homp

H∗BT(HT
∗X,Σ

−2(M [c−1]/M)). (A.7)

3. Isomorphisms. Suppose now that k is a field. Since M [c−1]/M is an injective H∗BT-module,
both the left and right sides of (A.7) are cohomology theories in X, and we have the following.

Proposition A.8. If M is torsion free and complete, the Kronecker pairing is an isomorphism

κ : Hp
T(X;M)

∼=
−→ Homp

H∗BT(HT
∗X,Σ

−2(M [c−1]/M)).

Proof. We must show that the map is an isomorphism when X = Sk ∧ T/A+ for all subgroups A
and all integers k. First, note that the map is an isomorphism when X = S0: here we have the
map

M −→ HomH∗BT(H∗(BT),Σ−2(M [c−1]/M)).

The fact that this is an isomorphism when M is complete is essentially local duality, but can be
seen directly since the codomain is

HomH∗BT(H∗(BT),Σ−2M [c−1]/M) ∼= Ext1H∗BT(H∗(BT),Σ−2M)
∼= Ext1H∗BT(colims(ann(cs,Σ2H∗(BT)),M)
∼= limsM/(cs)M

since ann(cs,Σ2H∗(BT)) ∼= Σ2sk[c]/(cs). Using suspension isomorphisms on both sides, we obtain
the result for all spectra X = Sk.

Now, moving into topology, the Thom isomorphism implies that we have an isomorphism when
X = Sk ∧ SV , where V is a complex representation of T. If A is cyclic of finite order n, then we
have the cofibre sequence

T/A+ −→ S0 −→ Sz
n

,

and so an isomorphism for cells of the form Sk ∧ T/A+ for general A. �

The simplest example is when M = H∗(BT).

Example A.9. We have the isomorphism

H∗
T(X;H∗(BT)) ∼= HomH∗BT(HT

∗ (X),H∗(BT)⊗H∗(BT) (Ω1
H∗(BT)|k)

−1)

where the Kähler differentials can be omitted if only the H∗(BT)-module structure is relevant. �

Finally, we specialize to the case of interest to us, arising from the geometry of an elliptic curve
over a field of characteristic 0.

Example A.10. Now suppose that, as in Section 6, we have an elliptic curve C over a field k of
characteristic 0, and coordinate data t1. For n ≥ 1, the function tn vanishes to the first order on
points of exact order n (and nowhere else), so that if we let c act on O∧

A ⊗ ω
∗ via tn/Dt we have

H1
(c)(O

∧
A ⊗ ω

∗) ∼= H1
(tn)(O

∧
A)⊗ ω∗ ∼= TAC ⊗ ω

∗.

In any case, TAC ⊗ ω
∗ is a divisible torsion H∗BT-module, isomorphic to a finite sum of copies of

H∗BT. Applying Proposition A.8, we have the natural isomorphism

H∗
T(X;O∧

A ⊗ ω
∗) ∼= HomH∗BT(HT

∗ (X), TAC ⊗ ω
∗). �
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