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 Travelling-Wave Similarity Solutions for an Unsteady Shear-Stress-Driven 
Dry Patch in a Flowing Film

(Penyelesaian Keserupaan Gelombang Menjalar bagi Aliran Tak Mantap di Sekitar
Tompokan Kering yang Didorong oleh Tegasan Ricih)

Yazariah M. Yatim*, Brian R. Duffy & Stephen K. Wilson

ABSTRACT

We investigate unsteady flow of a thin film of Newtonian fluid around a symmetric slender dry patch moving with constant 
velocity on an inclined planar substrate, the flow being driven by a prescribed constant shear stress at the free surface 
of the film (which would be of uniform thickness in the absence of the dry patch). We obtain a novel unsteady travelling-
wave similarity solution which predicts that the dry patch has a parabolic shape and that the film thickness increases 
monotonically away from the dry patch.
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ABSTRAK

Kami mengkaji aliran tak mantap filem nipis bendalir Newtonian di sekitar tompokan kering simetri yang bergerak 
dengan halaju yang malar di atas substrat yang condong. Aliran tersebut didorong oleh tegasan ricih yang malar pada 
permukaan bebas filem itu (yang mempunyai ketebalan yang seragam sekiranya tompokan kering tidak wujud). Kami 
memperoleh penyelesaian keserupaan gelombang menjalar bagi tompokan kering yang menunjukkan tompokan kering 
tersebut berbentuk parabola dan ketebalan filem menjauhi tompokan kering didapati bertambah secara monotonik.

Kata kunci: Aliran filem nipis; gelombang menjalar; penyelesaian keserupaan; tompokan kering

INTRODUCTION

A dry patch can occur in a fluid film for many reasons, 
including there being insufficient fluid to wet the substrate, 
a high temperature of the substrate which causes the 
fluid to dry out, the presence of air bubbles within the 
film, inhomogeneities in the substrate or the presence 
of surfactant in the fluid. A common example of dry 
patch formation is when a thin film of fluid runs down an 
inclined plane, forming fingers (rivulets) with dry patches 
in-between. This problem is of considerable practical 
interest, especially in industrial contexts such as in heat 
exchangers and coating processes. In a heat-transfer 
device, the presence of dry patches must generally be 
avoided because it may reduce the efficiency or may result 
in overheating or corrosion of the dry area in the device.
In coating processes the formation of dry patches is also 
clearly undesirable and therefore it is crucial to understand 
when a layer of fluid will leave a hole on the substrate and 
whether the holes that exist will persist or will close up 
during the coating process.
	 Pioneering work on a dry patch in a flowing fluid 
film driven either by gravity or by a prescribed surface 
shear stress due to an external air flow was performed 
by Hartley and Murgatroyd (1964) and extended by 
Murgatroyd (1965). Wilson et al. (2001) obtained two 
steady similarity solutions for a flow around a non-uniform 

slender dry patch in a thin film draining under gravity 
on an inclined plane, namely one for the case of weak 
surface tension and one for the case of strong surface 
tension. Early experiments on the shape and structure of 
a dry patch in a fluid film draining under gravity down 
the outside of a vertical circular cylinder were performed 
by Ponter et al. (1967), and over the last decade or so the 
shape and structure of a dry patch in a fluid film draining 
under gravity down an inclined plane has been extensively 
studied both experimentally and theoretically by Limat and 
his collaborators (Podgorski et al. 1999, 2001; Rio et al. 
2004; Rio & Limat 2006; Sébilleau et al. 2009).
	 Since it seems to concern numerous practical 
situations, understanding the appearance of dry patches 
and their evolution is important. While the mechanism of 
dry patch formation is practically understood, the problem 
of investigating the unsteady flow of Newtonian fluid 
around a dry patch has not yet been solved satisfactorily. 
Motivated by this, we use the lubrication approximation to 
analyse three-dimensional unsteady flow of a thin film of 
Newtonian fluid around a symmetric slender moving dry 
patch on an inclined planar substrate, the flow being driven 
by a prescribed constant shear stress at the free surface. The 
appropriate governing equations are analysed numerically 
and asymptotically in appropriate asymptotic limits.
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PROBLEM FORMULATION

Consider a thin film of Newtonian fluid with constant 
density ρ and constant viscosity μ on a planar substrate 
inclined at an angle α (0<α<π) to the horizontal, subject to 
gravitational acceleration g and a prescribed stress τ (>0) 
on its free surface acting down the substrate. We shall be 
concerned with unsteady flow of such a film around a dry 
patch on the substrate, as sketched in Figure 1. Cartesian 
coordinates Oxyz with the x axis down the line of greatest 
slope and the z axis normal to the substrate are adopted, 
with the substrate at z = 0. We denote the free surface profile 
of the film by z = h(x,y,t), where t denotes time. We take 
the dry patch to be slender (varying much more slowly 
in the longitudinal (x) direction than in the transverse (y) 
direction), and we neglect surface-tension effects. Then 
with the familiar lubrication approximation, the velocity 
(u,v,w), pressure p and thickness h satisfy the governing 
equations:

	 ux + vy + wz = 0,			   (1)

	 μuzz + ρg sin α = 0,		  (2)

	 –py + μvzz = 0,		  (3)

	 –pz – ρg cos α = 0.		  (4)

	 We integrate (1)–(4) subject to the boundary conditions 
of no slip and no penetration on the substrate z = 0: u = 
v = w = 0, and balances of normal and tangential stresses 
on the free surface z = h: p = pa, μuz = τ, vz = 0 (where pa 
denotes atmospheric pressure) to yield:

	 p = pa + ρg cos α(h – z),	 (5)

	 u = (2h – z)z + z,	 (6)

	 v = – hy(2h – z)z,	 (7)

	
	 w = – hxz

2 + (3hy
2 + (3h – z)hyy)z

2.	(8)

	 We introduce local fluxes ū = ū(x,y,t) and  = (x,y,t)
given by:

	 	 (9)

and hence the kinematic condition on z = h, which may be 
written in the form ht + ūx + y = 0, yields the governing 
partial differential equation for h:

	 	 (10)

Once h is determined from (10) the solution for p, u, v and 
w in (5)–(8) is known.
	 In the case of a film of constant uniform thickness h∞ 
the solution takes the form p = p∞(z), u = u∞(z), v = v∞ = 0 
and w = w∞ = 0, where

	 p
∞
 = pa+ρgcos α(h

∞
 – z), 

	
	 u

∞
= (2h

∞
 – z)z+ z,		  (11)

representing steady unidirectional flow down the substrate, 
with depth-averaged velocity Ui, where

	 U = 	 (12)

	 We are concerned with the unsteady flow around a 
dry patch in a film of thickness h

∞
 at infinity (that is, in a 

FIGURE 1. Sketch of a moving dry patch in a thin film
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film that would be of uniform thickness h
∞
 if the dry patch 

were absent). We shall restrict attention to dry patches 
that are symmetric about y = 0 (so that h is even in y) with 
(unknown) semi-width a = a(x,t), so that the fluid occupies 
⎪y⎪≥ a, and h = 0 at the contact lines y = ±a.  The zero-
mass-flux condition at the contact lines y = ±a is  = ±axū, 
and from (9) we have ū = 0 at y = ±a; therefore we have 
the contact-line conditions h = 0 at y = ±a and h3hy → 0 as 
y → ±a. 
	 Of particular interest is the case of flow on a substrate 
driven by surface shear with the down-slope component of 
gravity neglected, which is equivalent to setting gsin  α ≡ 0. 
Hence (10) reduces to:

	 ht = 	 (13)

	 The case of flow driven purely by gravity was 
considered by Yatim et al. (2012). 

A SIMILARITY SOLUTION

We seek an unsteady travelling-wave similarity solution 
of (13) in the form:

	 h = h
∞
F(η), η = 	 if (x – ct) ≥ 0,

	

	 h = h
∞
	 if (x – ct) < 0,	 (14)

where ci (with c > 0) is the velocity of the dry patch down 
the substrate, the dimensionless function F = F(η) (≥0) of 
the dimensionless similarity variable η is to be determined, 
and the constant  is to be specified. The dry patch lies in the 
region where (x – ct) ≥ 0 and the fluid in the region where 
(x – ct) < 0 (ahead of or behind the dry patch) is of uniform 

thickness h = h
∞
; at x = ct the thickness h and its derivative 

hy are continuous (so that u, v and p are continuous there), 
except at the singular point x = ct, y = 0, at which the free 
surface is normal to the substrate, occupying 0 ≤ z ≤ h

∞
. 

With (14), (13) reduces to an ordinary differential equation 
for F(η), namely:

	  + 	 (15)

where a dash denotes differentiation with respect to η and 
from (12),  U = τh

∞
/2μ (> 0) is the depth-averaged velocity 

of the flow (11) in this case. Without loss of generality we 
now write:

	 	 (16)

	 We denote the (unknown) position where F = 0  by 
η = η0 (corresponding to the contact-line position y = a), 
so that the fluid lies in ⎪η⎪≥ η0 and

	 a = ,  	 (17)

showing that the dry patch has a parabolic shape. The 
solutions obtained in this study could represent two 
physical cases, namely the sessile case and the pendent 
case. In the sessile case  (cos α > 0, so that  > 0) the dry 
patch occupies x ≥ ct, with semi-width a = 
(widening with increasing x), whereas in the pendent case 
(cos α < 0, so that  < 0) it occupies x ≤ ct, with semi-width 
a =  (narrowing with increasing x).
	 We now non-dimensionalise and re-scale variables 
according to x = Xx*, y =  z = h

∞
z*, t = (X/U)t*,  

h = h
∞
h*, a = c = Uc*, where X (>>h

∞
) is a length 

scale in the x direction, which we may choose arbitrarily. 
Then with stars dropped for clarity the solution (14) takes 
the slightly simpler form:

	 h = F(η), y =  a =  	 (18)

(where we have defined Sg = sgn (cos α)), with F now 
satisfying:

	 	 (19)

to be integrated subject to the contact line conditions:

	 F = 0  at  η = η0,  → 0  as  η → η0, 	 (20)

and the far-field condition:

	 F → 1  as  η → ∞.	 (21)

	N ear the contact line η = η
0
 the behaviour of F is given 

by

	 	 (22)

in the limit η →  η
0

+, provided that c > 0. Also (22) shows 
that the fluid film has infinite slope at the contact line 
η = η0 and so the lubrication approximation fails there. In 
the limit η → ∞ the behaviour of F is found to be:

	 F – 1 ∝ 	 (23)

provided that c < 2. Equation (23) shows that the transverse 
profile of the fluid film approaches the uniform far-field 
value in (21) monotonically.
	 Conditions for the dry patch to be thin and slender are 
that the length scales in the x, y and z directions, namely 
X,  and h

∞
, satisfy h

∞
<< << X, so that

	 	 (24)

respectively, showing that X must be sufficiently large and 
that α cannot be close to π/2.
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NUMERICAL SOLUTION FOR F(η)

Since a closed-form solution of (19) is not available, we 
solved it numerically for F. We did this using a shooting 
method, by shooting from a chosen value of the contact-line 
position η = η0, with a chosen value of c. The solution F was 
monitored to see if it satisfied (21) to within a prescribed 
tolerance; if not then the value of c was changed and the 
calculation repeated until a solution satisfying (21) was 
found. In fact, the numerical computation cannot be started 
at η = η0 (because of the singular slope there, given by 
(22)), so instead it was started from a position  η = η0 + δ, 
where δ (> 0) is small; thus we solved (19) subject to the 
approximated boundary conditions:

	 F(η0 + δ) =  (η0+δ) = 	 (25)

obtained from (22).
	 Figure 2 shows a plot of c as a function of η0 obtained 
in this way. As Figure 2 shows, c is a single-valued function 
of η0, but behaves non-monotonically. It is found that 
c decreases from its value c = c0 ~– 1.5424 when η = 0 
to a (local) minimum value c = cmin

~–  1.5421 when η0 
~–  0.0040, then increases to a (global) maximum value  
c = cmax

~– 1.5503 when η0
~– 0.0470 and then decreases 

monotonically towards the value c = 1 as η0→∞. Thus 
the scaled speed of the dry patch satisfies 1 < c ≤ cmax 
for any value of η0, more restrictive than the condition 
0 < c < 2  obtained above. Also there can be up to three 
different dry patches that travel at a given speed c in 
this interval; specifically for a given value of c, there is 
one corresponding value of η0  if either c = cmax or 1 < c 
< cmin, two if either c0 < c < cmax or c = cmin, three if cmin 
< c < c0 and none if either c > cmax or c ≤ 1. The results 
also demonstrate that as the dry patch widens its speed 
eventually decreases.
	I n the limit of a narrow dry patch, η0→0, we write η, 
F and c in the form η = η0 + , F = ( ), c = c0; then at 
leading order (19) gives:

	 	 (26)
	 	
and (20) and (21) give the conditions:

	  = 0 at  = 0,  → 0 as →0, →1 as →∞.
	  (27)

At leading order in the limit  → 0 the solution of (26) and 
(27) for  has the asymptotic form:
	
	 	 (28)

We solved (26) for  numerically using a shooting method 
similar to that described above, subject to approximated 
boundary conditions obtained from (28), namely:

	 	 (29)

where 0 < δ << 1. From this numerical solution it is found 
that c0

~– 1.5424, confirming the value obtained earlier.
	I n the limit of a wide dry patch,   → ∞, we write η, 
F and c in the form η = η0 + /η0, F = F( ), c = c

∞
; then at 

leading order (19) reduces to:

	 	 (30)

which is readily solved subject to the conditions = 0 
at  as →1 as  to give the 
implicit solution:

	 	 (31)

The asymptotic value c = c
∞
 = 1 is included in Figure 2 

as a dashed line. 
	 Figure 3 shows examples of cross-sectional profiles 
F(η) for various values of η0. In particular, the cross-

FIGURE 2. Plot of c as a function of η0, together with the asymptotic value c = c
∞
 = 1 in the limit 

η0 → ∞ (shown as a dashed line). The inset shows an enlargement of the behaviour near η0 = 0; 
the point c = c0

~– 1.5424 at η0 = 0 is shown as a dot, as are the minimum c = cmin ~– 1.5421 
at η0

~– 0.0040 and the maximum c = cmax
~– 1.5503 at η0

~– 0.0470
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sectional profiles F increase monotonically with η, from 
F = 0 at η = η0 to F = 1 as η → ∞.
	 Figure 4 shows three-dimensional plots of the free-
surface profiles z = h in a sessile case with η0 = 1 predicted 
by the similarity solution (14) at times t = 0, 3 and 5. 
Noticeably, the dry patch becomes narrower and eventually 
will be swept away as time increases.

CONCLUSION

We have obtained unsteady travelling-wave similarity 
solutions of the form (14) for an infinitely wide thin 
film of Newtonian fluid of uniform thickness h

∞
 flowing 

around a symmetric slender dry patch moving at constant 
velocity ci on an inclined planar substrate, the flow being 
driven by a constant shear stress at the free surface. 
The solutions may be interpreted as representing either a 
sessile case (0 < α < π/2) or a pendent case (π/2 < α < π). 
The dry patch has a parabolic shape, its scaled semi-width 
a varying like ⎪x – ct⎪1/2, where 1< c ≤ cmax ~– 1.5503, and 
the film thickness increases monotonically away from the 
dry patch.
	 The parameter η0 is not determined as part of the 
solution, so that (14) represents a one-parameter family 
of solutions; some additional criterion would be required 
to determine η0. The solutions obtained are valid for any 
value of h

∞
, showing that for these solutions there is no 

critical thickness or critical flux below which a dry patch 

can be stationary but above which it is swept away by the 
bulk flow.
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