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Detection of Outliers in the Complex Linear Regression Model
(Pengesanan Nilai Tersisih dalam Model Regresi Linear Kompleks)
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ABSTRACT

The existence of outliers in any type of data affects the estimation of models’ parameters. To date there are very few 
literatures on outlier detection tests in circular regression and it motivated us to propose simple techniques to detect any 
outliers. This paper considered the complex linear regression model to fit circular data. The complex residuals of complex 
linear regression model were expressed in two different ways in order to detect possible outliers. Numerical example of the 
wind direction data was used to illustrate the efficiency of proposed procedures. The results were very much in agreement 
with the results obtained by using the circular residuals of the simple regression model for circular variables.
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ABSTRAK

Kewujudan nilai tersisih dalam mana-mana jenis data mempengaruhi anggaran parameter model. Sehingga kini sangat 
sedikit kajian dijalankan mengenai ujian pengesanan nilai tersisih dalam regresi bulatan dan ini mendorong kami 
untuk mencadangkan teknik mudah untuk mengesan sebarang nilai tersisih. Kajian ini mempertimbangkan penggunaan 
model regresi linear kompleks untuk menyuaikan data bulatan. Reja kompleks daripada model regresi linear kompleks 
dinyatakan dalam dua cara yang berbeza untuk mengesan nilai tersisih yang mungkin. Contoh berangka iaitu data 
arah angin digunakan untuk menggambarkan kecekapan prosedur yang dicadangkan. Keputusan yang diperoleh amat 
bersetuju dengan keputusan yang diperoleh dengan menggunakan reja bulatan daripada model regresi mudah untuk 
pemboleh ubah bulatan.

Kata kunci: Model regresi linear kompleks; nilai tersisih; pemboleh ubah bulatan

INTRODUCTION

The bounded close range of circular random variables 
causes the difficulties of studying the relationship among 
these variables. There are few forms of circular regression 
models (Downs & Mardia 2002; Fisher & Lee 1992; 
Hussin et al. 2004; Kato et al. 2008). Circular data as any 
other types of data are subjected to contaminate with some 
unexpected observations which are known as ‘outliers’ and 
there are some numerical statistics proposed to identify 
outliers in univariate circular data (Abuzaid et al. 2009, 
2012a, 2012b; Collett 1980; Rambli et al. 2012). Most of 
these models suffer from the complicity and the absence 
of the close form of the maximum likelihood estimates. 
However, up to 2007 there is no relevant literature on the 
outliers in circular regression. Recently Abuzaid et al. 
(2008, 2011) discussed the identification of outliers in 
simple circular regression model based on angular residuals 
and COVRATIO statistic by using different numerical and 
graphical tests. 
	 This paper proposed an alternative approach to 
detect outliers in circular data by using the complex linear 
regression model (Hussin et al. 2010), where the circular data 
can be expressed in the form of direction cosines or complex 
form, as an example, a circular observation θ is written in the 

form of cos θ + isin θ. Based on this, the complex residuals 
may be calculated and written in two different forms i.e. the 
Cartesians coordinates and polar form to detect any possible 
outliers. This is another alternative model to fit the circular 
data especially with the existence of the close form of the 
models’ parameters estimates. 
	 This paper is organized as follows: the following 
section discusses the simple regression model for circular 
variables. In the subsequent section, we describe the 
complex linear regression model and the maximum 
likelihood estimates of its parameters, followed by the 
proposed ways to obtain and express the complex residuals. 
We then compare the identification of outliers in the wind 
direction data between both considered models.

THE REGRESSION MODEL FOR CIRCULAR VARIABLES

The first attempt to predict a circular response variable 
Θ from a set of linear covariates have been done by 
Gould (1969) and Laycock (1975) where Θ has von 
Mises distribution with mean E(Θ) = μ and concentration 
parameter κ. The proposed model is given by:

	 μ = μ0 +Σβjxj,	 (1)
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where μ0 and β's are unknown parameters.
	 Mardia (1972) extended model (1), by assuming 
that there is a set of circular independent and identically 
observations  θ1, θ2, …, θn, from von Mises distribution with 
mean directions μ1, μ2, …, μn and unknown concentration 
parameter κ, where,

	 μj = μ0 + βtj,	 (2)

for some known numbers t1, t2, …, tn, while μ0 and β are 
unknown parameters.
	 Hussin et al. (2004), extended model (2) to the case 
when the response and the explanatory variables are 
circular, where the tj s are circular too by taking into 
consideration that θ⎜t = 0 and θ⎜t = 2π should be the 
same. Suppose for any circular observations (x1,y1), (x2,y2), 
…, (xn,yn) of circular variables X and Y where the true 
relationship between X and Y is linear. They proposed the 
following model known as the simple regression model 
for circular variables,

	 yj = α + βxj + εj (mod 2π)	 (3)

where εj is circular random error having a von Mises 
distribution with mean circular 0 and concentration 
parameter κ. They make a restriction on the model 
parameters, especially on β, to be close to the unity. Some 
of the applications are in the relation between two different 
instruments for measurements of the wind direction. The 
log likelihood function for model (3) is given by:

log L(α,β,κ; x1,…,xn, y1,…,yn) = –nlog(2π) – nlogI0(κ) 
+ κΣ cos(y1 – α – βxj)

where I0(κ) is….
	 The MLE of the model’s parameters α, β and κ are 
given by:

	

where S = Σsin(yj– xj) and C = Σcos(yj – xj). Due to the 
nonlinear nature of the first partial derivative with respect 
to β of the log L, parameter β can be estimated iteratively 

using β1 � β0+  by giving some 

initial values of α0 and β0. The estimation of concentration 

parameter is given by  where 

A(ω) is the ratio of the modified Bessel function of the first 

kind of order one and first kind of order zero. The inverse 

of function A(ω) can be estimated by 
as suggested by Dobson (1978).
	 Abuzaid et al. (2008) used model (3) and proposed the 
identification of outliers based on the circular residuals by 
using different numerical and graphical techniques.

COMPLEX LINEAR REGRESSION MODEL

The complex linear regression model was first introduced 
by Hussin et al. (2010) to fit circular data. For n 
observations in two dimensions (x1,y1), (x2,y2), …, (xn,yn) 
where 0≤xj,yj<2π and j =1,2,..,n, the direction cosines can 
be written as  (cos x1+isin x1,cos y1+isin y1), (cos x2+isin 
x2,cos y2+isin y2),…,(cos xn +isin xn, cos yn+isin yn).

Hence, the complex linear regression model is given by:

	 cos yj+isin yj = α+β(cos xj+isin xj)+εj, for j=1,…,n,		
(4)

where εj has a univariate Gaussian complex distribution 
(Laycock 1975). Thus the expectation of response variable 
Y is given by:

	 E[cos(Yj) +isin(Yj] = + (cos xj –isin xj),

alternatively, 

	 cos ŷj +isin ŷj = + (cos xj –isin xj).

The log likelihood function is given by:

	 log L(α,β,σ2; x1, x2, …, xn,y1,y2,…,yn) =
	

	

The MLE of model’s parameters are given by:

	  

and  Σ(1 + 2 + 2 + 2 ( cos xj – cos yj) – 2 (cos 
yj cos yj + sin yj sin xj)) where Ψ = Σ(cos yj cos xj + sin yj 
cos xj).

Thus, the complex residuals can be calculated as:

	 εj = (cos ŷj – cos yj) + i(sin ŷj – sin yj).	 (5)

	I t is obvious that the obtained residuals of the complex 
regression models are also a complex random variable and 
it can be represented by two different ways as follows: 
On the Cartesian coordinate plane, where the complex 
residuals can be represented as an order pair of the real 
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and imaginary part and in the polar form, where each of 
the complex residuals εj = (cos ŷj – cos ŷj) + i(sin ŷj – sin yj) 
can be written in the form of εj = Rj(cos θj + sin θj) where  

Rj =  is the modulus. θj is 

the angle of the vector εj and called an argument of εj . It 

is denoted by:

	 θj = Arg(εj) or θj = tan-1

	 The argument is not unique since cos θj and sin θj  are 2π-periodic. Thus, we consider the principle argument 
which is unique and represented by θj = Arg(εj) where 
–π≤Arg(εj)<π.
	 The complex residuals will be used in the following 
section to detect possible outliers and compare the obtained 
results with recent works by Abuzaid et al. (2008).

NUMERICAL EXAMPLE

This section considers the wind directions data which have 
been considered by Abuzaid et al. (2008) and Hussin et al. 
(2004). A total of 129 measurements were recorded over 
the period of 22.7 days along the Holderness coastline 
(the Humberside coast of North Sea, United Kingdom) 

by using two different techniques which are HF radar 
system and anchored wave buoy. The scatter plot of wind 
direction data is shown in Figure 1 where the scale is 
broken artificially at 0 = 2π, which suggests that there is a 
linear relationship between HF radar system and anchored 
wave measurements. 
	 Since both variables are circular, model (3) is used 
to fit the data. Alternatively, we use the complex linear 
regression model in (4) to fit the same data set. The MLEs 
of both models parameter and the associated standard error 
are given in Table 1. 
	 The fitted complex linear regression and the simple 
linear regression model for circular variables are given in 
(6) and (7), respectively,

	 cosŷj + isin ŷj = -2.59×10-3+0.927(cos xj + isin xj).	(6)

	 ŷj = 0.165 + 0.973xi (mod 2π).	 (7)

	B y looking at Figure 1 there are two points which are 
apparent to be outliers at the top left of the scatter plot. 
However, they are actually consistent with the rest of the 
observations as they are close to other observations at the 
top right or left bottom due to the closed range property 
of the circular variables. 
	 For both models (6) and (7) we obtain the relevant 
residuals in order to detect possible outliers in the 

Table 1. Parameter estimates for wind direction data

Model Complex linear regression model Simple regression for circular variables
Parameter Estimate St. error Estimate St. error

α -2.59 ×10-3 2.619×10-2 0.165 0.064
β 0.927 2.619×10-2 0.973 0.0159
σ2 0.143 1.259×10-2 - -
κ - - 7.34 0.8816

Figure 1. Scatter plot of wind data measured by HF radar 
system and anchored wave buoy
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regression models. Abuzaid et al. (2008) identified two 
outliers based on circular residuals by using different 
numerical and graphical tools, which are observation 
numbers 38 and 111.
	 The complex residuals of models (6) are calculated 
using (5) and may be represented in the following forms:

The Cartesian Coordinates: Figures 2 and 3 shows the 
complex residuals for the wind direction data. There are 
two points far from the rest of the observation which are 
observation numbers 38 and 111. The real part of the 
complex residuals for observation number 38 is consistent 
with the rest of the observation while the imaginary is very 
large. The other way around is noticed for the complex 
residuals for observation number 111.

The polar form: Figure 4 shows the complex residuals in 
the polar form and also there are two observations with 
numbers 38 and 111 which are not consistent with the rest 
of the observations.

	I t is obvious that both observation number 38 and 111 
are candidate to be outliers. The obtained results are very 
much agreed with the results obtained by Abuzaid et al. 
(2008) which indicated the suitability of using the complex 
residuals to identify possible outliers in the complex linear 
regression for circular variable as an alternative approach 
to use the simple circular regression models which are 
rather complicated.
	 The removal of observations numbers 38 and 111 
affect the estimation of model (3) and (4) parameters as 
given in Table 2.
	I t is noticeable that the removal of outlier decreases the 
variance of residuals for complex linear regression from 
0.143 to 0.096 and increases the concentration parameter 
for simple regression model for circular variables from 
7.34 to 11.01. It indicates a goodness of fit of the models 
after removing the outliers and the obtained residuals for 
both models are relatively consistent.
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l)

Figure 2. The complex residuals of wind direction data on coordinate plane

Figure 3. The complex residuals component for each observation 
(a) The real part of the complex residuals for each observation
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CONCLUSIONS

This paper proposed the complex linear regression model 
to fit the circular data and using the complex residuals 
to identify any possible outliers. It is noticeable that, for 
complex residuals if either the real or imaginary part 
of any residuals is inconsistent with the other residuals 
values, then these residuals are candidates to be outliers. 

The obtained results also agreed with the conclusions as 
given by Abuzaid et al. (2008).
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