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A Fourth-Order Compact Finite Difference Scheme for the Goursat Problem
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ABSTRACT

A high-order uniform Cartesian grid compact finite difference scheme for the Goursat problem is developed. The basic 
idea of high-order compact schemes is to find the compact approximations to the derivatives terms by differentiating 
centrally the governing equations. Our compact scheme will approximate the derivative terms by involving the higher terms 
and reducing the number of grid points. The compact finite difference scheme is given for general form of the Goursat 
problem in uniform domain and illustrates the performance by applying a linear problem. Numerical experiments have 
been conducted with the new scheme and encouraging results have been obtained. In this paper we present the compact 
finite difference scheme for the Goursat problem. With the aid of computational software the scheme was programmed 
for determining the relative errors of linear Goursat problem.
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ABSTRAK

Skema beza terhingga padat bagi grid Kartesan seragam peringkat tinggi untuk masalah Goursat dibincangkan.  
Idea asas bagi skema padat peringkat tinggi ialah untuk mendapatkan penghampiran padat sebutan-sebutan terbitan 
dengan membezakan secara memusat persamaan yang bersekutu. Skema padat kami akan membuat penghampiran 
sebutan-sebutan terbitan dengan melibatkan sebutan-sebutan peringkat lebih tinggi dan mengurangkan bilangan titik-
titik grid. Skema beza terhingga padat diberikan dalam bentuk am untuk masalah Goursat di dalam domain seragam 
dan prestasinya digambarkan dengan mengaplikasi satu masalah linear. Uji kaji berangka dengan skema baru telah 
dijalankan dan keputusan memberangsangkan telah diperoleh. Dalam kertas ini kami berikan skema beza terhingga 
padat untuk masalah Goursat. Dengan bantuan perisian pengkomputeran, skema telah diatur cara untuk menentukan 
pelbagai ralat relatif bagi masalah Goursat linear.

Kata kunci: Beza terhingga padat; ketekalan; kestabilan; masalah Goursat; penumpuan
 

Introduction

The Goursat problems have been studied and the solutions 
of this problems using the aid computational devices have 
been widely introduced by many researchers such as Evans 
and Sanugi (1988), Day (1966), Nasir and Ismail (2004) 
and Wazwaz (1993, 1995). Applications of this problem 
can be obtained in many area disciplines such as inverse 
acoustic scattering problem (McLaughlin et al. 1994), 
wave equations in nonhomogeneous media (Hillion 1992), 
sine-Gordon equation (Kaup & Newell 1978) and electric 
field problem (Frisch & Cheo 1972).
	 Traditional numerical discretization schemes for 
approximating the Goursat problem usually employ 
forwarded differentiating for the mix derivatives term 
(Evans & Sanugi 1988; Wazwaz 1993). The existing 
scheme (AM scheme-standard scheme) has used arithmetic 
mean averaging of functional values in finite difference 
approximation. Evans and Sanugi (1988) and Wazwaz 
(1993) have used geometric and harmonic mean averaging 
of functional values, the so-called GM and HM schemes, 
respectively, for the Goursat problem. However, we note 
that for linear problems the GM and HM schemes results 

in non linear difference scheme and thus would suffer the 
possible disadvantages of iteration problems.
	 In recent years, high-order compact finite difference 
approximations have been applied to solve several 
differential equations: convergence for second-order 
elliptic equations (Zhao et al. 2006), nonlinear dispersive 
waves problem (Li & Visbal 2006), compressible Navier-
Stokes equations (Boersma 2005), financial applications of 
symbolically (Zhao et al. 2005), dispersive media problem 
(Li & Chen 2004), elliptic equations on irregular domains 
and interface problems and their applications (Kyei 2004), 
unsteady viscous incompressible flows (Li & Tang 2001), 
numerical solution of partial differential equation (Ahmed 
1997) and initial boundary problems for mixed systems 
(Bodenmann & Schroll 1996).
	 A class of high order compact finite difference 
schemes exhibits higher accuracy at the grid points and in 
that applies a compact stencil. The governing differential 
equations will be used to approximate leading truncation 
error terms in the central difference scheme (Spotz 
1995). The objective of this research was to study the 
theoretical aspects of a numerical scheme widely used to 
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solve the problem by considering its application to model 
linear problem. We obtain results relating to the stability 
(using Von Neumann stability analysis), consistency and 
convergence of the scheme. We verify these theoretical 
results with data from computational experiments.

The Goursat Problem and Fourth-Order Compact 
Finite Difference Scheme

The Goursat problem is of the form (Wazwaz 1993):

	 uxy = f (x, y, u, ux, uy)
	 u(x, 0) = φ(x), u(0, y) = ψ(y), φ(0) = ψ(0)
	 0 ≤ x ≤ a, 0 ≤ y ≤ b.			   (1)

	H ere the unknown function u, is assumed to be 
continuously differentiable and has the required partial 
derivatives on the rectangular domain.
	 By manipulating the Taylor series expansion in two 
independent variables (Twizell 1984), it can be found 
that: 

u(x + ∆x,y + ∆y) – u(x + ∆x,y – ∆y) – u(x – ∆x,y + ∆y)

+ u(x – ∆x,y – ∆y) = 4(∆x)(∆y)uxy + (∆x)3(∆y)uxxxy 

+ (∆x)(∆y)3uxyyy + O(∆x + ∆y)6.	
	 (2)

	 Thus, for the mixed derivatives uxy, the expression is 
as follows:

	

	
		  (3)

	 We shall focus our concern on the numerical solution 
of the Goursat problem (1). Hence, equating (1) and (3):

	
	
	

	 = f (x, y, u, ux, uy),		  (4)

where the initial conditions on the rectangle domain 
remains.
	 We rewrite (4) in indexing form as follows:

	 	 (5)

where ∆x = ∆y = h and φi is the truncation error at node 
i given by:

	 φi = (∆x)2 uxxxy + (∆y)2 uxyyy + 	

(6)
	
	 We use the initial conditions in (1) and the established 
finite difference algorithm (Nasir & Ismail 2005) to 
compute the initial values in (5) as follows:

ui+1,j+1 = ui+1,j + ui,j+1 – ui,j + (fi+1,j+1 + fi,j +fi+1j + fi,j+1).

(7)

	 The central finite difference scheme (5) is accurate up 
to O(h2) when φi is dropped from the formulation in (5) 
and clearly, if the leading term in (6) vanished the scheme 
would be at least O(h4). To obtain a fourth-order compact 
finite difference scheme, the discretization on the right 
hand side of (6) should be considered. Relations for uxxxy  and uxyyy can be constructed by differentiating (1) to get,

	 uxxxy = fxx,	 (8)

and

	 uxyyy = fyy.	 (9)

	I t is of interest to note that source term f plays an 
important role in approximating uxxxy and uxyyy. If the 
derivatives of function f are known in an analitical 
approaches, it can be substituted in (8) and (9). However, 
if only a discrete approximation to function f is available, 
the central differences can be used in approximating the 
discretization (Spotz 1995). 
	 We investigated the performance of a fourth-order 
compact scheme by applying a linear Goursat problem 
below (Wazwaz 1995):

	 uxy = u
	 u(x, 0) = ex

	 u(0, y) = ey

	 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.		  (10)

The analytical solution of (10) is ex+y.
	 Differentiating (10) with respect to x, gives as 
follows:

	 uxxy = ux
	 uxxxy = uxx.	 (11)

In like manner,

	 uxyy = uy
	 uxyyy = uyy. 	 (12)

	 Substituting terms (11) and (12) into (3), gives the 
discretization of uxy = u i.e.



	 	 343

	 	

	 (13)

Summing of the Taylor series expansions, we get:

2(∆x)(∆y)(uxx + uyy) = u(x + ∆x,y + ∆y) + 
u(x + ∆x,y – ∆y) + u(x – ∆x,y + ∆y) + 
u(x – ∆x,y – ∆y) – 4u(x,y) + O(∆x + ∆y)4.	

	 (14)

	 Substituting terms in (14) into (13), the fourth-order 
compact finite difference scheme for the partial differential 
equation in (10) in indexing form can be written as:

	
		

(15)

Scheme (15) can be written as:

	 ui+1,j+1 = A(ui+1,j–1 + ui–1,j+1) + ui,j –ui–1,j–1.
	 (16)

	 By shifting the index: i→i+1 and j→j+1, the 
approximate value of all interior node points can be 
computed by these algorithm (Figure 1),

	 ui+2,j+2 = A(ui+2,j + ui,j+2) + ui+1,j+1 – ui,j,	
	 (17)

where A =  with r = > 0.
	

	 The initial values for algorithm (17) can be determined 
as disccussed in earlier section.

Stability

The stability of a finite difference scheme can be 
investigated using the Von Neumann method (Fletcher 
1990). In this method, the errors distributed along grid lines 
at one time level are expanded as a finite Fourier series. If 
the separate Fourier components of the error distribution 
amplify in progressing to the next time level, then the 
scheme is unstable.
	 The error equation for (16) is:

	 ζi+1, j+1 = A(ζi+1, j–1 + ζi–1, j+1) + ζi,j – ζi–1, j–1,	
	 (18)

where ζi, j is the error at the (i, j) grid point. We write ζi,j  

as λj  where λ is the amplification factor for the mth 
Fourier mode of the error distribution as it propagates one 
step forward in time and θm = mπh. For linear schemes, it 
is sufficient to consider the propagation of the error due to 
just a single term of the Fourier series representation i.e. 
the subscript m can be dropped.

Substituting ζi,j = λj  into (18) gives:

	 λj+1  =A(λj–1 + λj+1 ) 
	
	 + λj – λj–1 ,		  (19)

i.e.	

	 λ = A(λ–1 + λ ) +  – λ–1 .	
	 (20)

For stability, it is required that ⎟λ⎟≤1, ∀θ. 
	 Due to the complexity of the algebraic manipulation, 
the Maple 8 code programming is used to illustrate the 
area of stability and given in Figure 2.

Figure 1. Finite grid network based on problem (10) Figure 2. Stability in graphic interpretation 
with h = 0.05 

Stability Region

⏐λ⏐<1
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Consistency

To test for consistency, the exact solution of the partial 
differential equation is substituted into the finite difference 
scheme and values at grid points expanded as a Taylor 
series. For consistency, the expression obtained should tend 
to the partial differential equation as the grid size tends to 
zero (Twizell 1984).

Equation (16) can be rewritten as:

	 u(xi+1, yj+1) = (u(xi+1, yj–1) + u(xi-1, yj+1))
 
	 + u(xi, yj) – u(xi–1, yj–1).

(21)

Substituting the exact solution into (21) leads to:

	 u + hux + huy + (h2uxx + 2h2uxy + h2uyy) + … 

	 = (u + hux– huy+ (h2uxx–2h2uxy+ h2uyy) +…

	 + u – hux + huy + (h2uxx – 2h2uxy + h2uyy) + …)

	 + u–(u–hux–huy+ (h2uxx+2h2uxy+h2uyy) + …),

		  (22)

Equation (22) can be simplified as:

	 uxy = u + +…	 (23)

[note: all terms involving u in (22) are evaluated at (xj, yj)]

	 As h→0, (23) becomes uxy = u.  Thus, the condition 
for consistency is satisfied.

Convergence

A solution of the algebraic equations which approximate a 
given partial differential equation is said to be convergent if 
the approximate solution approaches the exact solution for 
each value of the independent variables as the grid spacing 
tends to zero (Nasir & Ismail 2004). The Lax equivalence 
theorem (Richtmyer & Morton 1967) states that given a 
properly (well) posed linear initial value problem and a 
finite difference equation that satisfies the consistency 
condition, stability is the necessary and sufficient condition 
for convergence.
	 The Goursat problem is well posed and was 
established by Garabedian (1964) by transforming it 
into an integro differential equation and then solving it 
by the technique of successive approximations. We have 
established that the fourth-order compact scheme for the 
linear Goursat problem (10) is both stable and consistent. 
Thus from the Lax equivalence theorem we can conclude 
it is convergent.

Computational Experiments

By the assistance of computer software to implement 
scheme (17), the numerical solutions in calculating 
absolute errors at particular grid points are given in Tables 
1 and 2.
	 For the grid sizes h = 0.025, 0.05, 0.1 and 0.25 we 
obtained the following average error results (Table 3).

Table 1. h values and absolute errors by using the fourth-order compact scheme at various grid points

Absolute errors at grid points
h (0.5,0.5) (1.0,1.0) (1.5,1.5) (2.0,2.0)

0.025 9.8791527e-08 3.8531802e-07 6.7314451e-07 8.8171770e-07
0.050 7.9763931e-07 3.1606038e-06 5.5686068e-06 7.3476793e-06
0.100 8.0916557e-05 2.6421645e-05 9.2698770e-05 6.3361226e-05
0.250 9.4307416e-05 4.5023080e-04 8.5375522e-04 1.1867231e-03
0.500 6.9233875e-03 3.5989691e-03 1.4775527e-02 1.1570979e-02

Table 2. h values and absolute errors by using the second-order 
compact scheme at various grid points

Absolute errors at grid points
h (0.5,0.5) (1.0,1.0) (1.5,1.5) (2.0,2.0)

0.025 3.3571265e-005 9.7655834e-005 1.7254422e-004 2.5289173e-004
0.050 1.3266089e-004 3.8425312e-004 6.7961862e-004 9.9845300e-004
0.100 3.0848996e-004 1.4848477e-003 2.5559089e-003 3.8783998e-003
0.250 3.1068239e-003 8.3086911e-003 1.4538331e-002 2.1651893e-002
0.500 6.9233875e-003 2.9149988e-002 3.2355098e-002 6.6818475e-002
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Table 3. A comparatives study between fourth-order vs second-order scheme

Grid sizes 0.025 0.05 0.1 0.25
Average error of 
fourth-order scheme

9.3298241e-07 7.7107136e-06 6.5645706e-05 1.2121591e-03

Average error of 
second-order scheme

8.4279145e-05 3.3334195e-04 1.3020743e-03 7.5335660e-03

	 The numerical experiments showed that the absolute 
error becomes smaller as h is decreased for all grid points 
tested. It can be seen that the fourth-order compact scheme 
gives better accuracy for the linear Goursat problem.

Conclusion

Several studies of the finite difference solution of the Goursat 
problem have focused on the accuracy and implementation 
aspects. In this paper we have studied the accuracy as well 
as the theoretical aspects of the finite difference solution of 
a linear Goursat problem using the fourth-order compact 
finite difference scheme. Using the Von Neumann method 
we have shown that it is unconditionally stable and 
consistent. Invoking the Lax equivalence theorem, we 
deduced that the scheme is convergent.
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