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Parameter Estimation of Stochastic Differential Equation
(Penganggaran Parameter Persamaan Pembeza Stokastik)

Haliza abD. RaHMan*, aRifaH baHaR, noRHayati RoSli & MaDiHaH MD. SallEH

abStRact 

Non-parametric modeling is a method which relies heavily on data and motivated by the smoothness properties in 
estimating a function which involves spline and non-spline approaches. Spline approach consists of regression spline 
and smoothing spline. Regression spline with Bayesian approach is considered in the first step of a two-step method in 
estimating the structural parameters for stochastic differential equation (SDE). The selection of knot and order of spline 
can be done heuristically based on the scatter plot. To overcome the subjective and tedious process of selecting the 
optimal knot and order of spline, an algorithm was proposed. A single optimal knot is selected out of all the points with 
exception of the first and the last data which gives the least value of Generalized Cross Validation (GCV) for each order 
of spline. The use is illustrated using observed data of opening share prices of Petronas Gas Bhd. The results showed 
that the Mean Square Errors (MSE) for stochastic model with parameters estimated using optimal knot for 1,000, 5,000 
and 10,000 runs of Brownian motions are smaller than the SDE models with estimated parameters using knot selected 
heuristically. This verified the viability of the two-step method in the estimation of the drift and diffusion parameters of 
SDE with an improvement of a single knot selection.
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abStRak 

Permodelan tak-berparameter adalah satu kaedah yang sangat bergantung kepada data dan dimotivasi oleh ciri  kelicinan 
dalam menganggar fungsi yang melibatkan pendekatan splin dan bukan-splin. Pendekatan splin terdiri daripada splin 
regresi dan splin pelicinan. Pendekatan pertama dengan kaedah Bayesian digunakan dalam langkah pertama untuk 
kaedah dua-langkah bagi menganggar parameter struktur persamaan pembeza stokastik (SDE). Pemilihan buku dan 
tertib splin boleh dilakukan secara heuristik berdasarkan rajah. Untuk mengatasi proses pemilihan bilangan buku  
dan tertib splin yang subjektif dan memakan masa, satu prosedur penyelesaian dikemukakan. Buku tunggal terbaik 
dengan nilai pengesahan silang teritlak (GCV) minimum dipilih daripada semua titik kecuali data pertama dan terakhir. 
Penggunaannya ditunjukkan menggunakan data cerapan saham pembukaan Petronas Gas Bhd. Hasil kajian menunjukkan 
nilai min ralat kuasadua bagi model stokastik yang menggunakan knot tunggal terbaik sebagai penganggaran parameter 
bagi larian gerakan Brown 1,000, 5,000 dan 10,000 adalah lebih kecil berbanding model stokastik dengan parameter 
dianggar menggunakan buku yang dipilih secara heuristik. Ini mengesahkan kebolehjayaan kaedah dua-langkah dalam 
menganggar parameter hanyut dan jerap SDE dengan menambahbaik kaedah pemilihan buku tunggal.

Kata kunci: Basis siri kuasa terpangkas; pendekatan Bayesan; persamaan pembeza stokastik; regresi splin 

intRoDUction

classical methods such as Maximum likelihood 
Estimation (MlE), Methods of Moment, least Squares 
Estimation (lSE) have been commonly employed in 
the estimation of oDE (ordinary Differential Equation) 
parameters. Some drawbacks of classical methods such 
as MlE includes the decrease of the estimators efficiency 
due to computational problem which arise from huge 
exploration of local optima and computation time (brunel 
2008). an alternative approach to MlE is introduced such as 
the two-step methods the solution of oDE is obtained in the 
first step by the non-parametric method and the estimation 
of oDE parameter in the second step by minimizing a given 
distance. the problem with classical method such as MlE 
persists in SDE, is it involves the approximation of the 

transition density which includes intense computation, 
poor accuracy and difficulty for multivariate SDE. the 
motivation of this study was to extend the two-step method 
in SDE, utilizing a fully non-likelihood approach with the 
implemention of non-parametric criterion in both steps. 
this approach does not involve the approximation of the 
transition density, thus avoiding previously mentioned 
problems and providing simpler alternative procedure in 
estimating SDE parameters.

two-StEP MEtHoD in oRDinaRy DiffEREntial 
EqUation (oDE)

the estimation of structural parameters using the two-
step method in ordinary differential equations (oDE) was 
initiated by Varah (1982). this method is computationally 
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easier to perform compared with some classical parametric 
estimators such as maximum likelihood method (MlE) 
or derivative based methods. the parameter of oDE was 
estimated by employing least squares procedure by firstly 
fitting the given data with cubic B-spline function with 
knots chosen interactively. the parameters were estimated 
by finding the solution of least squares equation of the 
spline function and the ordinary differential equation. 
 Ramsay and Silverman (1997) had considered two-
step approach in functional data analysis (fDa) framework. 
it is based on the transformation of data into functions 
with smoothing cubic splines. Ramsay (1996) proposed 
principal differential analysis (PDa) and using the basis 
function such as b-splines to estimate the parameters of 
oDE. the extension of PDa was done by applying it to 
nonlinear oDE and the iterated PDa (iPDa), thus repeating 
the two-steps method in Poyton et al. (2006). 
 the iPDa had been extended with the introduction of 
generalized smoothing approach by Ramsay et al. (2007) 
where the smoothing and estimation of oDE parameters 
were done simultaneously. they proposed a generalized 
profiling procedure which was a variant of the collocation 
method based on basis function expansion in the form of 
penalized log-likelihood criterion. the procedure was 
applied using noisy measurements on a subset of variables 
to estimate the parameters defining a system of non-linear 
differential equation. for simulated data from models in 
chemical engineering, they derived the point estimates 
and the confidence interval and had shown that these have 
low bias and good coverage properties. the method had 
also been applied to real data from chemistry and from the 
progress of the autoimmune disease lupus. 
 Referring to Ramsay et al. (2007), brunel (2008) 
proposed a general method of estimating the parameters 
of oDE from time series data. brunel (2008) used the 
nonparametric estimator of regression function as the first 
step of constructing the M-estimator minimizing: 

  (1)

where θ is the parameter of oDE, n is the number of 
observations, t is the observation time, w is the weight 
function, is the derivative of the non parametric estimator 
of solution of oDE and F(t, x̂ n, θ) is the oDE. the method 
is able to alleviate computational difficulties encountered 
by the classical parametric method. the consistency of 
the derived estimator θ̂  with detail analysis when q = 
2 was also shown. for the case of spline estimators, the 
asymptotic normality and the rate of convergence of the 
parametric estimators was also proven. 

two-StEP MEtHoD in StocHaStic DiffEREntial 
EqUation (SDE)

Parameter estimation of stochastic differential equation 
(SDE) is largely based on parametric methods; non-linear 
least squares, maximum likelihood, methods of moment 
and filtering such as the extended Kalman filter. Non-

parametric approach in estimating the parameters of 
SDE has recently been introduced by Varziri et al. (2008) 
who developed approximate Maximum likelihood 
Estimation (aMlE). they proposed a new version of a 
two-step method via the minimization of the negative 
of natural logarithm of approximate probability density 
function to estimate the drift and the spline parameters 
of the SDE. the estimated disturbance intensity was then 
repeatedly improved by a noise estimator. this approach 
however causes computational burden since it involves 
the approximation of transitional probability. furthermore, 
bayesian approach with spline implementations have 
not been considered in parameter estimation of SDE. 
wide literatures may be found in the implementation 
of regression spline, for example budiantara (2001), 
calderon et al. (2010), Hunt and li (2006), leathwick et 
al. (2005), lee (2002) and Molinari et al. (2004) but few 
involving bayesian approach. works employing bayesian 
regression spline include li and yu (2006) who estimated 
the term structure with bayesian regression splines based 
on nonlinear least absolute deviation. the method was 
found to be robust to outliers in a chosen case study. lang 
and brezger (2004) proposed a bayesian version for 
P-splines for generalized additive models. the approach 
has the advantages of allowing simultaneous estimation 
of smooth function and smoothing parameter and had 
been extended to more complex formulations. wallstrom 
et al. (2008) implemented baRS (bayesian adaptive 
Regression Splines) in c by manipulating b-splines for 
normal and Poison cases. this has improved the original 
implementation of baRS in S. 
 the objective of this paper was to estimate SDE 
parameters, with Bayesian regression spline in the first 
step for estimating the spline parameters. an algorithm for 
selecting an optimal knot with the least GcV is proposed 
in this step. for the second step, a criterion introduced 
by Varah (1982) and our proposed criterion with a non-
likelihood based with a spline approach are used to estimate 
the SDE parameters. the paper is organized as follows. 
the next three sections introduce the general form of SDE 
followed by the theoretical outline of regression spline and 
the derivation of non parametric criterion for SDE parameter 
estimation. the fourth section onwards are devoted to 
discussions on the outcome of research followed by some 
conclusions.

PRoPoSED MEtHoDS 

consider a one dimensional itô SDE given by:

 = f (x,t,θ) + g(x,t,φ) , (2)

where f(x,t,θ) is the average drift term, g(x,t,φ) is the 
diffusion term and dW(t) is the brownian noise. a two-
step method with a non-likelihood based approach will 
be used to estimate the structural parameter of SDE by 
firstly estimating the parameters of regression spline with 
Bayesian approach in the first step and next estimate the 



  1637

parameters of the drift and diffusion term in SDE in the 
second step. 

two StEP MEtHoD: tHE fiRSt StEP

the general equation of regression splines with truncated 
power series basis is:

 s(t) =  (3)

where s is known as a spline of order m with knots ξ1, 
…, ξk, t is the independent variable, α1, …, αm  and δ1, 
…, δk are some sets of coefficients. Given a choice of 
λ = (ξ1, ξ2,…, ξk), let x1(t) =1, x2(t) = t, …, xm(t) = t m–1, 
xm+1(t) =  and set β = (α1, …, αm, δ1, …, δk). the 
least squares spline estimator can be rewritten as s(t) =

 from Eubank (1988), adhoc rules for locating 

knots are as follows: for m = 2, linear splines, place knots 
at points where the data show a change in slope; for m = 
3, quadratic splines, the knots are located near the local 
minimum, maximum or inflexion points of the data and 
for m = 4, cubic splines, the knots are arranged near the 
inflexion points in the data. 
 In the first step of the proposed procedure, the values 
of α and δ are estimated using the Bayesian approach with 
the assumption of normal error and diffuse prior for the 
parameters. the estimation is carried out in winbugs with 
106  McMc simulations after selecting the suitable number 
and location of knots. the best number and location of 
knots of the fitted spline are determined by calculating the 
Generalized cross Validation (GcV):

 GVC(λ) =  (4)

where yi is the observed data, s(t) =  is the spline 
equation, k is the number of knots, m is the degree of splin 
and n is the number of the observations. the least value of 
GcV indicates the best fit of s(t). 

two-StEP MEtHoD: tHE SEconD StEP

In the second step, we first estimate the parameter of the 
average drift equation by:

 minimizing  (5)

where  is the derivative of the spline approximation of the 
true solution of ordinary differential equation (oDE) which 
is used to represent the average drift term,  the consistent 
estimator of the true solution, t is the independent variable 
and θ the parameter of ordinary differential equation.  
f ( , t, θ) is the oDE used to represent the average drift 
term in SDE. criterion (5) was primarily introduced by 

Varah (1982) and used by many authors including brunel 
(2008). by minimizing (5), it is expected to minimize 
the deviation between the differential of spline and the 
estimated ordinary differential equation. 
 a new criterion is proposed in estimating the diffusion 
term. consider a one dimensional itô SDE given by,

  (6)

where f (x, t, θ) is the average drift term, g(x, t, φ) is 
the diffusion term, and dW(t) is the brownian noise. 
Rearranging (6), we have:

   (7)

discrete approximation of true solution of SDE using 
numerical descretization such as Euler or Milstein may 
be considered. Here, Milstein numerical approximation is 
used to estimate the solution of (6) given as:

SDE can be rewritten in a form of difference quotient such 
as in taylan et al. (2008) where:

 
  (8)

(RHS is the Milstein scheme). in order to estimate θ and 
φ they minimize:

 

 (9)

where s are the observed data, i = 1, …, N,    therefore, 
there is an argument to support (6) can be approximated 

by a difference quotient  the average 

drift term in (6) is of oDE form and approximated by 
regression spline (brunel 2008; Varah 1982). thus,  
f (x,t,θ) can be approximated by f ( ,t,θ). therefore, 
the approximation of (7)  is  obtained,  that  is 

 in order for the values of φ to 

produce the least variation between both RHS and lHS of 
(7), the squared difference of both quantities are minimized. 
by rearranging the terms in the second step in order to 
estimate φ, a new criterion is introduced as follows:

 minimizing   (10)

 the brownian motion dW(t) is approximated 

by ΔWt~N(0,hi), where ΔWt  = Zi  and 
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 it can be seen that Zi has a standard normal 

distribution. the approximated values of  can be 

generated by standard normal random numbers generator 
in Matlab.

RESUltS anD DiScUSSion

Data backGRoUnD 

in this section, the proposed method will be applied to a 
commonly used financial model which is a form of linear 
SDE given as:

  dX(t) = θX(t)dt + φX(t)dW(t)  t ∈ [0,T], (11)

where θX(t) is the average drift term, φX(t) is the diffusion 
term and dW(t) is the brownian noise. a set of data 
collected from yahoo finance website namely share prices 
of Petronas Gas bhd. was used to estimate the diffusion 
and drift parameter of stochastic differential equation 
(figure 1). 
 Given Wt ~ N(0,1), ΔWt = Wti+1

 – Wti
 and Δt = ti+1 – ti, 

then ΔWt ~ N (0, Δt) and   ~ N(0,1).We fixed h = 1 

for every interval, thus, the distribution of ΔWt is a standard 
normal distribution.

REGRESSion SPlinE 

Heuristic Knot Selection   firstly, a suitable nonparametric 
representation of the data will be determined using 
bayesian regression spline. the knots are placed 
heuristically through visual inspection of the scatter plot 
with only linear splines, m = 2 will be considered. the 
spline parameters will also be estimated by bayesian 
approach with winbugs software at 106 Markov chain 
Monte carlo (McMc) simulations.
 table 1 lists the corresponding GcV values of bayesian 
regression spline for opening share prices of Petronas 
Gas bhd. the values of θ were estimated using (5). the 
estimated values of θ at respective knot locations shown 
with the least GcV at t = 150  parameter of the regression 
spline is -0.0001. figure 2 shows the plot of the regression 
spline model.
 in order to estimate the value of φ, (10) is minimized. 
table 2 summarizes estimated values of φ at three different 
runs 1,000, 5,000 and 10,000 for bayesian regression spline 
at knot location with the least GcV.
 the MSE from stochastic model is the least at 1000 
run of brownian noise simulation that is 0.2808 with 
corresponding mean value of φ is 0.0001665, standard 

tablE 1. GcV values of bayesian regression spline of opening share prices 

no. of knots (k) knots GcV

1 70 31
1 150 24
1 300 29
2 70,150 1512
2 70,300 89
2 150,300 12658
3 70,150,300 1518

fiGURE 1. Real opening share prices of Petronas Gas bhd
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deviation 0.0006211 and 95% confidence interval 
(0.0001123, 0.0002207). figure 3 depicts the plot of 
predicted and observed values of SDE model (10) for the 
opening share prices of Petronas Gas bhd.
 the prediction quality of stochastic model is 
measured by the values of mean square error given as 

MSE =  where xi is the observed values, fi is the 

predicted values and N is total observations. the value 
of the MSE and RMSE (root mean square error) of the 
approximated true solution with parameters estimated by 
the two-step method is given in table 3.

Optimal Knot Selection   Selection of number of knots, 
location of knots and order of spline are subjective issues 

tablE 2. Estimated values of φ at several runs for ξ = 150

Run Mean Standard deviation Lowerbound 95% C.I Upperbound 95% C.I
1,000 0.0001665 0.0006211 0.0001123 0.0002207
5,000 0.0015000 0 0.0015000 0.0015000
10,000 0.0004245 0 0.0004245 0.0004245

fiGURE 2. observed values and regression spline model at ξ = 150
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fiGURE 3. observed values and stochastic model of Petronas Gas bhd. opening share prices
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and quite tedious if heuristic approach is made where the 
location of the knots are chosen through visual inspection 
of the scatter plot. to reduce the time and improve 
efficiency, an algorithm is introduced for selecting the 
best single knot and order of spline giving the least GcV. 
algorithm for optimal single knot selection: data entry 
with knots are iteratively selected with the exception of 
the first and the last data; data splitting based on knots to 
first interval and second interval; parameter estimation for 
each interval and each order of spline m = 2, m = 3 and 
m = 4; combine predicted value for each interval of each 
order of spline; new matrix formation for the combined 
estimation; Evaluation of the models on the GcV values 
and find optimum ξ and GcV values corresponding to the 
least GcV for each order.
 this algorithm is applied to the previous data set where 
the computation is done through Matlab. the parameters 
of the regression spline are calculated by the least squares 
method. table 4 shows that since the GcV of quadratic and 
cubic spline is approximately equivalent, quadratic spline is 
chosen since it is more convenient in terms of computation. 
the results show the best knot is at ξ = 161 with m = 3. 
 bayesian regression spline models with optimal knot 
selection has a smaller GcV value (for all order of spline) 
compared with model with heuristic knot selection as 
shown in tables 1 and 4. this supports the argument 
that optimal knot selection does improve the GcV values 
resulting in models with better fit. Using Winbugs at 106 
McMc simulations with the assumption of normal errors 
and diffusion priors the spline parameters at ξ = 161 are 
calculated and the value is given in table 5. the plot is 
shown in figure 4.

 the plot of regression spline and the observed data 
are given in figure 4.

Structural Parameter Estimation of SDE   by employing 
criteria (5) and (11), the drift and diffussion parameters of 
the stochastic model in (10) are calculated at 1,000, 5,000 
and 10,000 runs of the brownian motion. the results are 
shown in table 6.
 the corresponding MSE’s and RMSE’s at each run is 
illustrated in table 7. table 7 shows that, the least MSE was 
obtained at 1,000 runs of the brownian motions, thus the 
value of estimated φ at 1,000 equals 0.00120 is chosen for 
the stochastic model. the plot of the stochastic model is 
given in figure 5.

conclUSion

in this paper, a new criterion to estimate the diffusion 
parameters of SDE was introduced. this method was 
simpler and could be an alternative to the classical 
likelihood approach. this will avoid computational 
difficulties encountered by such method. An algorithm 
was also introduced to select the optimal single knot and 
the order of knot via bayesian method which overcame 
the tedious process of heuristic selection. Using option 
price data set of Petronas Gas bhd., the improvement was 
illustrated by comparing the models with heuristic knot 
selection and optimal knot selection based on the GcV 
values and the MSE values. both quantities have been 
reduced significantly. We use the Bayesian approach since 
this method is considered more efficient.

tablE 3. MSE and RMSE of stochastic logistic model with the two-step method of 
parameter estimation for ξ = 150 using Milstein approximation

Runs 1000 5000 10000
MSE 0.2375 0.2808 0.2714
RMSE 0.4874 0.5296 0.5210

tablE 4. optimal single knots and GcV values for linear, quadratic and cubic splines

Data Optimal knot (ξ) GcV

opening Share linear splines (m=2) : 143 20.46832
Price quadratic splines (m=3) : 161 14.03534

cubic splines (m=4) : 161 14.05705

tablE 5. Regression spline parameters at optimal knot location

Data m location of knot interval Regression spline parameters 
β = (α1, …, αm, δ1, …, δk)

option Price 3 161 t < 161 11.08,-0.004982,-0.000003327
t ≥ 161 10.94,-0.005723,0.000006911,

0.000000008771
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tablE 7. MSE of stochastic logistic model with the two-step method of parameter estimation for ξ = 161

Runs 1,000 5,000 10,000
Milstein approximation MSE

RMSE
0.1077
0.3281

0.1233
0.3511

0.1286
0.3587

tablE 6. the estimated parameters of the drift and diffusion 
parameters of the stochastic model

knot Estimated θ Runs Estimated φ
161 -0.000254 1,000

5,000
10,000

0.00120
0.00039
0.00015

fiGURE  4. observed values and regression spline model at ξ = 161
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fiGURE 5. observed values and stochastic model of opening share prices
time (Day)

o
pe

ni
ng

 S
ha

re
 P

ric
es



1642 

acknowlEDGEMEnt

this work has been partially supported by the Ministry of 
Higher Eduction Malaysia (MoHE) under Slai scholarship 
and the fundamental Research Grant Scheme (fRGS) vot 
number 78526.

REfEREncES

allen, E. 2007. Modelling with Itô Stochastic Differential 
Equations. new york: Springer-Verlag.

brunel, n. 2008. Parameter estimation of oDE’s via nonparametric 
estimators. Electronic Journal of Statistics 21: 1242-1267.

budiantara, i.n. 2001. aplikasi spline estimator terbobot. Jurnal 
Teknik Industri 3(2): 57-62.

calderon, c.P., Martinez, J.G., carrol, R.J. & Sorensen, D.c. 
2010. P-Splines using derivative information. Multiscale 
Modelling and Simulation 8(4): 1562-1580.

Eubank. R.l. 1988. Spline Smoothing and Non parametric 
Regression, new york: Marcel-Dekker.

Hunt, D.l. & li, c-S. 2006. a regression spline model for 
developmental toxicity data. Toxicological Sciences 92(1): 
329-334.

lang, S. & brezger, a. 2004. bayesian P-Splines. Journal of 
Computational and Graphical Statistics 13: 183-212.

leathwick, J.R., Rowe, D., Richardson, J., Elith, J. & Hastie, 
t. 2005. Using multivariate adaptive regression splines 
to predict the distributions of new zealand’s freshwater 
Diadromous fish. Freshwater Biology 50: 2034-2052.

lee, t.c.M. 2002. on algorithms for ordinary least squares 
regression spline fitting: a comparative study. Journal of 
Statistical Computation and Simulation 72(8): 647-663.

li, M. & yu, y. 2006. a robust approach to the interest rate: term 
structure estimation. Journal of Data Science 4: 169-188.

Molinari, n., Durand, J.f. & Sabatier, R. 2004. bounded optimal 
knots for regression splines. Computational Statistics & Data 
Analysis 45: 159-178.

Poyton, a.a., Varziri, M.S., Mcauley, k.b., Mclellan, P.J. & 
Ramsay, J.o. 2006. Parameter estimation in continuous-
time dynamic models using principal differential analysis. 
Computers and Chemical Engineering 30: 698-708.

Ramsay, J.o. & Silverman, b.w. 1997. Functional Data Analysis. 
new york: Springer. 

Ramsay, J.o. 1996. Principal differential analysis: Data reduction 

by differential operators. Journal of the Royal Statistical 
Society Series b 58: 495-508.

Ramsay, J.o., Hooker, G., campbell, D. & cao, J. 2007. Parameter 
estimation for differential equations: a generalized smoothing 
approach (with discussions). The Journal of the Royal 
Statistical Society. Series B (Statistical Methodology) 69: 
741-796.

taylan, P., weber, G-w. & kropat, E. 2008. approximation of 
stochastic differential equations by additive models using 
splines and conic programming. International Journal of 
Computing Anticipatory Systems 21: 341-352.

Varah, J. M. 1982. a spline least squares method for numerical 
parameter estimation in differential equations. SIAM Journal 
of Scientific Statistical Computing 3: 28-46.

Varziri, M.S., Mcauley, k.b. & Mclellan, P.J. 2008. Parameter 
and state estimation in nonlinear stochastic continuous-time 
dynamic models with unknown disturbance intensity. The 
Canadian Journal of Chemical Engineering 86(5): 828-
837.

wallstrom, G., liebner, J.l. & kass, R.E. 2008. an implementation 
of bayesian adaptive regression splines (baRS) in c with S 
and R wrappers. Journal of Statistical Software 26(1): 1-2.

Haliza abd. Rahman*, arifah bahar & norhayati Rosli 
Department of Mathematical Sciences
faculty of Science
Universiti teknologi Malaysia
81310 Skudai, Johor
Malaysia

Madihah Md. Salleh
Department of biotechnology industry
faculty of biosciences and bioengineering
Universiti teknologi Malaysia
81310 Skudai, Johor
Malaysia

*corresponding author; email: halizarahman@utm.my

Received: 11 January 2011
accepted: 21 July 2012


