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Interval Estimations for Parameters of Gompertz Model with Time-Dependent 
Covariate and Right Censored Data

(Anggaran Selang Keyakinan bagi Parameter Model Gompertz dengan Kovariat yang 
Berubah Mengikut Masa dan Data Tertapis Kanan)

KAVEH KIANI*, JAYANTHI ARASAN & HABSHAH MIDI

ABSTRACT

There are numerous parametric models for analyzing survival data such as exponential, Weibull, log-normal and gamma. 
One of such models is the Gompertz model which is widely used in biology and demography. Most of these models are 
extended to new forms for accommodating different types of censoring mechanisms and different types of covariates. In 
this paper the performance of the Gompertz model with time-dependent covariate in the presence of right censored data 
was studied. Moreover, the performance of the model was compared at different censoring proportions (CP) and sample 
sizes. Also, the model was compared with fixed covariate model. In addition, the effect of fitting a fixed covariate model 
wrongly to a data with time-dependent covariate was studied. Finally, two confidence interval estimation techniques, 
Wald and jackknife, were applied to the parameters of this model and the performance of the methods was compared.
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ABSTRAK

Terdapat banyak model parametrik untuk menganalisis data mandirian seperti, eksponen, Weibull, Log-normal dan 
gamma. Salah satu model tersebut adalah model Gompertz yang digunakan secara meluas dalam biologi dan demografik. 
Sebahagian besar daripada model ini dikembangkan kepada bentuk-bentuk baru untuk menampung pelbagai jenis data 
tertapis dan kovariat. Dalam makalah ini kebolehan model Gompertz dengan kovariat yang berubah dengan masa 
dengan data tertapis dikaji. Selain itu, prestasi model ini pada kadaran data tertapis dan saiz  sampel yang berbeza 
dibandingkan. Juga, model ini dibandingkan dengan model kovariat tetap. Di samping itu, kesan menggunakan model 
kovariat tetap untuk data dengan kovariat yang berubah dengan masa dikaji. Akhirnya, dua kaedah selang keyakinan, 
Wald dan jackknife diaplikasikan pada parameter model ini dan prestasinya dibandingkan.

Kata kunci: Data tertapis kanan; jackknife; kovariat bergantung masa; model Gompertz 

INTRODUCTION

The statistical analysis and modeling of lifetime data are 
usually done by applying various kinds of parametric, 
semi-parametric or non-parametric models. In this paper 
the performance of the Gompertz model with fixed and 
time-dependent covariate in the presence of right censored 
data was studied. The Gompertz model was introduced 
by Gompertz in 1825 as a model for human mortality. 
Recently, it has found more application in fields such 
as biology and demography. The hazard function of the 
Gompertz model is: 

h(t) = λexp(γt), t ≥ 0, λ > 0, γ > 0,

where is the non-negative continuous random variable 
which denotes the individual’s life time. The scale 
parameter is λ and the shape parameter is γ. The survivor 
function of the model is 

and the probability density function is:

The properties of the Gompertz distribution are 
presented in Johnson et al. (1995). Recently many 
authors have done studies on different characteristics 
and statistical methodology of Gompertz distribution; 
for instance, Makany (1991) and Chen (1997). Garg et 
al. (1970) obtained maximum likelihood estimate (MLE) 
of the parameters of Gompertz distribution. Wu et al. 
(2004) proposed unweighted and weighted least squares 
estimates for parameters of the Gompertz distribution 
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under the complete data and first failure-censored data. 
Fixed covariates are measured at the start of study and 
stay constant over the study’s duration, for example, 
gender or race. Time-dependent covariates vary over time 
such as age and blood pressure. Following Kalbfleisch 
and Prentice (1973, 2002), Lachin (2000) and Sparling 
(2002) the history of a time-dependent covariate process 
up to time  may be incorporated into the model to assess 
the effect of the covariate on the relative risk of the event 
over time. Cox (1975) suggested using time-dependent 
covariates in the proportional hazards regression models 
and gave the partial likelihood analysis and also generated 
the partial likelihood function for censored data. Petersen 
(1986) introduced an algorithm for estimating parameters 
of parametric models in the presence of time-dependent 
covariates. Sparling et al. (2006) proposed a parametric 
family of survival regression models for left, right and 
interval-censored data with both fixed and time-dependent 
covariates. Arasan and Lunn (2009) extended the bivariate 
exponential model to incorporate a time-dependent 
covariate. A complete review on the jackknife and its 
application was done by Miller (1974). Also, Arasan and 
Lunn (2008) investigated several alternative methods 
of constructing confidence interval (CI) estimates for a 
parallel two-component model with dependent failure and 
a time-dependent covariate. 

The objective of this study was to extend the Gompertz 
model to incorporate a time-dependent covariate in the 
presence of right censored data and to obtain a confidence 
interval estimation method for the parameters of this model. 
Firstly, we conducted a simulation study to evaluate the 
performance of the model by checking the value of bias, 
standard error (SE) and root mean square error (RMSE), of the 
parameter estimates at different sample sizes and censoring 
proportions (CP). Then, we  assessed the performance of 
two confidence interval estimation methods, the jackknife 
and Wald, via a coverage probability study at different 
nominal error probabilities and CP levels. In this research, 
all the codes for the simulation studies were written in 
FORTRAN® (FTN95) programming language.

GOMPERTZ MODEL WITH RIGHT CENSORED 
DATA AND FIXED COVARIATE 

The effect of covariates on survival time can be incorporated 
to the hazard function by allowing the parameter λ to be a 
function of the covariates. Covariates can be either fixed 
or time-dependent. For a data set with a fixed covariate  xi 
where i = 1, 2,…, n, the hazard function for ith subject can 
be expressed as;

where λi = exp (β0+ β1xi) and vector of parameters is 
θ=(β0,β1,γ). The parameters of this model can be estimated 
by the method of maximum likelihood. If there are no 
consored observation, then the likelihood function for the 
full sample is: 

 In order to incorporate right censored data to the 
likelihood function we need to define a censoring indicator 
variable denoted as S. For the ith observation: 

 

 If  ti is the observed survival time for the ith subject 
then the likelihood function will be 

and log-likelihood function is:

The first and second derivatives of the log-likelihood 
function would be as follows:  

  The inverse of the observed information matrix, which 
can be obtained from the second partial derivatives of the 
log-likelihood function evaluated at  and  , provides 
us with the estimates for the variance and covariance of θ. 

 The MLE of the parameters can be obtained by using 
the Newton-Raphson iterative procedure.

SIMULATION STUDY AND RESULTS

A simulation study using 1000 samples each with n=50 
and n=100 was conducted for this model for both censored 

γ
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and uncensored observations and one fixed covariate. The 
covariate values were simulated independently from the 
standard normal distribution. The values of 0.04 ,0.02 and 
0.03 were chosen as the parameters of β0, β1 and γ. Random 
numbers, ui’s,  from the uniform distribution on the interval 
(0,1) were generated to produce ti’s. The censoring times 
or ci’s were generated from  exp(μ) distribution, where 
the value of μ would be adjusted to obtain the desired 
approximate CP in the data. There are two possible types of 
data. The first is when  ti ≤ ci which means ti is uncensored. 
The second is when ti > ci which means ti is censored. The 
ti‘s were generated by:

 
 

Table 1 shows the bias, SE and RMSE,  , 
of the parameter estimates at different CP levels and sample 
sizes.  CP means 10 percent of data are right censored. We 
can clearly see that the bias, SE and RMSE values increase 
with the increase in CP and decrease in sample size, which 
means higher CP and small sample size make estimates less 
efficient and rather inaccurate.

GOMPERTZ MODEL WITH RIGHT CENSORED DATA  
AND TIME-DEPENDENT COVARIATE 

In the model with time-dependent covariates, we are 
dealing with covariates whose value changes over time 
and not fixed throughout the study. Let xaij represent a 

time-dependent covariate which changes over update 
times aij   where i = 1,2,…, n and j = 0,1,…., k. Here  ai0 
is the time origin or ai0 = 0. The hazard function can be 
expressed as: 

 It assumed the xaij follows a step function which means 
within the interval aij to ai(j+1), x stays constant at  xaij and 
change to xai(j+1) at ai(j+1) in the following interval. The 
vector of parameters is θ = (β0, β1, γ).

The likelihood and log-likelihood functions for both 
censored and uncensored observations are given by:

Let us consider this model with at most two levels of 
the covariate for each subject, so j = 0,1. Here, in order to 
incorporate two levels of the covariate to the likelihood 
function we need to define a covariate updating indicator 
variable denoted as L. For the ith observation:

 Then the hazard function before and after updating 
is:

TABLE 1.  Bias, SE and RMSE of the estimates for fixed covariate model
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So, the log-likelihood function will be:

The first and second derivatives of the log-likelihood 
function would be as follows: 

 

The MLE of the parameters can be obtained by using 
the Newton-Raphson iterative procedure.

SIMULATION STUDY AND RESULTS

A simulation study using 1000 samples each with n=50 
and n=100 was conducted for this model for both censored 
and uncensored observations and one time-dependent 
covariate. Two levels of the covariate were simulated 
independently from the standard normal distribution. The 
values of 0.04, 0.02 and 0.03 were chosen as the parameters 
of β0, β1 and γ. Random numbers, ui’s,  from the uniform 
distribution on the interval (0,1) were generated to produce 
ti’s. The censoring times or ci’s were generated from  exp(μ)
distribution, where the value of μ would be adjusted to 
obtain the desired approximate CP in the data. The update 
times or ai1’s were generated from  exp(v)distribution 
where the value of v can be adjusted to obtain larger or 
smaller values of ai1. Here  v was chosen as 1. There are 
four possible types of data. The first is when ti < ci and 
ti < ai1 which means the survival time is uncensored and 
covariate is not updated. The second is when ti < ci and ti ≥ 
ai1 which means survival time is uncensored and covariate 
is updated. The third is when  ti ≥ ci and ci < ai1or survival 
time is censored and covariate is not updated and finally,  
ti ≥ ci and ci ≥ ai1which means survival time is censored and 
covariate is updated. The ti‘s were generated by:

,

The simulation study was done to assess the bias, SE 
and RMSE of the estimates at different CP levels and sample 
sizes. From Table 2 we can clearly see that the bias, SE and 
RMSE values increase with the increase in CP and decrease 
in sample size.

Table 3 gives RMSE values of the estimates when a 
fixed covariate model was fitted wrongly to a data set 
with time-dependent covariate. The results indicate that, 
when the interval  is very wide (close), which means at 
small (large) value of v, the RMSE values between time-
dependent covariate model and fixed covariate model are 
very close. This is expected because as intervals become 
very wide (close), the time-dependent covariate become 
closer to a fixed covariate. But, when the interval  takes 
a medium size, RMSE values of the wrong model increase 
substantially. As a result, if a time-dependent covariate 
data is fitted to a fixed covariate model, the accuracy and 
efficiency of the estimates will be highly affected, thus the 
model will be completely unreliable.
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 CONFIDENCE INTERVAL ESTIMATES

In this section we compared two methods of constructing 
confidence intervals for the parameters of the time-
dependent model. The first method is asymptotic normality 
confidence interval or the Wald interval and the second 
is alternative computer based technique known as the 
jackknife. For discussions in following sections we will 
use β1 as our example and similar procedure would then 
apply for the rest of the parameters.

ASYMPTOTIC NORMALITY 
CONFIDENCE INTERVAL (WALD) 

Let be the maximum likelihood estimator for the vector 
of parameters θ and  l (θ) the log-likelihood function of θ.  
Following Cox and Hinkley (1974), under mild regularity 
conditions, is asymptotically normally distributed with 
mean θ and covariance matrix I-1(θ) where I(θ) is the Fisher 
information matrix evaluated at the true value of the θ. The 
matrix  I(θ) can be estimated by the observed information 
matrix  . The  var (β̂ 1) is the (2,2)th element of matrix 

. If is the  (1-α/2) quantile of the standard normal 

distribution the 100 (1- α)% confidence interval for 
β1 is:

 

JACKKNIFE CONFIDENCE INTERVAL

Let us say that β̂ 1 is the MLE of the parameter β1  obtained 
from the original dataset x=(x1, x2,…, xn). The jackknife 
estimate of bias and SE are computed from the jackknife 
samples. For a data set with n observations, the ith 

jackknife sample is defined to be x with the ith observation 
removed. So, the  jackknife sample would consist of (n-1) 
observations, all except the ith observation. 

 x(i)=(x1, x2,…, xi-1, xi+1, …, xn).

 Let  β̂ 1(i) be the MLE of the parameter based on the 
jackknife sample, then, the new estimate,   β̂ 1(jack) is defined 
by 

 
where 

 
β̂1 .( ) =

β̂1 i( )

ni=1

n

∑ .

 The jackknife estimate of the SE is: 

TABLE 2.  Bias, SE and RMSE of the estimates for time-dependent covariate model

TABLE 3.  RMSEs of wrong and correct fitted model to time-dependent data
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 If   is the (1– α/2)quantile of the student’s t 

distribution at (n-1) degrees of freedom, the100(1–α)% 
confidence interval for β1 is: 

 

COVERAGE PROBABILITY STUDY AND RESULTS

A coverage probability study using 2000 samples each 
with n=20, 30, 40, 50, 100, 150, 200, 250 and 350 and 
two CP levels of 10% and 30% was conducted to compare 
the performance of the confidence interval estimates at 
different sample sizes and CP levels. The nominal error 
probabilities  were chosen as 0.05 and 0.1. Left and right 
error probabilities were estimated and total error probability 
was calculated. Following Arasan (2006), the estimated 
left(right) error probability is calculated by adding the 
number of times the left (right) endpoint was more (less) 
than the true parameter value divided by the total number 
of samples, N. Following Doganaksoy and Schmee (1993), 
if the total error probability is greater than α + 2.58 × 
SE (ᾶ), then the method is termed anti-conservative; if 
the total error probability is less than α + 2.58 × SE (ᾶ), 
then the method is termed conservative, and if the larger 
error probability is more than 1.5 times the smaller 
one, then the method is termed asymmetrical. Standard 
error of estimated error probability is approximately,  

The overall performance of the different methods of 
constructing confidence intervals are judged based on 
the total number of anti-conservative, conservative and 
asymmetrical intervals. Also, behavior of the methods 
at different nominal error probabilities α and CP levels is 
of interest. By comparing the two methods of computing 
confidence interval estimates, we found that Wald method 
gives better interval estimates of β0 and jackknife method 
gives better interval estimates of  β1 and γ . Overall, the 
jackknife method seems to perform better than the Wald 
method.

Tables 4 and 5 show estimated left, right and total 
error probabilities of parameters at different sample sizes 
and CP levels for Wald and jackknife methods where the 
nominal error probability α is 0.05 . The estimated total 
error probabilities of both methods are close to the nominal 
error probability but some intervals have asymmetric left 
and right estimated error probabilities.

Table 6 shows the summary of the results obtained 
from the coverage probability study. The jackknife method 
produces fewer anti-conservative intervals compared to the 
Wald method. However, it generates many conservative 
intervals whereas the Wald method does not produce any 
conservative interval. Having many conservative intervals 
is not very desirable because it produces intervals wider 
than they need to be. The Wald also produces many 
asymmetrical intervals. Both methods appear to perform 
slightly better at α = 0.05 and also at higher CP level.

Tables 7 and 8 show the total conservative, anti-
conservative and asymmetrical intervals at α = 0.05 level. 
We can clearly see that a large portion of the asymmetrical 
intervals are produced by β0 and γ. Also anti-conservative 
intervals are produced by the Wald method only for β0 and  

TABLE 4.  Estimated error probabilities of Wald method (α = 0.05)
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TABLE 5.  Estimated error probabilities of jackknife method (α = 0.05)

TABLE 7.  Performance of Wald method at α = 0.05

TABLE 6.  Summary of the performance of Wald and jackknife methods

TABLE 8.  Performance of jackknife method at α = 0.05
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CP% β0
β1 γ

30

FIGURE 1. Estimated error probabilities of Wald and jackknife methods at α = 0.05



  479

CP% β0 β1 γ

30

FIGURE 2. Estimated error probabilities of Wald and jackknife methods at α = 0.1

30
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for γ small sample sizes (<50). For the jackknife method, 
anti-conservative intervals is observed for large sample 
sizes (>100). If we look at Figures 1 and 2, for β1 the 
jackknife method works better for all sample sizes, since 
most of the estimated left and right errors are approximately 
equal and are closer to α/2  . For β0, the Wald method is 
slightly better especially for small sample sizes (<50). 
Finally, for γ, the jackknife method performs better than 
the Wald method for small and large sample sizes and very 
well for medium sample sizes (n=50, 100)

CONCLUSION

In this paper the MLE for the parameters of the Gompertz 
model with both fixed and time-dependent covariate 
were obtained. It was shown that the bias, SE and RMSE 
increase substantially when CP increases and sample size 
decreases. Also, it was shown that the jackknife method 
gave better interval estimations for the parameters than 
the Wald method. The Wald method is known to produce 
many asymmetrical intervals (Arasan & Lunn 2008). 
So, other confidence interval estimation methods like 
bootstrap-t confidence interval could also be developed 
for the parameters of this model. Both asymptotic and 
alternative confidence interval estimations should be 
investigated. The time-dependent model discussed here 
should be investigated further to include other types of 
censored data such as interval and doubly interval-censored 
data. The model could also be extended to include more 
covariates to see its performance when dealing with more 
or different types of covariates.
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