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Improved Sufficient Conditions for Monotonic Piecewise 
Rational Quartic Interpolation

(Syarat Cukup yang Lebih Baik untuk Interpolasi Kuartik Nisbah Cebis Demi Cebis Berekanada)

ABD RAHNI MT PIAH* & KEITH UNSWORTH

ABSTRACT

In 2004, Wang and Tan described a rational Bernstein-Bézier curve interpolation scheme using a quartic numerator 
and linear denominator. The scheme has a unique representation, with parameters that can be used either to change 
the shape of the curve or to increase its smoothness. Sufficient conditions are derived by Wang and Tan for preserving 
monotonicity, and for achieving either C1 or C2 continuity. In this paper, improved sufficient conditions are given and 
some numerical results presented.
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ABSTRAK

Pada tahun 2004, Wang dan Tan telah memerikan suatu skema interpolasi lengkung Bernstein-Bézier nisbah menggunakan 
pembilang kuartik dan penyebut linear. Skema tersebut mempunyai suatu perwakilan yang unik, dengan parameter yang 
boleh digunakan untuk menukar sama ada bentuk lengkung atau untuk meningkatkan kelicinan lengkung. Syarat cukup 
diterbitkan oleh Wang dan Tan untuk mengekalkan keekanadaan, dan untuk mencapai keselanjaran sama ada C1 atau 
C2. Dalam kertas kerja ini, syarat perlu yang lebih baik dan beberapa keputusan berangka diberikan. 

Kata kunci: Interpolasi; keselanjaran; keekanadaan; Bernstein-Bézier nisbah

INTRODUCTION

Wang and Tan (2004) construct a rational curve interpolant 
which matches given data while preserving the monotonic 
property of the interpolated data. They use a Bernstein-
Bézier quintic rational interpolant with quartic numerator 
and linear denominator, producing piecewise curves with 
either C1 or C2 continuity. Each curve segment has a shape 
parameter, but the authors do not make it clear how the 
values of these parameters are chosen. Their approach is 
the same as that of Duan et al. (1999), but uses a different 
polynomial degree for the numerator. They derive sufficient 
conditions on the first derivative at each of the given data 
points to ensure monotonicity is preserved.
	 Motivated by their study, we are proposing more 
relaxed sufficient conditions and we will show how 
interactive adjustment of either the shape parameters or 
the first derivatives can ensure C2 continuity. Other useful 
properties of the method by Wang and Tan (2004) include 
the following: no additional knots are needed; unlike the 
schemes of Duan et al. (1999), Gregory & Delbourgo 
(1982) and Sarfraz (2000), it does not require the solution 
to a system of equations to ensure C2 continuity; and it is 
a local scheme. 

THE RATIONAL BERNSTEIN-BÉZIER QUINTIC INTERPOLANT

Suppose {(xi, fi), i = 1,…,n} is a given set of data points, 
where x1 < x2 < … < xn and f1, f2, …, fn  are real numbers. 

Suppose also that hi = xi+1 – xi, ∆i =  i =1, …, n–1.

For x ∈ [xi, xi+1], i = 1, …, n–1,  we define a local variable 

θ by θ = i.e.  0 ≤ θ ≤ 1.

	 Wang and Tan (2004) define an interpolating curve 

s(x)  on [x1, xn]. On each interval [xi, xi+1], i = 1, …, n–1, 

s(x)  is defined as:

	 s(x) = s(xi + hiθ) ≡ Si(θ) =  i = 1, …, n–1,	 (1) 

where Pi(θ) = αifi(1–θ)4 + Vi1(1–θ)3θ + Vi2(1–θ)2θ2 + 
Vi3(1–θ)θ3 + βi  fi+1θ

4, Qi(θ) = αi(1–θ) + βiθ, Vi1 = (3αi + βi)
fi+αihidi, Vi2 = 3αi  fi+1 + 3βi fi, Vi3 = (αi + 3βi)fi+1 – βihidi+1. 
Note that the numerator Pi(θ) is a quartic Bernstein-Bézier 
polynomial and the total degree of s(x) ≡ Si(θ) is 5. αi, βi 
are non-zero shape parameters such that sign(αi) = sign(βi) 
(Note: Wang & Tan (2004) just choose them to be positive). 
Thus, the denominator of (1) is non-zero. di ≥ 0  denotes a 
given (or an estimated) value for the first derivative at xi. 
By defining  i = 1, …, n–1, (1) can be expressed 

in terms of the single shape parameter, ei:
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		  (2)
	
Unless stated otherwise, this form of the interpolant will 
be used throughout the remainder of this paper. 

It is clear from (2) that s(x) satisfies

	 s(xi) = fi, s(xi+1) = fi+1, s'  (xi) = di, and s'  (xi+1) = di+1. 

(3)

Hence s(x) ∈ C1[x1,xn]. 

MONOTONICITY-PRESERVING INTERPOLATION

Suppose s(x) is defined according to (1) and (2). We assume 
that the data are monotonic increasing, so that f1 ≤ f2 ≤ … 
≤ fn or equivalently 

	 ∆i > 0,  i = 1, …, n–1.	 (4)

	 We assume that the first derivatives di, i = 1, …, n have 
been given as part of the data, or are calculated from the 
given data, so that 

	 di ≥ 0, i = 1, …, n.	 (5)

s(x) is monotone if s' (x) ≥ 0 for all x ∈ [xi, xi+1], i = 1, 
…, n–1. After some simplifications, Wang & Tan (2004) 
write:

	 	

	 (6)
where

	 Ai0 = αi
2, Ai1 = 2αi

2(3∆i–di), Ai2 = 3αiβi(4∆i–di–di+1), 

	 Ai3 = 2βi
2(3∆i – di+1), and Ai4 = βi

2di+1.

	 The denominator in (6) is always positive. Therefore, 
considering the numerator in (6), Wang & Tan (2004) 
conclude that s' (x) ≥ 0 if:

	 di ≤ 3∆i, di+1 ≤ 3∆i, di + di+1 ≤ 4∆i,	 (7)

are satisfied (Figure 1). Thus, they state sufficient 
conditions for a monotone interpolant as follows:

PROPOSITION 1 Given a monotonic increasing set of data 
satisfying (4) and (5), there exists a class of monotonic 
rational (quartic/linear) interpolating splines s(x) ∈ C(1)[a,b] 
involving the parameters αi, βi, provided that (7) holds.

(6) can be expressed in terms of ei:

	
	 (8)

FIGURE 1. Monotonicity region of Wang and Tan (2004)
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where
	 Ai0 = ei

2di, Ai1 = 2ei
2(3∆i – di), Ai2 = 3ei(4∆i – di – di+1), 

	 Ai3 = 2(3∆i – di+1), and Ai4 = di+1.

	 Suppose x ∈ [xi, xi+1] and di = n1∆i, di+1 = n2∆i, 0 ≤ n1, 
n2 ≤ 3. From (8) we have,

	

	 (9)

Omitting ∆i which is non-negative and common to all terms, 
and after some straightforward algebraic manipulation, (9) 
becomes:

(ein1(1 – θ)2 – n2θ
2)(ei(1 – θ)2 – θ2) + 2(1 – θ)θ(ei(1 – θ) 

+ θ)[ei(1 – θ)(3 – n1) + θ(3 – n2)] ≥ (ein1(1 – θ)2 – n2θ
2)

(ei(1 – θ)2 – θ2) since n1, n2 ≤ 3.

Now suppose n1 ≥ n2.  It follows that:

(ein1(1 – θ)2 – n2θ
2)(ei(1 – θ)2 – θ2) ≥ (ein1(1 – θ)2 – n1θ

2)
(ei(1 – θ)2 – θ2) = n1(ei(1 – θ)2 – θ2)2 ≥ 0,

which then implies that Ni(θ) ≥ 0. We may write

	 	 (10)

	 Hence, if n2 > n1, by applying a similar argument to 
(10), will give us Ni(θ) > 0.  We now have the following 
proposition, as an improvement to the proposed sufficient 
conditions in Proposition 1.

PROPOSITION 2 Suppose a monotonic increasing set of 
data satisfies (4) and (5). Consider rational splines s(x) 
∈ C1[x1, xn], of the form (1), (2) that interpolate these 
data. These splines preserve the monotonicity of the data 
for all values of the non-negative shape parameters ei, 
i = 1, …, n–1 if:

	 	 (11)

The new monotonicity region is displayed in Figure 2.

It is easy to write an algorithm to generate C1 monotonicity-
preserving curves using the result of Proposition 2. An 
outline is as follows.

OUTLINE OF ALGORITHM
1.	 Input the number of data points, n and data points 

2.	 For i = 1, …, n – 1 
a.	 Define hi and ∆i
b.	 Initialize di so that 0 ≤ d1 ≤ 3∆1, 0 ≤ dn ≤ 3∆n–1 and 

0 ≤ di ≤ min(3∆i, 3∆i–1)
c.	 Initialize ei > 0
d.	 Calculate the inner control ordinates Wi1, Wi2, Wi3 

using (2) and generate the piecewise interpolating 
curve using (1).

FIGURE 2. Our proposed monotonicity region
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3.	 Until no more changes are necessary and for  i = 1,…, 
n – 1 
a.	 Modify, if necessary, di (retaining the conditions 

0 ≤ d1 ≤ 3∆1, 0≤ dn ≤ 3∆n–1 and 0 ≤ di ≤ min(3∆i, 
3∆i–1))

 b.	 Modify, if necessary, ei (retaining the condition 
ei > 0) 

c.	 Calculate the inner control ordinates Wi1, Wi2, Wi3 
using (2) and generate the piecewise interpolating 
curve using (1).

Step 2 of the algorithm produces an initial curve that 
guarantees monotonicity, while step 3 allows a user to 
repeatedly modify the curve, while still guaranteeing 
monotonicity, until a visually pleasing curve is obtained.

Note that Wang and Tan (2004) require:

	 	
	 (12)

for their scheme to be C2 continuous.

Note that if the derivative values di, i = 2, …, n – 1 are 
given, then we may rearrange (12) as follows:

	
	 (13)

thereby giving conditions on ei, i = 2, …, n – 1 to ensure 
C2 continuity.
	 An algorithm to generate a C2 monotonic rational 
interpolant using (11) and condition (13) is virtually 
identical to the algorithm above for a C1 curve. The only 
difference is that only the first derivative values may be 
changed by the user, the ei values must be calculated using 
either (13), or a suitable choice for ei.

NUMERICAL EXAMPLES

In order to illustrate our curve interpolation scheme, we 
will use the same data set in Table 1 from Sarfraz (2000) 
which was used by Wang and Tan (2004) (Figure 3).
	 We have also chosen two classical data, the so-called 
Akima’s data set (Akima 1970) and a sigmoidal function, 

 from Sarfraz (2003) to illustrate our 

scheme (Figures 4 and 5).

	 If the end point derivatives values, d1 and dn are not 
given, then they can be estimated using the following two 
formulas (Delbourgo & Gregory 1985; Hussain & Sarfraz 
2009):

Three-point difference approximation (arithmetic mean 
method)

	 	 (14)

Note that when d1 or dn is negative then its value is set to 
be 0. Meanwhile, di : i = 2, …, n – 1 are calculated from 
the C2 continuity condition (12).

Non-linear approximation (geometric mean method): 

TABLE 1. Sarfraz’s data set

i 1 2 3 4 5
xi 0 6 10 29.5 30

fi
0.01 15 15 25 30

FIGURE 3(a). Monotonicity-preserving interpolant using data in 
Table 1 and condition (7)

FIGURE 3(b). Monotonicity-preserving interpolant using data in 
Table 1 and condition (11)
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	 	 (15)

where 

	
	  
	 The approximate values of  d1 and dn are always 
positive if we use the geometric mean method.

REMARK. If ∆i = 0, then it is necessary to set di = di+1 = 
0, so that s(x) = fi = fi+1, a constant on [xi, xi+1].  It should 
be noted that for the Akima’s data set, s(x) is constant in 
the interval [0,8] and the scheme is only applied over the 
interval [8,15]. 

CONCLUSION

In this paper, we improved the monotocity region proposed 
by Wang and Tan (2004) for a Bernstein-Bézier quintic 
rational interpolant (with quartic numerator and linear 
denominator). The resulting curve preserves monotonicity 
of the data. We also propose an algorithm to generate a  
C1 or C2 curve which preserve the monotonic data. This 
scheme is local, simple to use, requires few computational 
steps and the output is comparable to the work of Sarfraz 
(2000, 2002, 2003).
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FIGURE 4(a) Monotonicity-preserving interpolant using data in 
Table 2 and condition (7) 

FIGURE 4(b) Monotonicity-preserving interpolant using data in 
Table 2 and condition (11) 

TABLE 2. Akima’s data set

i 1 2 3 4 5 6 7 8 9 10 11

xi
0 2 3 5 6 8 9 11 12 14 15

fi
10 10 10 10 10 10 10.5 15 50 60 85

TABLE 3. Sigmoidal function on the interval [1,11]
 

i 1 2 3 4 5
xi 1 2 3 4 5

fi 0.0001 0.0006 0.0027 0.0123 0.0551

i 6 7 8 9 10 11
xi 6 7 8 9 10 11

fi 0.2402 0.7427 0.9804 0.9990 0.9999 1
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FIGURE 5(a)  Monotonicity-preserving interpolant using data in 
Table 3 and condition (7) 

FIGURE 5(b)  Monotonicity-preserving interpolant using data in 
Table 3 and condition (11) 

FIGURE 5(c)  The actual sigmoidal function,  


