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A New Hybrid Non-standard Finite Difference-Adomian Scheme for 
Solution of Nonlinear Equations

(Skim Hibrid Baru Beza-terhingga Tak Piawai-Adomian bagi 
Penyelesaian Persamaan Tak Linear)

K. Moaddy, I. Hashim*, A. K. Alomari & S. MOMANI

ABSTRACT

This research develops a new non-standard scheme based on the Adomian decomposition method (ADM) to solve 
nonlinear equations. The ADM was adopted to solve the nonlinear differential equation resulting from the discretization 
of the differential equation. The new scheme does not need to linearize or non-locally linearize the nonlinear term of 
the differential equation. Two examples are given to demonstrate the efficiency of this scheme.
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ABSTRAK

Penyelidikan ini membangunkan satu skim tak piawai baru berdasarkan pada kaedah penguraian Adomian (KPA) bagi 
menyelesaikan persamaan tak linear. KPA ini diadaptasi untuk menyelesaikan persamaan tak linear yang terhasil daripada 
pendiskretan persamaan terbitan. Skim baru ini tidak perlu melinearkan atau melinearkan secara tak setempat sebutan 
tak linear persamaan terbitan itu. Dua contoh diberi untuk medemonstrasikan keefisienan skim ini.

Kata kunci: Kaedah penguraian Adomian; persamaan logistik; skim tak piawai; sistem Lotka-Volterra

Introduction

One of the shortcomings of the standard finite difference 
method is that the qualitative properties of the exact 
solution usually are not transferred to the numerical 
solution. Furthermore, many problems may affect the 
stability properties of the standard approach. Also, in 
practice, using the standard method the limit of the step-
size is not reached. What we obtain is the numerical 
solution for one or several values of the step-size (Ibijola 
et al. 2008).
	 Non-standard finite difference schemes (NSFD) have 
emerged as an alternative method for solving a wide 
range of problems whose mathematical models involve 
algebraic, differential and biological models as well as 
chaotic systems (Mickens 2005). These techniques have 
many advantages over classical techniques and provide an 
efficient numerical solution. In fact, the non-standard finite 
difference method is an extension of the standard finite 
difference method. Non-standard schemes as introduced by 
Mickens (1989,1990,1994) are used to help resolve some 
of the issues related to numerical instabilities. Furthermore, 
Mickens (1999,2000,2005) introduced certain rules for 
obtaining the best difference equations, one of the most 
important of which is that the nonlinear terms of f (t, y(t))  
are approximated in a non-local form. 
	 If we do not linearize non-locally the system of 
differential equations, a somewhat better method is 
chosen - the Newton iteration method-to numerically 

solve the algebraic equation. This requires that f (t, y(t)) 
be smooth and that the inverse of the derivative operator 
fy exist. Furthermore, to solve a system of equations, 
Newton’s method might require a long time, so it is not 
economical. In this paper, a new non-standard finite 
difference scheme is presented in which the non-local 
linearization step is ignored when using the Adomian 
decomposition method (ADM) (Adomian 1988) to solve 
the nonlinear algebraic equations. The decomposition 
method yields rapidly convergent series solutions for both 
linear and nonlinear deterministic and stochastic equations 
(Cherruault &  Adomian 1993). The technique has several 
advantages over the classical techniques, mainly it avoids 
discretization and provides an efficient numerical solution 
with high accuracy, minimal calculations and avoidance 
of physically unrealistic assumptions. However, the ADM 
can be used to solve this problem effectively (Momani et 
al. 2006).
	 The rest of the paper is organized as follows. In the 
next section we present the non-standard finite difference 
method (NSFD) for solution of a system of first-order 
differential equations. Then we briefly describe ADM for 
systems of nonlinear algebraic equations. Next, we merge 
the NSFD and ADM to develop the non-standard scheme 
based on Adomian decomposition method to solve a system 
of nonlinear differential equations. Logistic equations and 
the Lotka-Volterra system are considered as test examples, 
and we discuss numerical approximations to the solutions. 
In the last section we summarize the conclusions.
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Non-standard finite difference method

We seek to obtain the NSFD (Mickens 2000) solution for a 
system of differential equations of the form

	  = f (t, y1, y2, …, ym),   k = 1, 2, …, m,		 (1)

where ))(,( tytf k  is the nonlinear term in the differential 
equation. Using the finite difference method we have

	 	 (2)

 	 	 (3)

               	 M

	 	 (4)

where φk and ψk are functions of the step size h = Δt. The  
ψk and φk have the following properties: 

	 ψk  = 1 + o(h),	 (5)

	 φk (h,λ) = h + o(h2),	 (6)

where h → 0 and λ  is fixed. The numerator functions ψk  
are usually equal to one (Lubuma & Patidar 2005), unless 
the system has dissipation.
	 Examples of functions φk (h, λ) that satisfy (6) are h, 
sin (h), sinh (h), 
	 Non-linear terms can in general be replaced by 
nonlocal discrete representations, for example, 

	 	 (7)

	 	 (8)

	 Let h = T/N, tn =  nh, n = 0, 1, …, N ∈ Z+. Then (1) 
can be discretized as follows: 

	 yk(tn+1) = ψk(h)yk(tn) + φk(h)f (tn+1, yk(tn+1), yk(tn)).	 (9)

where f (tn+1, yk(tn+1), yk(tn)) is the product the non-local 
linearization of f(tn+1, yk(tn+1)). 

Adomian Decomposition Method (ADM)

The properties of ADM can found in (Vahidi et al. 2009). 
Consider the following system of nonlinear equations: 

	 gi(u1, u2, …, un) = 0,   i = 1, 2, …, n,	 (10)

where gi : ℜ
n → ℜ. Equation (10) can be written in the 

form: 

 	 ui = vi,0 + Ni,0(u1, …, un)   i = 1, 2, …, n,	 (11)

where vi,0 are constants and Ni,0 are nonlinear operators. 
The decomposition method allows a solution to equations 
having the series form:
 
	  	 (12)

	 The nonlinear operators Ni,0 are decomposed as an 
infinite series called Adomian polynomials: 

 	 	 (13)

where Ai,j depends upon u1,0, u1,1, …, u1,j, u2,0, u2,1, …, u2,j,  
un,1, …, un,j. In view of (12) and (13) one has: 
	 	
	 (14)

which yields: 

	
(15)

where λ is the parameter introduced for convenience to 
represents. Therefore, (11) can be rewritten as: 

	 	 (16)

	 The Adomian decomposition method identifies 
ui,j, j ≥ 0 by the following recursive relation:

	 vi,0 = vi,0,	 (17)
 
	 ui,j+1 = Ai,j,   i = 1, 2, …, n,   j = 1, 2,….	 (18)

	 The solution ui,j can be approximated by the truncated 
series: 
 
	 	 (19)

such that: 
	  
	 	 (20)

The numerical algorithm based on
Adomian decomposition

Applying the first derivatives developed by Mickens 
(1994) to the solution of a system of nonlinear differential 
equations in (1) gives: 

	 	 (21)

	 	 (22)

	 M

	 	 (23)
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where the functions φk(h) satisfy the condition in (6). 
Solving the above system for yi,k+1, i = 1,2,…,m yields 

	 	 (24)

	 	 (25)

	 M

	 	 (26)
	
	 We now use ADM to solve this system of algebraic 
equations. Assume: 

	 	 (27)

where: 

	 u0 = yk,	 (28)

	 u1 = φ1(h) f (A0),	 (29)

	 u2 = φ2(h) f (A1),	 (30)

	 M

	 un = φn(h) f (An–1).	 (31)

	 For the n-term of the ADM solution we have 

	 	 (32)

Application and results

Solving a logistic equation using NSFD-ADM

We use the NSFD-ADM technique to solve a logistic equation 
(Mickens 1994) of the form: 

	 	
(33)

with the initial condition y(0) = 0.5. The exact solution of 
this equation is:
 
	 	 (34)

	 The new scheme (NSFD-ADM) for solution of the 
logistic equation is:
 
	 	  (35)

when φ(h) = 1 – e–h (Mickens, 2006).

	 Solving Equation (35) for yk+1 gives: 

	 yk+1 = yk + φ(h)yk+1 – φ(h)(yk+1)
2.	 (36)

Using ADM to solve Equation (36) yields:
 
 	 	 (37)

where: 

	 u0 = yk,	 (38) 

	 u1 = φ(h)(u0 – u0
2),	 (39)

	 u2 = φ(h)(u1 – 2u0u1),	 (40)
	
	 M

	 	 (41)

Solving the Lotka-Volterra system 
using NSFD-ADM

The prey-predator differential equation system takes the 
form: 

	 x´ = ax – bxy,	 (42)

	 y´ = –cy + dxy, 	 (43)

where a,b,c,d are positive parameters. For the initial 
conditions x(0) = x0 > 0 and y(0) = y0 > 0, all solutions 
except the fixed point at  are periodic (Mickens, 2003).
	 In the Lotka-Volterra system, the values for the 
parameters (a,b,c,d)  in the prey-predator system (42) and 
(43) are all taken to be one, yielding:
 

	 x´ = x – xy, 	 (44)

	 y´ = –y + xy. 	 (45)

	 We now illustrate Mickens’s scheme (Mickens 2003) 
and our scheme to solve the Lotka-Volterra system. 
1.	 The finite difference scheme proposed by Mickens 

(NSFD) to solve this system is to take: 

	 	 (46)

	 	 (47)

	 where φ(h) = sin h. 
2.	 The new non-standard scheme incorporating Adomian 

decomposition (NSFD-ADM) is to take: 
	
	 	 (48)

	 	 (49)
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	 where φ(h) = sin h. Solving (48) and (49) for xk+1 and 
yk+1, respectively, giving: 

	 xk+1 = xk + φ(h)(xk+1 – xk+1yk+1),	 (50)

	 yk+1 = yk + φ(h)(–yk+1 + xk+1yk+1).	 (51)
	
	U sing ADM to solve (50) and (51) yields 

	 	 (52)
	
	 where: 

	 u0 = xk,   v0 = yk,	 (53)

	 u1 = φ(h)(u0 – u0v0),  v1 = φ(h)(–v0 + u0v0),	 (54)	

	 M

	 	 (55)

	 	 (56)

Results and discussion

The Lotka-Volterra system in (44) and (45) was numerically 
integrated using the NSFD-ADM scheme as coded in the 
computer algebra package Maple. In Maple, the number of 
variable digits controlling the number of significant digits 
is set to 35. In all the calculations done in this paper, we 
set the parameters (a,b,c,d) of the Lotka-Volterra system 
equal to one with initial conditions x(0) = 20, y(0) = 1.	
	 Table 1 shows the accuracy of the NSFD-ADM for 
solution of the logistic equation. Comparing NSFD-ADM 
rersults with the exact solution, we see that the maximum 
difference between the NSFD-ADM solution and the exact 
solution at time steps Δt = 0.05 and Δt = 0.01 is of the order 
of magnitude of 10–6. Thus we can conclude that the NSFD-
ADM solutions for the time step Δt = 0.01 is sufficiently 
accurate for our comparison purposes. 

	 In Table 2 we present the absolute errors between NSFD 
and NSFD-ADM solutions and the fourth-order Runge-Kutta 
method (RK4) solutions at time step Δt = 0.01 for the Lotka-
Volterra system. It was found that the NSFD-ADM solutions 
agree very well with the RK4 solutions for t up to t = 20. 
We note that increasing the number of terms improves the 
accuracy of the NSFD-ADM solutions. 

Table 2. Differences between the RK4 solution for the Lotka-
Volterra system and solutions obtained using 6-term 

NSFD-ADM and NSFD

t
 

 Δ=|RK40.01–NSFD0.01| Δ=|RK40.01–NSFD–ADM0|

  Δx   Δy   Δx   Δy

 2  1.510E-06  1.635E-02  4.285E-07  4.201E-02 
4  4.001E-07  7.449E-03  1.229E-07  5.291E-04 
6  1.813E-06  1.724E-03  5.848E-07  6.333E-04 
8  1.217E-05  3.312E-04  4.117E-06  1.821E-04 
10  8.623E-05  5.831E-05  3.058e-05  3.785E-05 
12  6.153E-04  9.821E-06  2.289E-04  6.959E-06 
14  4.395E-03  1.679E-06  1.714E-03  1.225E-06 
16  3.139E-02  3.610E-07  1.284E-02  2.380E-07 
18  0.224  1.662E-07  9.62E-02  7.972E-08 
20  1.6  3.496E-07  0.720  9.166E-08

Table 1. Absolute errors between the exact solution and the 
6-term NSFD-ADM solution for the logistic equation

t |Exact–NSED–ADM0.05| |Exact–NSFD–ADM0.01| 

 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 5.975E-03 
 7.450E-03
 5.372E-03
 3.035E-03
 1.519E-03 
 7.110 E-04 
 3.195E-04 
 1.398 E-04 
 5.998E-05 
 2.536E-05 

1.214E-03 
 1.502E-03 
 1.066E-03 
 5.913E-04 
 2.902E-04 
 1.332E-04 
 5.868E-05 
2.516E-05 
1.058E-05 
4.383E-06

	 The x -y phase portraits obtained using the NSFD-ADM, 
NSFD and RK4 solutions at Δt = 0.01 for the Lotka-Volterra 
system are shown in Figure 1. In this case, we see that the 
NSFD-ADM has the advantage over the NSFD on achieving 
a good accuracy with different time steps. 

x

y

Figure 1. Numerical solution for the Lotka-Volterra system 
using RK4, NSFD and 6-term NSFD-ADM where h = 0.01, 

x(0) = 20 and y(0) = 1

	 In Figure 2, xk and yk are shown to be periodic, and the 
corresponding xk and yk phase-space curves were closed 
for the Lotka-Volterra system with initial conditions x(0) 
= 0.1, y(0) =1  for time step Δt = 0.001. 
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Conclusions

In this paper, we derived a hybrid NSFD-ADM algorithm for 
nonlinear differential equations. Non-local linearization 
procedure of the nonlinear terms in NSFD was replaced 
with the Adomian polynomials. Solutions to the logistic 
equation and Lotka-Volterra system were presented to 
demonstrate the efficiency of the new scheme.
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Figure 2. Numerical solution for the Lotka-Volterra system 
using RK4, NSFD and 6-term NSFD-ADM where h = 0.001, 

x(0) = 0.1 and y(0) = 1


