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Abstract

This paper considers the problem of outlier detection in bilinear time series data with special focus on BL(1,0,1,1) and 
BL(1,1,1,1) models. In the previous study, the formulations of effect of innovational outlier on the observations and 
residuals from the process had been developed and the corresponding least squares estimator of outlier effect had been 
derived. Consequently, an outlier detection procedure employing bootstrap-based procedure to estimate the variance 
of the estimator had been proposed. In this paper, we proposed to use the mean absolute deviance and trimmed mean 
formula to estimate the variance to improve the performances of the procedure. Via simulation, we showed that the 
procedure based on the trimmed mean formula has successfully improved the performance of the procedure. 
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ABSTRAK

Kertas kerja ini mempertimbangkan masalah pengesanan nilai terpencil dalam data siri masa bilinear dengan fokus 
khas kepada model BL(1,0,1,1) dan BL(1,1,1,1). Dalam kajian terdahulu, formulasi kesan nilai terpencil inovasi ke atas 
cerapan dan ralat daripada proses di atas telah dibina dan penganggar kuasa dua terkecil kesan outlier telah diterbitkan. 
Justeru, prosedur pengesanan nilai terpencil menggunakan prosedur bootstrap untuk menganggar varians penganggar 
telah dicadangkan. Dalam kertas kerja ini, kami mencadangkan untuk menggunakan “min sisihan mutlak” dan formula 
“min terkemas” bagi menganggar varians untuk memperbaiki keupayaan prosedur. Melalui simulasi, kami menunjukkan 
bahawa prosedur berdasarkan formula “min terkemas” telah berjaya memperbaiki keupayaan prosedur. 
	
Kata kunci: Bilinear; bootstrap; kaedah kuasa dua terkecil; nilai tersisih inovasi 

INTRODUCTION

The existence of observations that deviate markedly from 
the rest of the observations occurs frequently in time series 
data. These observations are usually called outliers. In 
certain cases, visual inspection of data may be used to 
deal with outliers. However, it is preferable that a specific 
procedure could be developed based on, for example, a 
hypothesis testing approach. In the literature, extensive 
studies have been conducted on the occurrence of the 
additive outlier (AO) and the innovational outlier (IO) in 
linear time series models, for example, Fox (1972), Tsay 
(1986), Chang et al. (1988) and Chen et al. (1993). 
	 On the other hand, few studies can be found on the 
detection of outliers in bilinear models. Chen (1997) used 
Gibbs sampling method to detect AO in a general bilinear 
model while Zaharim et al. (2006) used the least squares 
method to detect both AO and IO in the two simplest 
order of bilinear models. Zaharim et al. (2006) had used 
the bootstrapping method to estimate the variance of the 
measures via the standard variance formula. Later, Ismail 
et al. (2008) had proposed improved versions of the 
AO detection procedure by utilizing the Mean Absolute 

Deviance (MAD) formula and by trimming the bootstrap 
samples considered in the calculation of variance. In this 
paper, we follow the suggested improvised approach for 
the IO case. The performance of the three procedures are 
then compared.
	T his paper is organized as follows: First, we introduce 
the bilinear model in the second section followed by the 
description of the outlier detection procedure for IO case. 
Then we discuss the improvement made on the outlier 
detection procedure. A simulation study is then carried out 
to study the performance of the procedure as given in the 
fifth section. As an illustration, we apply the procedure on 
local rainfall in the last section. 

BILINEAR MODEL

A real in-depth statistical study on bilinear models was 
started after Granger and Anderson (1978) published a 
manuscript on the model. The general bilinear model, 
denoted by BL(p,q,r,s) where p,q,r,s are positive integers 
or zero, is given by 

	 	 (1)
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where ai, cj and bkl are constants, and et’s are assumed to 
follow a normal distribution with mean zero and precision 
τ, τ > 0. The model is a simplified case of nonlinear Volterra 
series expansions and an extension of general linear 
autoregressive moving average model of orders p and q. 
	 Various methods of estimating the parameters of 
bilinear models are available. In this paper, the nonlinear 
least squares estimation method proposed by Priestley 
(1991) is used. The method is recursive in nature and the 
estimates are obtained when the convergence property is 
satisfied. 

THE OUTLIER DETECTION PROCEDURE

The procedure of detecting AO and IO had been proposed 
by Zaharim et al. (2006) for BL(1,1,1,1) models. The 
BL(1,1,1,1) model is given by

	 Yt = a1Yt–1–c1et–1+b11Yt–1et–1+et.	 (2)

	T he results hold for BL(1,0,1,1) model by taking 
c1 = 0. For simplicity, we dropped the subscripts from 
the constants. 		
	L et Yt

* be the observed values from the BL(1,1,1,1) 
process with an IO occurring at time point t = d with 
magnitudes ω and et

* being the resulting residuals when 
BL(1,1,1,1) is fitted on the contaminated data, t = 1,2,…,n. 
Further, let Yt and et be the observations and residuals 
that would have been obtained if there were no outliers 
in the data and they will be referred herewith as ‘original 
observation’ and ‘original residual’, respectively. 
	T he procedure for detecting outliers is described here. 
The procedure is meant to detect IO in data generated 
from the BL(1,1,1,1) model. When IO occurs at time t < 
d, then Yt

* = Yt. On the other hand, for t ≥ d, Zaharim et 
al. (2006) had shown that the formulation of IO effects on 
observations is given by

	 	 (3)

for k ≥ d and  is defined to be unity. It is 
expected that IO will not only change the observation at 
t = d but also several subsequent observations as illustrated 
in Figure 1.
	C onsequently, the residuals will also be affected and 
will differ from the outlier-free data set. When IO occurs at 
time t < d, then  On the other hand, for t ≥ d and  k 
≥ 0, Zaharim et al. (2006) had shown that the formulation 
of IO effects on observations is as follows: 

	 	 (4)

where
		  k = 0
		  k =1,2,…

	 It is expected that IO will not only change the residual 
at t = d, but it will also change several subsequent residuals 
as illustrated in Figure 2.

	T he statistics to measure the magnitude of outlier 
effects for IO can be obtained using the least squares 
method. Consider the following equation:

	 	  (5)

	E quation (5) is then minimized with respect to w, 
yielding the following least squares measure of the IO 
effect:

	 	 (6)

where
                                                               

	
	

	 Zaharim et al. (2006) further used the bootstrap 
method to obtain the estimates of  It is carried 
out through the process of drawing random samples with 
replacement from the residuals as described below:
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FIGURE 1. The effect of IO on observations
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FIGURE 2. The effect of IO on residuals



	 	 193

(a)	L et (e1, e2, …, en) be the original residuals. Sampling 
with replacement is carried out from the original 
residuals giving a bootstrap sample of size n, say, e*(1) = 
(e1

*, e2
*, …, en

*). This is repeated for a large number of 
times, say B times, giving B sets of bootstrap samples 
e*(1), e*(2), …, e*(B).

(b)	 For each bootstrap sample e*(M), M = 1, 2, ..., B, we 
calculate 

(c)	T he sample standard deviation of is given by 

	 	 (7)

where 

	
		
	L et H0 denotes the hypothesis that w = 0 in the bilinear 
model considered and H1 denotes the situations w ≠ 0 in 
the bilinear model with IO at time t. The following test 
statistics can be used to test the hypothesis:

	 	  (8)

	 The following procedure can now be used to detect 
the occurrence of IO at time t: 
1)	C ompute the least squares estimates of the bilinear 

model based on the given data. Hence, obtain the 
residuals.

2)	C ompute  for t = 1, 2, ..., n using the residuals as 
obtained in part (a). 

3)	L et  Given a pre-determined critical 
value C, if ηt > C, then there is a possibility of an IO 
occurring at time t. 

	T hrough the suggested procedure, the occurrence of 
IO can be detected at any time t.

AN IMPROVED VERSION OF THE OUTLIER 
DETECTION PROCEDURE

In this paper, we attempted to improve the procedure of 
detecting IO as presented in the previous section. 
1)	T he Mean Absolute Deviance (MAD) procedure 

Instead of using equation (7) to calculate the standard 
deviation of   we utilize the procedure suggested by 
Hampel et al. (1986) in which the standard deviation is 
computed using the following relationship

	

where  is the median of the bootstrap estimates,  
M = 1, 2, ..., B and B is the number of bootstrap resamples 
drawn.

(2)	T he 5% Trimmed Mean (TM) procedure

Here, the calculation of the standard deviation uses the 
trimmed sample such that the smallest and largest 5% of 

 are removed from the calculation. Equation (7) is then 
used to give the standard deviation, 
	T he improved procedures are expected to be able to 
overcome the problem of overestimation in the computation 
of standard deviation.

SIMULATION – CUTPOINTS

We consider 13 different models representing a broad 
choice of coefficients of BL(1,0,1,1) and BL(1,1,1,1) 
models satisfying the stationary condition of the bilinear 
model. Table 1 lists the full models for the BL(1,0,1,1) case. 
For each model, three cases of the sample are considered; n 
= 60, n = 100 and n = 200. The random errors, are assumed 
to follow the standard normal distribution. For each 
model and for each sample size, 100 series are generated. 
The test statistics for the IO given by equation (8) are 
calculated based on the standard, trimmed mean and MAD 
procedures. The focus is to examine the sampling behavior 
of  In particular, the percentiles of the test 
statistics at the 10%, 5% and 1% levels are estimated when 
no outlier is present in the series. 
	T he plots for 5% percentiles values are given in Figure 
3. From the figures, there is no clear pattern of increment or 
decrement of values in sample size of n, n = 60, 100, 200. 
For the standard and MAD methods, the values lie between 
3-4, while for the trimmed mean method, the values lie in the 
range of 3.8-4.8. Based on the results, for the standard and 
MAD procedures, critical values of 2.5 to 4.0 seem to be the 
suitable choices for the series of size between 60-200, while 
we may use higher values between 3 to 4.5 for the trimmed 
mean procedure. In practice, more than one critical value is 
suggested for the analysis. Similar results are observed for 
the BL(1,1,1,1) model and they are not given here.
 

Table 1. List of models used for the determination of the 
critical values for BL(1,0,1,1)

Model Full Model

1
2
3
4
5
6
7
8
9
10
11
12
13

Yt = 0.1Yt–1 + 0.1Yt–1et–1+et

Yt = 0.1Yt–1 + 0.3Yt–1et–1+et

Yt = 0.1Yt–1 + 0.5Yt–1et–1+et

Yt = 0.2Yt–1 + 0.2Yt–1et–1+et

Yt = 0.3Yt–1 + 0.3Yt–1et–1+et

Yt = 0.4Yt–1 + 0.2Yt–1et–1+et

Yt = 0.5Yt–1 + 0.1Yt–1et–1+et

Yt = 0.1Yt–1 + 0.1Yt–1et–1+et

Yt = 0.1Yt–1 + 0.3Yt–1et–1+et

Yt = 0.2Yt–1 + 0.2Yt–1et–1+et

Yt = 0.4Yt–1 + 0.2Yt–1et–1+et

Yt = 0.3Yt–1 + 0.1Yt–1et–1+et

Yt = 0.5Yt–1 + 0.1Yt–1et–1+et
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SIMULATION - PERFORMANCE

The outlier detection procedure is now applied to cases 
characterized by a combination of the following factors:
1)	T wo underlying models; BL(1,0,1,1) and BL(1,1,1,1), 

with different combinations of coefficients
2)	A  single IO at t = 40 in samples of size 100.
3)	T wo different values of outlier effect; w = 3, 5.
4)	T hree different levels of critical values; 2.5, 3.0, 

3.5.

	 Series are generated to contain a single IO. The 
standard deviation of the noise process for each model is 
set to be unity. For the given model, 500 series of length 
100 are generated using the rnorm procedure in S-Plus. 
The summary of the performance of the procedure is 
given in Tables 2 and 3 for BL(1,0,1,1) and BL(1,1,1,1) 
models respectively. In each table, the values in columns 
4-6 represent relative frequency or proportion of correctly 
detecting IO with correct location at t=40 for critical 
values equal 2.5, 3.0 and 3.5 respectively, using different 
procedures and different magnitudes of the outlier.
	 Two main results are observed. Firstly, all three 
procedures perform quite well. As expected, the 
performance of the procedures improves when larger 

values of w are used. Also, as larger critical values are 
used, the proportions of detection decrease. However, the 
performance is reduced when larger coefficient values are 
used. It is known that when larger coefficient values are 
used, there tends to be more spikes appearing in the data 
generated from the bilinear process. Consequently, it is 
expected to be harder to detect the outlier especially for 
small values of w. Secondly, in general, the procedure 
based on the trimmed mean has improved the detection 
of IO compared to the standard procedure. However, the 
performance of the procedure based on MAD does not 
differ much from the standard procedure.

APPLICATION: KAMPUNG ARING MONTHLY 
RAINFALL DATA

The analysis of the rainfall data is carried out. The data 
were collected from Kampung Aring weather station, 
Kelantan, Malaysia for the period of August 1995 to July 
2002. The plot of the monthly average in millimeters is 
given in Figure 4. It can be observed that the data are 
generally stationary in mean and variance except at time 
point 41 and 77, where rainfalls were heavy.
	 The possibility of fitting a non-linear model on the 
rainfall data is investigated. The non-linearity test has been 

 (a) Standard (b) Trimmed mean

(c) MAD

FIGURE 3. Plot of critical values of IO procedure for BL(1,0,1,1) 
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Table 2. The performance of three procedures for BL (1,0,1,1) models

BL(1,0,1,1)

Co-Efficients Magnitude of Outlier Procedures Proportion of Correct Detection
2.5 3.0 3.5

a=0.1 
b=0.3

a=0.5
b=0.1

a=-0.1
b=-0.1

a=-0.5
b=-0.1

3

5

3

5

3

5

3

5

Standard
TM

MAD
Standard 

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

0.75
0.67
0.70
0.94
0.96
0.94
0.50
0.50
0.44
1.00
1.00
0.83
0.42
0.40
0.37
0.95
1.00
1.00
0.47
0.60
0.50
1.00
1.00
0.94

0.41
0.65
0.50
0.94
0.96
0.94
0.33
0.50
0.33
0.83
1.00
0.83
0.28
0.34
0.33
0.90
1.00
0.90
0.47
0.53
0.43
1.00
1.00
0.94

0.26
0.52
0.35
0.87
0.96
0.92
0.22
0.39
0.28
0.72
0.95
0.78
0.15
0.30
0.14
0.80
1.00
0.85
0.13
0.53
0.21
0.88
1.00
0.94

Table 3. The performance of the three procedures for BL(1,1,1,1) models

BL(1,0,1,1)

Co-Efficients Magnitude of Outlier Procedures Proportion of Correct Detection
2.5 3.0 3.5

a=0.1
c=0.1 
b=0.3

a=0.3
c=0.1
b=0.1

a=-0.4
c=0.2
b=-0.2

a=-0.5
c=-0.1
b=-0.1

3

5

3

5

3

5

3

5

Standard
TM

MAD
Standard 

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

Standard
TM

MAD
Standard

TM
MAD

0.49
0.51
0.49
0.71
0.76
0.74
0.60
0.65
0.65
0.78
0.70
0.58
0.63
0.62
0.55
0.69
0.72
0.66
0.57
0.57
0.53
0.84
0.82
0.84

0.32
0.51
0.32
0.69
0.76
0.67
0.52
0.65
0.56
0.75
0.70
0.58
0.48
0.59
0.45
0.69
0.72
0.66
0.45
0.57
0.50
0.81
0.82
0.83

0.22
0.46
0.27
0.60
0.74
0.60
0.38
0.56
0.42
0.70
0.68
0.55
0.32
0.55
0.34
0.69
0.72
0.66
0.29
0.53
0.33
0.72
0.82
0.74
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widely used to determine whether a given data set is linear 
or non-linear. Two such tests are Keenan’s test by Keenan 
(1985) and F-test by Tsay (1986). When non-linearity 
tests are applied, the p-values of the Keenan’ test and the 
F-test are 0.0293 and 0.2777, respectively. The Keenan’s 
test strongly suggests that the data is non-linear. Ismail et 
al. (2008) had shown that the data is best fitted using the 
BL(1,0,1 ,1) model with the parameter estimates = 0.364 
(standard error = 0.151) and = -0.001 (standard error = 
0.0004).
	 When the detection procedure based on the BL(1,0,1,1) 
model is applied to the data, an innovational outlier (IO) is 
detected at time point 41 for all the methods; with values 
of test statistics for standard method (5.430), trimmed 
mean method (6.98) and MAD method (5.14). Time point 
41 corresponds to December 1998.
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FIGURE 4. Plot of the rainfall data in Kampung Aring

CONCLUSION

An improved version of the outlier detection procedure 
for BL(1,0,1,1) and BL(1,1,1,1) models to detect IO is 
proposed in this paper. This simulation study shows that, 
in general, the three procedures work well in detecting IO 
with the procedure based on a trimmed mean, shows better 
results compared to the others. The proportion of correct 
detection is higher when the magnitude of the outlier effect 
is large. The detection procedure is applied on a local 
rainfall data set and is able to detect an IO in the data set. 
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