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From chemical documentation to
chemoinformatics: fifty years of
chemical information science

Peter Willett*
University of Sheffield

Abstract

This paper summarises the historical development of the digine that is now called ‘chemoinformatics’. It shows how

this has evolved, principally as a result of technological delopments in chemistry and biology during the past decade,
from long-established techniques for the modelling and seariiy of chemical molecules. A total of 30 papers, the

earliest dating back to 1957, are brily summarised to highlight some ofthe key publications and to show the

development of the discipline.

Keywords: Chemical documentation; Chemical structures; Chemoinformatics; Drug discovery; ;History
Informatics; MoleculesPharmaceutical research

1. Introduction

Chemistry is, and has been for mamars, one of the most informatioch academic disciplines. The very
first journal devoted to chemistry w&hemisches Journalvhich was published 1778-1784 and then, under the
name ofChemische Annalertill 1803 [1]. The growth in thehemical literature during the #@entury led to a
recognition of the need for comprehimesabstracting and indexing servics the chemical sciences. The
principal such service is Chemical Abstracts Service (CABich was established in 1907 and which acts as the
central repository for the world's plighed chemical (and, increasingly elifciences) information. The size of
this repository is impressive: at the end of its figear of operations, the CAS database contained ca. 12K
abstracts; by the end of 2006, this had grown ta26M abstracts with ca. 1M being added each year. Most
chemical publications will refer to one or more chemaadbstances. The structures of these substances form a
vitally important part of the chemical literature, and one that distinguishes chemistry from many other disciplines.
The CAS Registry System was started in 1965 to praadess to substance information, initially registering just
small organic and inorganic molecules but now also registering biological sequences [2]. At the end of 1965 there
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were ca. 222K substances in the 8gstby the end of 2006 this had grown to ca. 89M substances, of which ca.
one-third were small molecules ancdt ttemainder biological sequencesthwca. 1.5M being added each year.
There are also many additional molecular structuresuiligpdatabases such as the Beilstein Database [3], and
corporate files, in particular the®f the major pharmaceutical, agroclieahand biotechnology companies.

The presence of chemical structures requires vdfgreint computational techniques from those used for
processing conventional textual information. These specialised techniques - now referred to byettd nam
chemoinformaticas discussed further below - have developed steadily over the fifty years that have passed since
the founding of the Institute of Information Scientistsl#58. This paper provides an historical overview of the
development of these techniques by highlighting some of the key papers that have been puilishedyears.
The focus is on the representation and searching ol smoéecules; the reader ieferred elsewhere for the
processing of textual chemical information (e.g., [4-6]) and of biological sequence informatjgn[4{g]).
Readers interested in the history of chemoinformatics are referred to Williams and Bo@Hem®logy of
Chemical Information Sciend&], Metanomski’s history of the Division of Chemical Information (formerly the
Chemical Literature Group and then the Division of Cluainiiterature) of the Amertan Chemical Society [9],
and Chen’s recent historical review [10].

2. Historical development of the field

The importance of chemical inforth@en was recognised in 1961 by the establishment of what has since
become the core journal for the field, thaurnal of Chemical Documentatidgas it was then named) published by
the American Chemical Society. The focus on the dootatien of the literature is evidenced by the journal's
title, and an inspection of early tables-of-content demonstrates the importance of the published literature and of
manual, rather than computerised, information processing. Very soon, however, papers began to #ppear i
journal that focused on the computer handling of strattmformation so that, foexample, the first issue of
Volume 2 contained articles describing the use ofnfigtation-code and linear-notation systems based on
punched card systems.

The Sixties and Seventies were a time of intensive research, with techniques being introduced that are, with
appropriate development, still playing an importante rin present-day systems. Examples include: the
introduction of efficient algorithms fo(sub)structure searching of datalsasé chemical molecules and for the
indexing of databases of chemical reactions; the application of expert-systems technology to pinebhérak;
and the use of statistical correlation methods for the prediction of molecular properties (called QSAR for
guantitative structure-activity relationships). The e@lgventies saw the publication of the first two books
devoted to the computer handling of chemical streciformation. The first of these was that by Lyrthal,
providing not just a snapshot of the current state-of-thbta also summarising much bis early research at the
University of Sheffield into methods for searching emiles and reactions [11]. Teecond was the proceedings
of a NATO Advanced Study Institute held in Noordwijeut in Holland and attended by all the key researchers
of the time [12], with the published proceedings including contributions from what have provedhtothese
longest-lived academic resehrgroups in the field: the DARC grpun Paris under Dbois; the group in
Sheffield initially under Adamson arld/nch and more recently under Gillet and Willett; and the group under
Gasteiger, initially in Munich and more recently at Bgan-Nuremberg. Then, in 1975, there was published what
became the standard text foethext decade, Ash and Hyd€&emical Information Systenfis3], with further
books from the same lead-author and publisher appearing in 1985 [14] and then in 1991 [15]. 1975 also saw the
first change of name of the core journal, with its new title -Jiwernal of Chemical Information and Computer
Sciences emphasising the centrality of computerised techniques in the handling of chemical information.

The Eighties and early Nineties were — in part attleatevelopmental in nature, with much of the work
building on techniques that had been introduced in the two previous decades. For exampley sintlgeneric
searching methods were developed to complement structure and substructure searching, and the much enhanced
computer technology of the time enabled the widespread implementation of operational systems, bathdublic
in-house, for searching chemical databases. Perhaps the major enhancement was the move from two-dimensional
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(2D, i.e., the conventional chemicarwstture diagram) to three-dimensional (3D, i.e., full atomic coordinate
information) representations of molecular structurbis move was spurred by the appearance of structure-
generation programs that permitted the conversion oft2lzture databases to 3D form, the latter necessitating
the extension of existing systems for 2D searching andtste-property correlation to encompass the increased
dimensionality of the structure representation. Developmiantsis period are exemplified by the third issue of
Volume 25 of theJournal of Chemical Information and Computer Scienaghich celebrated the silver
anniversary of the founding of the journal, and the sixth issue of Volume Bew&hedron Computer
Methodology which contained the papers from the first major symposium on 3D structure handling to be held by
the American Chemical Society. Ndavijkerhout has been mentioned alreadythe location of the 1973 NATO
Advanced Study Institute: 1987 saw it being the venue for the first of what has proved to be a three-yearly
International Conference on Chemicatustures [16]. This rapidly estalilied itself as the principal conference

in the field, with the next in the series to be heldune 2008. The other major international conference dedicated
to chemoinformatics has been held in Sheffield, amspred by the Chemical Structure Association Trust and
the Molecular Graphics and Modelling Society, evényee years since 1998, ihe year preceding the
Noordwijkerhout meeting.

The commercial importance of many chemicals has meant that industry — in particular the pharmaceutical
industry - has for long played a vitally important ratethe development of cheaal structure handling. The
pharmaceutical industry is based on the Isgsis of novel molecules that exhibgeful biological activities. Both
the synthesis of molecules and the subsequent testing of these molecules for bioactivity underwent dramatic
changes in the Nineties: taken together, the developments in these two areas resulted in significant increases in the
volumes of data associated wiftharmaceutical research programm8pecifically, combinatorial chemistry
provided the ability to synthesise not just one, but hundreds or even thousands, of structurally related compounds
at a time; and high-throughput screening provided the ability to test very small samples of these large numbers of
molecules at a time. There was thuseaplosion in the volumes of structural and biological data that needed to be
assimilated and rationalised, and this resulted in the enz¥gd# what has come to balled chemoinformatics to
deal with these requirements [17]. To tuBrown (who first used the term):

The use of information technology and management has become a critical part of the drug
discovery process. Chemoinformatics is the mixing of those information resources to transform
data into information and information into knowledge for the intended purposaldhgnbetter
decisions faster in the area of drug lead identification and optimizti8h

This definition ties chemoinformatics nyefirmly to pharmaceutical researalvhilst many of the techniques have
their roots in that industry, they are of much broagmlicability, as noted by Paris and quoted by Warr:

Chem(o)informatics is a generic term that encompasses the design, creation, organisatiga, stora
management, retrieval, analysis, dissemination, visualisation and use of chemical iitio i@t

Note the use of “chem(o)informatics” above since there has been some discussion as to whether the term should
be “cheminformatics” or “chemoinformatics” [17]: w&hall use the latter form here. Finally, a particularly
succinct definition is given by Gasteiger

Chemoinformatics is the application of informatics methods to solve chemical pr¢208ms

Chemoinformatics is not really new: instead, it is the integration of two previously separate aspects of
chemical structure-handling. The group of researchers considered thus far had developed techniques to store,
search and process the molecules in databases of chemichlrsts, so as to identify @fsil (in some sense) sets
of compounds; a second, almost totally distinct group of researchers had for many years developadsdohniq
model and to correlate the structures of those moleclthsbwlogical properties, so as to enable the prediction
of bioactivity in previously untested molecules [21-23].tie risk of simplificationthe former techniques were
designed to handle the large numbers of molecules (hundreds of thousands or even millions) thatsvgula exi
database; the latter techniques were designed to handle the few tens (or the few hundreds at most) of@nolecules f
which the appropriate biological training data was availabfemoinformatics is thus, at heart, a very specialised
type of data mining, involving the analysis of chemical and biological information to support the discovery of new
bioactive molecules [18,20].
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The recent emergence of chemoinfoticgahas been marked by the pabtion of several new books, and by
a further change in the title of the core journal, which has been calldduhgal of Chemical Information and
Modeling since 2005. The new title makes clear the linkageveen chemical information (the archival and
repository functions of chemical information systems) and the modelling and prediction of biological é&btvity
QSAR functions of molecular modelling systems) noted above. The emergence is also evidenced by the
appearance of specialist educational programmes in ch&mmoatics. Skolnik suggestehat four elements are
needed to characterise a discipline: a body of active asrar a forum for the interan of these researchers; a
journal for the presentation of leading-edge papers in the discipline; and roots in the educational structure [24].
The first three of these had been prédenmany years, but it was not till the start of this century that the fourth
was achieved with the appearance afesal masters-level programmes in chemoinformatics in higher-education
institutions in Europe and in the USA: theed for these is discussed by Schofatldl [25] while Wild and
Wiggins provide a detailed review of current provision [26].

3. Selection of key papers

This section reviews some of the most important papers in the development of chemoinformatic techniques.
In each case, we briefly summarise the key paper, mention a few significant subsequent publications and give a
recent review article (if availabldp summarise the current status. Maletailed accounts of all the topics
considered here are provided in the textbooks by LeadtGiket [27] and by Gasteiger and Engels [28], and in
the extremely comprehensittandbook of Chemoinformatieslited by Gasteiger [29]. As with any selection of
key papers, the choice is inevitably biased by my owrarekanterests and those of my colleagues, especially as
| have spent my working life in an institution that has hosted for some four decades one of the most active
research groups in the field [30,31]: as Alexander Pope noted

To observations which ourselves we makegreg more partial for th’'observer’s sake

Table 1 lists the papers that have been chosen for discussion, many of which will be very familiar to workers
in the field. Others are less well known. some cases, this is because they by now very old, such as the
seminal — and | use the word advisedly — contributions by Ray and Kirsch [32] and by BRjuts the
searching of molecules and of reactions, respectivelptier cases, the original work was over-shadowed by
subsequent publications: for example, the 1981 paper by Lainah[34] was merely the first in a sequence of
over twenty publications on the representation and searching of generic structures; and thept88&ghing
paper by Crandell and Smith [35] resulted a declatier in the first successful commercial system for
pharmacophore mapping [36]ide infrd). In still other cases, the importance of the work was simply not fully
recognised at the time, e.g., the paper by AdamsorBash [37] on comparing fragment bit-strings to compute
molecular similarity preceded the firdescriptions of similarity searclgnsystems by over a decade [38,39];
indeed, it was this 1973 paper that was one of the pahdrivers for work in Sheffield on fingerprint-based
searching and clustering that commenicetthe Eighties [40] and that continues to the present day [41]. Even with
such less well-recognised papers included, the thirty selected papers in Table 1 had attracted a total of 7363
citations in theWeb of Sciencby May 2007, with four of those inetdrug discovery area [42-45] each receiving
over 500 citations in the literature.

The focus here is on the computational techniques Iymgroperational systems, but there are at least two
further ways in which we could chart the development of chemoinformatics. The first approach would be by
reference to the major operational systems (which are, of course, based on the techniques considered here).
Examples of such milestones include the appearance of: the batch [67] and then online [68,69] implenoéntations
the CAS Registry System; the NIH-EP3ructure and Nomenclature Search System (the first fully interactive
structure and data retrieval system) [70]; ORAC [71] and REACCS [72] (the first in-house systems for storing and
searching chemical reactions); and the Cambridge Strudatabase [73] and the Protein Data Bank [74] (the
two principal sources of experimental 3D coordinate data for organic molecules). The sgmoadtawould be
by reference to the activities of those individuals responsible for the most important research findings. There is,
however, a ready source of such information, this being the winners of the Herman Skolnik Award of the
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Ray and Kirsch (1957) Substructure searching of connection tables [32]
Hanschet al (1962) Correlation of bioactivity with physicochemical properties [46]
Vleduts (1963) Indexing of reactions and generation of synthetic pathways [33]
Free and Wilson (1964) Coradion of bioactivity with substituent contributions [43]
Morgan (1965) Canonicalisation of connection tables [47]

Sussenguth (1965) Set reduction technique for substructure searching [48]
Hydeet al (1967) Conversion of WLNs to connection tables [49]

Corey and Wipke (1969) Interactive computer-aided synthesis design [50]

© NGO A~ LNPRE

Croweet al (1970) Selection of dictionary-based screens [51]
. Topliss and Costello (1972) Sample-feature ratios in QSAR [52]
. Adamson and Bush (1973) Calculation of inter-molecular structural similarity [37]
. Crameret al (1974) Correlation of bioactivity with substructural fragments [53]

e el =
w N B O

. Blair et al (1974) Non-interactive computer-aided synthesis design [54]

H
a

. Feldman and Hodes (1975) Selection of superimposed-coding screens [55]

[EnN
a1

. Ullmann (1976) Efficient algorithm for substructure searching [56]

. Gund (1977) Possibility of 3Bubstructure searching [57]

. Lynch and Willett (1978) Indexingf chemical reactions [58]

. Marshallet al (1979) Active analogue approach for pharmacophore mapping [59]

o el
© 0O N O

. Lynchet al (1981) Representation and searching of Markush structures [34]

. Kuntzet al (1982) Protein-ligand docking [44]

. Crandell and Smith (1983) Graph matching approach for pharmacophore mapping [35]
. Jakes and Willett (1986) Selection of distance screens for 3D substructure searching [60]
. Crameret al (1988) CoMFA method for 3D QSAR [42]

. Danziger and Dean (198Be novomolecular design [61]

. Gasteigeet al (1990) Generation of 3D atomic coordinates [62]

. Johnson and Maggiora (1990) Similar property principle [63]

. Martin et al (1995) Computer selection of diverse molecules [64]

. Brown and Martin (1996) Comparison of methods for compound selection [65]

. Pattersoret al. (1996) Neighbourhood behaviour [66]

. Lipinski et al (1997) Physicochemical properties of drug-like molecules [45]

W N NN DNDNDNDNDNDNDDNDNDN
O © 00N O O A W N P, O

Table 1. Key papers in the development of chemoinformatics

Division of Chemical Information ofhe American Chemical Society. &IDivision established this Award in
1976 to recognize outstanding contributions to, ankiesements in the theorgnd practice of, chemical
information science. It is named in honour of the first recipient, Herman Skolnik (the edit@ Jufuitmal of
Chemical Documentatioand then thelournal of Chemical Information and Computer Scierftes 1961 to
1982), and the awardees (listed at http://acscinf.orggglards/skolnik.asp, togethevith links to supporting
information) comprise many of the pioneers in the field.
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We have identified five broad categories of technique to structure the discussion belowbeingse
techniques for: searching databases of 2D moleculeshssgudatabases of patents, reactions and 3D molecules;
quantitative structure-activity relationships and molecular modelling; knowledge-based systems; and diversity
analysis and drug-likeness. It must be emphasised ts# tategories are rather adiyr, for example, one could
have separate sections for processing informatiautaimolecules and reactions, with the latter encompassing
material about reaction databases apdthesis planning that are currentligscussed in two separate sections
(Sections 5 and 7, respectively). The reader should reds® that the categories chosen here overlap to some
considerable extent, e.g., pharmacophore mapping is discussed in Section 6, despite one chislicaions
being for 3D database searching as discussed in Section 5.

4. Searching databases of 2D molecules

Database search is one of the principal facilities iniaformation system, and much of the early research in
chemoinformatics targeted the deymhent of efficient access mechanisfos databases of 2D structures. The
key paper here, and the earliest to be discussed in this review, is that by Ray and Kirsch [32]. itiese/enat
the first to describe an automated procedurestditastructure searching.e., the identification of those molecules
in a file that contain a user-defined query substructure. The paper described the wsmméciion tablea
labelled graph representation in which the nodes and edges of a graph encode the atoms and bonds of a 2D
chemical structure diagram, to describe each of afil200 steroid molecules, and then the use of a subgraph-
isomorphism algorithm based on arhaustive, depth-first tree-search doalyse each molecule’s connection
table for the presence afquery substructure.

The connection table format was chosen for the G&gistry System, which started operations in 1965
following several years of intensive research and development [75]. An important criterion in floprdent of
the System was the need to providenague machine-readable identifier fach distinct molecule. The creation
of a unique, ocanonical graph requires that the nodes of thapgrare numbered, and for a graph contaiiNng
nodes there are up M possible sets of numberings. Drawing on ideas first presented by Gluck [76], Morgan [47]
described an algorithm to impose a unique ordering on the nodes in a graph, and hence to generate a canonical
connection table that could provide a unique molecular identifier for computer processing (in ensaméhway
as systematic nomenclature uniquely describes a molecule in a printed subject index). With subsequent
enhancements [77,78], the Morgan algori continues to lie at the heart oét8AS Registry System (and also of
many other chemoinformatics systems) right up to the present day.

The issue oflournal of Chemical Documentatighat contained Morgan’s paper on graph canonicalisation
also contained the paper by Sussenguth describingehiseductionalgorithm. Ray and Kirsch's substructure
search algorithm was certainly effective but was also extremely inefficient, requiring a huge amount of
backtracking. Sussenguth [48] realighdt much of the backtracking couldé eliminated, and hence the number
of atom-to-atom comparisons minimised, by partitioning a graph into sets of nodes that possessed common
characteristics, e.g., nodes of type nitrogen linked to not more than two other nodes. Nodes from the graph
describing the query substructure then need to be considered for matching only agaénsiotiessfrom a
database structure that possess the same characteristics. It is interesting to note that this work was carried out in
collaboration with Gerard Salton, as part of his pioneering work on statistical methodgiéwal that laid the
foundation for present-day information retrieval systems [79]. The idea of linking query nodes &selaiatles
is fundamental to all substructure searching algorithms, including the refinement procedure that lies at the heart of
the subgraph isomorphism algorithm due to Ullmann [56]. Although not designed specifically for the processing
of chemical graphs, subsequent studies showed that pavisularly well suited to these sorts of graphs [80,81],
and the Ullmann algorithm now forms the basis for mosecisubstructure searching systems, both 2D and 3D.

However, even the use of set reductas not sufficient to enable subginasearching of chemical databases
with acceptable response times, andias only with the introduction of fganent-based screening methods that
substructure searching becaneadible on a large scale. Tigea of screening is a sitepone: to filter out that
great fraction of the molecules in theasch file that do not contain all ¢fie substructural fragments that are
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contained in the query substructure (in much the same way as keywords are fited searches of text
databases). This idea was first suggested by Ray and Kirsch, who experimented with a simple molecular-formula
screen but who realised thabre sophisticated approaches might beiredufor large-scale operations [32]. This

is now normally done using a fragmeit-string, in which the presence or absence of small substructural
fragments in a molecule is encoded in a binary vector. Two main approaches have been developed for selecting
the fragments that are used for screentfigtionary-basedapproaches in which there is a pre-defined list of
fragments with normally one fragment allocated to each position in the bit-stringfireyaprint-based
approaches, where hashingaithms are used to allocate multiflagments to each bit-position.

Effective dictionary-based screeningjuéres that the fragmentncoded in the bit-string have been selected
so as to maximise the degree of filtering. In particutae, best use will be made of the available bits if the
selected fragments are statisticaliglépendent of each other and if they occur with intermediate frequencies of
occurrence [82]: if the fragments occur very frequently (endatabase that is to be searched) then their presence
in a query will eliminate only a small fraction of the dmtse; if the fragments occur very infrequently in the
database that is to be searched they are most unlikely to be specifieda query. The use of frequency criteria
was first studied by Lynclet al. in a series of papers, commencing with a study by Cretwad [51] of the
frequencies of occurrence of bond-centred fragments. Subsequent papers in this series considered atom- and ring-
centred fragments, culminating in a prototype system [83] that strongly influenced the subslegigmtof
dictionary-based screening systemglsas that used for the CAS RegisSystem [67,68]. The screening
methods developed by Feldman and Haatethe National Institutes of Health dot make use dd dictionary of
carefully selected fragments; insterdgments are grown in an algorithmic fashion, one atom at a time, until they
meet a frequency criterion, with a sdpgosed coding procedure being ugedallocate multife bits to each
fragment and multiple fragments to each bit position.[35le fragments here are hence closely tuned to the
specific database that is to be screened, and the methods have strongly influenced the design of subsequent
fingerprint-based screening systems.

Substructure searching requires the availability of a substructural query, this iaquiting detailed insights
into the structural requirements for biological activity. A common alternative situation is when the only
information available is the existence of a known active molecule, such as a literature compound or a competitor's
product. Use can then be made of Similar Property Principle which states that molecules that have similar
structures will have similar properties. It is not cleaevehthis was first stated explicitly; many people (including
the present author) have cited the 1990 book by Johnson and Maggiora [63] as the sobec®indtiple had
certainly been articulated prior to the book’s pulilarain 1990. For example, writing in 1980, Wilkins and
Randic [84] noted that it is

generally accepted that molecules of similar structural form may be expected to show similar
biological or pharmacophoric patterns,

and such considerations clearly underlie the 1973 paper by Adamson and Bush that is discheséefuwt It

is, however, appropriate to include the Johnson and Maggiora book [63] as one of the key contributions since it
was the first publication to highlight the role played by similarity in a whole range of chemoinformatics
applications, including database searching, property prediction, and computer-aided synthesiateesilim

While there are many minor exceptiotes the Principle, ther is now a considerable body of experimental
evidence for its general correctness [40,85-87]: theciptin provides a rational basis for a wide range of
applications in chemoinformatics, including not just sintjasearching and molecular diversity analysis (both of
which are discussed later in this paper) but also database clustering and propertgmpireictlia.

In a similarity search, a known aaivmolecule, often referred to asreferenceor target structure, is
compared with all of the molecules in a database; molethét are structurally simil@o the reference structure
are more likely to be active than arelemules that have been selectedasidom from a database. A similarity
search hence provides a simple way of identifying further compounds for testing, and is thus one example of the
more general concept ofrtual screening i.e., the use of computational, rather than biological, methods to
identify bioactive molecules [88-90]. At the heart of any similarity searchingmayistthe measure that is used to
quantify the degree of structural resemblance betweentatget structure and each the structures in the
database that is to be searched. There are manynaasures but by far the most common are those obtained by
comparing the fragment bit-strings ttaat used for 2D substructure searghiso that two molecules are judged
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as being similar if they have a large number of bitd, lzence substructural fragments, in common. This approach
was first described by Adamson aBdsh for property predimn purposes [37]; ovea decade was to pass,
however, before bit-string similarities started to be used large scale for database searching, as exemplified by
the first operational similarity searching systems addrke Laboratories [38] and Pfizer UK [39]. Similarity
searching has now established itself as one of the most important tools for virtual screeniwwglesiphead and
continuing interest in the development of newikirity measures and search algorithms [91-93].

Thus far, we have considered only connectionetatelcords of 2D molecude There is, however, an
alternative type of representation that was very popultdrarearly days, at least in part since it had significantly
lower processing costs at a time when computers were orders-of-magnitude slower than is the case today. This
representation was thine notation which encodes the topology of a molecule in an implicit form in an
alphanumeric string, rather than explicitly as in a emtion table. The Wiswesser Line Notation (WLN) system
enjoyed widespread use for both in-house and public chemical information systems during the Sixtidg and ea
Seventies [13]. In 1967, Hyd# al showed that it was possible to cenvbetween WLN and a connection table
[49], thus opening the way to providing full substructure searching capabilities on WLN-based systems,
something that had previously been difficult to achieve with a high degree of effectiveness [94]. Although we
have chosen normally to ignore systems papers, the paper byeHgtés included here not just because of the
relationship between linear notations and connection tables, but also because it (and two subsequenthigpers by t
group [95,96]) described CROSSBOW, probably the first fully integrated in-house chemoinfosystérs that
allowed for compound registration, substructure searching and, importantly, structure display. rkhéetwa
standard that has driven the development of in-housemsgstver since. WLN is now of historical interest only,
but two other line notations — the SMILES [97] and IUPAC International Chemical Idertifiehl) (details
available at http://www.iupac.org/inchi/) notations — aviglely used today as convenient input and storage
representations.

5. Searching databases of reactions, patents and 3D molecules

Chemistry is as much about reactions as it is abolgaules, but the development of databases of chemical
reactions lagged behind the development of databases of chemical molecules for many years. The principal
problem was the need to characterise not just the@betactant and product molecules, but alsad¢hetion sites
(or reaction centreg i.e., those parts of the reacting moleculegngtthe substructural transformation takes place
and which are the focus of many reaction queries. The key role of the reaction site in developing redution data
systems was first highlighted by Vleduts in an important 1963 paper [33]. This paper made three contributions: it
suggested that the sites could be detected by corgpdre connection tables dhe reactant and product
molecules to identify the structural commonalities arfteinces; it described a simple classification scheme
based on bonds broken or formed that could be used to organise and to search a database of chemg;al react
and it considered the use of computersuggest synthetic pathways (as discussed further in Section 7 below).
Starting in 1967 [98], Lynch and cdllarators studied a range of comparison methods for the mapping of reactant
and product atoms, but some ten years passed befoedfemtive and efficient mcedure for reaction-site
detection was identified, based on a maximum common subgraph (MCS) isomorphism algorithm [58]. Lynch and
Willett’s original procedure used an approximate MCS algorithm that was based on an adaptation of the Morgan
algorithm, but the operational systems that soon emerged (such as CASREACT [99] and REACCS [100]) used
exact graph-matching procedures for riectite detection that, with appmigte development, are used to the
present day [101].

Specialised techniques are also required for the handlitige aftructural informatiothat occurs in chemical
patents. In many cases, a patent will describe specific chemical molecules, but it may also gliesener
Markush structures, which encode many, or even an infinite number of, different specific molecules in a single
representation. The individual specific molecules normally result from variations in the nature, position and
frequency of substituents on a central ring system, afifadd, with further complexities arising from, e.g., a
variable substituent itself being capable of variatibimese complexities drove a long-term research programme
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by Lynch’s group to develop the connection-table, screening and atom-by-atom components ofoocahvent
substructure searching systems so that they could be used to represent and to search Markush structures. The basic
strategy is outlined by Lyncht al. [34], this being the first of over 20 papers that are summarised and reviewed

by Lynch and Holliday [102]. These studies resulted in a body of algorithms and data structures that provided
much of the theoretical and practidasis for the current sophisticategistems for structure-based access to

generic chemical structures [103]. Many of the techniques that were developed on this project have found further
application in the representation and searchingpaibinatorial libraries large (and sometimes extremely large)

sets of structurally related molecules that can be generated using the techniques of coahlsiyratoesis [104]

as discussed further in Section 8.

Thus far, we have considered only 2D molecular reprtasions. However, the 3D structure of a molecule is
of crucial importance in determining its properties, ani ithus hardly surprising that interest turned to the
provision of facilities for 3D seahing, often referred to ggharmacophoresearching where a pharmacophore is
the geometric pattern of features in a drug thatraets with a biological reggor [105]. Pharmacophore
searching was first described by Gund. His 1977 paper (there is an earlier, difficult-to-obtain report in the
proceedings of a 1973 conferend®6]) showed that the graph matching techniques that were by then well
established for 2D substructure searching could be agpli®@d substructure searching using graphs in which the
edges denoted inter-atomic distances, rather than bomts @snventional connection table [57]. However, there
was little interest in this remarkabéehievement for over a decade, hessatwo problems had to be addressed
before searching systems could be developed.

The first problem was the lack of data. The principal source of experimental atomic coordinate data for small
molecules is the Cambridge Structural Database (CSD) produced by the Cambridgko@rgshic Data Centre
[73,107], which started in 1964 and which now contains the 3D structures for ca. 400K ewlédiiough the
database is a vital resource for drug research, it cordaips very small fraction of the molecules that might be
of interest to a pharmaceutical coamy. Accurate 3D structures for mamolecules can be obtained using
computational techniques such as quantum mechanics, molecular dynamics and molecular modelling, but these
are too time-consuming for large numbers of moleclldé®re was hence much interest in 1987 when two
programs forstructure generationwere reported. These could rapidlyngert a 2D structur@to a reasonably
accurate 3D structure, thus opening the possibility of corerting chemical databases to 3D form. These two
programs were CONCORD, developed by Pearlman atvebckers [108], and CORINA, developed by Gasteiger
and co-workers [109]: despite many subsequent progfamstructure generation [110], these two remain the
principal sources of computed 3D structures to the present-day. The two listed papers are both hard-to-get — one is
in an informal newsletter and the other in a Germarfezence proceedings — so th@per chosen for inclusion
here is that by Gasteiget al in the 1990 issue dfetrahedron Computer Methodologyentioned previously
[62].

The second problem was that while Gund had demonstrated that 3D substructure searching was possible, the
matching algorithm was far too slow for large-scale processing. We have noted that operational systems for 2D
substructure searching only became feasible with algorithmic developments such as the use of set-retlattion a
bit-string screening. In a series of papers, Willettl @o-workers developed the basic algorithmic techniques
necessary for efficient 3D substructure searching. énfitst of these, they reported the development of a
screening system in which the bit-strings encoded thandiss between pairs of heavy atoms in a molecule as a
distance-range, these ranges being chosen using frequency-based methods analogous to those developed
previously for selecting screens for 2D substructure searching [60]. Subsequent papers compared subgraph
isomorphism algorithms that could be used for 3D substructure searching, and reported the first operational 3D
searching system developed in collatiorawith Pfizer UK; theythen extended their techniques to take account
of the fact that most molecules are not rigid but can, instead, exhibit some degree of flexibility owing to the
existence of one or more rotatable bonds in a molecutewbik of the Sheffield group is summarised by Willett
[111] and 3D substructure searching, both rigid dhekible, is now a standard facility for in-house
chemoinformatics systems [105,112].

There is a further type of 3D database search that is now one of the key components of systems for virtual
screening:protein-ligand dockingor, more simply, docking. Dockingssumes that a 3D structure has been
obtained, typically by X-ray crystallography, of the biological receptor, such as the active site of an enzyme, that
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is involved in a biological pathway of interest. The “lock-and-key” theory of drug action assumes that a drug fits
into a biological receptor in much thensaway as a key fits a lock; thustlie shape of the &k is known, one

can identify potential drugs by scanning a 3D database to find those molecules that have shapes that are
complementary to the shape of the receptor. The original description of docking, byeKain{#4], considered

the fitting of just a single molecule into a protein aetisite, with the molecule and the binding site being
described by sets of spheres that were checked for arsggih. However, it was sooealised that if this fitting
operation was repeated for all of the molecules in a database then docking could provide a highly sophisticated
approach to virtual screening, with a database beingdaimkorder of decreasing ganess of fit with the active

site (and hence in decreasing likelihood of activity). Dgwments in the basic technique involved matching not

just geometric but also chemical chaeaistics of a molecule and a protelmgwever, the recent surge in interest

in docking has come about as the result of systems that take account of the inherent flexibility of many small
molecules, with docking systems such as GOLD [113] and FlexX [114] being used on a very large scale in
industrial lead-discovery progmmes. Rester [115] and Leasthal [116] summarise the current state-of-the-art,

the latter in the preface to a special issudafrnal of Medicinal Chemistrthat focuses on studies of protein-

ligand docking.

6. Quantitative structure-activity re lationships and molecular modelling

Chemoinformatics is principally concerned with tlead-discovery and lead-optimisation stages of drug
discovery: finding one or more exemplars of a class of compounds that exhibits the bioactivity of intdrest; an
then identifying those members of that class that psste best combination of potency, synthetic feasibility,
pharmacokinetic properties (e.g., solubility and metabolic stability) and minimal side-effects. Early studies of
computational methods in drug discovery focussed on the second of these two stages, whilst modern work also
contributes to the lead discovery stage, most obviously by means of virtual screening as described/ previousl|

The classical approach to quantitative structure-activity relationships (QSARhsch analysis In a series
of papers in the early Sixties, Hansch and his cdarsr showed that it was possible to use multiple linear
regression (MLR) to derive statistically significant correlations between the biological activities of sets of
structural analogues and experimental or computed physicochemical parameters that describe the molecules
steric, electrostatic and hydrophobic properties; oncedhelation has been obtained, the resulting equation can
be used to predict the bioactivity of previously untested molecules. The first such paper was published in 1962
[46], with this being followed by several others that, taken together, provided an approach to lead optimisation
that has played a crucial role in the development of QSAR and that continues to be used to the present day
[117,118]. Many different physicochemical parameters have been used in Hansch analysis, but by the far the most
common is the octanol-water partition coefficient, which has spurred the development of many different programs
for the calculation of this important descriptor [119]. Just two years after Hansch’s seminal paper, Free and
Wilson published a further technique for lead optimisation that was again based on MbhRtlused structural,
rather than physicochemical, variables in the analysis [43]. The basic idea is that the presence of a specific
substituent at a specific position on a ring scaffold makes a constant and additive contribution to the overall
activity of those molecules that contain it. These cortiobs are obtained using MLRNnd then used to suggest
new analogues for synthesis and testing.

The use of MLR to predict biological activities was rapidly adopted as a key tool for lead optimisation. There
is, however, a problem — common to many statistical and machine-learning methods — that is related to the
sample-featureatio, i.e., the ratio of the number of variables to the number of observations. Specifically, it is
possible to derive seemingly strong correlations even if no meaningful correlation exists in practidhevhen
value of this ratio is less than some threshold value, typically 5-10 being quoted in the literature. The importance
of these statistical considerations was first demonstrated by Topliss and Costello [52] (see also [©20]), wh
showed that seemingly good QSAR correlations could be obtained using random variables eéhsuoffitiem
were included in the predictive equation; indeed theiardactor is the number ofariables considered for
inclusion (a number that is often greater than the number included in the final equaighPp]. Such statistical
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considerations need to be taken iataount whenever a new predictive tbecomes available, as evidenced by
studies of the applications of neural networks to the prediction of biological activity [123]. Sample-feature ratios
continue to be of importance given the very large numbers of descriptors that can now be generated for a molecule
[124,125], although techniques such as cross-validation and data scrambling can helpnoticerdignificance

of potential structure-activity correlations [126,127]hé&t problems associated witiie use of MLR for QSAR

are discussed by Wold and Dunn [128].

A limitation of Free-Wilson analysis is the large number of analogues that need to be synthesised and tested if
multiple substituent positions are allowed on the centraf@ddagnd this has restricted the use of the approach as
originally described. However, the applicability of thethaa is significantly enhanced if the location-specific
criterion is relaxed, and the biological activity is expressed merely in terms of the presence of a substituent (or,
more generally, substructural fragment) rather thalodstion. Thus Adamson and co-workers correlated several
biological and physical properties with the occurrences of fragments generated from connection tables or WLN
using MLR (see, e.g., [129,130]), approach that foreshadows tlkemmercial HQSAR package [131].
However, the most important development of Free-Wilson analysis is profatidyructural analysjsas first
described by Cramest al in 1974 [53]. This used qualitative, i.e., active/inactive, biological data, and also
allowed the analysis of large, structurally diverse dédaslkeus enabling the analysis of the screening data that
forms one of the principal components of lead-discovery programmes. Substructural analysis involves calculating
a weight for each fragment (often denoted by a particiidodation in a fingerprint) that is used to characterise
the molecules in the training data, this weight being a function of the numbers of active and inactive molecules
that contain this fragment [132]. A score is then obtained for a molecule of unknown dmtigitynming the
weights for its constituent fragments. The resultingescepresents the molecule’s probability of activity, and
untested molecules can hence be prioritised for scrgémiorder of decreasing probability of activity; the anti-
cancer screening programme that was carried out duringigiies by the National Cancer Institute [133] is an
important example of such an approach. Substructural anedysiportant not just in its own right but also as the
first example of machine learning being used on a large scale in chemoinésraiatie, althoughot realised at
the time [134], substructural analysis is an example oive Bayesian classifiea,machine-learning technique
that is now widely used for the analysisbiological screening data [135].

The QSAR methods discussed thus far take no expliciuatad the 3D structuresf molecules, despite the
fact that molecular size and shapeaiskey factor in determining thetaractions between a potential drug
molecule and its biological receptor. The methodsamfiputational chemistry — quantum mechanics, molecular
dynamics and molecular modelling — provide effectivegdol analysing the conforrtians that molecules can
adopt in 3D space but, as noted [esly, these can be very demandofgcomputational resources. Marshetl
al. were the first to describe a conformational searclpimgedure that was sufficiently rapid in operation to
investigate the shapes of sets of @molles such as those that might be antered in a QSAR analysis [59]. With
programs such as this, and then structure-generation procedures such as CONCORD and CORINA, it was not
long before QSAR methods started to appear that sadwghborrelate bioactivity wh the 3D structures of
molecules. Two papers were published in 1988 describing the Hypothetical Active Site LadiRle) @pproach
of Doweyko [136] and the Comptive Molecular Field Analysi€CoMFA) approach of Cramest al. [42]. The
latter has been far more widely used, not least bedauapidly became available as a successful commercial
product. A molecule in a CoMFA analysis is placedtta centre of a regular 3D grid, and the steric and
electrostatic interaction energies between the molecdeastandard probe then computed at each point in the
grid. The resulting sets of interaction energies for eachecule are then correést with those molecules’
bioactivities using not MLR but an alternative multivaritgehnique, Partial Least Squares (PLS). PLS describes
the variations in the bioactivity by means of latent vaeisbhat are linear combinations of the original variables,
i.e., the grid-point interaction energies. The use of latent variables, rather than the original variables, makes
analysis of the resulting correlation equations rather more difficult than in the case of MLR, but this is
compensated for by the fact that PLS can handle datagktsesy large numbers of variables, i.e., with sample-
feature ratios that would preclude the use of MLR. This it does by means of a multiple-sampling technique known
as cross-validation that ensures the statistical signfeaf the resulting predictive equations. There are several
factors that need to be taken into account when carrying out a CoMFA analysis [137] but\tbesa peevented
it becoming the method of choice for present-day QSAR [138].
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Many of the techniques that are used in molecular modelling are too time-consuming for use in
chemoinformatics applications, although this is starttghange [139]. There is, Wwever, one such technique
that has proved of considerable value, and that igppécation of methods for conformational searching, i.e., a
detailed exploration of the conformations that a mdeaan adopt in 3D space, to the identification of
pharmacophoric patternsvhere a pharmacophoric pattern, or prerophore, is the geometric arrangements of
features that is responsible for some particular type of bioactivity. A pharmacophoric pattern can be used both to
rationalise the activities of molecules and to act as theydoea 3D substructure search to find new molecules
that contain the pattern and that are hence alsohj@ssitives. The active analogue approach of Marshail
[59] was the first automated procedure for pharmacophore mapping. Given a set of molecules with a common
biological activity, the low-energyonformational space of each of timeolecules is explored to find a
conformation (or conformations) that allows the chosen features (typically hydrogen-bams dioacceptors, or
the centres of aromatic rings) to appear in the sgemmetric arrangement iall of the molecules. The
effectiveness of the approach was demonstrated bigéin¢ification of the pharacophore common to a set of
diverse angiotensin-converting enzyme (ACE) inhibito#]1land its efficiency was later increased by means of
an improved conformationakarching algorithm [141].

The active analogue approach is widely used but does require the specification of the matching features prior
to the conformational search, implying some knowledgth@fprotein-ligand interactions that are involved in the
observed bioactivity. This limitation was first overcome in a study by Crandell and Smith [8b{lestribed the
use of an MCS algorithm to find 3D patterns common toafetmlecules. The work veacarried out as an aid to
structure elucidation (see below) but is also cleagplicable to the problem of pharmacophore mapping. The
Crandell-Smith algorithm involves breadth-first search and becomes very slow if multiple molecules are
required. However, a detailed study of a range of algorithms for 3D MCS detection [142] demonis&rated t
general efficiency of the clique-detection algorithm of Bron and Kerbosch [143] for this application. An
operational implementation of the Bron-Kerbosch algorithm by Matial [36] resulted in DISCO, the first
widely used program for pharmacophore mapping and a direct influence on the many such programs that are now
available [105,144].

7. Knowledge-based systems

It may be argued that the term “kmledge-based” is rather non-specifincg@ any computer system must have
at least some knowledge of the typeslafa that are to be processed and thelt®that are required. However, it
is a term that has come to be applied to a class of systatnencode human expertise — either explicit or implicit
— in machine-readable form to facilitate the solution of some problem, normally one that cannot be tackled
efficiently by a conventional, deterministic computer program. Such systems, often referred to as “expert
systems”, “intelligent knowledge-based systems” or “fijgneration computer systems” were much to the fore
during the Eighties and early Nineties; they are rather less prominent now, with many of the basic techniques that
were developed then having been assimilated into rmongentional types of computer system. Interestingly,
much of the early work on expertstgms was carried out in the field sfructural chemtsy, with three
applications being of particular importance: computer-aided structure elucidation (CASE); computer-aided
synthesis design (CASD); adé novodesign.

Structure elucidation is the task of identifying an unknown molecule given knowledge of its properties, which
can be of any type although spectral properties have been the principal focus of work in CASE. There are two
ways in which a computer can be usedssist the analyst when faced vathunknown molecule. The first, and
simpler approach, is to carry out a database search, matching the spectrum of the unknown molecule with those
available in an existing database; a complete or partial match can then suggest the identity or the principal
substructural components of the unknown molecule [145,146]. The second, expert-systemb appixaecfrom
some of the very earliest work inetharea of expert systems. Thiss the DENDRAL project at Stanford
University for the analysis of mass spectra [147], which derived from work by Lederberg [148]. &veads
spectrum and the molecular formula of the unknown molecule, the program would exhaustiazbtegell
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possible molecules satisfying these constraints. Thetrsn of each generated molecule would be computed,

and then compared with the source data, this process identifying further constraints thateciogldded in
subsequent iterations of the generation cycle. The process continues until the unknown has been identified or
until it is not possible to identify any further constraints. Although massively influential in the development of
expert systems in general, DENDRAL was never as ssfidein practice as soms its proponents claimed

[146]. However, the techniques that were developedjémerating structures have proved to be of widespread
applicability, and systems based on a range of types of spectral data (including not just mass spectra but also
nuclear magnetic resonance and infra-red spectroscopy) are widely used [148§, stems for searching
databases of spectra [150-152].

Another application of expert systems to structural chemistry is the area of computer-aided syesigasis
(CASD), as reviewed recently by Ott [153]. CASD was first suggested as a possible area of research in Vleduts’
1963 paper on automatic reaction indexing that has been mentioned in Section 5 above [33]. Given stored
information about the most common reactions and theitbomsl under which they could be applied successfully,
Vleduts suggested that a computer could be used to generate a sequence of reactions that wouldheesult in t
generation of a user-specifieynthetic target in acceptable yield. d0gptions of synthesis in the chemical
literature move from the starting materials to the final products, even though a synthetic chemist will normally
design the synthesis by starting with the final product and then working backwards until known starting materials
are reached. Thieetrosyntheticapproach was the basis for the first published description of a CASD system:
Corey and Wipke's OCSS (for Organic Chemical Simulation of Syntheses) program [50]. The retrosynthetic
approach attracted much attention in the SeventieEmdies, with programs such as LHASA [154] and SECS
[155] undergoing extensive development, much of it in collaboration with industry who saw such pragram
complement to the work of their synthetic chemists [156]. However, it came to be realised that verydarge am
of synthetic knowledge needed to be captured froenctiemists and then encoded in machine-readable form
before the programs could be expected to performr@asonable level of effectiveness [157]. Ugi and Gillespie
[158] were the first to advocate an alternative apprdactvhich the computer would take a set of starting
materials and then generate synthetic pathways by the making and breaking of bormegida CICLOPS
operated in a fully automated mode that was not constiddy the existing chemickhowledge, and that could
thus generate all syntheses that were mathematically feasible [54], whereas retrosynthetic programs involve
considerable interaction with the chemist running the program. Gasteiger and colleagues suggested that the
effectiveness of CICLOPS and similar programs could be enhanced by the inclusion of chemical knowledge, in
the shape of computed physical properties such as heats of formation and reaction enthalpies, that could be used to
assess the feasibility of the suggested molecules [T%5@.resulting EROS program has undergone extensive
development over the years [160] ahdre is an associated program, chWéODCA, for reaction prediction that
uses both forward and backward planning [161]. An important component of any CA@Bnpris a module to
predict the synthetic feasibility of the molecules under consideration, and such procedures are now being used
more generally in drug discovery programmes [162].

The final example of knowledge-based systems to be described here deentivodesign programs, which
produce novel molecules that possess specific properties, typically the ability to fit within the binding site of a
biological target such as an enzymdey can hence be regarded as complementary to the docking programs
discussed in Section 5: docking identifies known molecthat are able to fit into the binding site, wheralas
novo design generates unknown molecules with this ability. The approach was first described by Danziger and
Dean [61], whose HSITE program identified those regions in a receptor that could form strong hydnatjem-bo
interactions with a ligand, thus specifying geometric constraints that must be satisfied by potential ligands. A new
molecule is then designed byaping appropriate molecular fragment typically individual atoms or
substructures chosen from a dictionary - into the binding site at locations that satisfy these constrdiets bgnd t
linking these fragments together to form a connected entity. Other programs soon followed; examples that
continue to be widely used include LUDI [163], which includes one of the most widely used functions for
estimating the energy of binding for a suggested molecule, and SPROUT [164], whickesnboth hydrogen-
bonding and hydrophobic interactions in its scoring function. Most workleomovodesign has focussed on
molecules that will fit a binding site, but any type ohstaint can be used, for example ranges of values for
chemical and physical properties [165]. Schneider asthiter review the currentage-of-the-art, and include
several examples of the usedsf novoprograms in the design of bioactive molecules, while emphasising that the
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principal role of such programs is to suggest novel structural types for further considedtiorihan to provide
fully-fledged lead molecules [166].

8. Diversity analysis and library design

The last area of research to be discussed here isha@lsnost recent, being dem by the developments in
combinatorial chemistry and high-thughput screening that took place in galy Nineties. These technological
improvements meant that it was now possible to synthesise and to test vastly more molecules than had previously
been the case. However, real-world experiments were still expensive and there was hence much interest in
computational methods to ensure that those molecules that were put forward for testing codi thevi
maximum amount of information to support lead discovery in a cost-effective manner. This requirement led
initially to work on maximising the structurdiversity (i.e., the level of dissimilarity) of the molecules that are
submitted for biological testing, whilst minimising the numsbef molecules that are tested. The Similar Property
Principle discussed in Section 4 implies that structurally similar molecules are likely to exhibit the same
bioactivity, and hence the synthesis of large numbers of structurally related molecules is unlikely to result in a
commensurate amount of useful structure-activity data. Pattetsain[66] postulated the related, but distinct,
concept ofNeighbourhood Behaviouwhich states that structurallysdimilar molecules may give different
biological responses. The maximum amount of structure-activity information that can be extractéssfirogn
some fixed number of molecules (as determined by thi@gesapacity that is available) will thus be obtained by
selecting a set of molecules tlzaie as diverse as possible.

Structural diversity had long been recognised as an important factor in the selection of compoundsgfor testi
[167], but it was the vast libraries of compounds thatame available as a consequence of combinatorial
chemistry that focused interest on computer techniques for diversity analysis. Two problems were of initial
interest: selecting a set of molecules from those alreadylable, either from a corporate database or from
commercial suppliers; or selecting a set of molecules that could be obtained from an appropriately designed
combinatorial synthesis. The basic problem of selecting the most-diverse subset of a set of available (or possible)
molecules is a very simple one; however, it is alse tmt is computationally infeasible, as there is an
astronomical number of subsets that barchosen from a dataset of non-trivial size. A wide range of techniques
was hence suggested for selecting diverse sets of maewidst not being able to guarantee the identification
of the optimally diverse subset. Examples of these techniques are described in detail in two books [168,169] and a
recent review [17) with Martin et al providing an interesting overview of the early history of molecular
diversity analysis [171]. We exemplify this work by twbthe earliest, and most heavily cited, studies, those by
Martin et al.[64] and by Brown and Martin [65].

Combinatorial synthesis operates by reacting togetheoseeactant molecules in parallel to yield a set of
products called a combinatorial library, e.g., sets of ammssets of amines to yield a combinatorial library of
amides. Martinet al [64] described the use of similarity measures based on fingerprints and on computed
properties to select diverse setsedatants, with the expectation that thisuld yield a diversset of products in
the resulting combinatorial library. This approach wasdigggaken up, and there is now an extensive literature on
the use of reactant-based selection to ensure diversenadorial libraries. Later work focussed on the diversity
of the final library rather than of ¢hinput reactants, and demonstrated that such product-based approaches could
yield more diverse libraries, albeit at the cost of increased computational complexity [172]. The paper by Brown
and Martin [65] compared different typef clustering method and structural descriptor in terms of their ability to
predict a range of types of property, and hence of their suitability for compound selection. The study is notable not
only in terms of the very detailed comparisons that were carried out (and also in a second, related paper [173]) but
also because it concluded that simpk® descriptors were at least affective as more sophisticated 3D
descriptors for database-scale operations such as compound selection. The latter, surprising resuit has bee
confirmed in several subsequent studies of compasldction, although it is probably the case that an
appropriate level of 3D representation has yet to be idehtifather than that 3D representations are inherently
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less suitable for database-scale operations. It is also the case that much 3D information is implicit in the 2D
structure of a molecule, especialiyhere are few rotatable bonds.

Initial studies of methods for diversity analysis focussedhe identification of sets of molecules that were
structurally diverse, but it was soon realised that othetofs also needed to be taketo account when selecting
molecules for biological testing. For example, Gillet and co-workers have described the use of multiobjective
optimisation to ensure the design of libraries thatremeonly structurally diverse but that contain molecules
whose physicochemical properties resemble those of known drugs [174]. There is widespread interest in such
drug-likenesqor drugability) studies, driven in large part by the “Rule of Five” first suggested by Lipéaiski
[45]. Methods of combinatorial synthesis had been rapidly adopted by the pharmaceutical industver,howe
whilst these had resulted in very large numbers of molecules, they had not resulted in significantly larger numbers
of bioactive molecules than could be obtained using conventional synthetic methods. Eipaisknalysed over
two-thousand molecules that had entered phase Il clinial (i.e., the phase in drug discovery where a potential
drug is given to a small number oftigats for initial studies of efficacy argide-effects) and observed that many
of these obeyed simple physicochemical constraints that were simple multiples of five, e.g., the molecular weight
should be less than 500 and the molecule should contain not more than five hydrogen-bond donor features.
Molecules not satisfying these physicochemical constraints were likely to exhibit poor absorption or permeation,
thus providing an obvious filtering mechanism for the selection of molecules and for the design of new
combinatorial libraries. Subsequent studies have involved more detailed analyses of the physicochemical
requirements for activity [175], the differences in s between leads (i.e., molecules that are considered
appropriate for detailed study in a drug-discovery programme) and drugs (i.e., molecules that get to the stage of
being administered to patients) [176,177], the use of machine-learning tools to tigferbatween databases of
drugs and (assumed) non-drugs [178-180], and the development of analogous techniques fogrthef desi
agrochemicals [181].

9. Conclusions

In this paper, we have sought to highlight some of the major contributions to thé&chisdevelopment of
chemoinformatics, although considerations of lengthiiably mean that many other important papers have had
to be omitted or merely mentioned in passing. However, it is hoped that this personal selection — however biased —
is sufficient to make clear the intellectual debts thabwe to the early pioneers, many of whose techniques are
still in widespread use many years after they were first published.

Chemoinformatics is, of course, continuing to develop, with three areas of particular importance for the next
few years. The first, already mentioned, area is tle afsmachine learning methods for virtual screening.
Machine learning and data mining is the subject ofnsgeresearch in computer science, with the resulting
methodologies starting to be applied in very many application areas, including chemoinforitats techniques
such as decision trees, kernel discrimination, and support vector machines have been rapidly @adopted f
chemoinformatics applications and this trend will wiatedly continue as new techniques become available
[182]. The second area ADMET prediction (standing for absorptiodistribution, metabolism, excretion and
toxicity). Work in QSAR over many years has resuliedeasonably effective methods for the prediction of
biological activity; the aim now is to extend these methods to enable the predictiws®fitore complex types
of pharmacokinetic and biological properties. The worktinaed previously on drug-likeness can be regarded as
a first step in this direction, with measures diug-likeness representing an implicit codification of the
pharmacokinetic properties required for a molecule to be not just bioactive but also potentially ADMEY;
prediction studies try to model these properties explicitB3]. The third area arises from the observation that
QSAR uses computationally simple, but surprisingly effective, techniques to model the requirements for
bioactivity. As noted previously, the emergence of chemoinformatics has been driven in lalyetiparscaling-
up of these techniques, which had traditionally been aimed at just a few tens of molecules, to the very large
datasets that characterise modern pharmaceutical researeh.t® successes that have been achieved thus far, it
seems not unreasonable to expect thdher increases in effectiveness abble achieved by application of the
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sophisticated techniques of computational chemistry. Thage traditionally been aimed at the detailed analysis

of small numbers of molecules, but improvements in computer hardware and software mean that the methods are
starting to be applied on a significantly larger scabntheretofore, as exemplified by the work of Betlal

[139], and this trend can only increase further. In brief,can expect the next fifty years to be at least as
productive as the fifty years that have passed since the founding of the Institute of Information Scientists.

Acknowledgements | thank Val Gillet and Wendy Warr for their comments on this paper.
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