
 
 
 
 
 

 

Access to Electronic Thesis 
 
 
Author:  Simon D. Foster 

Thesis title:    A Compositional Semantic Theory for Service Composition 

Qualification: PhD 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
 
If this electronic thesis has been edited by the author it will be indicated as such on the 
title page and in the text. 
 
 
 
 
 



A Compositional Semantic Theory
for Service Composition

Simon D. Foster

January, 2010

This Thesis is submitted for the degree of Doctor of Philosophy

Verification and Testing Group

Department of Computer Science

The University of Sheffield

Supervisor: Dr. Mike Stannett

WISDOM IS VINDICATED BY HER ACTIONS





Abstract

SERVICE COMPOSITION refers to a popular modern software paradigm for build-
ing applications by combining distributed reactive components using the World-
Wide-Web as the medium. The approach is characterised by the use of stan-

dardised protocols, languages and representations such as XML, which ensures that
services are platform agnostic. Whilst the architecture is well understood for simple
single-interaction services built in the style of classical procedures from the traditional
programming paradigm, much discussion is still taking place with regard to more com-
plicated, fully reactive services, where the consumer interacts in a stateful manner.

The aim of this Thesis is to investigate the way in which composite Web services
are built, and provide a useful semantic theory for service composition. Inspiration
for this comes from several sources, including existing technologies such as WS-BPEL
and WSMO, and the workflow patterns research, which defines a diverse collection of
control-flow patterns which should be provided by a service composition language.

My approach to service composition is based on Abstract Timed Process Calculus.
Core to this approach is compositionality – a Web service model must be semantically
decomposable to allow component manipulation. An Abstract Timed Process Calculus
allows elegant modelling of component systems through a variety of synchronisation
patterns such as isochronic broadcast. In this work I will seek to advance this area
by constructing a novel timed process calculus which seeks to surpass previous calculi.
This calculus will form the underlying meta-model for a semantic theory for a service
composition language called Cashew-A . The semantic theory will be useful for both
verification and execution of composite Web services.

The Thesis is in three parts:

• PART I explores the background to Web services and Process Calculi with a theory
overview, literature review and introduction to Haskell;

• PART II constructs the semantic theory for service composition in terms of the
overall architecture, the language and the underlying process calculus;

• PART III explores implementation by providing a framework for the process cal-
culus in Haskell.

iii





Contents

PART I Background 3

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Reading Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9
2.1 Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Basic Web service technologies . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 WS-BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 OWL-S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Workflow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 WSMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Process Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Simulation and Bisimulation . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Communicating Sequential Processes . . . . . . . . . . . . . . . . . 26
2.3.3 Calculus of Communicating Systems . . . . . . . . . . . . . . . . . 27
2.3.4 Algebra of Communicating Processes and Basic Process Algebra . 30
2.3.5 π-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Web services and Process Algebra . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 Transaction Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 π-calculus based calculi . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Timed Process Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.1 Temporal CCS and discrete real-time process calculi . . . . . . . . . 38
2.5.2 Temporal Process Language and abstract time . . . . . . . . . . . . 40
2.5.3 Multiple Clock Calculi and CaSE . . . . . . . . . . . . . . . . . . . . 42
2.5.4 Calculus of Broadcasting Systems . . . . . . . . . . . . . . . . . . . 50

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Functional Programming in Haskell 53
3.1 Introduction to Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Defining Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Type-class Polymorphism . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Concurrent Haskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.5 Generalised Algebraic Datatypes . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Type Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



vi CONTENTS

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

PART II Theory 67

4 Contribution Overview 69

5 Service Composition Language 77
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Real-time Granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5 Control flow language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Cashew-A Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Cashew-A AC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.3 Cashew-A T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.8 Workflow Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8.1 Basic Control Flow Patterns . . . . . . . . . . . . . . . . . . . . . . . 94
5.8.2 Advanced Branching and Synchronization Patterns . . . . . . . . . 94
5.8.3 State-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.8.4 Cancellation and Forced Completion Patterns . . . . . . . . . . . . 98
5.8.5 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8.6 Termination Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8.7 Trigger Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8.8 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.9 WS-BPEL Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 A Timed Process Calculus for Component Oriented Systems 105
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Interruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Introduction to CaSEip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 Clock Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5 Syntax and Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . 114

6.5.1 Relationship between transitions and sets . . . . . . . . . . . . . . . 116
6.5.2 Free variables and Substitution . . . . . . . . . . . . . . . . . . . . . 120

6.6 Equivalence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.7 Timed Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.8 Refinement Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 A Compositional Operational Semantics for Cashew-A 153
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Normal Workflow Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2.1 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.2 The Orchestration Protocol . . . . . . . . . . . . . . . . . . . . . . . 157



CONTENTS vii

7.2.3 Derived Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.2.5 Workflow semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2.6 Performance Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.2.7 Control flow semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.2.8 Dataflow semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.2.9 Component semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2.10 Compositionality Problems . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Compensation Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.3.2 Compensable workflow semantics . . . . . . . . . . . . . . . . . . . 186
7.3.3 Performance Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.3.4 Dataflow semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.5 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.3.6 Speculative Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

PART III Implementation 197

8 Implementation of CaSEip 199
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2 Process Calculus Implementation . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2.1 Background: Computation in CCS . . . . . . . . . . . . . . . . . . . 200
8.2.2 Basic CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.2.3 Hierarchical State Space . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.2.4 Towards Strong Typing . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.2.5 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.2.6 Abstract Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.3.1 Labelled Transition Systems . . . . . . . . . . . . . . . . . . . . . . . 228
8.3.2 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.3.3 Timed Transition Graphs . . . . . . . . . . . . . . . . . . . . . . . . 232
8.3.4 Partition Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3.5 Bisimulation Checking . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.3.6 Minimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.3.7 Alternating Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.3.8 A Process Experimentation Environment . . . . . . . . . . . . . . . 240

8.4 Towards an implementation of Cashew-A . . . . . . . . . . . . . . . . . . . 243
8.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.4.2 Semantic Generation Framework . . . . . . . . . . . . . . . . . . . . 243
8.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

9 Conclusions and Future Work 257
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
9.2 Areas of Further Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . 259

9.2.1 Negated Preconditions and Transient Inputs . . . . . . . . . . . . . 259
9.2.2 Value-added CaSEip . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



viii CONTENTS

9.2.3 Protocol Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.2.4 Enhanced Compensation Mechanism . . . . . . . . . . . . . . . . . 261
9.2.5 Typed CaSEip implementation . . . . . . . . . . . . . . . . . . . . . 261
9.2.6 Complete Web service composition engine . . . . . . . . . . . . . . 262

9.3 Outro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

A Rejected Process Calculi 265
A.1 Interruptible CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

A.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
A.1.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 266
A.1.3 Equivalence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

A.2 CaSE Generalised . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

B Proofs for Chapter 6 275
B.1 Proof of Proposition 6.5.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
B.2 Proof of Proposition 6.5.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
B.3 Proof of Proposition 6.5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

Bibliography 281

Index 289



Acronym Definitions

ACP Algebra of Communicating Processes
BPA Basic Process Algebra

BPMN Business Process Modelling Notation
CaSE Calculus for Synchrony and Encapsulation

CaSheW Composition and Semantic Enhancement of Web services
CBS Calculus of Broadcasting Systems
CCS Calculus of Communicating Systems

cCSP Compensating CSP
CSA Calculus of Synchrony and Asynchrony
CSP Communicating Sequential Processes

DAML-S DARPA Agent Markup Language for Services (now OWL-S)
GHC Glasgow Haskell Compiler

HTTP Hyper-Text Transfer Protocol
LTS Labelled Transition System

OWL Ontology Web Language
OWL-S Ontology Web Language for Services

PMC Processes with Multiple Clocks
SOA Service Oriented Architecture

SOAP Simple Object Access Protocol (deprecated meaning)
SOS Structural Operational Semantics

StAC Structured Activity Compensation
SWS Semantic Web Service
TPL Temporal Process Language

UDDI Universal Description, Discovery and Integration
URL Uniform Resource Locator
USF Unified Semantics Framework

WSA Web Service Architecture
WS-BPEL Web Service Business Process Execution Language (a.k.a. BPEL)
WS-CDL Web Service Choreography Description Language

WSDL Web Service Description Language
WSMO Web Service Modelling Ontology
WSML Web Service Modelling Language
WSMX Web Service Modelling eXecution environment

XML eXtensible Markup Language

1





Part I

Background

3





Chapter 1

Introduction

“Web services are a new breed of Web application. They are self-contained, self-
describing, modular applications that can be published, located, and invoked across
the Web. Web services perform functions, which can be anything from simple re-
quests to complicated business processes ... Once a Web service is deployed, other
applications (and other Web services) can discover and invoke the deployed service.”
– IBM Web service tutorial (Tidwell, 2000)

1.1 Motivation

THE SCOPE OF THE WORLD-WIDE-WEB IS EXPANDING, with new services being
continually provided to make different parts of our lives easier. It is now pos-
sible to perform a multitude of tasks using the Web, ranging from booking a

holiday, to playing the stock-market, to buying groceries – the Web is becoming more
and more a part of everyday life. Likewise, the Web is becoming a global platform for
distributed computing, on which heterogeneous, distributed applications can be built.

The Service-Oriented Architecture (SOA) is a paradigm for distributed computation.
SOA is essentially a component paradigm, where an application is built by invoking the
services of others via the Web. These components are called Web services, and use the
standards such as XML and HTTP to act as a medium for accessing their functionality.
Many Web based companies such as Amazon1 and eBay2 now provide Web service based
application programming interfaces (APIs), so that third-parties can make use of these
services in their applications.

The primary reason for this architecture’s success is its platform agnosticism and
the ubiquity of the medium it uses. Unlike predecessors like Microsoft’s Component Ob-
ject Model3 (COM), SOA does not rely on vendor specific protocols, implementations or

1http://aws.amazon.com
2http://developer.ebay.com/developercenter/soap
3http://www.microsoft.com/com

5

http://aws.amazon.com
http://developer.ebay.com/developercenter/soap
http://www.microsoft.com/com


6 Chapter 1. Introduction

languages. Instead it uses the technologies already provided for the distribution of hy-
permedia, such as XML and HTTP, to make distributed reusable components available.
As a result, any platform which is capable of accessing the Web is also capable of using
Web services. Perhaps the most important aspect of this is control – a Web service may
be implemented in any way the vendor desires, and its resources remain fully under its
control without the need for third parties. Additionally, Web servers are themselves so
well-used that it takes little extra effort to reuse the same protocols to implement appli-
cation frontends alongside existing Web sites.

As a further result, the Service-Oriented Architecture is finding increasing impor-
tance in the Business Process Modelling (BPM) world, with Martin et al. (2003) outlining
the many advantages of this new paradigm. Firstly, it aids inter-enterprise distributed
computing by allowing the formation of weakly-coupled links between companies, pre-
serving absolute ownership of the Web resources, and power over which services are
exposed. Secondly, it is also finding use within single enterprises, where individual busi-
ness processes are being formalised in terms of services. In this way Web services may
be thought of as a possible replacement for all existing component-based programming
paradigms, certainly where any form of distribution exists.

It is therefore clear that one of the main future component architecures is going to
be the Web service architecture. However, like previous component paradigms this new
Web-oriented paradigm needs a form of programming language which will allow differ-
ent components to be glued together in different ways to fulfil different requirements,
whilst dealing with Web service nuances. These languages are called service composition
languages, and they allow execution of Web services to be orchestrated using constructs
similar to those found in traditional imperative programming languages. There are al-
ready several such languages available commercially, the prime example being WS-BPEL
(Jordan and Evdemon, 2007) (Web Services Business Process Execution Language). WS-
BPEL is well supported by industry, and has several associated graphical CASE (Com-
puter Aided Software Engineering) tools available. It also supports several advanced
error-correction mechanisms such as compensation where the effects of a faulty transac-
tion can be mitigated.

However, many of these languages currently lack an adequate formal grounding,
particularly in deciding whether two orchestrations are equivalent according to some
definition of behavioural equivalence. WS-BPEL in particular is computationally com-
plete, and whilst there has been much progress in formalising it using advanced theories
like the π-calculus and Petri-nets, any complete formal theory will likely be undecidable.
Without a consistent notion of equivalence it is impossible to ensure that a language is
compositional – that the overall meaning can be determined purely as a function of the
parts. This property is particularly imporant for Web services, as the Web is by nature
highly dynamic, and thus orchestrations need to change constantly as old services dis-
appear and new ones appear. Without compositionality, it is impossible to decompose a
Web service and hence allow incremental evolution of an orchestration. From a practical



1.2. Contributions 7

perspective this means a recompilation of the execution model is needed every time a
change occurs.

It is therefore my contention that a rich calculus with less power than π-calculus is
better suited to describing composition of Web services. In this Thesis I focus on a par-
ticular class of calculi known as abstract time process calculi. These calculi are well known
for their modelling of different synchronisation patterns such as broadcast. Indeed “time”
is modelled as a form of synchronisation, rather than a notion of physical time. My aim
is to construct a semantic meta-model for service composition which is both composi-
tional and extensible. In the first place it will allow an orchestration to be decomposed
into its parts, whilst in the second place it will allow new patterns of composition to be
described, so that associated languages can evolve to meet new requirements. The lan-
guage will be a dataflow oriented language and linked to precondition negotiation, which
will allow resolution of execution order separate from control flow. I will also provide
an implementation of this language in the functional programming language Haskell to
exemplify what can be achieved with this process calculus paradigm.

1.2 Contributions

The main contributions of this Thesis are as follows:

• An investigation of the key features necessary to represent service compositions
and an experimental language called Cashew-A (CHAPTER 5). This first step it
to establish what behaviour needs to be modelled so the calculus can be extended
accordingly. My language considers a composite Web service in terms of its control
flow, data flow and message flow. Message flow in particular motivates an extension
of how abstract clocks should behave in my timed process calculus. Additionally I
consider compensable transactions.

• A novel abstract time process calculus called CaSEip with a bisimulation seman-
tics (CHAPTER 6), which I have developed to allow the features of Cashew-A to be
represented through various synchronisation patterns. The calculus’s main novelty
is that, in contrast to previous calculi such as CaSE(Norton et al., 2003), clocks may
be in three (as opposed to two) distinct states within a process: stalled, patient and
active. This is achieved by a tripartite clock sort which underpins the structural op-
erational semantics. This novelty allows a greater degree of flexibility in forming
compositional process behaviour and hence is well-suited to specifying component
system model.

• An extensible semantic framework using CaSEip to give a formal behavioural
semantics to Cashew-A (CHAPTER 7). The main feature of this framework is a
synchronous protocol which allows all components to be abstracted to a common
communication interface. This semantic framework is both compositional, meaning



8 Chapter 1. Introduction

that a model can be manipulated without full reconstruction, and extensible, mean-
ing constructs additional to those in Cashew-A can be specified with the protocol.

• An implementation of CaSEip in Haskell (CHAPTER 8). This allows both finite-
state verification and execution processes, and includes a supporting command-
line process experimentation tool called ConCalc. The use of Haskell is motivated
by the ease in which the formal theory of CaSEip may be converted into inductive
functions. Haskell also has a sophisticated type-system which allows fine-grained
specification of processes and their underlying behaviour. Haskell’s Monads also
allow an elegant way of binding real world behaviour to synchronisations.

• A partial implementation of the Cashew-A semantic framework (CHAPTER 8).
This uses the above CaSEip implementation, through which the viability of the
semantic framework is demonstrated. I provide a simple Calculator workflow as
an example Web service.

1.3 Reading Pathways

There are several pathways through the chapters of this Thesis.

• For readers wishing to assess the main theoretical contribution of this work, but
not the implementation aspects, I recommend 2→ 4→ 5→ 6→ 7→ 9.

• For readers interested in Web service languages, but not process calculus theory I
recommend 2 (first half)→ 4→ 5→ 9.

• For readers interested in Process Calculus theory, but not my application, I recom-
mend 2→ 6 (some motivating work from Chapter 5 may also be required).

• For readers interested in Functional Programming and Process Calculus, I recom-
mend 2→ 3→ 8 (and possibly also Chapter 6).



Chapter 2

Literature Review

This chapter provides a basis for the rest of the thesis. There are two primary areas
which must be covered – Web services and Process Algebra. My aim in this thesis
is to model the composition of the former using the latter. I therefore first demon-
strate the core concepts associated with Web services such as orchestration, and then
describe the key technologies on which I am basing my work. I then describe the link
between Web services and Process Algebra, and look at some of the existing theory.
Finally I look at Timed Process Algebra and argue why it is a natural theory for
modelling service composition.

2.1 Web services

WEB SERVICES ARE PROGRAMMABLE COMPONENTS which use the World-
Wide-Web as a medium for describing the functionality of real world ser-
vices in a computer manipulable way (Kuropka and Nern, 2006). Accord-

ing to the Oxford English Dictionary a service is “the action or process of serving” or alterna-
tively “an action of assistance” thus a Web service is any sort of Web accessible tool which
is in some context useful. A service can be anything from ordering a shipment of steel to
providing a particular digital image. In the context of computer science, a Web service
can be viewed as a distributed component which can be integrated into applications and
which describes itself using some standardised method.

Like all components in a programming environment, a Web service has two facets:

• An interface or type (the service’s observable behaviour);

• An implementation (the service’s internal behaviour).

A Web service’s interface represents the protocol by which a party may interact with
it. An interaction is usually represented as a message exchange between two or more
parties, using HTTP and an XML-based message language like SOAP as an underlying

9



10 Chapter 2. Literature Review

medium. The implementation, in contrast, represents how the Web service fulfils the task
which a client requests it to perform – how it implements the interface. This will usually
involve subcontracting parts of the task to other Web services by communication with
their respective interfaces. The internal part of a Web service is called the orchestration,
which is defined by the Web Consortium as:

“... the sequence and conditions in which one Web service invokes other Web services
in order to realise some useful function.” (Haas and Brown, 2004)

An orchestration can thus be seen as a kind of program, which calls other Web services
as its methods. It describes how multiple services can be composed in order to achieve
some combined service. In general this is done in terms of control flow, dataflow and
message flow.

Control flow governs the order in which communications to the participants of an
orchestration are made. Service composition languages such as WS-BPEL (Web Services
Business Process Execution Language) and OWL-S (Ontology Web Language for Ser-
vices) use several control flow constructs which are familiar from the imperative pro-
gramming and process algebra world, such as sequence, choice and parallel. In addition
constructs are included which specifically reflect the nuances of Web services, such as
sending and receiving messages. In the context of business process modelling much re-
search has focused on determining what the fundamental patterns of control flow are. In
particular van der Aalst et al. (2003) have made a detailed study into this by defining
a total of 43 control-flow patterns using Petri-net semantics and contrasting the expres-
sivity of different service composition languages in terms of how many patterns they
implement.

Dataflow by contrast defines how data is directed between activities within an or-
chestration, and is usually orthogonal to control flow (though usually respecting the
structure dictated). WS-BPEL and OWL-S handle dataflow fundamentally differently.
The former contains mutable variables, which can be populated by service invocations
and copied between control flow scopes. The latter allows the specification of inputs and
outputs to processes, which can be connected together. The main issue for dataflow is de-
ciding when a process has received sufficient inputs to allow execution. Both WS-BPEL
and OWL-S have constructs which allow the order of execution to be determined purely
by when a process is ready to execute, rather than a control-flow construct like sequence.
Therefore the definition of process “readiness” is an important factor in dataflow seman-
tics.

Message flow describes the exchange of messages between a Web service and its
clients. A Web service’s interface at the simplest level describes the Web service’s observ-
able behaviour in the form of the messages it can send and receive and at which point.
WS-BPEL has several constructs which allow messages to be sent across what it calls
partner links (see Section 2.2.2), which represent links to a single partner. Each link has
an associated message flow which is determined by the order in which messages are



2.2. Technologies 11

sent and received over the link. A fully specified WS-BPEL process therefore also has an
associated abstract process which includes only constructs which induce observable be-
haviour and abstracts away implementation details. A fully specified WS-BPEL process
is called an executable process. Similarly the Web Service Modelling Ontology (WSMO) splits
the description of a Web service into observable and unobservable perspectives, which
it calls choreography and orchestration.

Message flow is strongly linked to the “choreography” concept, though the definition
of the term varies. Roughly, a choreography defines the order in which these message
exchanges are made between partners. The Web Consortium defines a choreography
like this:

“the sequence and conditions under which multiple cooperating independent agents
exchange messages in order to perform a task to achieve a goal state.” (Haas and
Brown, 2004)

Choreographies are used to concretely specify transactions between multiple parties.
A choreography effectively describes a cross-cut over several Web services and therefore
each Web service’s interface must conform to the protocol which the choreography pre-
determines. In WSMO a choreography is seen as simply the Web service’s observable
interface, and this is the definition I adopt for the remainder of this work.

Having given an overview of the basic Web service concepts, I now proceed to exam-
ine the various technologies in more detail.

2.2 Technologies

The main three contemporary Web service technologies I focus on for this thesis are
WS-BPEL, the Web Ontology Language for Services (OWL-S) and the Web Service Modelling
Ontology (WSMO), the latter two of which are heavily influenced by the development
of the Semantic Web service paradigm. A “Semantic” Web service is a Web service which
provides a logical description of its purpose using a Description Logic and several logical
knowledge bases called ontologies.

WS-BPEL is a well-developed and supported Web service language for describing
executable business processes. OWL-S (McIlraith et al., 2001) is an attempt to lever-
age service composition into the Semantic Web world. It provides both a description
of processes which give an execution semantics for the Web service and also an underly-
ing logical framework, though I am only concerned with the process language. WSMO
is newer, and is still under active development, whereas the OWL-S project has long
since come to an end, with most of its work being integrated into its successor project
FLOWS, part of the Semantic Web Services Ontology (SWSO) (Battle et al., 2005) (though
only OWL-S is directly relevant to this work1). I will deal with WS-BPEL, OWL-S and
WSMO in Sections 2.2.2, 2.2.3 and 2.2.5 respectively.

1SWSO has seen little activity since 2005. See http://www.daml.org/services/swsf/1.1/swso/

http://www.daml.org/services/swsf/1.1/swso/


12 Chapter 2. Literature Review

However, before considering these it is necessary to go over the basic languages for
describing individual Web services.

2.2.1 Basic Web service technologies

Arguably two of the most important and certainly well used technologies in the field of
basic Web services are SOAP (Box et al., 2000), which formerly stood for Simple Object
Access Protocol, and the Web Service Description Language (WSDL , pronounced by many
as “Wuz Dull”) (Christensen et al., 2001).

SOAP is a protocol for conveying messages, and is frequently combined with HTTP
(the backbone protocol for delivering Web content) to simulate remote procedure call
style invocations over the Web. SOAP provides so-called Envelopes, which consist of one
or more headers for conveying meta-data, and a body, which carries the payload (i.e. the
actual message). In this way a Web service’s operations can be conveyed as a series of
SOAP endpoints, to which messages can be sent, detailing the method to be executed and
the associated parameters. A response SOAP Envelope will then be sent back with the
answer. SOAP Envelopes are almost always encoded using XML.

WSDL on the other hand is a language for specifying the interface of a Web service,
in terms of types, schemata for the messages it uses, abstract interfaces (port types) for
each of the available operations, and finally bindings which attach a concrete execution
medium to an operation. The only operations specifiable by WSDL are a composite of up
to one send and one receive, the most common being a request/response. A Web service
would specify, for example, an input and output message, an operation type in terms
of these messages, and information on how this operation can be executed using SOAP
over HTTP. Web services described by WSDL and SOAP alone can only be very basic
in nature, and cannot provide a complicated stateful protocol. Thus there have been
a number of efforts to add statefulness, such as WS-CDL (Kavantzas et al., 2005) (Web
Service Choreography Description Language) and WS-BPEL (Andrews et al., 2003), both
of which provide some degree of interactional interface specification.

A third technology mentioned frequently in the Web service community is UDDI,
Universal Description, Discovery and Integration. UDDI allows registries to be created
which describe Web services so as to aid their discovery by third parties. Web services
must be advertised somewhere so that consumers can make use of them, and UDDI pro-
vides such advertisement features. However, I don’t consider it here in any great detail,
as advertisement does not constitute a significant part of my research.

Having covered the basic Web service technologies, I now proceed to look at three
important service composition languages which build on these technologies.



2.2. Technologies 13

2.2.2 WS-BPEL

The first major service composition language I consider is Web Services Business Process
Execution Language WS-BPEL). WS-BPEL2 (Andrews et al., 2003; Jordan and Evdemon,
2007) is a Web service oriented Business Process Modelling language, which was origi-
nally built as a conjunction of the features in XLANG by Microsoft, and WSFL by IBM.
The resulting language was originally called BPEL4WS 1.1 (Business Process Execution
Language for Web Services) but then entered a standardisation process through OASIS,
and in 2007 WS-BPEL 2.0 was completed. BPEL extends WSDL, which specifies primi-
tive Web service operations, with processes allowing the specification of composite func-
tionality. Core to BPEL is the partner link, which links the Web service being described
with another Web service, allowing access to its interface, as described in WSDL (cf.
π-calculus channels in Section 2.3.5). WS-BPEL provides communication primitives for
sending and receiving messages via these partner links, as well as executing operations.

The basic behavioural unit in WS-BPEL is the activity, which can be anything from
sending a message to a partner, to a complex structured activity consisting of many
other activities. WS-BPEL, like OWL-S, defines a number of constructs for composing
communications in different ways, which it calls structured activities. There are a total of
seven structured activities which describe different ways in which the enclosed activities
can be ordered.

• sequence, which runs an enclosed list of activities one after the other;

• if, analogous to the classic if-then-else construct which chooses the next activity to
execute based on one or more logical expressions;

• while, which repeats the execution of an activity while an expression evaluates to
true;

• repeatUntil, a variant of the above;

• pick, which chooses the next activity to execute based on event guards. Example
events include reception of a message (onMessage) or a timeout (onAlarm). The
branch is chosen once the first of the given events occurs;

• flow, a complicated graph based pattern. At its most basic, a flow activity runs all
of enclosed activities in parallel. In addition links between the activities may be
specified, which leads to a partial order between the activities executed;

• forEach, at its most basic an iterator which executes the enclosed activity once for
each value of a counter, like a normal for loop. In addition, forEach supports par-
allel execution, which spawns N ∈ N (for some specified N ) copies of the activity
to run in parallel (this is equivalent to π-calculus ! operator – see Section 2.3.5).

2See http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html for the specification.

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html


14 Chapter 2. Literature Review

WS-BPEL also has an advanced fault handling system, which includes both the stan-
dard exception system present in languages like Java, and a compensation system, which
allows the specification of transactions. A transaction is an interaction between two or
more parties with a specific shared goal, certain protocols of execution, and restrictions
on either party’s capabilities (Gray, 1981). A transaction assumes the presence of a con-
tract which lays out the rules by which a transaction may proceed. The failure to com-
plete the transaction, such as by a party making an illegal move, will lead to some sort
of redress being performed, in which the transaction will be “rolled back” to its initial
state, if possible.

Web services are inherently unreliable media, not merely in terms of the protocols,
whose issues can be overcome somewhat by the service bus, but also at a higher level.
Since Web services cannot directly keep track of all the distributed resources needed
to complete a transaction, it is not always possible to ensure prior to execution that a
transaction will succeed. Extenuating circumstances can and frequently do arise in real-
world transactions which prevent a goal from succeeding, perhaps due to an unforeseen
circumstance such as lack of stock, or something as simple as the client wishing to cancel.
When this occurs, a Web service needs to know exactly where it is in the transaction, and
how it can revert as much as possible to the state before it started.

In the world of relational databases and similar media it is assumed that a transaction
will either complete successfully and commit, or fail for some reason and thus abort. It is
necessary that the system only makes legal moves in the transaction and that no outside
force can otherwise alter its course. Integrity is maintained by the presence of so-called
ACID properties (Haerder and Reuter, 1983), namely:

• Atomicity – either all the actions of transactions are performed, or none of them are
(all or nothing);

• Consistency – the state of the database remains consistent with the transaction;

• Isolation – no outside agent can observe the partial state changes being made, a
change is only observed upon commit;

• Durability – the state of the transaction survives system failure (e.g. via a transac-
tion log).

A relational database maintains these properties by locking the resources it requires
to make the transaction, and making them available once the transaction either com-
mits or aborts. However, such properties are impossible to maintain in the Web service
world. A Web service cannot lock resources as they are distributed and required by
other clients. For this reason state change is always transparent and atomic rollback is
not possible. Thus, the Web service architecture advocates the use of a weaker form of
rollback based on compensation. Compensation is a concept developed to cope with roll-
back of Long Running Transactions (LRTs) which face similar problems to Web services



2.2. Technologies 15

Figure 2.1: Active BPEL WYSIWYG interface screenshot

(Garcia-Molina and Salem, 1987). Instead of having every action being reversible, a Web
service transaction allows every activity to have an associated compensation activity,
which applies redress.

To enable the implementation of compensable transctions WS-BPEL has a scope op-
erator, which encloses an activity workflow. Each scope has associated compensation,
fault and event handlers. Event and fault handlers react to relevant events in their as-
sociated scope by executing other activities (cf. Java’s catch mechanism which reacts
to an exception), with the latter also terminating the enclosed activity. Compensation
handlers facilitate rollback for failing non-atomic transactions, and are triggered by the
compensate activity which can be used in fault handlers. If a compensation handler is
not explicitly specified for a scope, the default compensation handler is installed which
compensates the scope in reverse order of its execution.

WS-BPEL is primarily of interest to this thesis due to its popularity, particularly in
the business world and because existing attempts at formalisation, such as by Lucchi
and Mazzara (2007) and Butler, Ferreira and Ng (2005) have met limited success, and
in general only formalise a fragment. In particular, verification is difficult due to the
language being computationally complete and providing a large set of features. One
thing is certain – there is a strong link between WS-BPEL and π-calculus (see Section
2.3.5) and thus any theoretical issues with π are carried over.

Despite these limitations WS-BPEL remains the definitive language for business pro-
cess modelling. This is clearly represented by the number of commercial implementa-



16 Chapter 2. Literature Review

tions it has, including Oracle’s BPEL Process Manager3 (which also provides a WYSIWYG
tool for designing Web services) and the open source ActiveBPEL Engine4 (see Figure
2.1 for the interface). Thus it represents an important development in the Business Pro-
cess Modelling World, and its most useful features should be integrated into any new
language aimed at Business Process Modelling.

2.2.3 OWL-S

The second language I consider is the Web-Ontology Language for Services (OWL-S). OWL-
S is a language for describing the behaviour of Web services and is described in the
technical report of Martin et al. (2004), which gives the structure of the three part ontology
for services:

• The Profile, which gives a logical description of a Web service’s purpose;

• The Grounding, describing how a client can communicate with the Web service, in
terms of the protocol used, the location of the Web service etc. (specifically relating
to communication level protocols like SOAP);

• The Model, describing how the Web service invokes other services to achieve the
overall goal.

The Profile is an ontological description of the services provided by a Web service
being described, and the requirements of these services. OWL-S places no restrictions
on how these should be represented, allowing any constraints which can be represented
by OWL. Specifically, a profile will normally describe the provider of the service, the
functional properties of the service (i.e. what it does) and an indeterminate selection of
other data about the service, which can be broadly called its non-functional properties. The
report suggests that response time and quality of service ratings could be included here.

The Grounding describes the method by which a client can communicate with the
service, in terms of the protocol used, with the Web Service Description Language as a basis.
WSDL only allows the definition of Web services which receive a single request message,
and send a response message back (or a one-way message in either direction), and thus
it is assumed that all Web services in OWL-S will be of this form (a limitation).

The majority of Martin et al. (2004) is devoted to the main contribution of OWL-
S: the Service Model (also called the Process Model), which describes the Web service’s
internal behaviour. At the core of the service model is the process concept, which acts as
the main building block for compositions. All Web services are abstracted to processes,
representing their control flow and dataflow. Processes are split into two distinct classes:

3http://www.oracle.com/technology/products/ias/bpel/index.html
4http://www.activebpel.org/

http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.activebpel.org/


2.2. Technologies 17

• Atomic processes, which act as frontends for outsourced Web services. They are
inherently one-shot, i.e. taking a set of inputs, and producing a set of outputs (pos-
sibly because of the limitations set by WSDL);

• Composite processes, which are built by composing together other processes. They
are further split into six types; namely

– sequence;

– split (runs a collection of processes in parallel asynchronously);

– split-join (split with synchronisation after completion of all processes);

– any-order (defer resolving the order of execution to the processes themselves);

– choice; and

– if-then-else.

Processes which are composed by these patterns are further abstracted behind per-
formances, which instantiate the process within a particular behavioural context.
Processes are reusable, but performances are not. This is an important distinction
between the prototype and an instance of that prototype.

Each process is assigned a set of inputs, which can be manipulated and passed to its
inner behaviour, and a set of outputs. Depending on the type of process, not all inputs
may be required, and not all outputs may be produced, particularly where choice of
some sort is present inside. Thus, the any-order construct reflects not simply an arbitrary
order, but one where the preconditions of the enclosed processes determine the order.
However, the method of handling dataflow is left mainly to the implementor. OWL-
S has at least three behavioural semantics, one based on Petri nets by Narayanan and
McIlraith (2002), one based on Concurrent Haskell and Erlang (Ankolekar et al., 2002)
and one using Timed Process Calculus (Norton et al., 2005).

The aim of the latter is to create a semantics for OWL-S which is both complete (the
Petri-net semantics only implements an earlier OWL-S fragment) and more importantly
compositional, which neither of the former two semantics claim to be. Work on this se-
mantics also spawned our project, called Cashew (Foster et al., 2005; Norton, 2005b), with
the aim of investigating service composition language semantics with compositionality
as a fundamental property. This work uses a timed process calculus called Cashew-Nuts, a
variant of CaSE(see Section 2.5.3), to give a compositional semantics to a language called
Cashew-S. Cashew-S is essentially the same as the OWL-S service model language, but
removes a “magic” variable called theParentPerform which allowed a workflow to ac-
cess the variables of its parent context (thus breaking compositionality). Instead data is
passed around purely on a basis of input and output parameters, connected via dataflow
connections, which helps ensure compositionality. Dataflow was the main driving force
behind this effort, which showed that CaSE could soundly represent the precondition



18 Chapter 2. Literature Review

system of OWL-S, particularly in the any-order pattern. The Cashew-S semantics will be
discussed in detail in Section 2.5.3.

The OWL-S service model, and particularly its pre/postcondition system, provides
one of the main inspirations for my work. The composition language I describe in Chap-
ter 5 directly draws on it, owing to its sensible subset of language constructs. The per-
formance concept also proves vital for giving a compositional semantics to Web service
composition.

2.2.4 Workflow Patterns

So far in this review I have considered two service composition languages which have
broadly comparable control flow constructs, but with different expressivity. In fact there
is a wide variety of such workflow languages, all with very different constructs. In re-
sponse to the many and varied workflow languages which have appeared with different
levels of expressivity (WS-BPEL is one, but there are over 13 others), Wil van der Aalst’s
research team at Eindhoven in conjunction with Arthur ter Hofstede’s team at Queens-
land have created the Workflow Patterns initiative5. They describe themselves this way:

The Workflow Patterns Initiative was established with the aim of delineating the
fundamental requirements that arise during business process modelling on a recur-
ring basis and describe them in an imperative way. A patterns-based approach was
taken to describing these requirements as it offered both a language-independent and
technology-independent means of expressing their core characteristics in a form that
was sufficiently generic to allow for its application to a wide variety of offerings.
(van der Aalst, ter Hofstede, Kiepuszewski and Barros, 2006)

This group has examined in detail the different perspectives of workflow languages,
in an attempt to identify the key “patterns” which occur. Such patterns should provide
the fundamental building blocks needed for constructing all the different types of work-
flow, thus providing a useful theory. The workflow pattern catalogue can then be used
for contrasting different workflow systems in terms of their expressive power, and thus
the range of concepts a language supports.

The first line of work has been in control-flow patterns (van der Aalst et al., 2003),
which includes an initial selection of twenty patterns ranging from obvious patterns
like sequence and parallelism, to more complex patterns, such as arbitrary cycles. The
selection of control patterns was later revised and the number increased to forty-three
(van der Aalst et al., 2006). The revised patterns are split into a total of 8 categories:

• Basic Control Flow Patterns, which include patterns like Sequence, Parallel Split,
Exclusive Choice and Synchronisation;

5http://www.workflowpatterns.com

http://www.workflowpatterns.com


2.2. Technologies 19

Figure 2.2: Difficult to model Petri-net workflow from van der Aalst (2005)

• Advanced Branching and Synchronisation Patterns, which include various com-
plex forms of choice, split, synchronisation and merge. For instance Multi-Choice
allows multiple parallel paths to be chosen from a bag;

• Multiple Instance Patterns, which describe patterns where multiple copies of the
same workflow can be spawned and executed concurrently;

• State-based Patterns, which describe patterns linked to the state of the system. For
instance Deferred Choice makes a decision based on an interaction with the operat-
ing environment (receiving a message, for example);

• Cancellation and Force Completion Patterns, which include patterns where an ac-
tivity’s execution can be halted and either cancelled or force completed (exception
handling, for example);

• Iteration Patterns, which include the different forms of iteration and recursion;

• Termination Patterns, which describe the circumstances under which a workflow
completes;

• Trigger Patterns, which include events based on triggering of tasks.

Key to this work has been the use of Petri-nets as the underlying theory. Rather than
being bound to a more algebraic setting, along with the restrictions of block structuring,
the workflow patterns allow very flexible flow representation. This is perhaps best il-
lustrated by the Arbitrary Cycles pattern (in Iteration Patterns) which allows loops with
multiple entry and exit points (in a similar manner to the classic GOTO statement), thus
allowing, for instance, a “figure of eight” shape example. It is not possible to build such
a pattern by composition in a purely process algebraic, or indeed any block structured
setting, as it isn’t possible to form a jump from one point in a block-structure to any
other point. Nevertheless, the claim of van der Aalst et al. (2003) is that Arbitrary Cycles
should not be dismissed as GOTO is, as the graphical nature of workflows makes them
easier to interpret, and necessary for solving complex problem elegantly. The Petri-net
shown in Figure 2.2 was set as a challenge for elegant modelling in a Process Calculus



20 Chapter 2. Literature Review

such as CCS or π-calculus. This pattern is difficult because the top branch must progress
to the middle before the bottom section can progress to the end.

The use of Petri-nets also means that parallel split and synchronisation or merge can
be split into separate patterns, whereas in a block-structured language they would be
merged. This allows the different types of synchronisation to be studied independently.
For instance it is possible to distinguish a synchronisation where all concurrent threads
must synchronise, from one where only a subset must synchronise. A further claim
of van der Aalst (2005) is that Petri-nets are both graphical and formal, and thus they
provide a simple way to understand the workflow semantics in a theoretically sound
setting.

Although the work in this thesis focuses on Process Calculus and not Petri-nets, I
utilise the Workflow Patterns in designing my orchestration language in Chapter 5. I
aim to demonstrate that my approach provides the best of both worlds between block-
structuring and graph structuring.

2.2.5 WSMO

The Web Service Modelling Ontology (WSMO) described by Roman et al. (2005) is a group
of languages and technologies which follow a Goal-driven approach to describing Se-
mantic Web services. This approach enables decoupling of intent and provision, of de-
scription and of implementation – ultimately of pragmatics and semantics. Instead of
representing a particular Web service which can satisfy the user’s needs, the goal speci-
fies what these requirements are, deferring selection of an actual concrete Web service to
the service broker, a server which dynamically selects suitable services based on require-
ments.

When seeking a component to solve a particular problem within an application, in-
stead of specifying something concrete, WSMO allows a semantic description of the
problem (the “Goal”) to be inserted, with the service broker seeking suitable concrete
services. Components in WSMO are thus abstracted from the context in which they will
be used. This style of component modelling is not new, and there are many parallels
with separation of type and data, as found in Object Oriented Programming, although
the types in WSMO are based more on the semantics of the problem they are describing,
than simply syntax.

WSMO considers Web service in terms of four abstract concepts, which together al-
low Semantic Web service descriptions to be formed:

Ontologies are logical knowledge bases which provide the vocabulary for the Web
service. The ontology describes the concepts which exist, their attributes and the rela-
tions between them.

Web services are the raw materials of the Web. They provide services on behalf
of particular parties. A Web service is described in terms of its capability, which pro-
vides a logical description of what it does, and its interface which describes how we



2.3. Process Algebra 21

can communicate with it and how it communicates with others. The latter is split into a
choreography, which describes the service interface and an orchestration, which gives
the implementation.

Goals are milestones in a computation which the client wishes to achieve. They
describe what the intent of the client is, for example the specification of a holiday they
wish to book. At the simplest level, a goal is specified in the same way as a Web service,
having a capability and an interface. A goal represents the intent of the client, whereas
the Web service specifies the actual behaviour, which may be used (via mediation) to
fulfil a goal.

Mediators link heterogeneous parts of the system together by providing mappings.
For instance, two Web services may use different currencies for a financial exchange and
an appropriate Web service to Web service mediator would map between them.

Unlike WS-BPEL and OWL-S which include a workflow language as part of their
specification, WSMO does not include such a language for representing a Web service’s
orchestration. Instead, it has a lower level behavioural model based on Börger’s Abstract
State Machine (ASM) model (Börger, 1999). An abstract state machine is an automaton
whose behaviour is described in terms of a state signature and a collection of transition
rules. The state signature is effectively a data-type or collection of data-types, which
describes the possible states which the machine can evolve into. The evolutions are de-
fined by the transition rules, which take the form of “test ← update”, where the test
checks if some condition is true in the state signature and allows update to act if so. In a
WSMO ASM each attribute in the state signature can be further grounded to a particular
Web service function. For instance, some attributes may be declared as having the IN
mode, which means they can only be read by the machine but never written to – only
the machine’s environment can populate them. Such attributes may be used to repre-
sent an incoming message from a partner. Likewise, some attributes may have the OUT
mode, representing a message which the machine sends. WSMO ASMs provide a pow-
erful model for describing Web service orchestrations; nevertheless, they are also very
cumbersome to use and are better suited to act as a meta-model for an actual workflow
language.

To conclude, WSMO is a very capable model and due to its ASM basis provides a
more flexible basis for describing orchestrations. Because of this, and the fact that WSMO
is the most contemporary of the service technologies, I will be adopting its terminology
for my work.

2.3 Process Algebra

Having discussed all the relevant aspects of Web services I now move onto the second
part of this literature review. Some of the most important models studied in the de-
scription and simulation of Web services are the group of formalisms known as process



22 Chapter 2. Literature Review

algebras. In their introduction to the Handbook of Process Algebra, Bergstra et al. (2001)
describe a process algebra this way:

“A process algebra is a formal description technique for complex computer systems,
especially those with communicating, concurrently executing components.”

Process algebras enable computer scientists to build models of real-world concurrent
systems, for the purpose of predicting their behaviour. Since it is cumbersome to reason
directly about physical systems, it is sometimes useful to draw out the relevant attributes
to reason about, whilst abstracting away the irrelevant details. Bergstra et al. further
explain that all process algebras share three key constituents: Compositional modelling,
Operational semantics and Behavioural reasoning.

Compositional modelling involves building a system up from smaller parts, using
a small number of primitive operators. Given two processes P and Q, a process alge-
bra provides several binary operators for joining them together into a larger system. We
could for instance run them in parallel, represented, for example, as P | Q, or we may
build a system which makes a choice between them, P + Q. The idea is to discover
the most fundamental set of operators, which don’t overlap in any way, so as to lead
to a suitably expressive language which is cleaner to reason over. The Calculus of Com-
municating Systems (Milner, 1989a) (CCS) for instance, a very important and well-studied
process algebra, contains only 6 or 7 operators (depending on the variant) and yet allows
the specification of a wide variety of concurrent systems (see Section 2.3.3).

Operational semantics is an approach to describing the behaviour of a formal system
(many other forms of expressing behavioural semantics are detailed by van Glabbeek
(2001)). An operational semantics describes the individual steps which a system can take
to evolve into another process. For example, a choice is usually resolved by the execution
of a single action, and the operational semantics must describe how this occurs. Such a
semantics may for instance contain a rule of the form if a process P can evolve into P ′ by
performing an α then a choice between P and another process Q can be resolved to P ′ if an α

action is permitted.

The most common approach to describing operational semantics is called Structural
Operational Semantics (SOS) created by Plotkin (1981). A structural operational semantics
consists of a collection of inductive logical rules of the the form antecedent

consequent , which describe
the conditions under which the system can evolve. These rules induce a labelled transi-
tion system which describes the complete behavioural transition structure of the given
process. A labelled transition system consists of three parts :

1. A state label alphabet P ;

2. A transition label alphabet Λ;

3. A relation giving the transitions→ ⊆ P × Λ× P .



2.3. Process Algebra 23

A collection of SOS rules entails the definition of the transition relation→. Addition-
ally, when describing a process algebra, it is usual to adopt the shorthand P

a→ P ′ for
(P, a, P ′) ∈ →, read as “P can do an a and evolve into P ′”. For instance, I might give the
rule:

Sum1
P

α→ P ′

P +Q
α→ P ′

This rule, labelled Sum1, states that, if some process P (drawn from P) can perform
an action α (drawn from Λ), resulting in process P ′ (i.e. (P, α, P ′) ∈→ ), then the process
formed by composing P with another process Q using operator + can also perform α

and evolve into P ′ (i.e. (P + Q,α, P ′) ∈→ ). Structural operational semantics is the
primary method for giving operational semantics in this thesis.

In contrast, an alternative type of semantics to SOS is Algebraic Semantics, where a
process algebra is primarily described in terms of the equational axioms of its opera-
tors. For instance, the Algebra of Communicating Processes (Bergstra and Klop, 1984) is
described entirely in terms of equational axioms which identify its operators (although
a corresponding operational semantics is also provided). Such axioms may state, for
instance, that the parallel operator is commutative, or that choice distributes over par-
allel composition. Different sets of axioms allow different types of algebras to be dis-
tinguished. For instance it is unusual in process algebra for sequential composition ; to
distribute over +, as this would be unsound with respect to bisimulation, an important
behavioural equivalence which I shall describe in the next paragraph. If a process alge-
bra does not have some form of underlying algebraic theory a better reference term is
process calculus, which I also use in this thesis.

Finally, behavioural reasoning is the actual end objective of a process algebra. Once
we have built a system model, it is necessary to be able to draw some conclusions from
it, and without this ability the modelling language is of little use. Usually behavioural
reasoning involves the comparison of different processes through behavioural relations,
such as behavioural equivalences and preorders. A behavioural equivalence defines
when two processes’ behaviours are in some way indistinguishable, and thus the one
process can be substituted for the other. A well known and understood behavioural
equivalence is bisimulation, where two processes are considered equivalent if they can
match each other’s moves in each state they find themselves in. Bisimulation and asso-
ciated equivalences will be described in more detail in subsection 2.3.1. Another, much
coarser equivalence is trace equivalence, where two processes are considered equivalent if
they possess the same sets of possible atomic move sequences. Between these two equiv-
alences there is a whole range of relations with different characteristics as described by
van Glabbeek (2001).

A behavioural preorder on the other hand describes when one process (or the be-
haviour thereof) is in some way “less-than-or-equal-to” another process. For instance,
simulation requires that one process be able to match another process’s move in each step



24 Chapter 2. Literature Review

(but not vice-versa). Preorders tend to be types of refinement relations, stating when a
given implementation of a system satisfies a specification process, having at least the
specified features.

A behavioural relation can either be semantic or axiomatic. A semantic relation is a
relation defined in terms of the transition systems which two processes represent – such
relations associate directed transition graphs. An axiomatic relation on the other hand
is defined directly on the process syntax, and shows the algebraic properties of various
process operators. For instance, it may be desirable that choice is associative and com-
mutative. These types of relation are in no way mutually exclusive, for instance it is pos-
sible to take a semantic equivalence such as bisimulation and axiomatise it over a given
calculus. Once axiomatised it must be shown that the axioms are consistent with the
semantic equivalence (soundness) and that every equivalence pair is represented (com-
pleteness). Some process calculi combine the two approaches, for example the π-calculus
(Milner, 1999) is first given a small axiomatic equivalence called a structural congruence
which is then used as a basis for the operational semantics. A possible advantage of
axiomatisation over a semantic equivalence is that it overcomes the need to generate a
transition graph, which can be very costly.

I will now outline bisimulation in more detail.

2.3.1 Simulation and Bisimulation

The simulation preorder is one of the simplest semantic relations which can be formed on
labelled transition systems. Simulation states, in essence, that for one system to simulate
another, it must be capable in every state of performing all the same transitions, and
each pair of resulting states must also be similar. Due to the nature of Labelled Transition
Systems, relations defined on them are invariably (co)inductively defined, as is the case
with simulation. We can therefore describe the condition for similarity between two
processes P and Q semi-formally thus:

A process P simulates a process Q provided for every Q′ into which Q can evolve by doing α
there is a corresponding process P ′ into which P can evolve by doing α and P ′ simulates Q′.

That is, P can match every single action of Q (but may also have additional actions),
and the resulting states P ′ and Q′ have the same property. If we think of it as a game in
which to “win” means that P simulates Q, then any move which Q can make must be
countered by an identical move from P .

If this relation is also made symmetric, so that the processes much match each other’s
moves, the equivalence formed is called a bisimulation. Bisimulation is almost tanta-
mount to process algebra (particularly CCS), in that many theories are based on it and
a great deal of work has been done in trying to explore it. Bisimulation can be defined
inductively:



2.3. Process Algebra 25

Definition 2.3.1 Bisimulation
A relationR ⊆ P×P is a bisimulation provided that for all 〈P,Q〉 ∈ R:

• If P α→ P ′ then ∃Q′.Q α→ Q′ and 〈P ′, Q′〉 ∈ R

• If Q α→ Q′ then ∃P ′.P α→ P ′ and 〈P ′, Q′〉 ∈ R

The finite relations induced by this definition can be combined to create a coinductive
relation ∼ called bisimilarity, the set of all bisimilar process pairs:

∼ =
⋃
{R | R is a bisimulation}

Then P ∼ Q means that there exists a bisimulation R with 〈P,Q〉 ∈ R. Bisimu-
lation is usually used indirectly as an equivalence relation for a process calculus. One
of the most frequently used variants of bisimulation is weak bisimulation, also known as
observation equivalence, which allows a more component-oriented view of processes.
Process languages frequently contain one or more special, distinguished actions called
silent actions sometimes written as τ . This action stands for activity which occurs but is
not directly observable. For instance, if two agents can communicate, when a transition
system is formed for the combined process, this communication must have a transition
associated with it so that both agents can move forward. However, since this is effec-
tively a private communication, no other party can take part, and thus a silent action is
substituted. Weak bisimulation takes advantage of the fact that, since silent actions are
effectively irrelevant to any observer, they can be ignored when checking two processes
for equivalence. This idea is formalised through the creation of a derived weak transi-
tion relation⇒. This transition relation references only observable actions which can be
seen by another process.

Definition 2.3.2 (Weak Transition Relation)
Given a labelled transition system (P,Λ,→) where→ ⊆ P × Λ × P . The associated weak

transition relation⇒⊆ P × Λ× P is the smallest relation closed under the following rules:

−
P

ε⇒ P

P
α→ P

P
α̂⇒ P ′

P
ε⇒ α̂⇒ P ′

P
α̂⇒ P ′

P
α̂⇒ ε⇒ P ′

P
α̂⇒ P ′

(where P, P ′ ∈ P , α ∈ Λ, and α̂ = ε if α ≡ τ and α otherwise)

The special label ε refers to an empty sequence of actions. It can either represent a se-
quence of silent actions, or a null transition, since the relation is reflexive. Therefore the
weak transition relation identifies a sequence of τ transitions with doing no transition at
all. The relation characterises the states into which an action can lead when surrounded
by silent actions. The hat is used to map the τ action onto the empty sequence. A weak
bisimulation is then simply a bisimulation over a weak transition system, where all tran-
sitions are replaced by weak ones. Weak bisimulation can therefore be interpreted as



26 Chapter 2. Literature Review

the same relation as bisimulation, but on a different transition system, i.e. (P,Λ,⇒).
Nevertheless, it is usually specified in the following (equivalent) way:

Definition 2.3.3 Weak Bisimulation
A relationR ⊆ P×P is a weak bisimulation provided that for all 〈P,Q〉 ∈ R:

• If P α→ P ′ then ∃Q′.Q α̂⇒ Q′ and 〈P ′, Q′〉 ∈ R

• If Q α→ Q′ then ∃P ′.P α̂⇒ P ′ and 〈P ′, Q′〉 ∈ R

As for normal (strong) bisimulation, we can then define the relation encompassing
all weak bisimulations, called weak bisimilarity:

≈ =
⋃
{R | R is a weak bisimulation}

Having described the fundamental concepts of process algebra, I now proceed to
review the most important and fundamental calculi.

2.3.2 Communicating Sequential Processes

Process Calculus development largely began in the late seventies, building on much
previous work in classical automata theory (von Neumann, 1951; Rabin and Scott, 1959)
and programming language theory (Dijkstra, 1975). It was primarily an effort to consider
concurrency as a general mathematical concept to be modelled, rather than the existing
ad-hoc methods found in the contemporary concurrent programming languages.

Hoare (1978) begins from a traditional concurrent programming paradigm. Exist-
ing methods of modelling concurrency, such as shared variables and semaphores, whilst
suitable for their domain of problems did not provide a general theory of how a con-
current programming language should be formed. Furthermore, at a physical hardware
level constructing such methods is fraught with difficulties.

Therefore, his new approach was to take an existing language model, namely Dijk-
stra’s guarded command language (Dijkstra, 1975), and extend it with fundamental op-
erators to enable concurrency. Dijkstra’s basic language consists of all the operators one
would expect to find in an imperative programming language, in particular sequencing,
choice, repetition and variable manipulation. Hoare essentially adds two things, an in-
put and an output command, which enable a process to send or receive a message, and
a parallel construct which allows two processes to be executed concurrently. Two paral-
lel processes may communicate when one nominates the other by name to send output
to, while the other nominates the first to receive input from. Processes may not other-
wise share data, and variables are scoped only over a sequential process. He then used
this model to demonstrate how a number of problems may be solved, in particular the
famous “dining philosophers” synchronisation problem.

This simple model further evolved and became the process calculus CSP, which is
described in further detail in the CSP book (Hoare, 1985). CSP has been widely applied



2.3. Process Algebra 27

in the field of formal methods for verification of concurrent systems. CSP theory is based
on trace semantics, where each program is represented as a set of action sequences, rep-
resenting all the possible paths a program may execute. CSP contains the follow basic
operators:

• e→ P – perform the event e and then behave like process P (prefixing);

• P �Q – make a choice betweenP andQ based on their first action (external choice);

• P u Q – make a choice between P and Q by allowing them to make the decision
internally (internal/non-deterministic choice);

• P 9Q – interleave the actions of P and Q;

• P |[A]|Q – require P and Q to synchronise on the actions contained in set A;

• P/A – hide the actions contained in set A.

Actions in the latter version of CSP are not (in contrast to the earlier model described
by Hoare (1978)) only uni-directional, that is to say inputs and outputs. Actions all have
the same direction and multiple parallel processes may synchronise on the same action
simultaneously, provided they are in the action set. This kind of synchronisation is called
multi-party synchronisation and it is something that forms a key part of the work in this
thesis.

2.3.3 Calculus of Communicating Systems

In contrast to Hoare’s CSP, Robin Milner’s Calculus of Communicating Systems (Milner,
1980, 1989a) did not start out as a programming language. The aim was always to com-
pletely remove state manipulating commands and switch entirely to processes as purely
mathematical expressions. Thus the theory of CCS holds that the sole core concepts
needed for a theory of distributed systems are communication and concurrency. With
this in mind, CCS is built around two key concepts. Firstly observation, where par-
allel processes are said to observe the visible actions of their peers and cannot distin-
guish systems where the observations are identical. This follows even if the components
are implemented very differently – to quote Milner “two systems are indistinguishable if
we cannot tell them apart without pulling them apart”. Secondly synchronised communi-
cation, where a communication between two agents of a concurrent system is seen as
indivisible and foundational to the calculus. Furthermore, the heart of the calculus is
the parallel composition operator, which allows two systems to run in parallel. Indeed
it is viewed as so central that it supersedes traditional programming combinators such
as sequential composition. This is demonstrated by the small number of constructs in
the basic finite calculus. If E and F are process expressions, then the following are also
process expressions:



28 Chapter 2. Literature Review

• 0 – the inactive process which can do nothing;

• α.E – action prefixing (as in CSP);

• µX.E – recursive fixpoint with process variable X ;6

• E +F – choice (which can be internal if either E or F is prefixed by a silent action,
or external otherwise);

• X – a process variable for building recursive expressions;

• E \ a – prevent observers from seeing a actions originating from process E;

• E | F – two processes running in parallel (parallel composition).

These operators are given in order of binding precedence (excepting nullary opera-
tors), from highest to lowest. Actions α (∈ A ) are split into three classes in CCS, regular
actions a(∈ Λ), coactions a(∈ Λ) and silent actions τ . Actions and coactions broadly
represent inputs and outputs, though they are entirely abstract in nature. When two
parallel processes can perform an action and coaction with the same underlying label, a
synchronisation can occur and a silent action τ is produced. The semantics for the core
operators of CCS is shown in Table 2.1. An example CCS process composition can be
seen in Figure 2.3. It if made up of two agents P and Q which repeatedly communicate
with each other until P encounters a c input, at which point the communication ends.
The processes communicate on a restricted channel called b.

Action prefix, choice and recursion are called dynamic operators because they reduce
after doing only one action. Processes built with only the dynamic operators are called
sequential. In contrast parallel composition and restriction are static operators because
they never reduce. The contrast is imortant because the use of static operators within
recursion allows CCS to become infinite state and Turing complete (Milner, 1989a).

CCS is undoubtedly one of the most well known process calculi today, and almost
synonymous with bisimulation semantics. Although not original in many ways, CCS was
one of the first calculi to identify the fundamental concepts of concurrent systems and
provide a concrete and useful theory behind them. CCS’s equivalence theory is based
on weak bisimulation, though its actual equivalence relation is a derivation called obser-
vation congruence. The reason for this is that weak bisimulation itself is not a congruence
relation with respect to all the operators of CCS. An equivalence relation is a congruence
whenever any two equivalent process P andQ remain equivalent when placed within an
identical context (i.e. a process with a hole , such as +R). For CCS, weak bisimulation
is not a congruence with respect to summation – there are equivalent processes which
can be distinguished by summation. For example although a.b.P ≈ τ.a.b.P , as expected
since weak bisimulation ignores τ actions, summing the two processes with c.d.Q leads

6Milner (1989a) mainly uses a variant of recursion based on process naming, but I adopt this one as it fits
in better with the other calculi in this thesis. It is the equivalent of Milner’s fix(X = E) notation.



2.3. Process Algebra 29

P //• a //
c
--

• b //•

b

��

•

Q //• b //• b //•

d

��

(P | Q) \ b //• a //
c
--

• τ //• d //•

τ

~~

•

P , µX.(a.b.b.X + c.0)
Q , µX.b.b.d.X

Figure 2.3: An example of CCS process composition

to two inequivalent processes. The reason for this can be seen in the representations of
the two processes below:

//• a //

c

��:::::::: • b //P //• τ //

c

��:::::::: • a //• b //P

• d //Q • d //Q

In the first state the second process can silently move into a state where a is possible
but c is not possible. This move can only be matched by the first process doing an ε

transition, i.e. an empty transition, and staying in the first state. However, since the first
process in the first state can do both an a and a c, this cannot be matched by the second
process, hence the two are not weakly bisimilar.

To resolve this problem, Milner introduces observation congruence which fixes the re-
lation so that empty steps are not allowed in the first state of each process. Specifically,
any initial τ must be matched by at least one τ , and not simply an ε. After the first step
normal weak-bisimulation is used, since only the first step can lead to a choice operator
being resolved. Observation congruence is defined below:

Definition 2.3.4 Observation Congruence
Two processes P and Q are observation congruent, written P u Q, provided:

• If P α→ P ′ then ∃Q′.Q α⇒ Q′ and P ′ ≈ Q′

• If Q α→ Q′ then ∃P ′.P α⇒ P ′ and P ′ ≈ Q′

At first sight this looks identical to weak bisimulation, but there are two changes.
Firstly α̂ has been replaced by α in the matching weak transition, reflecting the fact that



30 Chapter 2. Literature Review

Act
α.E

α→ E
Rec

E{µX.E/X} α→ E′

µX.E
α→ E′

Sum1
E

α→ E′

E + F
α→ E′

Sum2
F

α→ F ′

E + F
α→ F ′

Com1
E

α→ E′

E | F α→ E′ | F
Com2

F
α→ F ′

E | F α→ E | F ′

Com3
E

a→ E′ F
a→ F ′

E | F τ→ E′ | F ′
Res

E
α→ E′

E \ a α→ E′ \ a
α /∈ {a, a}

Table 2.1: CCS Operational Rules

empty sequences are no longer sufficient. Secondly it suffices only that the resulting
processes are weakly bisimilar – we do not construct a new inductive relationship, just
prepend the existing one. This relationship is indeed a congruence as proved in (Milner,
1989a). It therefore provides CCS with a useful behavioural equivalence which ensures
that processes cannot be distinguished when placed in identical contexts, a result vital
to any sort of component-based system.

Milner’s later paper (Milner, 1989b) also gives a complete equational axiomatisation
of the dynamic operators of CCS with respect to observation congruence. He also an
expansion law – an axiom schema which can be used to aid in converting a process con-
taining static operators into one with only dynamic operators, providing the process is
finite state (but see next Section). For instance, a simple parallel composition such as
a.P | a.Q can be rewritten as a.(P | a.Q)+a.(a.P | Q)+τ.(P | Q), and the expansion law
allows every static operator to be rewritten in his way. Hence the axiomatisation of “Full
CCS” with parallel composition is non-finite. It is therefore safe to say that CCS is the
first process algebra, a phrase coined later to describe calculi which identify the fundamen-
tal properties of their operators. Indeed, the quest to understand parallel composition
and the fix-point operators led directly to the next calculus I consider.

2.3.4 Algebra of Communicating Processes and Basic Process Algebra

Bergstra and Klop (1984) build on Milner’s work by studying the operators from an
algebraic perspective. ACP is described as an alternative formulation of CCS and this is
clear from the operators chosen. Indeed, ACP is not really one calculus, but a whole
range, each with different levels of expressivity. For instance the basic language ACP
does not contain silent actions, which are instead found in the extension ACPτ . The
equational rules of the basic form of ACP can be found in Table 2.2.

There are a number of key differences which distinguish ACP from CCS in an effort
to aid axiomatisation. ACP does not have action prefix, instead opting for a general



2.3. Process Algebra 31

x+ y = y + x
(x+ y) + z = x+ (y + z)

x+ x = x
(x+ y) · z = (x · z) + (y · z)
(x · y) · z = x · (y · z)

δ + x = x
δ · x = δ

x ‖ y = x T y + y Tx+ x | y
a · x T y = a · (x ‖ y)
aT y = a · y

(x+ y) T z = (x T z) + (y T z)
a · x | b = (a | b) · x
a | b · x = (a | b) · x

a · x | b · y = (a | b) · (x ‖ y)
(x+ y) | z = x | z + y | z
x | (y + z) = x | y + x | z

a | b = b | a
(a | b) | c = a | (b | c)

a | δ = δ
∂H(a) = a if a /∈ H
∂H(a) = δ if a ∈ H

∂H(x+ y) = ∂H(x) + ∂H(y)
∂H(x · y) = ∂H(x) · ∂H(y)

Table 2.2: The axioms of ACP

sequential composition operator p · q, taken from imperative programming. This leads
to a simple axiomatisation, with + being associative, commutative and idempotent, and
· is associative and right-distributive over +. ACP also has a deadlock operator δ, similar
to the CCS 0 operator and representing a process with no possible transitions.

The single parallel composition operator from CCS is replaced by three separate op-
erators, namely merge ‖, left-merge T and communication merge | . Merge is essentially
the same as CCS’s parallel composition (though it varies based on the ACP version).
Left-merge is the same except that the first action must come from the left hand-side
(and thus involves no synchronisation) after which it behaves like merge. Finally com-
munication merge requires that the first action be a synchronisation between both sides,
otherwise it deadlocks.

The reason for the three merge operators is somewhat involved. CCS’s algebraic the-
ory has an awkward approach to dealing with axiomatisation of parallel composition.
This operator is in general very difficult to finitely axiomatise and as a result CCS deals
with the problem by the use of the expansion law. The expansion law rewrites the paral-
lel composition operator in terms of summations by interleaving the actions and forming
synchronisations from the processes. The problem is, the expansion law is not an axiom
but an axiom schema, leading to an infinite equation system. Therefore, ACP provides
merge, left-merge and communication merge, which allow a finite axiomatisation of the
operator:

x ‖ y = x T y + y Tx+ x | y

That is, either x can act first, y can act first or the two can synchronise. It was later



32 Chapter 2. Literature Review

shown by Aceto et al. (2005) that the axiomatisation (this equation plus 8 others) can-
not be further simplified. Therefore direct finite axiomatisation of parallel composition
seems to be impossible. Hence my work will focus on operational semantics instead of
axiomatic semantics.

2.3.5 π-calculus

π ::= a〈x〉.π | a(x).π | π|π | (νx)π | !π | 0

Table 2.3: Syntax of π-calculus processes

π-calculus (Milner, 1999; Sangiorgi and Walker, 2001) is undoubtedly one of the most
famous process calculi to date. Although not foundational to my approach, it is im-
portant particularly in the Web service world where it has been much applied. The π
calculus can be thought of as an extension to CCS, or alternatively as a relaxation of
some of the restrictions on value-passing CCS, which in turn makes it Turing complete.
π-calculus is based on the concept of channel-passing. Value-passing CCS is a variant of
the CCS process calculus which attempts to make it more applicable to programming
by allowing values to be passed by an output action of one process to the input action
of another process (CCS actions are normally abstract and do not explicitly carry data).
π-calculus takes this one step further by allowing actual channel names to be passed
through channels. The syntax of π-calculus is shown is Table 2.3.

Some of the syntax is familiar from CCS, but there are a number of notable changes.
The output and input operators are extended thus, a〈x〉.P and a(x).P respectively, such
that the channel a is used to communicate the separate channel x. This is formally de-
scribed by the following reduction:

a〈x〉.P | a(y).Q −→ P | Q[x/y]

i.e. the channel x is sent from the left process to the right process over channel a, and
therefore the x channel is substituted for the bound variable y in Q. Since Q now knows
about the channel x it can use this for communication. The semantics for π-calculus is
given by a collection of reduction rules like the one above, and also a set of structural
congruence rules – axioms which set a base equivalence class for π processes.

The restriction operator of CCS is adapted in π to become the (νx)P operator (also
known as “new”), which rather than simply preventing the action being observed be-
yond the boundary, declares that the given channel is distinct from any other a channel
in the process topology. This is important, since a restricted channel x may now be
passed beyond the restriction boundary via an unrestricted channel a, and the scope
of channel x must grow to encompass the agent on the receiving end – a concept called
scope extrusion. It is the new restriction operator, and resulting scope extrusion, that gives
π its power (but also makes reasoning about processes difficult). To exemplify, I expand



2.4. Web services and Process Algebra 33

the definition of the above process and show the reductions:

(νx)a〈x〉.x(z).P ′ | a(y).y〈c〉.Q′ −→ (νx)(x(z).P ′ | x〈c〉.Q′) −→ P ′[c/z] | Q′

I assume two processes P ′ and Q′ which don’t contain x. In the first reduction the
synchronisation happens as before. However, notice that initially the x channel is re-
stricted to the left process only (or rather it is a new variable of the left process). When
the x channel is communicated over a the scope of x grows to also encompass the right
process – the scope has thus been “extruded”. The right process can then communicate
on x (something impossible in CCS since restriction boundaries are fixed) and send an-
other channel c to the right process, which is thus substituted into P ′. Since neither P ′

nor Q′ contains x the restriction boundary disappears at this point.

In addition π-calculus moves from recursion as a core concept to replication. The pro-
cess !P represents the spawning of process P in parallel many times. It is described by
the following structural congruence rule:

!P ≡ !P | P

Most work using π-calculus uses a slightly simplified variant called the asynchronous
π-calculus. In CCS there was always an implicit notion that a synchronisation is a two-
way action which allows both participants involved to progress, and this was inherited
into π. However, in this asynchronous variant an output must be the last action an agent
performs, meaning that all outputs are performed asynchronously and there is no way
of accounting for when they have been performed. Only input actions may guard a
process, e.g. a(x).P is an input process and ax is an output process.

The work in this thesis does not involve π-calculus directly, but it is useful for com-
parison. Firstly because much of the existing work on Web services focuses on π (see
Section 2.4.2 for example), and secondly because π-calculus and related calculi are ca-
pable of describing a wide variety of systems. π-calculus has been shown to be Turing
complete (Sangiorgi and Walker, 2001) and thus a great many problems can be specified.
Nevertheless, the equivalence theory is also many times more complicated than that of
CCS and it is far from clear if the channel passing paradigm is truly the ideal model for
Web services.

2.4 Web services and Process Algebra

As we have seen the purpose of process algebra is to model the behaviour of entities
and the communications which happen between them. It should therefore come as no
surprise that process algebra, and particularly the π-calculus, has been an inspiration for
the formal description of Web services. For instance the language WS-CDL (Kavantzas



34 Chapter 2. Literature Review

et al., 2005), which allows description of the communication protocol engaged in by a
group of services, draws much of its inspiration from CCS and π. Likewise the more
recent versions of WS-BPEL (Jordan and Evdemon, 2007) include constructs which are
directly adopted from π such as the parallel forAll construct (the equivalent of !P ). The
communication model is also heavily based on link passing. It is therefore fair to say
that there is a strong relationship between Web services and process algebra.

There are broadly two approaches to the application of Process Algebra to modelling
Web services: a high-level and a low-level approach. The first approach involves creating a
purpose-specific language for Web services and then giving a formal theory to it. Some-
times this language will have a basis in an existing process calculus, but will always
contain operators specific only to their context. For instance Orc (Misra and Cook, 2007)
is a Web scripting language with operators for sending messages to Web services along
with various process algebra style combinators. Similarly cCSP (Butler, Hoare and Fer-
reira, 2005) is a language based on CSP for modelling compensable transactions. Both
of these languages are purpose-built – although based on pre-existing process algebra
ideas, they are tooled to a particular area.

The second approach is to use a general theory like CCS or π-calculus to model Web
services in terms of well established process algebraic operators. For instance there have
been a number of attempts at giving a semantics to WS-BPEL in terms of π-calculus, such
as (Lucchi and Mazzara, 2007). Likewise our own work (Norton et al., 2005) giving a
semantics to OWL-S directly uses a timed process calculus to model the various constructs
of the language using a variety synchronisation patterns.

The advantage of the first approach is a language which will clearly represent the
intent, whilst the advantage of the second is pre-existing formal theory and generality.
In this section I will consider examples from both perspectives.

2.4.1 Transaction Calculi

There are a number of calculi which have been created expressly for the purpose of
describing business processes. Most of these calculi are in the style of either CSP or ACP
and are essentially about composing workflows and transactions with process algebraic
constructs. They are therefore purpose-specific calculi, building on existing work but
extending this with Web service operators.

The first offering is StAC (Chessell et al., 2002; Butler and Ferreira, 2004) (Structured
Activity Compensation), a formal language for describing compensable transactions. A
process in StAC can either succeed (accept), abort or trigger compensation. It includes
the standard process algebra constructs such as sequence, choice, parallel and hiding, but
in addition contains a number of operators for handling exceptional behaviour. Of most
relevance is the compensation operator P ÷Q, which states that Q is a compensation for
the process P . When process P successfully completes, the compensation Q is installed,
so that if compensation is triggered it will be executed. To set the bounds of a compen-



2.4. Web services and Process Algebra 35

sation StAC also has a transaction scoping operator [P ] which limits the compensations
triggered to those inside P . If part of P fails to execute all the compensations executed so
far will be executed in the reverse order. For instance in [P ÷P ′ #Q÷Q′ #� #R] ‖ S, where
� is a compensation trigger, P thenQwill be executed, followed by their compensations
Q′ then P ′, with S being executed independently since it is outside the scope.

StAC is a unique language in that, unlike the other languages we will examine,
scopes do not implicitly dispose of the enclosed compensation actions upon comple-
tion. Rather, there are two explicit commands to do this, accept (X) which purges the
current compensation context, and reverse (�) which executes the current compensation
context. Furthermore, in order to give StAC an operational semantics, it is extended to a
more general version called StACi. Here, not only is the compensation context retained,
but in addition there are multiple indexed compensation contexts. For instance P ÷2 Q

adds the compensation Q to context 2, which will only be executed by explicitly calling
it using �2. This facility makes the semantics of StACi quite complex, and it depends on
an index-to-compensation map being carried around in the operational rules. Neverthe-
less, this is an important feature as WS-BPEL allows compensation handlers to be called
manually, and not necessarily only in reverse order (which WS-BPEL terms the “default”
compensation). Thus StAC is an important development, as it is one of the few calculi
which can faithfully represent the semantics of WS-BPEL (Butler, Ferreira and Ng, 2005),
albeit with a complexity tradeoff.

Following the ideas presented in StAC, a further process calculus was developed
called Compensating CSP (cCSP) (Butler, Hoare and Ferreira, 2005), based on CSP (Hoare,
1985). It includes the standard operators of CSP, and adds transaction blocks and in-
terrupt handling, as in StAC. However, it is a much simpler language than StAC with
fewer operators and greater emphasis on compositionality (it does not include multi-
ple compensation contexts). The trace semantics of CSP is extended to completed traces
with an exit status for the trace, which can either be success (X), failure (!) or yield (?).
A compensable process is represented by a pair of traces, the first representing the be-
haviour and the second the accumulated compensation. When a compensable action
successfully terminates it installs its compensation by prepending it onto the compen-
sation trace, which will be run if failure occurs. Processes can be placed within a block,
which defines the scope of a transaction. When a whole block completes successfully, the
compensation trace is simply thrown away and the result is the successful trace. Oth-
erwise the result is the trace with the compensation trace appended. An example of a
cCSP process is shown below:

[A÷ P ;B ÷Q;C ÷R;THROW ;D];E;F

where A,B, · · · , P,Q · · · ∈ Σ for an action alphabet σ, A ÷ P represents A with com-
pensation P , ; represents sequential composition, THROW throws an exception and [P ]
represents P enclosed as a transaction block. This process would have the completed



36 Chapter 2. Literature Review

trace (A,B,C,R,Q, P,E, F ), since A, B and C all execute, D can’t because an exception
is thrown first, the compensations are run in reverse order, and then E and F run as
non-compensable processes.

Butler and Ripon (2005) further extend cCSP with a (small-step) operational seman-
tics, for which correspondence with the trace semantics is claimed. This allows a broad
framework in which cCSP can provide the basis for an executable language, given by
implementing the operational rules in Prolog. Unlike StAC, cCSP represents a more
conservative model of compensation than WS-BPEL allows, but one for which theoreti-
cal results come more easily.

The third and final group of compensation languages we consider are the Sagas Cal-
culi, from Bruni, Melgratti and Montanari (2005). The calculus demonstrated is again
quite similar to cCSP in style, but has a number of differences, other than the style of se-
mantics. First is the method of exception handling, which relies on an execution context
to define if an action is successful or not, rather than having explicit throws. Secondly
the Sagas Calculi include the option of having compensations which fail, whereas in
cCSP they always succeed. To indicate this the Sagas Calculi also have an abnormal
termination action, along with cCSP’s failure and success actions.

However, a more important difference between this and cCSP, as described by Bruni,
Butler, Ferreira, Hoare, Melgratti and Montanari (2005), is the way that compensation is
handled in parallel processes. In cCSP, if an exception is raised in a transaction block, all
the parallel processes are interrupted and the compensations are started simultaneously.
Bruni et al. identify a total of 4 compensation strategies for parallel flows, namely:

1. No interruption and centralised compensation, where all parallel processes execute to
completion and only then does compensation occur;

2. No interruption and distributed compensation, where parallel processes perform com-
pensation independently and when required;

3. Coordinated interruption, where parallel processes are interrupted synchronously
when compensation is required, and then compensated centrally;

4. Distributed interruption, where parallel processes are interrupted asynchronously
when compensation is required, and then compensated independently.

The form of compensation in cCSP is identified as coordinated interruption. The Sagas
calculi has two semantics for parallel compensation; the naı̈ve semantics and the revised
semantics. The former simply allows all parallel processes to continue even after an ex-
ception is raised, triggering their compensations after completion, and corresponding
to no interruption and distributed compensation. In contrast, the revised semantics though
have extra signals to force interruption of parallel sagas, though unlike in cCSP the com-
pensations are started when they are ready to run, rather than at the same time. This is
identified as distributed interruption.



2.4. Web services and Process Algebra 37

2.4.2 π-calculus based calculi

Several authors have created calculi for representing compensation within a π-calculus
setting. These calculi usually have all the features of the asynchronous π-calculus, but
in addition have some sort of transaction operators. Due to the powerful nature of π,
authors usually provide a mapping from their extension back into the basic calculus. In
some respects this work is close to my own because of the CCS link, but on the other
hand this work is noticeably different due to π-calculus’s very different way of handling
concepts like recursion. Nevertheless, these calculi are much closer to being fully ab-
stract calculi than the purpose-specific transaction languages described in the previous
section.

Bocchi et al. (2003) present a calculus called πt for describing transactional Web ser-
vices based on the π-calculus. Unlike cCSP and Sagas, πt is a fully fledged communi-
cating process calculus with all the features of π-calculus, augmented with transaction
and abort operators. A transaction is a four-tuple t(P, P, P, P ) consisting of the forward
flow process, a process to be executed after a failure occurs, a “failure bag” consisting
of all the compensation processes accumulated so far, and a compensation process to
be executed should the enclosing transaction fail. Aside from the additional complexi-
ties of π-calculus, a major problem of the compensation method in this calculus is that
the order of compensations is not preserved. All compensations are simply executed in
parallel when a failure occurs.

Laneve and Zavattaro (2005) improve on this idea with webπ, an extension of π-
calculus with a more flexible transaction operator 〈|P ;Q|〉nx , but in a timed setting. P is
the forward flow of the transaction and Q is the compensation flow. The transaction
operator is parametrised over two variables: x, the channel on which exceptions can be
raised to trigger compensation, and n, a natural number denoting the time-out remain-
ing for the transaction. Every transition (or rather reduction) originating from inside the
transaction causes this time remaining to decrease by 1. If the time remaining reaches 0
and all nested transactions have been exhausted, compensation can take place. This is
effectively a highly bespoke form of maximal progress, where the specified number of
transactions must complete before compensation can be triggered. Lucchi and Mazzara
(2007) use a non-timed fragment of webπ called webπ∞ to give a partial formal seman-
tics to BPEL 1.1. However, as is the case with Bocchi et al. (2003), this calculus does not
take any account of compensation ordering.

To conclude, the π-calculus is probably the most well used calculus for modelling
service composition, particularly where WS-BPEL is involved. It clearly has a close rela-
tionship with Web-based systems because of its inherent dynamism. Furtheremore, with
a small extension it can be used to describe compensable transactions. However, it is still
questionable as to how much verification can be performed on the resulting model due
to its complexity. Hence in the next section I introduce another branch of process calculi
which also has a great deal of potential in this area.



38 Chapter 2. Literature Review

2.5 Timed Process Calculi

Timed Process Calculi are increasingly used, particularly in the Web service world (see
for instance Laneve and Zavattaro (2005); Bravetti and Zavattaro (2007); Wong and Gib-
bons (2008)), for reasoning about processes with a temporal dimension. A Timed Process
Calculus augments the foundational concept of abstract processe with some way of mea-
suring time. The best way to quantify time is subject to much debate, and different kinds
of problems undoubtedly require different ways of approaching this question. Broadly,
there are two paradigms for timed process calculi:

• Real-time process calculi, which add some sort of physical time passage to the
transition system;

• Abstract-time process calculi, which take a more logical approach to time, trying
to seek the high-level concepts which time can address.

The former were the first considered by researchers, and in many ways represent
a more natural paradigm; their development also laid much of the groundwork which
would later be used for the latter. The abstract time paradigm highlights the fundamen-
tal properties of discrete real-time and uses these to construct a process calculus which
exhibits a more general form of timed action. As we shall see, this abstract action (called
the clock) provides something very different from real-time modelling, in that it draws
out some of the fundamental concepts needed for component modelling. Indeed, the
approach I take in this thesis to Web service modelling is very much of a low-level variety
of process calculus (See section 2.4). I will not be creating a Web service calculus as such;
rather I will use a timed process calculus to model the fundamental synchronisation pat-
terns of business processes.

I now consider both of the paradigms of timed process calculi in turn.

2.5.1 Temporal CCS and discrete real-time process calculi

P ::= 0 | X | a.P | (t).P | δ.P | P ⊕ P | P + P | P |P | P \ a | P [a 7→ a] | µX.P

Table 2.4: TCCS Syntax

We proceed with our brief study of real-time process calculi by looking at one of the
foremost of these calculi, Temporal CCS (Moller and Tofts, 1990) (TCCS). Although not
the first and by no means the only real-time process calculus it crystallises many of the
key ideas of this field. Its syntax is shown in Table 2.4. TCCS is a conservative extension
of CCS which adds the concept of a process waiting for time to pass before proceeding
with its next action. It does this via a timed prefix operator (t).P , where t is the period
of time which must elapse in the environment before the remaining behaviour of P can
proceed. For instance:



2.5. Timed Process Calculi 39

(3).a.P 1 ///o/o/o (2).a.P 1 ///o/o/o (1).a.P 1 ///o/o/o a.P
a // P

This process represents the passage of (discrete) time one unit at a time. Time transi-
tions in TCCS are represented by wiggley arrows, whilst regular CCS actions are repre-
sented by straight arrows. The time transitions can in reality be any time period remain-
ing, such as 2 or 3 in this case. Parallel processes all move forward at the same speed
with respect to time, as the illustration of process (3).P | (2).a.(1).Q below demonstrates:

(3).P 2 ///o/o/o/o/o (1).P ___ (1).P 1 ///o/o/o P

(2).a.(1).Q 2 ///o/o/o a.(1).Q a // (1).Q 1 ///o/o/o Q

Initially only 2 time units can elapse, and therefore the former process has to wait
for the second process to perform its a action before continuing. The reason for this is
that the regular α actions of CCS are taken to be insistent (also called urgent) by default –
an unguarded insistent action will not permit time to progress further before the given
action is performed. Specifically, processes such as a.R do not admit time transitions, the
a action always pre-empts the clock action.

Central to this axiom is the assumption that all actions in CCS are instantaneous, since
their occurrence does not initiate a passage of time. Time may only pass between two
observable events; this is central to interleaving semantics as a whole in that actions
are all-or-nothing. Therefore, TCCS also includes a delay prefix operator δ.P which de-
scribes a process which will patiently (and non-deterministically) wait any period of time
before P can proceed. The actions of P are all enabled but time passage is also permitted.
Therefore a process such as δ.a.Q can either perform a or allow time to elapse. A process
is “patient” if it allows time to pass, and insistent if it will not. Time in TCCS is therefore
relative – it passes at the rate that the processes will allow.

These principles are found in many areas of Computer Science, particularly includ-
ing concurrent programming languages where it is known as the two-phase functioning
approach, described by Nicollin et al. (1993). In the first phase elementary tasks which
are assumed to be atomic and therefore instantaneous (relatively speaking) are required
to execute. In the second phase when no more atomic tasks remain and all processes
are in agreement that time may pass, the clock moves time forward one step. When only
silent actions are considered instantaneous, and regular actions such as a are thus patient,
this is known as the maximal progress assumption (Yi, 1991), which I will further describe
in Section 2.5.2.

Using the operators of TCCS we can build a basic timeout structure, δ.P +(t).Qwhich
can proceed with P during the period before t has elapsed and can then timeout to Q.
For instance with P , a.b.0 and Q , c.0 and t = 2 the following transition system is
admitted:



40 Chapter 2. Literature Review

• b //•

//• 1 ///o/o/o

a
..

• 1 ///o/o/o

a
33

• c //

a

AA�������� •

This process waits for an a until 2 time units have elapsed. At this point c becomes
enabled as well. This may represent, for instance, a timeout on receiving a message. If a
parallel process can provide an a before 2 time units have elapsed the clock will be held
up due to the maximal progress assumption and the synchronisation on a will occur.

The actual sort of t can vary depending on the application, though Moller and Tofts
(1990) use a discrete sort for simplicity, resulting in discrete time. If by contrast the sort of
t were to be the positive rationals or reals, the result would be dense time, where any two
events are separated by an infinite number of occurrences. Whilst it is generally possible
to finitely axiomatise discrete time calculi, such is not always the case with dense time.

Time in TCCS is inherently deterministic – it is impossible for two different states to
result from an identical time passage. This leads to an important axiom of timed process
calculi:

Definition 2.5.1 Time determinism

For any process P and time period σ, if there exists processes P ′ and P ′′ such that P σ→ P ′ and
P

σ→ P ′′ then P ′ ≡ P ′′.

Specifically, it is impossible that an identical passage of time could lead a process to
two different states. This provides a particular challenge when dealing with the CCS
choice operator, and thus there are two such operators in TCCS: + and ⊕. The first oper-
ator + requires that both sides proceed when time passes without reducing the operator.
Only once one of the two processes can perform an action will the choice be resolved.
The second operator ⊕ can resolve the choice if one side requires more time to pass that
the other. In this instance the slower of the two processes will be chosen, for instance in
(1).P ⊕ (2).Q the right-hand process is chosen. Neither of these operators violates time
determinacy, and as we shall see this is one of the key assumptions behind most timed
process algebras.

TCCS provides an excellent insight into the area of real-time process algebra, and
although I will not be utilising it directly, many of the principles carry over into the area
of abstract time.

2.5.2 Temporal Process Language and abstract time

P ::= 0 | Ω | X | σ.P | bP c(P ) | a.P | τ.P | P + P | P |P | P [a 7→ a] | P \ a | µX.P

Table 2.5: Syntax of TPL



2.5. Timed Process Calculi 41

TPL (Hennessy, 1993; Hennessy and Regan, 1995) can be considered one of the first
process calculi to formalise the idea of abstract time. Like TCCS, it is a conservative ex-
tension of CCS. TPL’s syntax can be found in Table 2.4.7 Its main addition is a binary
timeout operator bP c(Q) which means, in essence, if the process P cannot perform any
internal activity then a timeout to Q is possible, similar to the timeout demonstrated in
the previous section. For instance the process ba.b.0c(c.0) has the following transition
system:

• b //•

//• σ //

a

AA�������� • c //•
Unlike in TCCS, this “timeout” is not a quantified timeout, in that it isn’t associated

with a particular time limit, but rather refers to a point in the system at which every
process should move onward to a new phase in the time-line. Thus the “clock” σ in TPL
is a multi-party synchronisation action – every process in the system must have ceased its
activity before the clock can tick. This is achieved by the maximal progress assumption,
which states that the passage of time can only be observed provided every process in
a system has progressed maximally, i.e. completed its internal activity, and thus agrees
that time may advance. This is illustrated below:

a // b // ______ σ //

a // ______ c // σ //

___ b // τ // c // σ //

Three agents engage in a simple conversation, but as soon as all three have finished
and thus no more possible τ transitions remain the clock ticks, indicated by σ. Specifi-
cally, the clock can tick because all three agents have progressed maximally. If we extend
CCS’s action sort with an action σ representing the passage of time, then the maximal
progress assumption, in the context of TPL, can be defined formally as follows:

Definition 2.5.2 Maximal Progress
For any process P , if there exists a process P ′ such that P σ→ P ′ then there does not exists a P ′

such that P τ→ P ′ (also written as P τ9).

That is, the passage of time and presence of executable silent actions are mutually ex-
clusive. Unlike in TCCS, visible actions like a are not instantaneous but patient, meaning
that they allow time to pass. Only silent actions are instantaneous, and as a result there is
no need for TCCS’s δ operator, since all processes are patient by default, e.g. a.P σ→ a.P .

7Hennessy actually presents a slightly different syntax to this, but the operators here are the same and I
wish to retain uniformity between the different calculi.



42 Chapter 2. Literature Review

E ::= 0 | α.E | bEcσ(E) | dEeσ(E) | E + E | E|E | E \ a | E/σ | ∆ | ∆σ | µX.E | X

Table 2.6: Syntax of CaSE

2.5.3 Multiple Clock Calculi and CaSE

TPL and single-clock calculi like it are somewhat limited in the sort of systems they can
describe. Effectively TPL is a generalisation of TCCS in that there is a single global (and
thus) absolute clock which the whole system uses to observe time passing. Indeed, it
is possible to embed the majority of the operators of TCCS into TPL. Much work has
been done to take relative time one step further. Multiple Clock Timed Process Calculi,
rather than having a single global clock which measures time at the same speed for every
agent, allows a system to be governed by several independent clocks σ, ρ, · · · ∈ T , for
some clock sort T . Clock ticks are relative to the actions of the system and to each other,
and do not necessarily possess an absolute measure, being more logical in nature. The
main advantage of multiple clocks rather than a single unified clock is that a system can
be componentised. Each component can then measure time relative to itself without the
need for reference to the global system, which enables compositional modelling.

CaSE(Norton et al., 2003), the Calculus for Synchrony and Encapsulation, is an abstract
time process calculus with multiple clocks. Along with TPL, it is based on two pre-
vious multi-clock calculi called PMC (Processes with Multiple Clocks) (Andersen and
Mendler, 1994) and CSA (Calculus of Synchrony and Asynchrony) (Cleaveland et al.,
1997). It is a conservative extension of CCS with a timeout operator and it adheres to the
maximal progress assumption. The complete syntax for CaSE can be found in Table 2.6.

CaSE retains the timeout operator from TPL, but parametrises it over the clock over
which the timeout is made, i.e. bP cσ(Q) σ→ Q and bRcρ(S)

ρ→ S. However, since there
are multiple clocks it is possible for them to interact in different ways and therefore CaSE
has two timeout operators, both of which are parametrised over the clock:

• Fragile timeout, bEcσ(F ) which reduces to F when σ ticks, or to E′ whenever E
performs any other action, i.e. E α→ E′;

• Stable timeout, dEeσ(F ) which is the same as fragile timeout, except that if E
performs a clock tick then the timeout operator does not reduce.

Fragile timeout can therefore be seen as a timeout where another clock can interrupt
the timeout clock, whereas in stable timeout another clock cannot directly interrupt the
timeout clock.

Perhaps the most important addition CaSE introduces is the idea of clock hiding,
an idea first experimented with by Lüttgen (1998) and further by Kick (1999). Hiding
a clock, written as P/σ, creates a boundary for σ in that processes composed after σ is
hidden cannot detect it ticking. Hiding causes all transitions on σ from P to be replaced



2.5. Timed Process Calculi 43

Figure 2.4: Synchronous Hierarchies
(Lower numbered compartments have higher priority.)

by silent actions, in a similar way to CSP’s hiding operator. Since maximal progress is
global, this causes all other clocks to be held up whenever the hidden clock can tick.
Thus hiding a clock effectively prioritises it, and the order in which clocks are hidden
defines the order in which clocks are prioritised. For instance whenever P σ→ P ′, then
P/σ

τ→ P ′/σ and therefore any clocks hidden after this will always be prevented from
ticking by σ. Nested hiding of the same clock (e.g. P/σ/σ) has no effect in CaSE, as a
clock once hidden is removed permanently from use.

Hiding leads to a further key concept in this process calculus, called synchronous hier-
archies, which is central to component modelling. The idea is that a component is itself a
collection of components, and will be modelled in CaSE via a hierarchy of clock regions
delimited by the hiding operator. Each component will have a collection of clocks to
guide its execution, for example to indicate when the component has finished executing.
Until this clock for each sub-component has ticked, and thus exhausted its silent actions,
the clock of the higher-level is held up. All sub-components must therefore complete be-
fore the parent component, since their clocks must tick first. This is illustrated by Figure
2.4 where a hierarchy of processes is given an implicit execution order based on their
nesting. This introduces a fundamental dependency relation and gives CaSE its power.

Furthermore, CaSE has two additional urgency operators, ∆ and ∆σ, which allow
even more options and aid in axiomatisation. These two operators allow all clocks or
a given clock to be held up, respectively. Specifically, ∀σ.@P ′.∆ σ→ P ′ for any σ, and
@P ′.∆ρ

ρ→ P ′. These operators can be summed with a process to make it insistent, or they
can be used to stop one clock from ticking and thus allow another clock in the hierarchy
(which would otherwise be held up) to tick. For instance the process a.E is patient on
every clock, but by summing it with a ∆ – i.e. a.E+ ∆ – it becomes insistent, preventing
time from passing until a has occurred (as in TCCS). For the difference between insistent
and patient prefix see Figure 2.5 – basically a patient process has self-transitions on all
clocks in T for there are no a timeouts present.

The ∆ operators also make it impossible to decide which clocks can tick in a process
simply based on the non-temporal transitions it can do, since the presence of any ∆



44 Chapter 2. Literature Review

Idle
0 σ→ 0

Act
α.E

α→ E
Patient

a.E
σ→ a.E

Stall
∆σ

ρ→ ∆σ

1

Sum1
E

α→ E′

E + F
α→ E′

Sum2
F

α→ F ′

E + F
α→ F ′

Sum3
E

σ→ E′ F
σ→ F ′

E + F
σ→ E′ + F ′

Com1
E

α→ E′

E | F α→ E′ | F
Com2

F
α→ F ′

E | F α→ E | F ′
Com3

E
a→ E′ F

a→ F ′

E | F τ→ E′ | F ′

Com4
E

σ→ E′ F
σ→ F ′ E | F τ9

E | F σ→ E′ | F ′
Res

E
γ→ E′

E \ a γ→ E′ \ a
2

TO1
E

τ9
bEcσ(F ) σ→ F

TO2
E

γ→ E′

bEcσ(F )
γ→ E′

3 Rec
E

γ→ E′

µX.E
γ→ E′{µX.E/X}

STO1
E

τ9
dEeσ(F ) σ→ F

STO2
E

α→ E′

dEeσ(F ) α→ E′
4 STO3

E
ρ→ E′

dEeσ(F )
ρ→ dE′eσ(F )

1

Hid1
E

σ→ E′

E/σ
τ→ E′/σ

Hid2
E

α→ E′

E/σ
α→ E′/σ

Hid3
E

ρ→ E′ E
σ9

E/σ
ρ→ E′/σ

1

where: 1) ρ 6= σ 2) γ /∈ {a, a} 3) γ 6= σ 4) α 6= σ

Table 2.7: CaSE Operational Semantics

operators must be taken into account. In particular P τ9 =⇒ P
σ→ does not necessarily

hold.

The CaSE semantics are detailed in several papers, firstly the main paper at CON-
CUR ’03 (Norton et al., 2003) and two workshop papers (Norton and Fairtlough, 2004;
Norton, 2005a), the latter of which gives the semantics shown in Table 2.7 (though with-
out the labels). Note that these semantics use the notation P

γ9 as a shorthand for
@P ′.P γ→ P ′ – i.e. that P is incapable of performing a γ. CaSE’s actions are drawn
from two sorts, (α ∈)A which contains the normal actions of CCS and T which contains
all the clock action σ, ρ, · · · . Therefore, the LTS for CaSE is of the form (E ,A ∪ T ,→)
where →⊆ E × A ∪T × E is the least relation closed under the rules of Table 2.7. The
symbol γ refers to an action drawn from either sort (i.e. A ∪ T ). Many rules in the
semantics are familiar from CCS as this is a conservative extension.

First note the way that clock ticks interact with choice in rule Sum3: a clock ticking
cannot decide a choice, but rather, as in TCCS, both sides must advance for the clock
to tick. This is required because CaSE also adheres to time determinancy. For instance
in a process bP cσ(Q) + bRcσ(S) both sides of the choice must tick on σ, or an action
of either P or R must occur. If σ does tick the resulting process is Q + S. The rule for



2.5. Timed Process Calculi 45

Action Prefix Clock Prefix
Insistent Patient Insistent Patient

a.P
a //P a.P

σ

�� a //P σ.P
σ //P σ.P

ρ

�� σ //P

Figure 2.5: Insistent vs. Patient Prefix

parallel composition (Com4) simply states that, provided both sides can advance on a σ
and E | F cannot perform a τ (i.e. they cannot synchronise), then E | F can advance on
σ. Naturally this inductively allows any number of parallel processes to synchronise on
σ provided a τ transition is not present anywhere.

The semantics of the fragile timeout is given by two rules, TO1 and TO2. The first
rule states that the timeout to reduce by doing a σ provided the LHS process E cannot
perform a τ action (recall that all the actions in E are enabled in a timeout). The second
rule allows any action, including clocks other than σ, from the left-hand side can reduce
the timeout operator, and hence disable σ.

The semantics of stable timeout is similar, except it has three rules, STO1-STO3. The
former two are essentially the same as the two rules of fragile timeout, except that the
latter only allow non-clock actions to reduce the operator. The third rule STO3 allows
any clock other than σ on the LHS to tick, but instead of reducing the timeout operator,
it is retained. Stable timeout is therefore static with respect to clocks other than σ. Only
a non-clock action on the LHS can reduce it. This is useful for several reasons, including
that it allows the specification of a patient clock prefix operator, i.e. σ.E , d0eσ(E). Since 0
allows any clock to tick, placing it on the LHS of a fragile timeout operator would cause
it to reduce immediately. However, placing 0 on the LHS of a stable timeout operator
leads to a construct which will always allow any clock to tick, and therefore can only
reduce by timing out on σ. Without stable timeout it would only be possible to build
an insistent clock prefix operator – i.e. σ.E , b∆cσ(E) – whose sole transition is σ and
therefore holds up all other clocks. The difference between patient and insistent clock
prefix is shown in Figure 2.5 – as for action prefix, a patient clock prefix simply means
every clock without a timeout has a self-transition.

The final three rules, Hid1-Hid3 provide the semantics for the hiding operator. The
first states that if a process E can evolve into E′ by doing a σ then when σ is hidden, it
should be instead converted to a τ action. The second rule simply allows all non-clock
actions through without change. The last rule allows any clock other than σ to tick across
the hiding operator, but only provided E cannot do a σ. If E can do a σ then clearly a τ
is possible in E/σ and all other clocks should be held up.

As for CCS, CaSE’s equivalence theory is based on weak bisimulation which is restated
in this way8:

8The statement “a symmetric relationR” means that all clauses of the definition apply in both directions
for each pair. It removes the need to write down each clause twice.



46 Chapter 2. Literature Review

//• σ //

a

��<<<<<<<< • ρ //

a

##GGGGGGGGGGG P + a.Q //• σ //

a

��<<<<<<<< • τ //

a

��======== • ρ //P

Q Q Q Q

Figure 2.6: Example of why Temporal Weak Bisimulation is not a congruence

Definition 2.5.3 Temporal Weak Bisimulation

A symmetric relationR is a temporal weak bisimulation provided that for all 〈P,Q〉 ∈ R:

• If P γ→ P ′ then ∃Q′.Q γ̂⇒ Q′ and 〈P ′, Q′〉 ∈ R

We write P ≈ Q when there exists a temporal weak bisimulationR such that 〈P,Q〉 ∈ R.

Naturally enough this is not a congruence relation as indeed it isn’t for CCS because
of the initial silent action and summation issue described in Section 2.3.3. Now, however,
there is also an additional problem with summation and additionally timeout, since, as
per rule Sum3, the operator is static with respect to clock ticks, e.g. σ.P +a.Q

σ→ P +a.Q.
As we know a silent action is capable of resolving a choice. Therefore even though
σ.ρ.P ≈ σ.τ.ρ.P , the two can be distinguished by summing with a.Q as illustrated in
Figure 2.6, since the τ resolves the choice before ρ occurs in the latter. Since this is more
than simply a problem with the first transition, it is necessary to construct a new relation
which is called Temporal Observation Congruence.

Definition 2.5.4 Temporal Observation Congruence

A symmetric relationR is a temporal observation congruence provided that for all 〈P,Q〉 ∈ R:

• If P α→ P ′ then ∃Q′.Q α⇒ Q′ and P ≈ Q;

• If P σ→ P ′ then ∃Q′.Q σ→ Q′ and 〈P ′, Q′〉 ∈ R.

We write P u Q when there exists a temporal observation congruenceR such that 〈P,Q〉 ∈ R.

The first part is identical to the clauses in Milner’s version, it applies only to non-
clock action and forces a τ to be matched by at least one τ , after which temporal weak
bisimulation can be followed as before. If a clock transition occurs, then this is strongly
matched to prevent any clock sequence being broken by τ transitions. Therefore this
definition forces any initial sequence of clock to be strongly matched, and only after an
action occurs does it revert to temporal weak bisimulation. Hence this is a congruence
relation as demonstrated by Norton et al. (2003). Temporal Observation Congruence has
also been finitely axiomatised (Norton, 2005a) and uses an enhanced version of Milner’s
expansion law.



2.5. Timed Process Calculi 47

Figure 2.7: Isochronic Broadcast

Component Modelling in CaSE

Having examined CaSE’s theory I now turn attention to looking at its use in Web service
modelling. CaSE, like CCS before it, lends itself well to component modelling because
of its hierarchical nature. Components can be specified which are entirely abstract, with
only input and output actions visible to the environment. Furthermore global maximal
progress, as we have seen, induces an implicit dependence relationship between a whole
component and its sub-components. Nevertheless, multi-clock abstract timed process
calculus can also provide a number of other important features.

One of CaSE’s main applications prior to its use in Web service modelling was
dataflow (Norton and Fairtlough, 2004). Compositional dataflow modelling in CaSE is
achieved primarily through a construct called isochronic broadcast. This is a deterministic
form of broadcast which uses a clock to decide when an output has been passed on to
every member of an unbounded set of recipients, as illustrated in Figure 2.7. This con-
trasts with CSP’s form of broadcast which is non-deterministic and passes on data to any
subset of the waiting receivers. CCS cannot represent this construct for an unbounded
set of receivers – prior knowledge is required – but in CaSE a component’s dataflow
structure need not alter if sub-components are added or removed.

A transition system showing a basic broadcast agent is shown in Figure 2.8. Here an
input a is received in the first state, and the broadcast clock σc is held up. In the second
state c is output multiple times. The assumption is that each agent receiving c is within
the hiding boundary of σc. This being the case, σc will only tick once all agents who can
receive a c have done so. It then returns to the first state, so as to receive another input
to pass on. This simple construction makes compositional representation of dataflow
connections possible.

Because of its clear links to component modelling, CaSE has been used to give a
compositional operational semantics to the OWL-S semantic web service composition
language (Norton et al., 2005). The original application of CaSE was to specification
of composite Digital Signal Processors (DSPs), imperative transformers of digital signals.
The underlying idea is that applications for designing and implementing such systems
must allow rapid changes and verification of updated specifications. The advantage



48 Chapter 2. Literature Review

c

σc

a
σc

µX.a.µY.bc.Y cσ(X) + ∆σ

Figure 2.8: Isochronic Broadcast Agent

of CaSE is its flexibility in creating a compositional semantics for a language, so that
model updates need only touch the relevant parts. Temporal Observation Congruence
also enables process decomposition, and thus component substitution at the language
level. Service oriented applications also require rapid updates as the Web is by nature
highly dynamic, and therefore CaSE seems to be a natural fit.

The CaSE OWL-S semantics works on the basis of a synchronous protocol which is
used to orchestrate execution of the control-flow. Each OWL-S process is represented as
a composition of sequential CaSE processes, composed with a series of schedulers which
administer execution. Each process has a precondition for execution, which usually in-
volves receiving inputs from the environment. The resulting processes can then be recur-
sively composed with other schedulers for different control-flow patterns. The structure
of a sequential workflow with schedulers is shown in Figure 2.9, which represents the
sequential composition of three schedulers p1 · · · p3. Each component abstraction (perfor-
mance in OWL-S) is composed with a scheduler which informs it of when it can execute
via a number of channels which will be described shortly. Schedulers for sequential
composition are shown in Figure 2.10.

In this semantics all patterns are list based, and therefore have two schedulers, one
for the head process and one for each of others (the tail). The process on the left orches-
trates the head process, whilst the one on the right orchestrates the tail processes. The
precondition for readiness of a sequential composition is simply readiness of the head
process, since the head process may inductively satisfy the tail process and so on.

The r channel stands for ready, the e channel stands for execute and the t channel is a
control token (as in token ring networks). The i subscript is used to differentiate the chan-
nels of the internal process being scheduled from the environment which also follows
the scheduling protocol. In this case, the head scheduler first waits for the composed
process to indicate readiness via communication on channel ri. The readiness signal is
then passed on to the environment via r, which replies with permission to execute via e.
Permission to execute is then passed onto the enclosed process with ei. Completion of
this execution is indicated by the cessation of activity from the process (internal activity
indicated by the dashed transition), and detected by the ticking of clock σn (where n is
the name of the process in question). As shown in Figure 2.9 each performance has a
dedicated clock, σp1 · · ·σp3 , for this purpose. The scheduler then outputs on a ti channel



2.5. Timed Process Calculi 49

Sequential

ri

ei

e

σp1

σp2

σp3

r

ti

t

ti

t

e

r

σw

e

r
p1

p2

p3

Scheduler1

Scheduler2

Scheduler3

Figure 2.9: Sequential Workflow composition

• r //• e //•
ei

��
//•

ri
11

•σmoo •tioo

σm

dd •σnoo •oo_ _ _

• ri //•
ei

��
//•

t
11

•σmoo •tioo

σm

dd •σnoo •oo_ _ _

µX.ri.r.e.ei.σn.bti.σm.Xcσm(X) µX.t.ri.ei.σn.bti.σm.Xcσm(X)

Figure 2.10: Transition diagrams for sequential schedulers



50 Chapter 2. Literature Review

(if possible), which passes control onto the next scheduler in the sequence.
The tail process is very similar except it requires a token from the previous scheduler

before it can execute its respective process. It does not communicate with the environ-
ment as permission for the whole sequence to execute has already been secured. Once
it has received the token it proceeds to execute its process in the same way as the head
scheduler. Completion of all processes is detected by the ticking of the last clock σm

(m is the name of the sequential workflow, w in Figure 2.9), which synchronises all the
schedulers and indicates overall completion.

The complexity of this semantics is primarily caused by the need to handle precon-
ditions, and the need to retain compositionality. In this semantics it is wholly possible
to add or remove processes in the sequence without a changes to others, specifically
through compositionality of parallel composition. Furthermore, sequential composition
does not really do this semantic system justice. A better example is the OWL-S any-order
construct, which allows the execution order of a list of components to be determined
purely by their preconditions. The scheduler in this case is almost identical, except that,
where in sequential composition the t channel is restricted to passage between two com-
ponents, in any-order the t can be sent to any waiting scheduler.

2.5.4 Calculus of Broadcasting Systems

Although not strictly speaking a timed process calculus, CBS (Prasad, 1991, 1995) is nev-
ertheless relevant to this study. It has a similar set of operators to CCS, but has a very
different model of communication to the two party “hand-shake”. Like CaSE and other
abstract time process calculi, CBS focuses on multi-party synchronisation. However, in
CBS communications take the form of one-to-many broadcasts. The idea is that one pro-
cess “speaks” by a w! action, and several processes “hear” by w?, in a similar way to
CaSE’s isochronic broadcast. The basic rules for the two prefix operators look like this:

w!p w!−→ p w?p w?−→ p

For instance, in process a!P | a?Q | a?R | a?S, the first agent outputs an a, whilst the
remaining three input an a, all simultaneously resulting in P | Q | R | S. Core to this are
the following rules for parallel composition:

p
w!−→ p′ q

w?−→ q′

p|q w!−→ p′|q′
p

w?−→ p′ q
w!−→ q′

p|q w!−→ p′|q′
p

w?−→ p′ q
w?−→ q′

p|q w?−→ p′|q′

These allow an output to synchronise with an input to form a composite output ac-
tion and an input to synchronise with another input to form a composite input action.
An output action composed with an input action absorbs the input action to remain as
an output action, whilst two input actions are combined to one. Two outputs do not
synchronise. These rules are very similar to the clock transition rules for parallel com-
position (cf. Section 2.5.3), the difference being that clocks do not require an “initiator”



2.6. Conclusion 51

action to realise a concrete action. CBS also has an idea of patience, since both the nil
and prefix operators hear any message without evolving (provided, of course it is not
the message being listened on):

0 w?−→ 0 w?p v?−→ w?p
v 6= w

w!p v?−→ w!p

CBS therefore is worthy of consideration, and I will draw on some its ideas in my
calculus. Although it will be essentially a timed process calculus, I will be adding a new
operator that will enable a CBS style broadcast, though in more limited circumstances
(see Chapter 6). Interestingly, CaSE can already do a very similar broadcast to CBS
(which is simpler than isochronic broadcast). For example the process a!P | a?Q | a?R
can be written as the following process in CaSE: a.σa.P | µX.aσa .σa.X | σa.Q | σa.R.
Here the clock σa acts as a proxy for the input action. The additional agent I’ve added
ensures that σa won’t tick until a has been received. Having a clock as an input action
may not seem desirable, but this nevertheless show the similarity CaSE and other calculi
like it have with CBS.

2.6 Conclusion

The aim of this Chapter has been to demonstrate the clear links between process algebra
and Web services. A secondary aim has been to show that timed process algebra, and
particularly abstract timed process algebra provide a beneficial paradigm for modelling
service composition. In the remainder of this thesis I take these ideas further, and use
an abstract time process calculus to give a compositional semantics to a wider variety of
service composition constructs.





Chapter 3

Functional Programming in Haskell

In this Chapter I will review the core features of the purely functional programming
language, Haskell. Haskell is a language which contains a number of very ad-
vanced programming features, particularly related to abstraction and type theory. It
is very well suited to the implementation of formal systems, as I hope this Chapter
will demonstrate. Haskell will be used for implementation of my process calculus and
Web service orchestration engine in Chapter 8, and therefore it merits a review. I will
survey the basic features of Haskell, such as types, inductive functions and classes.
I then describe how Haskell handles imperative computation through Monads, how
it handles concurrency, and finally examine some of the most recent type-system
extensions.

3.1 Introduction to Haskell

HASKELL (Peyton-Jones, 2003) is a purely functional programming language.
In contrast to imperative programming, where a program is a sequence of
commands acting on an abstract state, a functional program is built by com-

posing together functions, which produce outputs by calculation on the inputs. Haskell
is purely functional because unlike classical functional programming languages like LISP,
the output to a function must be calculated solely from the inputs, without any form of
interaction with the real world. Haskell’s functions are thus referentially transparent –
they must always produce the same output from the same inputs, since there are no
references and no pointers directly involved.

Functional programming is also characterised by the heavy use of primitive induction.
Most of the time functions and types are created using primitive induction, the input
is used against one or more inductive cases, and one or more base cases. This makes
Haskell useful for solving problems where a large amount of pure mathematics is in-
volved, since it incorporates many of the required concepts as core constructs.

Haskell is by no means a static language definition, and although it remains true to

53



54 Chapter 3. Functional Programming in Haskell

its conceptual roots there is much work on expanding it. The latest formal standard is
Haskell ’98, but this usually provides a bare minimum for what a Haskell implemen-
tation will provide. One of the most popular Haskell implementations is the Glasgow
Haskell Compiler (GHC) which is very much at the fore-front of cutting edge develop-
ment1. It turns out that many of these latest developments suit my needs very well and
so in this Chapter I provide a concise outline of the key features of Haskell along with
some pertinent recent developments.

3.2 Types

Haskell is strongly typed, meaning that each function must be assigned a type at compile-
time and this cannot change at run-time (except in the case of polymorphism, but see
below). Haskell’s type-system is one of its defining characteristics since it prevents a
large number of faulty programs from compiling which other less strongly typed lan-
guages permit. In this chapter we look at the basic features of Haskell’s type-system,
though more advanced concepts (such as Generalised Algebraic Datatypes) will be dealt
with later on.

3.2.1 Defining Types

There are three ways to define types in Haskell:

1. By type synonyms, which effectively act as short cuts to other types. For instance:

type Number = Int

2. By data functor, known as newtype, which does the same as a type synonym, but
creates a new concrete type with a data constructor instead of simply a synonym.
For instance:

newtype Number = NumCons Int

Hence, a new constructor is created – NumCons :: Int→ Number.

3. By data type definition, the most commonly used method which allows the defini-
tion of a type as a sequence of constructors, each with a set of type parameters. For
instance:

1Much of this work is also being used to create a new standard called Haskell’ (Haskell prime). For more
information see http://hackage.haskell.org/trac/haskell-prime/.

http://hackage.haskell.org/trac/haskell-prime/


3.2. Types 55

data Number =
IntCons Int |
FloatCons Float |
VectorCons Float Float

Each constructor definition is separated by a pipe |, and again defines a function
into the new type, for instance VectorCons :: Float→ Float→ Number.

Datatypes can be pattern matched in function definitions and are closely associated
with structural induction, one of the most common ways of defining types and functions
in Haskell. The list type in Haskell, as in most functional languages, is one of the most
commonly seen instances of an inductive datatype. A list is defined as either 1) an empty
list (the base case) or 2) an element followed by a list (the inductive case). For instance,
we could represent an inductive list in Haskell using the following data-type definition:

data List a =
EmptyList | Cons a (List a)

Notice that the list type is itself parametrised over another type a, which is the type
of element in the list. Parametric types are also a key feature in Haskell, since they allow
partially defined types, whose parameters can be filled in later by the user. Parametric
types can also be found in Java in the form of generics2. An inductive function over the
list datatype is written like so:

length :: List a → Int

length EmptyList = 0
length (Cons x xs) = 1 + length xs

Notice we distinguish each case of the type and either bottom out or reapply the
function inductively. The list type is so ubiquitous that it is built in to Haskell, written as
[a] and its two constructors are [] and (:), though the notation [1, 2, 3, 4] :: [Int] may also
be used.

3.2.2 Type-class Polymorphism

In addition to monomorphic type definitions, Haskell also supports polymorphism. Using
polymorphism it is possible to write functions which act on inputs constrained by a type
class, rather than a single type. A type class in Haskell consists of a collection of methods

2See http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html.

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html


56 Chapter 3. Functional Programming in Haskell

and must be instantiated for each type which the methods can act on. For instance one
of the most simple type-classes is the Eq class which contains all the types whose values
can be tested for equality:

class Eq a where

(==) :: a → a → Bool

(/=) :: a → a → Bool

This class has a two methods (==) and (/=) (the brackets mean they are infix func-
tions) which take two values of the given type a and test them for equality or inequality,
respectively. An instance for the datatype Bool would look like this:

instance Eq Bool where

True == True = True

False == False = True

True == False = False

False == True = False

Inequality is usually defined automatically as simply the negation of equality, and
this is the case here. If the programmer then wishes, for example, to constrain a function
refl using this type class, he could define the function type as follows:

refl :: Eq a ⇒ a → Bool

The constraint Eq a can be thought of as a logical constraint, that is if Eq a is true (i.e.
a satisfies Eq), then this function can be applied to values of type a. All such constraints
are implicitly placed under a universal quantifier ∀ (written as forall in Haskell), thus
the full type of refl is ∀a.Eq a⇒ a→ Bool. Haskell’s forall quantifier can also be used
to create existentially quantified types, where a type is identified merely in terms of its
constraints. For instance a datatype containing any value in the Num class, the class of
Numbers, is defined like this:

data NumT = ∀ a . Num a ⇒ NumC a

Notice that NumT isn’t parametric – I have “hidden” the type of the encapsulated
value behind the quantifier in variable a. The constructor NumC therefore has type
∀a.Num a⇒ a→ NumT – it will inject any type in the Num class into the NumT type.
When we deconstruct it we must therefore get a value in the Num class out – specifi-
cally of type ∃a.Num a⇒ a, although Haskell doesn’t have an explicit exists keyword,



3.3. Monads 57

it is implied by the context. The only thing we can do with the contained value is apply
functions in the Num class to it, as we don’t know anything else about it. Existentially
quantified types are therefore useful for defining heterogeneous collections where the
only functions available on the values are those defined in a type-class.

3.3 Monads

In Haskell, a monad is a unary type constructor M along with two functions. A monad
can be considered, at this point, as a “container” for some type a. The first function
known as unit or return in Haskell injects a value into the monad and has type a→ M a.
The second function called bind or >>= in Haskell composes a monad containing a type
a with a function from a to the same monad containing another type b. It has type
M a→ (a→ M b)→ M b. These functions are gathered together in the type-class Monad.

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b) → m b

For our purposes, a monadic value M a can be thought of as a computation for ac-
quiring a value of the parametrised type a. Therefore, return is a computation which
does no work and simply returns a constant value. Bind (>>=) takes a computation pro-
ducing a value of type a, a function mapping such a value to a computation producing
another type b, and binds these two together producing a value of type b. Bind is there-
fore a kind of sequential composition which threads a value through. Using these two
functions Haskell effectively has a kind of imperative sub-language, where the abstract
state is represented by M. Haskell provides an alternative syntax for monads built using
the two functions which shows this even more clearly:

addInputs :: MyMonad Int

addInputs = do x ← getNumber

y ← getNumber

return (x + y)

The syntax used here is called the do-syntax. Basically, it is a shorthand for writing
a collection of computations and combining them sequentially using bind (>>=). In
addition, intermediate values of the computation may be stored in simple aliases using
x← c, which assigns the value produced by computation c to alias x.

The idea in addInputs is that there is a computation called getNumber :: MyMonad Int

which will, by some method, acquire a value of type Int using the monad called My-
Monad. This method is applied twice in sequence, and the returned values are stored



58 Chapter 3. Functional Programming in Haskell

in variables x and y. These values are then added together and their sum is returned.
Notice that the return value is not simply of type Int – this value returned cannot be
automatically separated from its computational context. Clearly we don’t know how
MyMonad is implemented, it is just an abstract monad from which we know a number
can be acquired and the two operations can be executed. It could be the case that it is a
completely pure computation involving only an internal state, in which case the value
can be extracted, however this may not be the case.

One of the most complicated monads in Haskell is the IO monad, which allows
Haskell access to the real world. A value may never be separated from the IO monad
as it depends on the state of the world which can never be completely known. The IO
monad is used to do all the “dirty” work in Haskell, such as performing communica-
tions over a network – transactions which are external to the CPU and thus inherently
unreliable. The IO monad is how Haskell can do real-world computations and still re-
main pure, because impurely acquired values are locked in the box, and therefore the
language still remains referentially transparent. A “magic” function of type IO a→ a

breaks this referential transparency. Nominally, IO can be viewed as a transformation of
an imaginary type called “RealWorld”, which represents the state of the world. A typical
IO computation is readLine :: IO String, which takes no functional inputs and produces
the string which the user types in on the keyboard.

However, apart from IO there are a large number of pure monads in Haskell which
are essentially function abstractions. That is to say, the method of producing their value
can be collapsed to a series of pure functions, rather than operating on an external state.
One of the simplest pure monads is the Maybe monad, a parametric type which can
either convey a value or nothing.

data Maybe a = Just a | Nothing

The Maybe monad represents the computation of a value with the possibility of an
error occurring, where failure is represented by the Nothing constructor. This idea is
conveyed by its instance declaration of Monad:

instance Monad Maybe where

return x = Just x

Nothing >>= f = Nothing

Just x >>= f = f x

Returning a value in the monad simply wraps it in a Just constructor. When sequen-
tially binding two computations, if the first computation is Nothing signifying failure,
the composition is clearly also Nothing. If the first computation returns a value, signi-
fied by Just, then the value is applied to the function to give the resulting computation.



3.3. Monads 59

For instance, the following computation (using the do syntax) always fails, resulting in
Nothing:

myComp = do x ← doSomething

y ← doSomethingElse

z ← Nothing

return (x,y, z)

Even though x and y are both assigned values from computations which may suc-
ceed, both of them are followed by a failure indicated by Nothing and therefore the
fourth line returning the triple is never reached. The computation always results in
Nothing. Apart from being able to sequentially compose potentially failing computa-
tions, it is also useful to have an alternative branch if something does go wrong. This is
where another class closely related to Monad comes in called MonadPlus.

class MonadPlus m where

mzero :: m a

mplus :: m a → m a → m a

MonadPlus provides 0 and a + operator for monads, which may mean several things
depending on the context. Much of the time though MonadPlus is used to implement
a form of choice between computations, along with an explicit notion of failure embod-
ied by mzero. It can be thought of as a form of back-tracking, where the failure of one
computation leads to the execution of another.

The instance for Maybe is as follows:

instance MonadPlus Maybe where

mzero = Nothing

mplus Nothing m = m

mplus (Just x) m = Just x

The semantics of mplus is a very intuitive way of handling failure. If the first compu-
tation returns a value it is returned by the whole, otherwise the second computation is re-
turned (which may in turn contain additional choices). For instance, if I were to compose
the failing computation myComp with a constant value, i.e. myComp ‘mplus‘ return (1, 2, 3),
since the left-hand side always fails, the right hand-side is used to output an actual value.

Another example of a pure monad is the State monad. In contrast to the IO monad
which gives facilities not otherwise available in Haskell, State allows imperative code
with a mutable state variable. The structure of the State monad is as follows:



60 Chapter 3. Functional Programming in Haskell

newtype State s a = State {runState :: s → (a, s)}

A state monad is very intuitive. It consists of a function mapping the current state (of
type s) to an a value and a new state. For example, the state s may contain a collection of
variable assignments, and the computation of the output value a may involve use (and
alteration) of these variables. The instance of Monad for State looks like this:

instance Monad (State s) where

return x = State (λ s → (x, s))
(State f) >>= m = State (λs →let (x, s′) = f s

State g = m x in g s′)

The implementation of return simply returns the given value without changing the
state. The implementation of >>= first constructs a new function which applies the
incoming state to the first computation, giving an output pair (x, s′). The output value x

is then applied to the function on the RHS of bind and the intermediate state s′ is applied
to the new computation. Two further important functions of the State monad called set

and get are for mutating and accessing the state of the monad respectively.

set :: s → State s ()
set s = State (λ s′ → ((), s))

get :: State s s

get = State (λ s → (s, s))

The first is a function which ignores the incoming state and replaces it with the state
passed to the function. The second simply returns the incoming state as the output (as
well as maintaining it).

We have now examined three monads, all of which have a different feature set. The
IO monad provides real-world computations. The Maybe monad allows composition of
failing computations. The State monad provides a mutable state variable. But how do
we go about combining the features of multiple monads? The answer is Monad Trans-
formers, which allow monads to be “stacked”, enabling the combined feature set. The
idea is that a monad transformer is a monad which is itself parametrised over another
monad, and then computations in the encapsulated monad are performed via a “lift”.

class MonadTrans t where

lift :: Monad m =⇒ m a → t m a



3.4. Concurrent Haskell 61

For instance the StateT monad is the equivalent transformer for the State monad.
It allows the combination of a mutable state variable with whatever features another
monad provides (which may itself be another monad transformer).

newtype StateT s m a = StateT {runStateT :: s → m (a, s)}

In this instance what was previously simply a function producing an output value
and new state becomes a computation in the encapsulated monad.

instance MonadTrans (StateT s) where

lift m = StateT (λs → (m >>= λx → (x, s)))

The instance of MonadTrans implements lift for StateT. It takes the monad to lift,
and constructs a state transformation function which copies the original state, and out-
puts the value produced by the encapsulated monad in the parent StateT monad.

3.4 Concurrent Haskell

Concurrent Haskell is an extension which supports concurrent execution of IO monad
computations. It is similar to imperative concurrency extensions, such as Concurrent Java,
in that it is based on the thread concept, where a collection of independent threads are
scheduled for parallel execution, possibly across multiple processors. The main function
of Concurrent Haskell is forkIO :: IO ()→ IO ThreadId, which takes an IO computation
and spawns a thread for it to execute in, returning its identifier, ThreadId. The threads
are by default managed internally by GHC’s own scheduler, but there is an additional
function forkOS which runs the thread under any compatible operating system sched-
uler, such as the Unix process scheduler. Concurrent Haskell provides a number of addi-
tional functions for manipulating threads, usually found in its imperative counterparts.
For instance:

• killThread :: ThreadId→ IO () aborts a thread’s execution;

• yield :: IO () forces the execution of the current thread to pause until other peer-
threads have been given the opportunity by the scheduler to progress;

• threadDelay :: Int→ IO () forces the execution of the current thread to be sus-
pended for the specified number of milliseconds.

An important part of Concurrent Haskell is MVar, a polymorphic type which repre-
sents a thread shared variable. A value of type MVar a is a container for type a which



62 Chapter 3. Functional Programming in Haskell

can be either empty or full. When initialised using newEmptyMVar :: IO (MVar a) it be-
gins empty. A thread can then place a value inside with putMVar :: MVar a→ a→ IO (),
which another thread can then read using takeMVar :: MVar a→ IO a. If a thread tries
to take from an empty MVar, or populate an already full MVar, the thread will block un-
til the variable becomes populated. Using MVar it is possible to prevent race conditions,
since only one thread at a time may modify an MVar. In contrast multiple reads can be
achieved using readMVar :: MVar a→ IO a, which leaves the value in place. Care must
of course still be taken, because a dead-lock can easily occur when two threads compete
for two MVars.

GHC’s implementation of Concurrent Haskell is extremely competitive in perfor-
mance terms with its imperative peers. In recent benchmarks3 it has out-performed lan-
guages such as Java and GNU gcc in a number of concurrency related areas, such as fast
thread switching. In particular its memory requirements are many times less than those
of several of its competitors. It is not the most efficient in all areas, but is most certainly a
contender and therefore the choice of GHC Haskell for implementing a program where
concurrency is central is certainly justifiable.

3.5 Generalised Algebraic Datatypes

Generalised Algebraic Datatypes, or GADTs as they are more commonly known, are
a relatively new extension to Haskell which allow the constructors of data-types to be
assigned a type directly. I will use the standard example given by Peyton-Jones et al.
(2006) since it illustrates the point well. Consider the datatype for an expression using
Haskell 98 datatypes:

data Term =
LitI Int | − Integer literal
LitB Bool | − Boolean literal
Inc Term | − Increment the given term
IsZ Term | − Is the given term zero?
If Term Term Term | − If − then − else−
Pair Term Term | − Construct a pair from two terms
Fst Term | − Decompose a pair to the first element
Snd Term | − Decompose a pair to the second element

The syntax of this simple language allows many expressions which are not well
typed. For instance IsZ (LitB True) would fail to evaluate, as IsZ expects a number.
Ideally we need a type parameter to Term which publishes the type of the given expres-
sion. Standard algebraic datatypes, however, only ever allow this term to be the most

3See http://shootout.alioth.debian.org/gp4/

http://shootout.alioth.debian.org/gp4/


3.6. Type Families 63

general type a, for instance LitI :: Int→ Term a. This does not restrict the types of ex-
pression which may be passed at all.

GADTs provide a solution – instead of the above type, we can define it as follows:

data Term a where

LitI :: Int → Term Int

LitB :: Bool → Term Bool

Inc :: Term Int → Term Int

IsZ :: Term Int → Term Bool

If :: Term Bool → Term a → Term a → Term a

Pair :: Term a → Term b → Term (a, b)
Fst :: Term (a, b) → Term a

Snd :: Term (a, b) → Term b

GADTs allow the programmer to define each constructor as if it were a regular func-
tion, and thus instantiate the type parameters. Thus in this definition IsZ will only take
a term of type Term Int and produce Term Bool. Similarly, Fst expects a pair type and
produces a value of the type of the first element. GADTs represent a strengthening of
Haskell’s type system. Where in Haskell 98 different data constructors had to give the
most general type, now they can restrict this and provide greater guarantees about data.

One disadvantage of GADTs though is that since the type of the encapsulated data
depends on the type parameters, pattern matching cannot infer the types of this data.
As a result functions which use pattern matching must provide explicit type signatures.

3.6 Type Families

Type families (Schrijvers et al., 2008) are another recent extension to Haskell’s type-system.
A type family allows a datatype or type synonym signature to be separated from its body,
in a similar way to type-classes and instances. The body of a type will be determined by
the parameters of that type.

Type synonym families allow the declaration of what effectively amount to type func-
tions: functions which take types as input and produce other types as output. In the
previous section we saw how GADTs can be used to form datatypes whose type de-
pends on the type of the constructors’ parameters. Type functions allow this to be taken
one step further and have the type body formed by the invocation of a function on the
constructor types. An example given by Schrijvers et al. (2008) is the Vector type, which
is parametrised over its length and element type:



64 Chapter 3. Functional Programming in Haskell

data Z

data S n

data Vector n a where

VNil :: Vector Z a

VCons :: a → Vector n a → Vector (S n) a

They first define two types to represent natural numbers at type-level, Z for zero
and S for successor. These are phantom types in that they have no constructors, and
thus contain only one possible value, ⊥. Using these types, the number 3 would be
represented, for instance, as the type S S S Z. The Vector type is an inductively defined
GADT similar to the standard list type. It can either be VNil, in which case it has length
Z, or VCons in which it has length S n where n is the length of the tail vector. The question
then is how to define the type of the concatenation function for two vectors. Clearly the
length of the resultant vector will be the sum of the two vectors’ lengths. Type families
provide the answer, as shown in the following definition of vconcat.

vconcat :: Vector n a → Vector m a → Vector (n :+: m) a
vconcat VNil ys = ys

vconcat (VCons x xs) ys = VCons x (vconcat xs ys)

The body of vconcat is simple – it follows the standard definition for lists. The type
though has to sum the two vector lengths n and m. It uses the :+: type constructor to do
this, which is a type function as defined below:

type family x :+: y

type instance Z :+: y = y

type instance (S n) :+: y = S (n :+: y)

The first line declares the kind of the type family, specifically that it takes two other
types as parameters. We could equivalently write : + : :: ∗ → ∗ → ∗. The remaining
lines define the body of the type depending on the parametrised types. The body follows
the usual inductive definition for addition on natural numbers. Notice that the definition
uses type family recursion. Recursion on type families is very limited, since type families
must be decidable. The current implementation of type families in GHC as given by
(Schrijvers et al., 2008) supports only a single recursive call per body. Therefore it is
currently impossible to define multiplication, for instance.

A type family may also be associated with a class, in which case its members are
called class associated types (Chakravarty et al., 2005). The body of a type associated with



3.7. Conclusion 65

a class is then determined by the individual class instances, with the class just providing
only the type signature. For instance, we could declare:

class MyClass a where

type MyType a

myFunc :: MyType a → Int

This is similar to declaring a normal type family outside a class, but the difference
is that myFunc can make use of the knowledge about the structure of MyType a. If the
type family were declared outside a class, any function can only be declared forall a, and
not on an instance basis. This is useful, for instance, in defining an datatype index type
without using multiple class parameters:

instance Collection c where

type Index c

lookup :: Index c → c a → a

instance Collection List where

type Index List = Int

lookup k xs = xs !! k

instance Collection (Map k) where

type Index (Map k) = k

lookup k m = Map.lookup k m

In this example we have a class Collection which instantiates a parametric type rep-
resenting an indexed collection. The index type is populated by specifying a body for
the type Index in each instance. Then each collection can use its respective index types
to perform a lookup. The index for a list, for instance, is simply Int, and therefore this
is the body of Index [a]. Likewise, a Map is indexed by the parametrised key type k, and
therefore this is also the body of Index (Map k).

3.7 Conclusion

Haskell, as I have demonstrated in this Chapter, is a very capable language. It is also
increasingly the case that features from functional programming are finding their way
into more mainstream languages. The most well-known example is Java’s Generics4,
introduced in Java 5.0, which are very similar to Haskell’s parametric types and type-
classes. There are also moves afoot to include other functionally inspired features, such

4See http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html


66 Chapter 3. Functional Programming in Haskell

as Closures5, which are similar to Haskell’s lambda abstractions. Therefore Haskell can-
not simply be thought of as a toy, it is a serious language which is both useful, and
inspiring future programming features.

It therefore seems right that Haskell be the choice of language for my work. Haskell
is both formally based and practically useful, and can therefore help bridge the gap
between my process algebra theory and implementation of Web service composition.
Furthermore, it also provides an elegant and highly customisable syntax which, while
difficult for the novice programmer, is wholly suitable for specifying a formal system.
In addition, since it is equipped with powerful concurrency features and my own recent
advances in Haskell Web services (Foster, 2005), it seems Haskell is the ideal language
for creating a Web service composition server, which will integrate with existing tools. I
will therefore use Haskell in Chapter 8 to build the genesis of such an implementation.

5See http://www.javac.info/

http://www.javac.info/


Part II

Theory

67





Chapter 4

Contribution Overview

In this chapter I describe the main contributions of this Thesis. I frame a Web service
composition model called Cashew, and provide the groundwork for the following
chapters. The model consists of a three-level stack which describes how a Web service
description is refined from a diagrammatic representation, to a process model, to an
executable machine.

HAVING covered all the necessary theoretical groundwork for this thesis I now
proceed to outline my main contributions. My goal is to provide a novel ap-
proach to the study of service composition. At its core the aim of my work

is to provide a generic director model for Web service composition. Specifically, I will use
a Timed Process Calculus to represent the behaviour of a workflow as a synchronous
exchange between a collection of actor processes. Each behavioural element of a com-
posite Web service’s workflow will be represented as an actor process representing its
behaviour and the communications it makes with its environment. The communications
will adhere to a common protocol which will be used to constrain if and when the actor
performs. These processes will then be joined together by semantic combinators which
schedule their execution according to a particular pattern. For instance, a sequential
scheduler will require that the first element be executed to completion before the second
can begin.

This completed director model will yield a transition graph representing the be-
haviour of a workflow. Then, for verification, certain conclusions can be drawn about
the workflow. For instance, we might check if all the preconditions of a process are pro-
vided by its context. If not, that branch of the workflow will not be able to execute and
a deadlock may result. Furthermore, the nature of the director model will enable the
extraction of a Web service interface model (or choreography), which can be used to ad-
vertise its behaviour on the Web. More detail of the process architecture of my semantics
meta-model will be given in Chapter 6. For now I concentrate on my general approach
to modelling Web services.

In my model I highlight three distinct but related aspects of a workflow, each of

69



70 Chapter 4. Contribution Overview

Figure 4.1: A simple calculator orchestration as a UML 2 Activity Diagram



71

which has a stake in determining the execution order of a component. First of all is
the control flow, which as expected provides a number of combinators which strongly
constrain the order in which a group of processes can be executed. But since control
flow alone is rather static in nature, a workflow also has data flow which describes how
the data provided by one component are fed into another. An input may be mandatory
or optional and therefore data flow also enforces an execution order on components.
Finally since we are dealing with a Web service which necessarily communicates with its
client and other Web services, the execution order is also constrained by message flow.
Specifically, a workflow may require another Web service to complete an operation and
return a message before it can continue. Message flow also allows the differentiation of
internal from external choice, since it provides a method by which the client can make a
choice based on which message he provides.

All three of these aspects are found, to a greater or lesser extent, in the majority
of modern workflow systems, in particular WS-BPEL. For example, Figure 4.1 demon-
strates a simple calculator Web service as a UML 2 Activity Diagram. The service first
inputs an initial value, and then allows the execution of three operations on an accumu-
lator, in the style of a traditional push button calculator. The three operations are (for
simplicity) addition, division and a simple if statement, which returns the first value if
the accumulator is positive, or the second if negative. The process ends either when the
return message is received, indicating the user wishes the output to be given, or when
a division by zero is encountered. The main workflow of the calculator is called Wf-
Operation which takes an input, represented by object inNum, and outputs one of three
outputs, outNum, nan or return. This workflow inputs a number, taken from either the
initial message or from a previous computation, and waits for one of four operation mes-
sages (the fourth being the return button). Once one of these is received, a corresponding
sub-workflow (encapsulated in a performance) is executed to compute the next value. If
the incoming message corresponds to one of the three operations an intermediate value
is output which is then fed back into WfOperation. This workflow is then placed in a
loop, with the two exit conditions being the output of a return or nan.

This simple example shows clearly all three aspects of a workflow. There is a con-
trol flow which determines the overall order of activity, data flow which determines the
results of an operation, and message flow which is used to choose the next operation.
My approach will consider all three of these aspects rigorously and individually. I also
emphasise the importance of compositionality – the idea that the model’s semantics must
be expressible purely in terms of its parts. This property is of particular importance for
Web services for two main reasons:

• The model should support rapid application development with real-time verification
which allows incremental model construction. I envisage the user using an in-
teractive environment to build a diagram modelling their intended Web service
composition. Every edit that the user makes on the diagram will induce an edit on



72 Chapter 4. Contribution Overview

the underlying formal model. Thus, there will be no compile-execute cycle as the
model will be constantly up-to-date. For instance, we may wish to add additional
operations to the calculator but without recomputing the semantics of the opera-
tions we already understand. The underlying formal model will be used to inform
the user about any deficiencies in their existing model using a variety of model
checking techniques. Furthermore, compositionality ensures that any conclusions
we reach about part of the workflow (for instance using a temporal logic formula)
are still retained in a different component context.

• Web services are by nature highly dynamic and different parts will frequently need
replacing as the face of the Web changes. This becomes particularly the case with
the Semantic Web where services are constructed on the fly at the user’s behest. For
instance in the event that the Web service for adding numbers disappeared from
the Web, we would need to be able to replace it with another equivalent service
seamlessly.

Since my behavioural meta-model has compositionality as a core property, it is im-
portant that the behaviour of two components can be related through a semantic equiv-
alence and/or pre-order. This determines when a substitution can be made without
affecting the behaviour of peer processes. Hence, I will follow the rich collection of re-
search outlined in Chapter 2 Section 2.3 and create a novel process calculus. My approach
differs from other approaches such as Orc (Misra and Cook, 2007) in that I will not ex-
tend CSP, CCS or another abstract process calculus with Web service operators. Rather
my intention is to remain abstract and describe the director model through a variety of
synchronisation patterns. Through a small number of CCS-style operators and the use the
of abstract time each actor in the workflow can be scheduled and linked with its peers via
data flow. By describing a Web service’s orchestration this way we achieve composition-
ality, but in addition a Web service interface can be extracted from the resulting process.
My new calculus, CaSEip , will be discussed and given a detailed theoretical analysis in
Chapter 6, the main emphasis being on the compositionality result.

However, since the process calculus itself will not provide the constructs necessary
to directly build workflows, and it is indeed cumbersome to model them directly in a
CCS-like setting I will begin, in Chapter 5, by outlining an experimental language for
describing Web service orchestration called Cashew-A. The aim of this language is not
to supersede any existing workflow and Web service languages. On the contrary, my aim
is to provide what can be described as a mediation layer for workflow languages. That is
to say, my language will provide a core set of constructs with sufficient expressivity to
represent the ideas found in a wide variety of languages. Thus, suitable mappings from
languages such as WS-BPEL into my language will allow their programs to be studied
in a unified environment. I will demonstrate the generality of this language by reference
to the workflow patterns (van der Aalst et al., 2003) discussed in Chapter 2 Section 2.2.4.



73

Cashew-A is block-structured (rather than graph based) language and defines a com-
position in terms of workflows, where a workflow is simply a collection of abstracted
components called performances with a given ordering schema and data flow, includ-
ing inputs and outputs. The concepts behind Cashew-A originated from our study into
giving an operational semantics to the process model of OWL-S (Norton et al., 2005).
OWL-S does not allow the composition of Web services generally, but rather it allows
“operation composition” (Norton, 2005b) in which Web services are viewed as simple
input-output remote procedure calls. These procedures can then be joined together into
the control flow using the various constructs available, which as usual bear resemblance
to standard process algebraic constructs. In addition the OWL-S model allows for the
specification of dataflow connections between performances.

Cashew-A is built on these same ideas, but with a number of key differences. First,
the control flow element is given in the style of a basic process algebra. Since I will be
giving this language a compositional semantic theory using an actual process calculus
it is necessary that workflows can be easily built by composition. This will allow evolu-
tions in a Cashew-A composition to be directly represented at the lower levels. Second
the dataflow model is more flexible. Rather than having a data flow boundary around
each n-ary workflow construct, Cashew-A allows a workflow with control-flow built us-
ing algebraic control-flow combinators. Third, in keeping with the WSMO philosophy
we will allow Web service composition via goal composition. That is, we still compose
what are effectively one-shot input-output agents (goal preconditions and postcondi-
tions), but we also allow the specification of direct Web service communication through
message passing. However, the message passing will be restricted to strictly one partner
within a single component to avoid the need for π-calculus style channels.

The overall idea is, therefore, to present what is described by Norton et al. (2007)
as a three-level semantic stack, through which a diagram or high-level language can be
mapped into my intermediate workflow language, Cashew-A, and then finally into a
formal process-based behavioural meta-model. The three levels are as follows:

1. Diagram – a high-level user-end graphical description of the workflow, using a no-
tation like UML Activity Diagrams (UML2AD) or the Business Process Modelling
Notation (BPMN);

2. Cashew-A – a block-structured language in the style of a basic process algebra
with workflow constructs;

3. Process Model – a low-level timed process calculus, which provides labelled tran-
sition systems for the workflows.

The process specification can then be used for verification via a variety of model
checking techniques. In addition the process calculus will be mapped into a form of
abstract executable machine. Although the process calculus is abstract, I will make use



74 Chapter 4. Contribution Overview

Figure 4.2: An example of refinement from a diagram into a process model

of the various silent actions produced to attach real-world actions, such as sending a
message to a Web service.

An outline of such a refinement into a process specification is shown in Figure 4.2.
Here we have a UML Activity diagram description of a simple sequential process at the
top-level. This is then refined into control flow and data flow facets in the Cashew-A
language below. Finally this is converted into the process meta-model at the bottom
level. Each of the three activities, A, B and C is allocated an actor process to describe its
individual behaviour (which of course may in turn be composite). Various schedulers
control the execution of these actor processes by synchronising with them according to
a predefined pattern. For instance in this case the environment must allow execution
of the construct as a whole before the first element can be permitted to execute. Notice
also that the single dataflow connection also has an associated process which in a more
complicated process would ensure that the data is communicated between appropriate
actors.

Having described the conceptual stack, I now outline my proposed software archi-
tecture. It consists of three components, a high level Service Designer which allows a
software architect to describe a Web service using a diagram notation (or rather a subset
of one). Then there is the main part of the system, the Service Composer server. The
server holds an abstract model of the service being described in the Service Designer.
Every time the architect acts on the diagram, this action will be replicated by the server
on the model. The model contains the stack described above, but also some other pieces.
Since the low-level Abstract State Machine model is implemented in terms of media-



75

Figure 4.3: Overall Cashew Software Architecture

tors which are represented at a lower-level in the Process Model, it is necessary to map
Cashew-A onto the Cashew WSMO Ontology (Cashew-O) and store both models sepa-
rately. Cashew-A then feeds into the Process Model with updates to the service model,
and both feed into the Service Verifier which provides information back to the designer
about potential problems. Finally, the Process Model is mapped to an ASM and, using
the groundings represented in Cashew-O to provide a skeleton, a complete WSMO de-
scription is produced. This can then be submitted to a Service Broker to be published on
the Web. This software architecture is not implemented in this Thesis, but much work is
devoted towards a reference implementation of both the process calculus and Cashew-A
in Chapter 8. This final piece of work demonstrates the practical viability of my approach.

This concludes the overview of my contributions. To summarise, my contributions in
this thesis are as follows:

• As study of the Cashew-A language (Chapter 5);

• A novel abstract time process calculus called CaSEip (Chapter 6);

• An extensible semantic framework using CaSEip for Cashew-A (Chapter 7);

• An implementation of CaSEip in Haskell (Chapter 8);

• A partial implementation of the Cashew-A semantic framework (Chapter 8).

All of these together provide the underlying framework by which the software ar-
chitecture proposed above can be implemented. In the next Chapter I will begin the
discussion of Cashew-A.





Chapter 5

Service Composition Language

In this chapter I describe Cashew-A , my experimental service composition lan-
guage. Cashew-A is block-structured component language with process algebra
style operators for building control flow and data flow connections. I will extend this
language with compensation. I will also seek to justify my choice of operators for this
language by comparison with the Workflow Patterns and WS-BPEL.

5.1 Overview

CASHEW-A IS A FORMAL LANGUAGE for describing Web service composition in
a component-wise manner. My aim has been to design a concise language
with maximum generality in terms of the representable behaviour. Thus, un-

like previous work based on OWL-S (Norton et al., 2005), I use binary control-flow oper-
ators in order to achieve a more algebraic syntax, with n-ary operators being used only
when necessary. Along with our existing work, I use the workflow patterns (van der Aalst
et al., 2003) as an inspiration for the selection of operators which should be provided in
a modern workflow language. Though I have tried to integrate the maximum number
of these patterns, not all can be catered for as Cashew-A is a block-structured rather than
graph oriented language. For instance a workflow using the “arbitrary cycles” patterns
cannot be built by composition as this pattern is inherently graph-based (see Chapter 2,
Section 2.2.4). Nevertheless, it is my belief that the inclusion of both control and data
flow as first-class entities gives the maximum degree of flexibility, and a certain amount
of graph structuring can be achieved. A full review of my language with respect to the
workflow patterns is given in Section 5.8.

As explained in Chapter 4, Cashew-A is not intended to be used directly, but is rather
an intermediate language for a variety of other workflow languages. An example of
readable syntax is shown in Section 5.7. The idea of the language is to represent the
fundamental concepts which a service composition language should have, into which
other languages can be mapped.

77



78 Chapter 5. Service Composition Language

Figure 5.1: Overall view of a Cashew-A workflow

Cashew-A has two fundamental concepts which are used to construct a Web ser-
vice, the performance – an abstracted component with inputs, outputs, and internal
behaviour (possibly including a message exchange), and the workflow which composes
a collection of performances. A performance represents the instantiating of a compo-
nent in a particular context, whilst hiding the internal details. The execution order of
performances in a workflow is determined by three factors:

1. Control flow , the explicit order in which components are executed;

2. Data flow , how data moves between components, fulfils preconditions and thus
provides a further implicit order;

3. Message flow, the exchange of messages with a partner (the service choreogra-
phy). As in the WS-BPEL pick activity, messages can be used to determine the
direction of flow.

A workflow is within the scope of a single partner at any one time. A partner can
either be the client of the Web service or alternatively another Web service, for which
the workflow acts as client. This approach avoids the partner-links concept found in
WS-BPEL, where there may be communication with any number of partners at any one
time via π-calculus style channels. Thus we can avoid the need for any sort of mobility
or channel passing. It also fits much better into a block-structured component system,
since we abstract communication with a Web service to an ad-hoc one-shot component,
whose implementation and provider can be easily changed.

An example of workflow structure is shown in Figure 5.1. In this example we have
a workflow w, consisting of three performances P, Q and R. The control-flow is unspec-
ified, but we could assume a simple sequential composition of three performances. The
workflow has two inputs a1 and a2, and two outputs b1 and b2, which are connected



5.1. Overview 79

to the performances via dataflow connections. Each of the performances has a collection
of inputs and outputs, and these are also connected together with dataflow connections.
For instance, a1 is connected to one of the inputs of P, meaning this workflow input
feeds into P, and one of P’s outputs is connected to the workflow output b1. Inputs to
a performance need not always be connected, it depends on whether they are optional
or mandatory (one of P’s inputs is left unconnected). Furthermore, a single output from
a performance can be copied to multiple locations since each output is broadcast to all
outgoing dataflow connections. Similarly, an input can be drawn from several different
places, though only one will be chosen at execution time. The three performances also
engage in a message exchange with the composed partner, represented by the partner
choreography. P sends a message, whilst Q receives a message.

Each workflow is also timed using a discrete real-time clock (RTC), which is approxi-
mated in terms of an abstract clock at the process level. Each component in a Cashew-A
Web service observes time according to a predefined granularity – the amount of time that
elapses between each tick of the RTC. The motivation for including an RTC measure will
be revealed in more detail when we consider the semantics of compensable transactions
in Chapter 7, Section 7.3, but their general usefulness should be clear. For instance hav-
ing an RTC allows the specification of timeouts, which are useful for deciding whether
a specific operation is taking too long. Also they allow for a greater degree of fairness
between parallel processes, since approximately equal time can be devoted through lock-
stepping.

Having outlined the structure of a workflow, I now turn to the formal definition. For
convenience in defining the syntax of Cashew-A, I assume the existence of a number of
sorts:

• (a ∈)A and (b ∈)B, the sets of workflow input and output labels;

• (w ∈)W, the set of workflow labels;

• (p, q ∈)P, the set of performance labels;

• AP = {ap|a ∈ A∧p ∈ P} and BP = {bp|b ∈ B∧p ∈ P}, the sets of performance input
and output labels;

• (m ∈)M, the set of messages.

Each of these sets is treated as isomorphic with a BNF definition. I now proceed to
examine the workflow structure in detail. I will present a mutually recursive definition
of the main workflow construct, which will consist of data flow and a control flow, which
may in turn be made of other workflows. I begin by examining exactly what a workflow
is, then describing the data flow layer in Section 5.4, the control flow layer in Section 5.5,
and the various components which can be used in workflows in Section 5.6.



80 Chapter 5. Service Composition Language

a

b
c

d

eP

Figure 5.2: Performance with dataflow context

5.2 Workflows

Workflow is one of the two fundamental units of composition. In Cashew-A a work-
flow is a collection of abstracted components connected by both control flow and data
flow, with input and output data mediated through a number of dataflow connections.
Components are composed into a workflow via wrappers called performances (the sec-
ond fundamental unit of composition), the name indicating that we are looking at an
instance of the component’s behaviour within a particular context. Performances, there-
fore, provide the “glue” between the encapsulated component and the workflow, effec-
tively enabling workflow to take control of the component, whilst also distinguishing
it from other components and disregarding its internal structure. To this end, a perfor-
mance consists of a component prototype, a name unique within the workflow and a
data flow mediation layer, which consists of locally named data buffers for each input
and output. The buffers are necessary so that the workflow can decide exactly when the
component takes its inputs, as once the component has them they are outside workflow
control. A performance, therefore, is bound to and controlled by the workflow it exists
in – it cannot be removed to another workflow. Performances are important as they al-
low a workflow to have a degree of control over each component without changing the
component’s internal structure (which would undermine compositionality).

Cashew-A performances are also similar to UML activities; they are basic abstracted
executable units which fulfil their preconditions (which includes receiving inputs), exe-
cute, and provide outputs to the workflow environment. Performances can have a wide
variety of pre- and postconditions depending on their body, though normally a perfor-
mance will simply accept a set of inputs and offer a set of outputs. This is exemplified in
Figure 5.2 by a performance with three inputs and two outputs which waits for each of
its inputs to be populated. On the behavioural level each input is represented by a buffer
which can either be full or empty (beginning empty of course). In the example the three
input buffers a, b and c are populated either by inputs from the workflow containing
the performances, or from the outputs of other performances. Once a sufficient subset
of these inputs has been populated the performance will be able to execute. However,
it will first have to secure permission from its environment. For example if the perfor-
mance is part of a choice block it may be denied permission to execute if one of its peers



5.2. Workflows 81

has already secured permission (in which case its input buffers will be emptied). Oth-
erwise the performance will execute to completion and then populate its output buffers.
The data in these buffers will then be passed on to other performances in the workflow
by dataflow connections, or perhaps to an output of the workflow itself (see Section 5.4).

We use the following syntax for performancesP , compensable performancesPT , and
vectors of these:

P ::= P[Component] | ε | δ
~P ::= P : ~P | Nil

PT ::= P[CComponent]T
~PT ::= PT : ~PT | Nil

A performance may either be an actual unit of behaviour with name p ∈ P and a
component body Component, or alternatively a skip ε or halt δ. The latter two effec-
tively define the top and bottom of the precondition lattice. ε is the performance which
has an empty precondition, performs no action, and entails the empty postcondition.
It is the equivalent of logical True, in that it can always execute. δ, by contrast, is a
performance with an unsatisfiable precondition, and thus cannot execute under any cir-
cumstances. There are two types of performance, normal performances represented by
P , which execute normally, and compensable performances PT , which may be termi-
nated by the context part way through. For convenience I also define a vector type for
each performance class, representing an ordered list of performances.

The different types of components, Component, will be described fully in Section 5.6.
Briefly, a component is an action which can be considered atomic or, more appropriately,
one-shot – the component satisfies its preconditions, executes (with possible message ex-
change) and provide postconditions; no further input can be provided by the workflow
context during execution. Examples of performances are Web service invocation, partner
communications, goal achievement, or simply other, abstracted workflows. Each perfor-
mance must have a locally unique name so that it can be identified within a workflow.
This name will be used to refer to its inputs and outputs, to distinguish them from those
of other performances. Performances are vital for compositionality since they abstract
from the internal behaviour of the component.

Performances are, of course, the constituents of workflows, of which there are two
types in Cashew-A,W andWT as defined below:

W ::= W[{A}(C×D){B}]N
WT ::= W[{A}(T ×D){B}]N



82 Chapter 5. Service Composition Language

The two are identical, except that the latter uses a compensable control flow. A work-
flow consists of the following:

• A name – w ∈W;

• A set of data flow inputs – A;

• A control flow, described by the language C or T (if compensable), which composes
the performances;

• A data flow – D;

• A set of data flow outputs – B;

• A natural number N representing the real-time granularity of the workflow in an
arbitrarily defined unit (for instance milliseconds).

I will now describe all of these elements in detail.

5.3 Real-time Granularity

Each Cashew-A workflow includes a discrete real-time clock (RTC) which can be used
to time its duration. The period between two clocks is given by the parametrised natural
number, measured in suitable units. In a Web service context, it is unlikely that a finer
granularity than milliseconds would be required; for instance under perfect conditions
it takes about 13ms to contact a server on the other side of the Earth.

The motivation for inclusion of real time, although useful in itself, is the inclusion of
speculative parallelism. Speculative parallelism, broadly, is when a goal has several paths
to completion, and all of these paths are executed in parallel to achieve optimal speed.
Once one of them has “won”, the remaining paths are cancelled. To implement this it is
necessary to synchronise the parallel threads regularly to enforce fairness. Thus an RTC
is needed to observe the threads objectively.

Exactly how these clock ticks will be represented and how the various heterogeneous
clocks will be mediated will be dealt with in Chapter 7. Goals will also be equipped with
granularities, which will indicate the time-frame.

5.4 Dataflow

The data flow layer of the workflow consists of the inputs and outputs of the work-
flow itself, performance input/output buffers and connections between these. Data flow
serves approximately the same purpose as variables in a state-based language, passing
data from one part of the program to another. By connecting together the data flows of
several components an implicit dependency in the form of a partial order results. This



5.4. Dataflow 83

means that data flow, as I have already indicated, plays a role in determining the ex-
ecution order of the encapsulated performances. I first give the BNF definition of the
workflow input logic A, workflow output logic B, and dataflow connections logic D:

A ::= A tA | A uA | 0 | 1 | A

B ::= B t B | B u B | 0 | 1 | B

D ::= A� P.A · D | P.B� P.A · D | P.B� P.A · D | P.B� B · D | 1

In general terms, the workflow input and output logics represent a simplified view
of pre- and post-conditions. These can usually be described using a boolean lattice, and
thus this is the approach I take. An input expression gives the subset of inputs required
for a workflow to execute, whilst the output expression gives the subset of outputs of-
fered. The operators are defined as follows:

• A1 tA2 – either A1 or A2 must be satisfied for the whole to be satisfied;

• A1 uA2 – both A1 and A2 must be satisfied for the whole to be satisfied;

• 0 – cannot be satisfied (logical false);

• 1 – satisfied immediately (logical true);

• a – satisfied when input a is received;

• b – satisfied when the output b has is satisfied by an element of the workflow.

An expression represents a set of sets of inputs or outputs, representing the pos-
sible combinations which will satisfy the workflow and allow it to execute. So a t b
means (inclusively) either input a or input b is required, corresponding to the input set
{{a}, {b}, {a, b}}. Specifically, a workflow with the precondition a t b needs at least an a
or a b input to execute, but can also input both if available. Similarly, a u b means both
inputs a and b are required, corresponding to the singleton set {{a, b}}. The inclusion of
1 in the language may at first seem a little vacuous, but it is very useful for specifying
optional inputs – inputs which are desirable but not required for execution. For instance,
defining a? , a t 1 (i.e. an optional input a), a more realistic example of a workflow
precondition is:

flatNo? u houseNo u (postcode t (street u city))

This represents the common situation where different levels of information can be
used to express street addresses. In its simplest form an address can be simply a postcode
and property number, but can also contain a street name, a city name or a flat number.
This expression is satisfied by members of the set {{houseNo, postcode}, {flatNo, houseNo,



84 Chapter 5. Service Composition Language

postcode}, {houseNo, street, city} · · · }. The language does not include a negation opera-
tor, as this would mean an input must not be present which is difficult to check for at the
operational level.

The output logic has the same structure as the input logic, although it has a rather
different interpretation. It indicates the possibilities for output, for instance a t b means
that either an a or b (or both) will be output from a workflow, whilst 1 means that the
workflow has no output at all. Unlike preconditions, where an input choice can be ig-
nored, a workflow must provide behaviour for each possible output combination of a
workflow. Otherwise a dead-lock may occur.

Once the inputs and outputs to a workflow have been defined, it becomes neces-
sary to connect the various inputs and output of encapsulated performances together. D
describes these connections. Each connection bridges two dataflow buffers in the work-
flow, be they a workflow input/output buffer or a performance input/output buffer.
There are four possible connections:

• From a workflow input to a performance input (a� p.a);

• From a performance output to a workflow output (p.b� b);

• Between a performance output and another performance’s input (p.b� q.a) asyn-
chronously;

• Between a performance output and another performance’s input (p.b � q.a) syn-
chronously.

The two types of performance-performance connections are needed to complement
iteration, which will be described in due course. An asynchronous connection will repeat-
edly pass data on, independently of the control flow. In contrast a synchronous connec-
tion, having passed data once, requires that the control flow yields before it will pass data
on again.

The different connection types mirror closely the connections which can be defined
in the OWL-S process model. However, as in our previous work (Norton et al., 2005)
we ensure that dataflow is always completely contained within workflow scope – the
contents of a workflow may only rely on its immediate inputs and outputs, and not
on anything within the enclosing context (as OWL-S and other Web service languages
can). This naturally aids in composability by making components fully self-contained
and interface equivalent to WSMO Goals, but goes against the WS-BPEL idea of having
variables accessible by all enclosed scopes.

Thus a workflow contains a set of dataflow “wires” which pass data between the
components, as well as from the inputs and to the outputs of the workflow. For a work-
flow to complete successfully there must of course be at least one complete data pathway
from the inputs, through the performances, to the outputs. This completes the discussion
of the data flow language.



5.5. Control flow language 85

5.5 Control flow language

The control flow language defines the order of execution of a workflow’s performances.
It provides algebraic constructs which allow different types of flow control to be speci-
fied in a compositional way in the style of Dijkstra’s guarded command language (Dijk-
stra, 1975) and CSP (Hoare, 1985).

Rather than define the entire control flow language C in one go, I will initially define
it in two stages. The basic language provides the usual process algebraic operators,
and a more advanced language builds on this. A third stage will define the transaction
calculus, T . The additional stages are not necessary for understanding the Cashew-A
framework as a whole, and the reader may prefer to read only Section 5.5.1 and then
skip over to Section 5.6 to continue the overview (returning if desired to read the other
two language fragment descriptions).

A more important aim of this work is to represent the maximum number of workflow
patterns (van der Aalst et al., 2003). Since the control flow topology will remain static, cer-
tain patterns are impossible to achieve, in particular the “Multiple Instance” workflow
patterns (see Chapter 2 Section 2.2.4), where several instances of the same workflow can
be spawned in parallel, sometimes undetermined in number, before runtime. These pat-
terns are more suited to a mobile calculus such as the π-calculus , and cannot easily be
modelled or verified in an inherently static calculus like CCS or CaSE. Thus all of the
patterns I consider are finite state, though I will not define precisely what I mean by a
“state” until Chapter 7. Instead this section will focus on giving an informal descriptive
semantics to each control flow construct.

5.5.1 Cashew-A Core

The most basic form of the language is called Cashew-A Core. It is a basic control flow
language, and provides the constructs normally found in an imperative programming
language or process algebra. 1

C ::= C # C | C � C | P{ | P}+ | C∗C | P

The basic language consists of the usual operators of a process algebra (cf. Baeten and
Verhoef (1995)) namely, sequence #, choice �, parallel composition | and binary Kleene
star ∗, which stands for iteration with an exit condition. The behaviour of sequence # is
as expected, namely the first element is executed to completion followed by the second
element. The precondition of a sequential composition is simply the precondition of
the first element – this allows for situations when execution of the first element enables
the second. Choice is similar to that of CCS in that it is non-deterministic when both
sides have equal preconditions. Otherwise execution is determined by which becomes

1I have taken the liberty of using {· · · }+ to indicate repetition of the enclosed item at least once.



86 Chapter 5. Service Composition Language

ready first. Iteration (Kleene star) is similar to choice in that it makes a non-deterministic
choice, but the left-hand side can be repeated arbitrarily often until the right-hand side
is chosen. Parallel composition P | Q allows several peformances to be executed in
parallel, with synchronisation at the beginning and end.

Though Cashew-A Core is simple, it nevertheless represents a decent cross section of
functionality, and includes all the control flow patterns from OWL-S except split (which
does not synchronise) and anyOrder (which will be added in Section 5.5.2).

5.5.2 Cashew-A AC

C ::= C # C | C � C | C | C | C ‖ C | 9N C̃ | C∗C | ↑C | ◦ C | � C | P

Cashew-A AC (Advanced Choices) includes all the constructs from the core fragment
and introduces additional constructs which allow greater flexibility for choices and par-
allelism. There are two forms of parallel operator, the synchronous variety | which
requires that the preconditions of both sides are satisfied before executing, and the asyn-
chronous variety ‖which only requires one to be satisfied.

This workflow language also introduces the yield construct ↑ . A yield defines a
synchronisation point in the workflow – all process which yield must do so at the same
instant or else wait for the other processes. Yield forces the thread to wait until the next
“cycle” before it can execute (similar to its concurrent programming counterparts). Al-
though Cashew-A does not have variables for which race conditions can exist, yield can
be used in conjunction with optional inputs to ensure a particular component receives
a maximal amount of data from the workflow’s other parts. Then, when a yield occurs,
the data flow layer is purged – all performances clear their buffers – which has the effect
of invalidating existing data. The one exception involves asynchronous data flow con-
nections (�) which ignore yields and simply hold their data until they can be passed
on. Synchronous connections (�) in contrast wait for the yield before accepting input.
Practically this means that asynchronous connections are useful when combined with
iteration, since they allow data to be passed between consecutive iterations.

Yield is also in many ways similar to a deprioritisation operator (Cleaveland and Hen-
nessy, 1990) and can be used as such. For example, it can be used in deprioritising a
control flow branch in a multiple choice causing it to act as a default case. Assuming n
cases and an additional default action, we could write:

(case1 # action1) � (case2 # action2) � · · ·� (casen # actionn)� ↑default-action

The ↑ before default-action means that prior to the action being allowed to execute, all
behaviour in the encapsulating workflow must cease. Thus, if one of the cases becomes
ready and executes, the default branch will be ignored. Alternatively, if none of them can



5.5. Control flow language 87

become ready, the workflow activity will cease and the default action will be chosen. In a
similar way yield can be used to turn the Kleene star operator into a while or until loop,
where the condition is prioritised over the body. Without this construct it is impossible
to build anything other than loops with a negated condition, and not loops which exit
based on an event (i.e. deferred choice loops).

For example; consider

while C do P , (C # ↑P )∗ ↑ε

Here we have a while loop consisting of a condition process C and a body process P . If
C becomes ready before the yield clock can tick, the body executes, otherwise the loop
exits. The additional yield preceding P ensures that the dataflow layer is cleared at this
point, otherwise old data could be fed into the condition causing it to be always satisfied.
This way it must be satisfied by data proceeding from P .

We can use a similar structure to build a multiple choice, where all the workflows
which become ready will be executed:

chooseMany(~P ) , (P1 � ↑ε) ‖ (P2 � ↑ε) ‖ · · · ‖ (Pn � ↑ε) (where Pi ∈ ~P )

Yield embodies logical time, where a workflow synchronises when all internal work
ceases. In addition to yield, Cashew-A AC also includes a wait operator ◦P , which em-
bodies physical time. Although possessing a similar syntax to yield, wait is subtly differ-
ent. Rather than protecting its parameter until the entire workflow has ceased activity,
the wait operator requires one unit of time to elapse before executing the parameter. The
actual physical period of a unit is determined by the workflow head, but this is only re-
ally relevant in a theoretical sense when mediating between workflows. The assumption
made is that any internal communications in a workflow effectively happen instantly – it
takes no time, for example, for dataflow to be propagated. Time only elapses when per-
formances are executing, or when explicit wait states are implemented. I use the shortcut

n©P to refer to a wait of n units, e.g. 3©P = ◦◦◦P . We can form timeouts using the choice
operator, for instance P � 2©Q refers to a workflow which will execute P unless two time
units elapse before it becomes ready, at which point Q may be executed (provided it is
ready).

In order to take advantage of the asynchrony inherent in the semantic model, I also
include a fork operator � C. The fork construct, in a similar style to concurrent program-
ming, executes a process in the background, preventing it from holding up the work-
flow’s progress. For instance the control flow (� P ) # Q does not require P to complete
before starting Q, though it does at least require P to be ready to execute. A forked con-
trol flow cannot live beyond the life of the workflow in which it exists. Since the semantic
model exhibits implicit termination of workflow, it is necessary for all enclosed activity to
cease, even when all control flows have declared their completedness. Furthermore, the



88 Chapter 5. Service Composition Language

fork construct will only ever spawn up to one copy of the control flow, in keeping with
the finite state nature of my language. If placed in a loop, a forked workflow must com-
plete before it can be executed again.

Finally, this workflow language also introduces an n-ary workflow interleaving con-
struct 9N C̃. Known as AnyOrder in OWL-S , this construct allows the control flow to
be determined solely by the process’s preconditions. Effectively a graph based pattern,
interleaving executes a certain number (based on the given natural number) of perfor-
mances at a time from its bag, non-deterministically picking one of the remaining ready
performances. It is therefore Cashew-A’s equivalent of the flow construct from WS-BPEL
(see Chapter 2 Section 2.2.2). Interleaving is an extremely versatile construct, but also
theoretically complicated due to its reliance on dataflow. If we return to the idea that
dataflow enforces a partial order on performances, it is clear that a dataflow will cause
them to be resolved into a well-defined sequence. Interleaving is one of the main reasons
(along with yield) why algebraic reasoning cannot be used to study Cashew-A– it effec-
tively leads to a graph based ordering of processes. Indeed, interleaving cannot even be
represented as a binary pattern, because the requirement that every process in the bag
execute only once requires some form of centralised control.

5.5.3 Cashew-A T

T ::= T # T | T � T | T | T | T ÷ P | P |  | ⇑ | ◦ T | |∗| ~PT

The final iteration of the language is Cashew-A T. Cashew-A T is a cut-down vari-
ant of Cashew-A AC which introduces compensable transactions. A transaction T may be
wrapped in a performance and placed in a normal workflow, where it is observed like
any other performance. A compensable transaction is a workflow with a normal forward
flow, supplemented with a compensation flow, built from contained compensation actions,
which will be executed when an exception is raised in the workflow. The compensation
flow represents what happens should an error occur, and consists of compensation ac-
tions for each action executed up until the point the error occurred in reverse order. A
compensation action attempts to mitigate the effects of the action.

The approach I am taking to compensation stems from the model demonstrated in
cCSP (Butler, Hoare and Ferreira, 2005). A transaction is a volatile all-or-nothing region
of a Web service orchestration where there exists the possibility of failure. When a perfor-
mance or workflow in a transaction completes it installs a compensation action. Then, if
failure occurs in the transaction before completion, all the compensations installed so far
are executed in approximately reverse order. Unlike in StAC (Chessell et al., 2002), there
is no manual calling of compensation, and only one compensation context per transac-
tion. Compensation actions cannot fail; this is for the sake of simplification rather than



5.5. Control flow language 89

lack of capability2. All compensable workflows are self-contained – they have no effect
on, nor are they effected by their environment, even if the context is another compens-
able workflow.

The main addition to the new control flow language, T , is the compensation operator
T ÷ P which associates a process with a compensation action given by a performance.
At this stage compensations are error-free, though since they can themselves contain
compensable transactions a degree of hierarchy can be built. In addition, Cashew-A T
also has the  construct which raises an exception in a workflow. My approach to rais-
ing exceptions is similar to the way yielding works. Rather than simply forcing a sub-
workflow to terminate where it is, I introduce a new yield construct ⇑ , which yields to
compensation. Unlike the normal yield construct, which guards a process and changes
its precondition to force a yield, compensation yield is not a condition of execution (in-
deed, it has no parameter). Rather compensation yield states that at this point in the
workflow, either compensation can be triggered if need-be, or else the workflow may
continue. For instance, one may build a workflow:

(PickBook÷ UnpickBook) # ⇑ #OrderDelivery

This workflow will not initiate compensation until after PickBook has been executed.
If the workflow were parallel composed with a  , PickBook would be executed, the
workflow would then yield to compensation and finally UnpickBook would be executed.
If no exception is thrown, the workflow will continue to execute OrderDelivery.

In addition to the compensation operators, Cashew-A T also has a speculative paral-
lelism operator |∗| ~PT . Speculative parallelism is a form of concurrency where there exists
multiple competing ways to achieve a goal. In order to optimise the speed at which this is
accomplished, all the methods are run in parallel, with the “winner” finishing first, and
others being cancelled afterward. In Cashew-A, each parallel branch is a compensable
performance which can be cancelled. Cancellation forces the compensation procedure
to start. Thus, the first performance to finish is effectively “committed” and the others
mitigated. Speculative parallelism must allocate time fairly to all branches and therefore
at the semantic level the RTC forces them into lock-step.

Note that Cashew-A T does not have a looping construct, because we wish to have
a finite state semantics for our language. Looping introduces the need for “stacking”
compensations when they run, which is not something my underlying process calculus
can easily handle. It also doesn’t have the fork � operator, as it would be difficult to keep
track of which background processes are active and need compensating.

To aid in formally describing a compensable transaction I now define the function
comp :: T → C which gives the compensation for a given T . To do this assume the
existence of an undefined deterministic oracle reduce :: T → T which decides unguarded
choices based on the data-flow and message-flow context.

2Originally I set out with the intention of allowing a more liberal approach, and indeed the underlying
calculus ought to be capable of it. However, time constraints prevent further development.



90 Chapter 5. Service Composition Language

comp :: T → T
comp(P #Q) , comp(Q) # comp(P )

comp(P | Q) , comp(P ) | comp(Q)

comp(P ÷Q) , Q

comp(P �Q) , comp(reduce(P �Q))

comp( ) , ε

comp(◦P ) , comp(P )

This is by no means a complete definition of compensation, as it doesn’t say anything
about how interruption and compensation yield work (which will be dealt with in Chap-
ter 7). What it shows is the order in which compensations will be run when a complete
control-flow is compensated.

5.6 Components

Component ::= Wf | CWf | GoalTemplate | Eval | Send | Receive

CComponent ::= CWf

Wf ::= Wf W
CWf ::= CWf WT
Send ::= Send M Ã

Receive ::= Receive M B̃

Eval ::= Eval Expr Ã B̃

GoalTempate ::= GoalTemplate A B φass φeff N

To complete the definition of Cashew-A I turn to the actual elements which make up
a workflow, called components. Each component Component is a one-shot activity which
maps its preconditions to postconditions by executing some internal activity, and pos-
sibly exchanging messages with a partner. A component can be a workflowW with its
dataflow context closed, a compensable workflow WT , a GoalTemplate, an expression
evaluation Eval, a message Send, or a message Receive.

Goal Templates (Stollberg and Norton, 2007) are inherited from WSMO and provide
the capability 4-tuple of precondition, postcondition, assumptions and effects. The last
two are included in the language, but not yet used in any way. I assume that when given
an interface semantics, the Goal Templates will be dynamically bound by a service request
broker. Preconditions and postconditions use the same syntax as those for workflows.



5.7. Examples 91

Message communications are components which either consume a set of inputs and
then send a message, or receive a message from the partner (if possible) and then pro-
duce a set of outputs. Importantly, a Receive does not declare readiness until it has
received its associated message. This allows choices to be constructed based on message
receipt.

An Eval uses its inputs to evaluate the enclosed expression. This expression can ei-
ther evaluate to True and return some outputs, or it can evaluate to False, simply failing
to become ready. I assume the existence of a function eval :: Expr → DfS which evaluates
the expression to either 1 (True) or 0 (False). For the purpose of this Thesis I use Haskell
expressions of type (a1 · · · aj)→ Maybe (b1 · · · bk) to specify these conditions. For conve-
nience I also define two components derived from Eval:

Id {a1 · · · ai} {b1 · · · bi} , (Eval λxs.Just xs) {a1 · · · ai} {b1 · · · bi}
Const {b1 · · · bi} vs , (Eval λxs.Just vs) ∅ {b1 · · · bi}
Null {a1 · · · ai} {b1 · · · bj} , (Eval λxs.Just ⊥) {a1 · · · ai} {b1 · · · bj}

The first, Id echoes the input values onto the output values. The second, Const,
outputs a specific tuple of outputs whose values are contained in vs. The third, Null,
inputs an arbitrary tuple of inputs, and outputs an (unrelated) arbitrary tuple of outputs
with no values.

5.7 Examples

In this section I describe a number of workflow examples using Cashew-A. For ease of
reading, I use a slightly different syntax:

W ::= workflow W { precondition A postcondition B dataflow D control { C }}

I also use implicit performance names where possible to avoid replication. Instead of
writing pfPerformance[Send· · · ] for instance, I simply write Send· · · . The structure of a
performance name is pf[type][contents]. For example a performance sending a message
called MyMessage has the name pfSendMyMessage. The exception is expressions which
do not have a natural name. When these are used an explicit name is provided.

The first workflow describes simple address lookup component:



92 Chapter 5. Service Composition Language

workflow wfLookupAddress

{ precondition postcode u houseNum

postcondition address t 1
dataflow postcode� pfSendReqLookup.postcode ·

houseNum� pfSendReqLookup.houseNum ·
pfReceiveReqLookupYes.address� address · 1

control

{ Send ReqAddrLookup {postcode, houseNum}#
(Receive ResAddrLookupYes {address}�Receive ResAddrLookupNo {})

}
}

This workflow takes two inputs, a postcode and house number, and outputs either
an address or nothing (indicated by the 1). The control flow simply sends a message
to the partner containing the postcode, and then one of two messages are returned. If
a ResAddrLookupYes (response address lookup yes), then the encapsulated address is
output from the workflow, otherwise no output is forwarded. This workflow would typ-
ically be composed with a partner via a co-ordination at a higher level with a compatible
service choreography.

I now turn to another example, this time using the calculator example in Figure 4.1
from Chapter 4 as a template. First, of all the outer workflow which represents the Web
service as a whole can be described as:

workflow wfCalculator

{ precondition 1
postcondition 1
dataflow recInitNum.num� pfWfOperation.inNum ·

pfWfOperation.outNum� pfWfOperation.inNum ·
pfWfOperation.nan� sendResNaN.nan ·
pfWfOperation.return� sendResReturn.return · 1

control

{ Receive InitNum {num}#
(pfWfOperation[WfOperation]∗(Send ResReturn {v}� Send ResNaN {nan}))

}
}

This workflow has no inputs or outputs, and can thus be used directly as a Web
service, getting all its data via message flow. It first waits to receive the InitNum message,
which supplies the initial number, and then begins execution of the Operation workflow
which performs the actual calculations. The workflow is executed in a loop (Kleene star),
with the exit condition being that it is possible to send either the ResReturn or ResNaN
messages, because the required body for either is available from dataflow. The body of



5.8. Workflow Patterns 93

the workflow is described below:

workflow wfOperation

{ precondition inNum

postcondition outNum t nan t return

dataflow inNum� perfAdd.v1 ·
inNum� perfDiv.num ·
inNum� perfIfPos.v ·
inNum� perfReturn.v ·
recReqAdd.val� perfAdd.v2 ·
recReqDiv.val� perfDiv.dem ·
recReqIfPos.p1� perfIfPos.p1 ·
recReqIfPos.p2� perfIfPos.p2 ·
perfAdd.res� outNum ·
perfDiv.res� outNum ·
perfIfPos.res� outNum ·
perfDiv.nan� nan ·
perfReturn.res� return · 1

control

{ (Receive ReqAdd {val} # perfAdd[WfAdd]) �
(Receive ReqDiv {val} # perfDiv[WfDiv]) �
(Receive ReqIfPos {p1, p2} # perfIfPos[WfIfPos]) �
(Receive ReqReturn ∅ # perfReturn[Eval (λx.Just x) {v} {res}])

}
}

The Operation workflow inputs a number to calculate with inNum. It outputs either
an output (intermediate) result, an error (not a number), or a final returned value. The
control flow of the workflow consists of a four way choice, each branch of which is
guarded by the receipt of particular command message: either add, divide, if-positive
(i.e. if inNum is positive then v1 else v2) or return. Each message guards a performance
which executes the respective operation. All but one of them are enclosed workflows,
the exception being return which is an identity evaluation on the current intermediate
result.

5.8 Workflow Patterns

In this Section I review Cashew-A with respect to the revised workflow patterns (van der
Aalst et al., 2006). Readers unfamiliar with the workflow patterns may desire to skip this
section, or just read Section 5.8.8 which presents my conclusions.

The authors’ intent in creating the workflow patterns is to find the fundamental pat-
terns present in workflow languages. They do this through a mixture of reviewing ex-



94 Chapter 5. Service Composition Language

isting languages and software, and theoretical analysis using Petri-nets (for a fuller dis-
cussion see Chapter 2 Section 2.2.4). There are a total of 43 enumerated control-flow
patterns, and the intention of this section is to see how Cashew-A compares. I will not
provide a formal mapping, nor is this work complete, but it illustrates of how general
Cashew-A is. Throughout this section I will reference the patterns with the name and
number given in the paper and on the workflow patterns website3, for instance Sequence
(1).

However, a number of caveats must first be considered. First, since I am are using
an immobile or static calculus to give the language a semantics, multiple-instance pat-
terns (that is patterns which can spawn additional copies of themselves in the style of
π-calculus’s !P ) are not possible. As a result, patterns (12)–(15) and (34)–(36) are not
directly representable. Secondly, since the workflow patterns are given in a graph struc-
tured paradigm and Cashew-A is block-structured, splits and joins are not considered as
separate patterns. For instance, Parallel Split (2) is combined with Synchronisation (3)
within the | construct. Nevertheless, the different styles of synchronisation and merges
can be recaptured in Cashew-A through the use of dataflow inputs and outputs, along
with the dataflow oriented control-flow constructs.

5.8.1 Basic Control Flow Patterns

1. Sequence P #Q #R # · · ·
2+3. Parallel Split + Synchronisation P | Q | R | · · ·
4+5. Exclusive Choice + Simple Merge (Eval Condition1 # P )�

(Eval Condition2 #Q) � · · ·

These are “bread-and-butter” workflow patterns and should not require verbose expla-
nation, suffice it to say they are clearly represented. Exclusive choice uses a collection
of disjoint logical expressions to make the decision. Also notice that a parallel split con-
verges with a synchronisation, whilst choice converges with a merge.

5.8.2 Advanced Branching and Synchronization Patterns

This section (much expanded in van der Aalst et al. (2006)) contains various patterns for
different styles of parallel branching and synchronisation. It includes constructs such as
taking multiple branches of a choice in parallel.

3http://www.workflowpatterns.com

http://www.workflowpatterns.com


5.8. Workflow Patterns 95

6+7. Multi-Choice + (P � ↑ε) ‖ (Q� ↑ε) ‖ (R� ↑ε) · · ·
Structured Synchronizing Merge

2+9. Parallel Split + (� P ‖� Q ‖� R) # S with dataflow
Structured Discriminator

2+29. Parallel Split + |∗|{P,Q,R}
Cancelling Discriminator

2+30. Parallel Split + (� P ‖� Q ‖� R) # S with dataflow
Structured Partial Join

• Multi-Choice (6) (alt. N-out-of-M split) is combined with Structured Synchronis-
ing Merge (7), which together allow several branches of the choice to be executed
simultaneously, and all branches to synchronise before flow can continue. This is
achieved via asynchronous parallel composition of several choices between run-
ning or not running each task, based on whether it becomes ready first or yields,
in which case a skip is executed.

• Multi-Merge (8) is not directly possible, since it requires the activation of the pro-
ceeding workflow once for each completion of the branches (similar to multiple-
instance patterns).

• Structured Discriminator (9) enables the continuation of activity following a paral-
lel split when at least one thread completes, and can best be achieved with dataflow.
All the parallel branches should be forked so they run in the background, and there
should be a dataflow dependency between each of the branches and the continua-
tion.

• Blocking Discriminator (28) is related to the context of multiple instances, and so
is not possible.

• Cancelling Discriminator (29), which cancels all preceding threads once one has
completed, is equivalent to the speculative parallelism construct from Cashew-A
T.

• Structured Partial Join (30) is a more general version of Structured Discriminator
(9), which allows continuation after a certain subset of branches has completed.
Once again, this is best achieved using dataflow in the same way as the standard
structured discriminator.

• Local Synchronizing Merge (37) allows convergence and synchronisation of a sub-
set of split branches chosen from a bag, where this subset is defined at runtime. It
is supported directly through the use of the interleaving construct and dataflow
connections.



96 Chapter 5. Service Composition Language

None of the remaining 6 patterns in this Section (patterns 31, 32, 33, 38, 41 and 42) can
be supported directly, mainly due to their relatedness to multiple-instances, therefore I
do not consider them.

5.8.3 State-based

Having moved over the Multiple-Instances section because none of the patterns can be
directly supported, I now approach the patterns associated with state. The workflow
patterns website describes these so:

State-based patterns reflect situations for which solutions are most easily accom-
plished in process languages that support the notion of state. In this context, we
consider the state of a process instance to include the broad collection of data asso-
ciated with current execution including the status of various activities as well as
process-relevant working data such as activity and case data elements. 4

Thus the patterns in this Section relate to decisions related to the internal state of
a workflow. In the context of Cashew-A, they are specifically related to dataflow and
message flow.

16+5. Deferred Choice + Simple Merge P �Q�R� · · ·
17/40+7. Interleaved (Parallel) Routing + 91{P,Q,R, · · · }

Structured Synchronizing Merge

18. Milestone Dataflow

Deferred Choice (16) is, due to the nature of the precondition system, the equivalent
of the basic choice operator. Specifically, the basic choice operator begins to execute
when either side is ready, and therefore has a great deal flexibility in application. It fits
in well with this description:

The decision is made by initiating the first task in one of the branches i.e. there is
no explicit choice but rather a race between different branches. After the decision is
made, execution alternatives in branches other than the one selected are withdrawn.5

The first task to declare readiness is the one executed (the race winner), whilst the
others are terminated. Readiness can, for instance, be based on whether an enclosed
message-receive is ready – i.e. when it has received the message. This assumes that the
choice options P,Q and R are all guarded by an atomic task which makes the decision.

Interleaved Parallel Routing (17) and the simpler Interleaved Routing (40) repre-
sent a collection of processes with an implicit partial order between them which dictates
the execution order. The latter also allows an arbitrary order to be assigned. Both are

4See http://www.workflowpatterns.com/patterns/control/index.php
5See http://www.workflowpatterns.com/patterns/control/state/wcp16.php

http://www.workflowpatterns.com/patterns/control/index.php
http://www.workflowpatterns.com/patterns/control/state/wcp16.php


5.8. Workflow Patterns 97

Figure 5.3: An example milestone workflow taken from the workflow patterns site.

achieved directly via the interleaving construct present in Cashew-A, constrained to one
process executing at a time. The difference is simply that the former must have an asso-
ciated dataflow to determine a specific order, while the latter is truly non-deterministic
(or random).

Milestone (18) requires that a parallel branch have a region which is impassable until
another parallel branch has reached a specific point (the milestone). This can be achieved
directly through the setting up of dataflow connections. For instance in Figure 5.3 a
workflow is shown6 where the loop beginning with E can only execute when the mile-
stone between B and C is active. Otherwise only F can be executed. We can adapt this
workflow to Cashew-A thus:

A #B # (pt[Null ∅ {t}] # ↑ε)∗C ‖ D # ((qt[Null {t} ∅] | E # ↑D)∗F ) #G× pt.t� qt.t ·Df

Here we have a workflow with a loop whose continuation is predicated on performance
qt receiving t, which comes from the parallel branch. The input is passed on by the first
process and then a yield occurs which clears the input. If C executes, the loop passing
on the input becomes inactive, and therefore the other loop cannot progress any further.

Critical Section (39) requires that several areas of a workflow be mutually exclusive,
so that only one may execute at a time. This cannot be achieved in Cashew-A, as there
is no way of temporarily disabling a performance. One possible way to do this might
be through some form of negative preconditions, where the presence of an input would
exclude a component from executing. For the time being, this is deemed out of the scope
of this work, as it would require a great deal of effort and possibly a major overhaul of
the precondition system.

6Taken from http://www.workflowpatterns.com/patterns/control/state/wcp18.php

http://www.workflowpatterns.com/patterns/control/state/wcp18.php


98 Chapter 5. Service Composition Language

5.8.4 Cancellation and Forced Completion Patterns

These patterns relate to the premature termination of a workflow. There are five variants
of cancellation, two of which are multiple instance and so are ignored for the reasons I
explained above. The remaining three are:

• Cancel Task (19)

• Cancel Case (20)

• Cancel Region (25)

Only the last two are directly supported, as in the transaction language Cashew-A T
it is not possible to terminate a performance once it has started. Cancel Region is roughly
equivalent to compensation of a workflow using the throw  construct, though the work-
flow patterns specify that even non-block structured regions should be cancellable.

5.8.5 Iteration

21. Structured Loop P ∗Q

There are three forms of iteration in the workflow patterns, Arbitrary Cycles (10),
Structured Loop (21) and Recursion (22). Structured Loop is supported directly through
the Kleene Star operator of the language. The Arbitrary Cycles pattern isn’t supported
and can probably never be supported in a block structured language, as it requires that
loops be set up between arbitrary parts of a control-flow. Recursion also isn’t possible.

5.8.6 Termination Patterns

11. Implicit Termination Directly supported through workflows

Implicit Termination (11) is a property of a workflow, where when all enclosed ac-
tivity has completed the workflow terminates. It is included purely as a consequence of
using Timed Process Calculus with maximal progress to give the operational semantics.
Explicit Termination (43) is when a workflow ends at a specific point, even if internal
activity still remains. It is only partially supported and only within compensable work-
flows.

5.8.7 Trigger Patterns

23/24. Persistent/Transient Trigger Dataflow connections act as triggers

Persistent and Transient triggers can both be represented in Cashew-A, though they
are both a little complex due to the low-level nature of the language. A persistent trigger



5.8. Workflow Patterns 99

causes a process to be enabled only after a specific event occurs. A transient trigger is
the same, but the process will only be activated for a limited time afterwards.

A persistent trigger can be represented by a parallel looping process which waits for
an event to occur, and then ensures that a particular dataflow input is made available to
act as the trigger for another process. For instance, consider

(Receive m ∅ # ( (◦t1[Const () {t}])∗dti[Null {t} ∅]
‖ ↑dto[Null ∅ {t}])

∗tt[Null {t} ∅])

If this were composed with a workflow (which does not yield), and a dataflow con-
nection is made from t1.t to a mandatory input of triggered processes, then this would
act as a persistent trigger on receiving message m. When the message is received, two
processes run in parallel. The first repeatedly executes the Const performance, which
ensures that the trigger is maintained. The loop exits when the second parallel process
is activated following the yield (a dataflow connection dto.t � dti.t is required). The
trigger runs in a loop and must be deactivated by populating the input t of tt at the end
of the workflow.

The transient trigger is represented similarly:

(Receive m ∅ # ( ◦ t1[Const () {t}]∗dti[Null {t} ∅]
‖ v©dto[Null ∅ {t}])

∗tt[Null {t} ∅])

The difference lies in the conditions under which the trigger is removed. Rather than
a yield, in this case it happens when v time units have passed in the workflow. This
results in a trigger which is only available temporarily.

5.8.8 Analysis

Of the 43 workflow patterns identified by van der Aalst et al. (2006), Cashew-A di-
rectly supports 20. At first sight this seems a fairly unimpressive score, but it compares
favourably with other Web service languages as reviewed by van der Aalst et al. (2006).
For instance, Oracle’s implementation of WS-BPEL scores 22, and the other WS-BPEL
implementations score very comparably. Of the 14 workflow languages and implemen-
tations reviewed, the average score was 21, with the highest score being 33, tied between
XPDL (XML Process Definition Language) and BPMN (Business Process Modelling No-
tation). No language evaluated supports the full 43 patterns.

Nevertheless, it is perhaps more instructive to see which patterns BPEL4WS 1.1 sup-
ports, which Cashew-A doesn’t, since this language is very much an inspiration for my



100 Chapter 5. Service Composition Language

work. Cashew-A supports Structured Discriminator (9) because of its precondition sys-
tem, which allows an OR precondition to be specified in dataflow. In BPEL4WS 1.1,
this isn’t possible, as all incoming links must be known before an activity can begin ex-
ecuting. Multiple Instances (12) with no synchronisation could in theory be expressed
in Cashew-A by using an external Web service to drive the additional process instance
(albeit this isn’t instrisically part of the language). Milestone (18) can be achieved in
Cashew-A, it seems, primarily because of the very general choice operator. In BPEL, a
deferred choice can only be built using the pick construct, which is only intended for
choices based on an event. Cancel Task (19) cannot as yet be supported in Cashew-
A, because the transaction system is fairly basic, whereas WS-BPEL is well featured in
this respect. Cashew-A supports both transient and persistent triggers, since dataflow
is inherently transient and therefore can easily be removed, or alternatively maintained.
The remaining three missing patterns (39,41 and 42) are unsupported because they are
multiple instance based (or multi-threaded).

I therefore contend that Cashew-A compares positively with BPEL4WS 1.1 and work-
flow languages in general. Furthermore it is likely that additional patterns could be
supported with additional work without changing the overall model. For instance, Can-
celling Partial Join (32) is essentially speculative parallelism, but with several winners,
rather than just one. However, it must also be noted that WS-BPEL 2.0 has many ex-
tensions, including some π-calculus based constructs. Therefore it certainly supports
additional workflow patterns. But bearing in mind that Cashew-A has a comprehensive
formal under-pinning (described in Chapter 7) the score is satisfactory.

5.9 WS-BPEL Comparison

In Section 5.8 I compared the workflow control patterns of (van der Aalst et al., 2006)
with Cashew-A and argued that a reasonable subset are representable. In this final sec-
tion I will provide show that several of the more interesting constructs in WS-BPEL are
also representable in Cashew-A. The purpose of this exercise is to show that Cashew-A
is also comparable with a real-world Web service language.

I cannot as yet provide a complete mapping between the two languages, as there are
a great many small technicalities to work out before this is possible. Foremost of these
is how WS-BPEL’s mutable variables should be handled using Cashew-A’s dataflow
paradigm. A complete mapping is clearly impossible, due to many of WS-BPEL’s π-
calculus oriented features. For instance the following constructs will never be repre-
sentable:

• Parallel forEach (replication in π), representing the replication in parallel of a WS-
BPEL process according to some universally quantified expression;

• Partner Links (channel passing in π), the ability to talk to several Web services
simultaneously through parametrised link passing.



5.9. WS-BPEL Comparison 101

BPEL Construct Cashew-A Representation

sequence〈P,Q..〉 P #Q # ..

if e then P else Q (ifcon
[
Eval (if e then (Just ()) else Nothing) fv(e) ∅

]
# P ) � ↑Q

while e do P (wcon
[
Eval (if e then (Just ()) else Nothing) fv(e) ∅

]
# ↑P )∗ ↑ε

repeat P until e P # (↑P )∗(rcon
[
Eval (if e then (Just ()) else Nothing) fv(e) ∅

]
)

Table 5.1: Basic BPEL constructs

Nevertheless, for simpler WS-BPEL processes where communication is limited to one
partner at a time in a finite state system, a certain degree of mapping ought to be possible.
For the time being, I concentrate on certain useful aspects of the WS-BPEL language.

One of my motivations for Cashew-A is that it should have the ability to support
as many forms of WS-BPEL workflow as possible, so, we first examine how WS-BPEL’s
Structured Activities can be represented. These mappings only deal with dataflow in so
far as it is required for executing the correct workflow sequence, otherwise it is glossed
over. I first consider the basic programming constructs in Table 5.1 (for the sake of con-
venience I am using Haskell as an expression language).

Sequence is, of course, directly supported. If-then-else is supported via a choice be-
tween evaluating the expression e and then executing the then clause process P . The if
clause consists of a performance called ifcon (the if condition) containing an evaluation
component, which decides if the expression (within the implicit dataflow context) eval-
uates to true or not. If the expression e evaluates to true, the performance will execute
to completion and allow P to execute. Otherwise, ifcon will stall and a yield will occur,
activating the else clause process Q.

A while loop (i.e. repeat the process execution while an expression evaluates to true)
is similar to if-then-else, though using the binary Kleene star operator instead of the
choice operator. The expression is wrapped into an evaluation performance called wcon
and guards the process P on the left hand side. The exit condition on the right hand
side is a yield followed by a skip. This means that as long as the expression e can be
evaluated successfully, the yield will not happen and P will be repeated. Otherwise the
loop will exit.

Repeat-until is like while, except that the condition is now on the RHS, and the body



102 Chapter 5. Service Composition Language

BPEL Construct Cashew-A Representation

pick
onMessage〈m1, P 1〉
· · ·
onMessage〈mi, P i〉
onAlarm〈t1, Q1〉
· · ·
onAlarm〈tj , Qj〉

(recm1
[
Receive m1 parts(m1)

]
# P 1) � · · ·�

(recmi
[
Receive mi parts(mi)

]
# P i)�

t1©Q1 � · · ·� tj©Qj

Table 5.2: The pick construct

must execute at least once. Thus, we first sequentially compose the initial execution of
P . The process then executes P repeatedly, but this time only provided a yield can occur
first (i.e. ↑P ). The yield will not occur if the expression performance rcon evaluates to
true, meaning that the loop exits at this point.

I now turn to the more advanced, Web service oriented constructs. First, in Table 5.2,
a pick in WS-BPEL is a particular type of choice, which is resolved by an event, which can
be either a timeout or a message receipt. It is useful, for instance, to allow a client Web
service to make a choice (i.e. external choice). It is less general than the generic choice
operator in Cashew-A and hence easily representable. As Cashew-A has both message
flow and a real-time clock, both types of events can be represented. A receipt of message
mi is based on a Receive component wrapped in an appropriately named performance,
which guards the process which should become active when this message is received. A
timeout is represented using the RTC operation n©P , which will activate P after n time
units elapse, unless one of the other events happens first.

A sequential forAll construct, shown in Table 5.3 is like a for loop, in that it executes
the body with a free variable, where the variable is populated on each iteration by an
incremented number. Unlike the previous examples I use a complete workflow to repre-
sent a forAll loop. The inputs to the workflow are set to the inputs of P , plus an additional
input n for the number of times to execute.

The control flow C includes a performance init which executes first and assigns the
initial number to the accumulator (v=0) by providing an output called v. A repeat loop
then continues executing the body P until the current loop value v reaches n. The body
yields (indicating the condition isn’t yet true), executes P and then runs a performance
called inc which inputs the current iteration variable v and the final value n, increments
v and then outputs them both as w and m respectively. These two values are then fed
back into the workflow through the dataflow for the second iteration.

The exit condition uses a performance called test which inputs the current iteration
variable v and the final value n, and checks if v > n. If so the yield will not be allowed



5.9. WS-BPEL Comparison 103

BPEL Construct Cashew-A Representation

forAll〈P, n〉
(sequential)

forAll[A{C ×D}B] where

A = n · inputs(P )
B = outputs(P )
C = init[Const {v} (0)] #

(↑P # inc[Eval (Just (v + 1, n)) {v, n} {w,m}])∗
(test[Expr (if (v>n) then Just () else Nothing) {v, n} ∅])

D = n� inc.n · n� test.n · test.m� test.n ·
init.v� test.v · init.v� inc.v · inc.w� test.v · 1

Table 5.3: The forAll construct

BPEL Construct Cashew-A Representation

flow
link 〈l1〉
link 〈l2〉
· · ·
link 〈li〉
(.. workflow ..)

flow[A{Links ‖ (Flow # End)×D}B] where

Links = l1[Id {il} {ol}]∗(e l1[Null {il} ∅])
‖ l2[Id {il} {ol}]∗(e l2[Null {il} ∅])
‖ · · ·
‖ li[Id {il} {ol}]∗(e li[Null {il} ∅])

(Flow and End described below in text)

Table 5.4: The flow construct

and the loop will exit.

The final WS-BPEL construct I consider is flow, shown in Table 5.4. A WS-BPEL flow
is a collection of workflows which run in parallel, together with a set of links which give
a dependency relation between their activities. This is quite complicated to represent in
Cashew-A, since the links can target and source processes which are some way down the
encapsulated control-flow hierarchy. I use Flow to represent the unlinked control flow
in the workflow and then compose it with the ‘links’ process called Links and an End
process to clean up at the end.

This is essentially a simplified Petri-net pattern. Each link is represented as a looping
performance called ln, which copies the input to the output. Each performance has an
input called il and an output called ol, which are used to source and target particular
performances in Flow via dataflow D. For instance if we wish to link a performance p
to a performance q with link ln then D would have links op � illn and olln � iq. The
process End is there to terminate all the link loops when the main flow terminates.

I claim, therefore, that Cashew-A is capable of representing many of the constructs in



104 Chapter 5. Service Composition Language

WS-BPEL. Although this work is by no means complete, it demonstrates that Cashew-A
is a language which is useful for Business Process Modelling.

5.10 Conclusion

In this Chapter I have given a detailed, but informal description of the service compo-
sition language, Cashew-A. I described the overall paradigm, that an orchestration is
described in terms of control flow, data flow and message flow. I described three control
language fragments, including one for specifying compensable transactions. I then gave
some examples of Cashew-A orchestrations and evaluated the language against a com-
prehensive set of workflow patterns and WS-BPEL. What I have demonstrated is that
my approach of combining data flow with abstract and physical time, along with a pre-
condition / post-condition layer entails a highly versatile language which is comparable
with recent Web service and Business Process Modelling languages. In the following
chapters I will equip the language with a formal behavioural semantics.



Chapter 6

A Timed Process Calculus for
Component Oriented Systems

In this Chapter define the behavioural meta-model for Cashew-A, the service com-
position language introduced in the previous chapter. I introduce a novel Abstract
Timed Process Calculus called CaSEip, which will be used to equip Cashew-A
with a fine-grained behavioural semantics, the bottom-level of the three-level seman-
tic stack presented in Chapter 4. The calculus generalises an existing timed process
calculus, CaSE, and allows the representation of a greater number of synchronisa-
tion patterns. I fully explore the calculus and develop an equivalence theory.

6.1 Motivation

IN THIS CHAPTER I construct a behavioural meta-model for Cashew-A. The under-
lying meta-model is an Abstract Timed Process Calculus called CaSEip, which I will
introduce and formally describe. However, I first justify my choice of a Timed Pro-

cess Calculus to model Web service composition. At this point it must be stressed that
the purpose of this exercise is not to model Web services from a physical perspective. That
is, the calculus I introduce does not deal directly with low-level networking issues such
as timeout and availability. There are already several calculi which take this route, for
instance Orc (Misra and Cook, 2007) and several π-calculus extensions. Nor is this an at-
tempt to model real-time aspects of Web services, for which again several calculi already
exist. Rather the use of this calculus is purely from an abstract component perspective,
and undoubtedly the Web service architecture encapsulates one of the most important
component paradigms of the moment. The “time” which I speak of is relative time – the
ordering of different events with respect to each other.

My calculus will provide a basis for modelling different synchronisation constraints
between components of a Web service orchestration. Such constraints will allow com-
ponents to be orchestrated according to different patterns of execution. My contention

105



106 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Figure 6.1: Isochronic Broadcast

is that the different patterns of Chapter 5 may be modelled via a variety of synchronous
protocols, and I will build a calculus to exhibit these. The crucial factor is compositionality
– the calculus model into which Cashew-A can be translated, and also provide on-the-fly
evolution. There will be two aspects to the meta-model, modelling the internal synchro-
nisations between various components and external communication between the Web
service and client.

Abstract Timed Process Calculus is itself well-suited to component modelling be-
cause of the many different synchronisation concepts that may be represented. One such
concept already mentioned in Chapter 2 is isochronic broadcast, which models a broadcast
between an unbounded number of recipients as shown in Figure 6.1. This sort of broad-
cast contrasts with that of CSP (Hoare, 1985) in that it is deterministic – there is an implicit
guarantee that all agents within a given scope must participate. Isochronic broadcast
therefore allows a compositional approach to dataflow modelling, where data synchro-
nisations can be made without prior knowledge about recipients. Hence, a dataflow
connection is guaranteed to pass its incoming data on to all recipients. Isochronic broad-
cast can therefore also be used to schedule an unbounded collection of processes.

The variant of process calculus I focus on is particularly suited to component mod-
elling due its inherent notion of synchronous hierarchies. This concept, first suggested by
Kick (1999) and Lüttgen (1998), forms a major part of the CaSE process calculus, cre-
ated by Norton et al. (2003). CaSE allows a process topology (i.e. a collection of parallel
sequential agents) to be divided into a hierarchy of compartments, each of which limits
the scope of a multi-party clock synchronisation. Inherent in this is a notion of priority,
where actions from inner compartments pre-empt those from outer compartments as il-
lustrated in Figure 6.3. This concept, which from a theoretical standpoint is facilitated by
the clock hiding operator, allowed us to use clocks to detect completion of encapsulated
components in a workflow; see our earlier paper (Norton et al., 2005). Since Cashew-
A also allows for compensable transactions, this model will also need a form of localised
interruption where processes in a limited scope may have their execution halted and as-
sociated compensation processes started, as illustrated in Figure 6.2.

Perhaps the most important pattern we have successfully described from the OWL-S



6.1. Motivation 107

Figure 6.2: The process marked I interrupts the two processes marked C. The other pro-
cesses marked R are unaffected.

Figure 6.3: Synchronous Hierarchies
(Lower numbered compartments have higher priority.)

process model using CaSE is interleaving, known as AnyOrder. This pattern represents
a bag of processes whose execution order is determined purely by their individual pre-
conditions, with the added constraint that only one process may execute at any instant.
Completion of the pattern as a whole requires that each of the processes execute once. In
addition there may be independent dataflow between processes, allowing the resolution
of an ordering. In our semantics each constituent process and dataflow connection is
represented by a CaSE process. Completion is detected when an encapsulating clock
ticks, which cannot occur until all internal activity has been exhausted. This is impos-
sible to represent in a compositional way with CCS alone, since there would be no way
of independently determining when the final process had finished without storing an
external process list (which is non-compositional). Hence the addition of abstract time
to CCS is imperative to model the workflow patterns.

This Chapter is, to a greater or lesser extent, the result of an exploration into what
other forms of constraints can be modelled in an abstract timed process calculus. In
Chapter 5 I demonstrated several types of workflow pattern which Web service com-
position languages include. It is my contention that timed process calculus provides a
useful abstract theory for studying these patterns. Further, I believe such a process calcu-
lus provides a stepping stone in refining an abstract composite Web service specification
into executable form. In this Chapter I take the initial steps to backing up my contention.



108 Chapter 6. A Timed Process Calculus for Component Oriented Systems

6.2 Overview

Although CaSE is already a very powerful calculus and has been shown to be useful
for modelling service composition, I have decided to extend it. During my experiments
with CaSE in attempting to give a semantics to several of the operators from Chapter 5
it became apparent that a number of additional concepts not found in OWL-S are either
cumbersome or impossible to represent in a compositional way. I also decided that CaSE
required some further refinement and generalisation from a theoretical perspective. An
essential feature of the new calculus is that, like its predecessors, it will be equipped
with a congruent equivalence relation based on weak bisimulation. Weak bisimulation
is the variant of bisimulation which abstracts over internal actions, and therefore allows
a component composition to be viewed at different levels of abstraction. This is a vi-
tal feature for it to be suitable for component composition, without which it would be
impossible to compare interfaces and perform process decomposition.

Before looking at the process calculus theory it is necessary to briefly examine the
context of the meta-model. A key assumption throughout this chapter and the remain-
der of the thesis will be: a process is a composition of sequential agents. Specifically, I
am limiting myself to the sub-language of CCS where static operators may not be placed
within dynamic operators . For instance the process µX.(P |X), representing the repli-
cation of process P will not be allowed. This is a sensible restriction to make since I am
only concerned in this work with finite-state processes. I will not, therefore, be mapping
the operators of Cashew-A directly onto operators of my process calculus, but rather will
be representing their behaviour through a collection of synchronous agents.

Indeed, it has been noted previously by van der Aalst (2005) that the operators of
CCS and π-calculus do not naturally fit in with workflow operators. That is true, be-
cause CCS (and perhaps even π), being a low-level theory, is more suited to providing a
behavioural meta-model for workflow, where a variety of synchronous protocols express
the behaviour of individual processes. Therefore, the calculus will be used to express
the fundamental concepts of control flow and data flow via synchronous communica-
tion and abstract time. The advantage of this approach is a fine-grained compositional
semantics, which precisely describes the execution of a workflow. The semantics of a
Cashew-A process like JP # QK will be described (broadly) as J#K | JP K | JQK, that is the
semantics of the two processes parallel composed with the semantics of the operator,
which will be some sort of scheduler .

Having discussed the context of the new calculus I explore in the next two sections
some of the issues which CaSEip seeks to address.

6.2.1 Interruption

The first problem which I considered is that CaSE apparently lacks any form of support
for interruption. Interruption is a key concept in Cashew-A transactions (see Chapter 5



6.2. Overview 109

Section 5.5.3). When a workflow member wishes to invoke a compensation it must first
interrupt the rest of the workflow using the  operator. From a process perspective, this
must stop the activity of all workflow sub-processes and initiate the roll-back. The ques-
tion is, how should this be represented at the process level? My first approach was to
judge that compensation should take place with greater priority than simply continuing
the workflow’s normal execution. Hence, interruption may be viewed as a higher prior-
ity action taking precedence over the process’s continuation. A process would therefore
be forced to compensate immediately, in a similar manner to which a computer’s CPU
can have its execution interrupted by a peripheral. This type of behaviour is not repre-
sentable in timed process calculus since clocks are lower not higher priority actions, and
all other actions are merely interleaved, which could potentially leave an interruption to
very last, which is hardly ideal.

Since this seems a fundamental problem of the calculus, I began by creating a new,
experimental process calculus called ICCS based on the work of Lüttgen (1998). A sum-
mary of this calculus can be found in Appendix A, Section A.1. ICCS (Interruptible CCS)
is an extension of CCS which adds interruption actions like 〈a〉with higher priority than
other actions. Interruption is also localised so an interruption action can only pre-empt
peer actions in much the same way that clocks can only be pre-empted by peer silent
actions. Nevertheless, ICCS was rejected because it is ad-hoc and the equivalence theory
doesn’t work well. I also decided that my fundamental judgment about what interrup-
tion is was wrong. Since an orchestration engine is dealing with distributed Web services
it simply does not have the control like that of a CPU over its hardware. It is impossible
to force a Web service to stop immediately, unless such behaviour has been explicitly
implemented. Therefore, I concluded that the only feasible way to represent localised
interruption was not through an extension, but using abstract time itself.

This is the main reason why in Chapter 5 I added yield actions to Cashew-A. A yield
action broadly maps onto waiting for a clock to tick. Specifically, a yield can only allow
an interruptible workflow to continue if there exists no way that an interruption can be
raised by a sequence of silent actions. This effectively synchronises the workflow before
compensation is necessary, as this is the only way to ensure that all components are
listening and will react when required. They cannot be interrupted at will. Therefore, in
this respect CaSE provides an adequate basis for modelling interruption. Nevertheless
there are still further issues to deal with.

6.2.2 Generalisation

Further extensions were required as experimentation showed up CaSE’s inflexibility in
a number of other areas. There are two main issues I wish to resolve. The first concerns
the structure of workflow semantics.

Phasing is an important technique I will be using for component modelling. It in-
volves splitting a component’s behaviour into a number of phases or intervals, separated



110 Chapter 6. A Timed Process Calculus for Component Oriented Systems

σ ρ
ψ

σ

Figure 6.4: A simple phase transition system

a

σ

ρ

E

F

G

Figure 6.5: A Patient Clock Choice LTS

by clock ticks. Each phase represents a distinct work unit where the component is engag-
ing in a particular activity, for example trying to satisfy its preconditions or executing.
Once the activity has completed, that is when all internal activity ceases, the next phase
clock ticks to begin the successor phase. Thus, each component will have an associated
phase transition system, which sub-components will be able to hook into to guide their ex-
ecution (see Chapter 7, Section 7.2.1). For instance, Figure 6.4 illustrates a simple phase
transition system, which ought to be representable.

This particular requirement motivates a re-evaluation of clocks in CaSE, which has
a degree of inflexibility with respect to modelling different types of timed transition sys-
tems. Consider, for instance, the simple transition system in Figure 6.5. Here is a transi-
tion system which makes a choice between doing a non-clock action a to become process
E, a tick on σ to become F , or a ρ tick to become G. Meanwhile the process is fully
patient on all other clocks (represented by the bulls-eye state), so that it will not restrict
any clock context; that is, other as yet unknown clocks can tick at will. Such processes
are foundational to a workflow’s phase transition system.

CaSE cannot represent a construction like this, where a choice is made by one of
several clocks, whilst observing total patience. In order to represent patient clock prefix
several versions of CaSE have the stable timeout operator dEeσ(F ), a partially static op-
erator which will reduce only if a non-clock action happens in E, or if the given timeout
clock ticks (see Chapter 2, Section 2.5.3 for the semantics). Patient clock prefix (σ.E) can
be represented as d0eσ(F ), where 0 can be replaced by any patient process (e.g. a.E), but
this does not generalise up to multiple clock choice. The only way to represent this is to



6.2. Overview 111

nest stable timeouts like so: dda.Eeσ(F )eρ(G). However this isn’t correct, because whilst
a will indeed lead to E and ρ to G, σ leads to dF eρ(G) and not simply to F as it should.
The reason is that the outermost timeout is not removed when σ ticks, and will remain
in place until F performs a non-clock action. The ρ path is thus still available which may
lead to unexpected behaviour if a pure choice is desired.

A possible solution is to define stable timeout over a set of clocks and resultant pro-
cesses, e.g. dEeσ̃(Ẽ), but this seems ad-hoc. Another option is to use CaSE’s fragile
timeout, and represent the clock context explicitly, as suggested by Lüttgen as a way of
rewriting the stable timeout operator. For instance dEeσ(F ) , µX.bE + ρ1 · · · ρncσ(F ),
i.e. explicit creation of self-transitions for all clocks other than σ, provides a possible
way of allowing all other clocks to effectively idle by making them recurse. However,
this won’t suffice either because it is impossible to build an arbitrary clock context for T

(the set of all clocks) because the set will expand over time as a process grows. To over-
come this problem, my new calculus will be built specifically to allow such constructions
directly. This is important, as a hierarchical system of components should collapse to a
process identical to a simple component, not restricting clocks.

The second issue is rather more nuanced, the need to represent a choice operator
across parallel composition. This may seem an odd desirable as CCS already has a choice
operator. However, this is a primitive choice operator, not one which allows the composi-
tion of parallel processes generally. My process architecture, in line with previous work
(Norton and Fairtlough, 2004) is reactive in nature – the processes can be non-terminating
(i.e. process graphs are strongly connected), and it should be possible to execute any
workflow process ad infinitum, clearly this is the case since we include an iteration op-
erator. Nevertheless, we need to avoid representing this iteration by placing parallel
processes within the fixpoint operator, lest we run the risk of becoming undecidable.
Hence, since all workflows will be described by parallel composition of primitive reac-
tive agents, it becomes necessary to investigate how exclusive choice may be described.

These two issues led me to construct a second calculus which I call CaSEmt after
Moller and Tofts (1990), which I describe in Appendix A, Section A.2. CaSEmt is a gen-
eralisation of CaSE which replaces the timeout operator with a clock prefix operator
and additionally adds a negative clock prefix operator ¬σ.E which advances only when
a clock other than σ can tick. Additionally it has two variants of the choice operator,
one of which allows a clock to resolve it, in contrast to CaSE. These two changes al-
lows the redefinition of stable timeout in terms of fragile timeout as required, specifi-
cally dEeσ(F ) , µX.bE + ¬σ.Xcσ.X(F ). This in turn allows the representation of clock
choice as required.

However, this calculus does have a rather unfortunate problem – because it is so low-
level it leads to extremely complicated processes for even simple choices. For instance
the choice in Figure 6.4 is represented as

µX.(σ.µY.(ψ.X + ρ.µZ.(σ.Y + (¬ρ.Z ++ ¬ψ.0)) + ¬σ.Y ) + (¬ρ.X ++ ¬ψ.0))



112 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Clearly this is a very complicated process for what is really quite a simple transition
system. Bearing this in mind I set about creating the third and final process calculus,
CaSEip. As we shall see, the main contrast with CaSE (and indeed CaSEmt) is the way
that the semantics are described. Nevertheless, the discussion of CaSEmt is interesting
because it illustrates how CaSE eventually became CaSEip.

6.3 Introduction to CaSEip

CaSEip is an abstract timed process calculus based on CCS. It can be seen as an extension
of CaSE in that it retains many of its concepts, but generalises them and introduces a
new style of operational semantics. The main difference is that CaSEip makes patience
implicit (hence CaSE with implicit patience). In CaSE if a process is patient on a particular
clock, it has a self-transition. This can be seen in the semantics in Chapter 2 Section 2.5.3,
where both processes 0 and a.E have a σ self-transition on any clock. A clock transition is
only absent from a process when that process explicitly holds that clock up. For instance
∆ has no clock transitions at all, and ∆σ has no σ transition (but has self-transitions on
all other clocks). Such processes likewise prevent a σ transition in processes with which
they are composed. This is one of the main reasons why having a clock decide a choice
in a CaSE-style calculus is cumbersome, because it is impossible to distinguish a process
which simply allows a tick from one which causes a tick.

The new calculus will, therefore, explicitly differentiate between a clock tick arising
from a process simply allowing it, but not actually reacting to it, and one which does
react and changes as a result. This seems sensible – if a clock tick does not cause any
state change in a process surely it is a wasted transition to include it at all. So, as in PMC
(Andersen and Mendler, 1994), clock transitions are enabled only via inclusion – every
clock is not enabled by default but only if it is explicitly so. But in contrast to PMC,
clocks which have no transitions are not necessarily stalled, because it is convenient to
retain CaSE’s property that processes are patient by default. Instead, there are now three
states a clock can be in, instead of just two: active, patient and stalled. A process P will
only prevent another composed process Q from producing a tick on a particular clock if
that clock is explicitly stalled by inclusion of a ∆ or ∆σ in P .

One advantage of such an approach is that dealing with choices made by clocks is
far more elegant. For instance, and in contrast to both CaSE and CaSEmt, this will allow
the following process to have the obvious meaning:

a.E + σ.F + ρ.G

This means if a occurs then choose E, if σ then F , or if ρ then G. Furthermore,
this process will idle over all other clocks automatically, with only σ and ρ active, but
no clocks stalled. A process may only decide a choice with a clock tick if the process
in question actively engages that clock, rather than simply allows it. A process which



6.4. Clock Renaming 113

simply idles over a clock tick will not resolve a choice, as it is not an active participant.
On the other hand a clock will decide the choice if the process actively engages it. If both
sides of a choice react to a clock tick then both advance in parallel, as before. I also add
the requirement that for a tick on one side to decide the choice, the other side must not
explicitly prevent the clock from ticking.

For instance, in E + F the choice can only be decided by E σ→ E′ provided F does
not stall σ. The overall effect of this is that the complexity of deciding clock choices is
dealt with in the transition system semantics. Thus the process syntax is free from the
need to explicitly customise patience.

6.4 Clock Renaming

In addition to having a new form of patience, CaSEip also has a new operator, called
clock renaming. The clock renaming operator in CaSEip allows clock ticks to be renamed
to visible actions (where hiding “renames” them to silent actions) . Although the se-
mantics for renaming has not changed, I have added an additional clause to the syntax,
i.e. E{[σ 7→ a]}. Renaming clocks to actions is the only possible renaming which can be
performed on clocks that does not break clock determinism. Renaming an action to a
clock would, because actions can be non-deterministic – e.g. (a.P + a.Q){[a 7→ σ]}would
lead to two possible σ transitions. Likewise, renaming clocks to other clocks can break
determinism, for instance in the process (σ.P + ρ.Q){[σ 7→ ρ]}. But renaming clocks to
actions does not because, although actions can be non-deterministic, there can be only
one proxy action for the renamed clock and therefore the clock can only advance through
that action instance.

Clock renaming enables several possibilities: firstly, the problem with clock hiding
imposing an implicit total order is solved. Instead of hiding a collection of clocks in
sequence, which places an order on them, e.g. E/ρ/σ where ρ takes precedence over
σ, multiple clocks can instead be renamed to a given action. This action can then be
synchronised with a co-action, which will produce a τ for each clock. For instance, we
may write (E{[σ 7→ a]}{[ρ 7→ a]} | µX.a.X) \ a, which is effectively clock hiding but
without the order. Naturally this relies on a not being used by E.

Secondly, it allows one-to-many synchronisations in a similar style to the Calculus
of Broadcasting Systems (Prasad, 1995), where a single output synchronises with many
inputs. This in turn, along with the other changes made in CaSEip, allows the repre-
sentation of a static compositional choice operator. Such choices are needed to represent
decisions made on the basis of a message’s receipt, which is needed for the Cashew-A
choice operator (see Chapter 5). For example:

(
σa.z.ρ.E + ρ.0

∣∣ σb.z.ρ.F + ρ.0
∣∣ σc.z.ρ.G+ ρ.0

∣∣ zρ.0) /ρ {[σn 7→ n |n ∈ {a, b, c}]} \ z



114 Chapter 6. A Timed Process Calculus for Component Oriented Systems

This process makes a choice based on the receipt of messages a, b or c. The three
messages are represented by three clock proxies σa, σb and σc, respectively, which are re-
named using the new operator to their respective messages. In addition a further clock,
ρ, is used to cancel out the other choices once any one of the message clocks has ticked.
This clock, ρ, is hidden first, so that it has highest priority. The other three clocks are
renamed and so have equal priority. Each message has an associated agent which is re-
sponsible for receiving the message and then cancelling the other two receivers. A fourth
agent holds up the ρ clock until it has received a z communication (indicated by the un-
derlining of z), which can be sent out by one of the three receivers. Therefore, when
an output message from the environment synchronises with one of the three inputs, the
other inputs are immediately disallowed because of the presence of ρ which pre-empts
them away, meaning only one of the three processes E,F and G may be activated. This
construct can be extended to any number of choice processes. Such a choice semantics is
compositional because an additional message proxied by σd, for instance, can easily be
included by adding another agent and clock renamer.

Naturally this simple example could be represented simply by a.E+b.F+c.G in regu-
lar CCS. However, if we wish each message receipt to initiate execution of a collection of
recursive parallel composed agents this solution no longer becomes viable. In particular
it goes against the philosophy of a process being a composition of sequential agents and
increases the possibility of processes becoming unverifiable. Furthermore, since we are
using clocks it opens up the possibility for other processes to pre-empt away the choice
branches if necessary. I therefore content that this representation of compositional choice
is a much more flexible solution.

6.5 Syntax and Operational Semantics

CaSEip uses a mixture of the syntax from CaSEmt and CaSE. I favour a clock prefix
operator over a binary timeout but only admit one form of summation. I assume the
existence of two infinite sets A and T , the set of all actions and clocks. In particular, it
should be noted that T \ T = T , for any finite set of clocks T – T is the top set of all
clocks.

In line with the Unified Semantic Framework, a framework designed to help compari-
son of differing abstract timed process calculi (Lüttgen and Mendler, 2005), I define the
three sets ΣE , AE and TE – the instability, initial actions and initial clocks sets. The insta-
bility set and initial clock set are used to define the clocks stalled by a process, and the
clocks which have an outgoing transition, respectively. A clock found in neither set is
deemed patient. These three sets ensure that the semantics are well-defined, especially
in the case of testing whether a process is incapable of performing a particular action.
Defining this in terms of the semantic transition relation itself introduces undecidability
problems because of the nature of recursion, and thus I use finite sets to ground the se-



6.5. Syntax and Operational Semantics 115

mantics. These three sets allow the formal definition of the concepts active, patient and
stalled outlined above.

Definition 6.5.1 Active Clocks
A clock σ is said to be active in process E provided that σ ∈ TE .

Definition 6.5.2 Stalled Clocks
A clock σ is said to be stalled in process E provided that σ ∈ ΣE .

Definition 6.5.3 Patient Clocks
A clock σ is said to be patient in process E provided that σ /∈ TE and σ /∈ ΣE .

We can also define the notion of when a process is patient, along with the well known
CCS notion of stability – when a process cannot perform any silent actions.

Definition 6.5.4 Patient Processes
A process E is said to be patient when there exists at least one clock patient in E. That is,
ΣE ⊂ T .

If a process is patient it means that there is an infinite number of clocks which are not
stalled by E, since T is a theoretically infinite set.

Definition 6.5.5 Stability
A process E is said to be stable when it cannot silently move into another state, that is τ /∈ AE .

Stable processes take on an important role in CaSEip and timed process calculi in
general. Since no clock can tick in an unstable process because of maximal progress , it
is necessary to wait for stability before seeing which clocks can tick.

The syntax of CaSEip is found in Table 6.1. It uses a similar syntax to CaSE (the
sorts are identical), but with a clock prefix operator σ.E. Additionally, I provide the
clock renaming operator E{[σ 7→ a]}, described in Section 6.4. Since I will be giving a
more formal examination of this new calculus I also define a restricted form of syntax
for CaSEip in Table 6.2. The latter syntax crystalises the assumption that I made at the
beginning of this Chapter, that a process is a composition of sequential agents. Thus, the
static operators of this language may only compose closed sequential agents, defined by
the inductively defined set E〈X̃〉, whereX is the set of free process variables in the given
term. Parallel processes P are then defined using BNF to encapsulate closed agents and
the static operators.

Our CaSEip semantics, based on the Labelled Transition System (P,A ∪ T ,→), is
given in Table 6.3, along with the three set definitions. Perhaps of most significance in
these semantics is that all idling rules have been removed, namely tIdle, tPatient and
tStall, with added self transitions for idle processes. This is because patient clock ticks
are indicated by two side conditions (a) and (b). They are used by the summation and



116 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Λ = {a, b, c · · · } Λ = {a|a ∈ Λ} A = Λ ∪ Λ ∪ {τ} T = {σ, ρ · · · }
α, β ∈ A γ, δ ∈ A ∪T E,F,G · · · ∈ E

E := 0 | ∆ | ∆σ | α.E | σ.E | E + E | E|E | E \ a | E{[a 7→ a]} | E{[σ 7→ a]} | E/σ | µX.E | X

Table 6.1: Full Syntax of CaSE with implicit patience
−

0 ∈ E〈∅〉
−

∆ ∈ E〈∅〉
−

∆σ ∈ E〈∅〉

E ∈ E〈X̃〉
γ.E ∈ E〈X̃〉

−
X ∈ E〈{X}〉

E ∈ E〈X̃〉
µX.E ∈ E〈X̃ \ {X}〉

E ∈ E〈X̃〉 F ∈ E〈Ỹ 〉
E + F ∈ E〈X̃ ∪ Ỹ 〉

P ::= E〈∅〉 | P|P | P \ a | P{[a 7→ a]} | P{[σ 7→ a]} | P/σ

Table 6.2: Restricted Syntax of CaSE with implicit patience

composition rules (tSum2, tSum3, tCom2, tCom3) to permit only one side of the operator
to tick if the other side is patient over the particular clock. Patience is indicated by the
absence of a clock from both instability and initial clock sets and the side-conditions (a)
and (b) enforce this. If both sides tick over the same clock they are composed in the usual
way.

An interesting point of note is that, unlike CaSEmt, it is impossible to represent the
timeout operator bEcσ(F ) exactly in CaSEip. The reason for this is there is no way of
pruning a clock tick from a sub-expression, as timeout does with the process on the
LHS (E). Specifically, placing a process on the LHS of a timeout means that any clock
transitions on the timeout clock are removed from the process semantically. The only
way to prevent a clock from ticking in CaSEip is to sum the process with ∆σ, but this
prevents the clock ticking altogether, not just in the sub-expression. However, since an
exact replication of CaSE’s timeout operator is not required for the service composition
semantics, this is a satisfactory compromise, and timeout will be broadly derived as
bEcσ(F ) , E + σ.F .

6.5.1 Relationship between transitions and sets

It is neccessary before I can prove anything about my calculus that I firmly establish the
relationship between the transition relation and the various sets. The casual reader can
omit this section, as it simply ensures that our intuition of what the various sets mean
actually reflects reality. The main Lemma to be proved in this Section is as follows:



6.5. Syntax and Operational Semantics 117

Table 6.3: CaSEip Operational Semantics

Act
−

γ.E
γ→ E

tSum1
E

σ→ E′, F
σ→ F ′

E + F
σ−→ E′ + F ′

tCom1
E

σ→ E′, F
σ→ F ′

E | F σ−→ E′ | F ′
(d)

Sum1
E

α→ E′

E + F
α→ E′

tSum2
E

σ→ E′

E + F
σ→ E′

(a) tCom2
E

σ→ E′

E | F σ−→ E′ | F
(a, d)

Sum2
F

α→ F ′

E + F
α→ F ′

tSum3
F

σ→ F ′

E + F
σ→ F ′

(b) tCom3
F

σ→ F ′

E | F σ−→ E | F ′
(b, d)

Com1
E

α→ E′

E | F α→ E′ | F
Com2

F
α→ F ′

E | F α→ E | F ′
Com3

E
a→ E′, F

a→ F ′

E | F τ→ E′ | F ′

Res
E

γ→ E′

E \ a γ→ E′ \ a
(2) Rel

E
γ→ E′

E{[f ]} f(γ)→ E′{[f ]}
Rec

E{µX.E/X} γ→ E′

µX.E
γ→ E′

Hid
E

α→ E′

E/σ
α→ E′/σ

tHid1
E

σ→ E′

E/σ
τ→ E′/σ

tHid2
E

ρ→ E′

E/σ
ρ→ E′/σ

(1, c)

1) ρ 6= σ 2) γ /∈ {a, a} a) σ /∈ ΣF ∪ TF b) σ /∈ ΣE ∪ TE c) σ /∈ TE d) τ /∈ AE | F

Instability set Initial Clock set
ΣE+F = ΣE ∪ ΣF

Σσ.E = ∅
Σ0 = ∅
Σ∆ = T
Σ∆σ = {σ}
Σa.E = ∅
Στ.E = T

ΣE | F


T if ∃a.a ∈ AE ∧

a ∈ AF

ΣE ∪ ΣF otherwise
ΣE\a = ΣE

ΣE{[a7→b]} = ΣE

ΣE{[σ 7→a]} = ΣE \ {σ}

ΣE/σ

{
T if σ ∈ TE
ΣE \ {σ} otherwise

ΣµX.E = ΣE

ΣX = ∅

TE+F = (TE ∪ TF ) \ ΣE+F

Tσ.E = {σ}
T0 = ∅
T∆ = ∅
T∆σ = ∅
Tα.E = ∅
TE | F = (TE ∪ TF ) \ ΣE | F
TE\a = TE
TE{[a7→b]} = TE
TE{[σ 7→a]} = TE \ {σ}

TE/σ =

{
∅ if σ ∈ TE
TE otherwise

TµX.E = TE
TX = ∅

Initial Action set
Aσ.E = ∅ AE\a = AE \ {a, a}
A0 = ∅ AE{[f ]} = {f(γ)|γ ∈ AE ∪ TE}
A∆ = ∅ AE/σ = AE ∪ {τ |σ ∈ TE}
A∆σ = ∅ AµX.E = AE

Aα.E = {α} AX = ∅
AE+F = AE ∪AF

AE | F = {τ |a ∈ AE ∧ a ∈ AF } ∪AE ∪AF



118 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Lemma 6.5.6 γ ∈ AE ∪ TE if and only if ∃E′.E γ→ E′

Specifically, the presence of an action or clock in the respective sets is equivalent to
there being a transition. To do this, I require a notion of subexpressions and subprocesses
which helps link syntax to semantics (and will be particularly important in proofs for
recursion).

Definition 6.5.7 Subexpressions
An expression is a subexpression of another (sequential) expression if it appears directly under
any operator other than prefix. The definition is closed under the following rules:

• E is a subexpression of E;

• If E is a subexpression of F then E is a subexpression of F +G;

• If E is a subexpression of G then E is a subexpression of F +G;

• If E is a subexpression of F then E is a subexpression of µX.F .

Definition 6.5.8 Subprocesses
A process is a subprocess of another process if it appears directly under any operator other than
prefix. The definition is closed under the following rules:

• P is a subprocess of P ;

• If E is a subexpression of F then E is a subprocess of F ;

• If P is a subprocess of Q then P is a subprocess of Q | R;

• If P is a subprocess of R then P is a subprocess of Q | R;

• If P is a subprocess of Q then P is a subprocess of Q \ a;

• If P is a subprocess of Q then P is a subprocess of Q/a;

• If P is a subprocess of Q then P is a subprocess of Q{[γ 7→ a]}.

I also need the following two propositions, which prove the relationship between the
various sets. Specifically, that the presence of an initial τ means all clocks are stalled,
and that an active clock cannot also be stalled.

Proposition 6.5.9 For any process E, if τ ∈ AE then ΣE = T .

Proof. By induction on the structure of process E. If AE contains a τ action then
there are three ways by which that τ could have been placed in the set:

1. τ.F is a subprocess of E for some F ;



6.5. Syntax and Operational Semantics 119

2. F/σ is a subprocess of E for some F and σ ∈ TF ;

3. F | G is a subprocess of E for some F and G, with a ∈ AF and a ∈ AG.

At least one of these must be true, as the other rules for defining AE compose the
sets for constituent subprocesses. For case (1), Στ.F is clearly T . For case (2), since we
know that σ ∈ TF then again ΣF/σ = T . For case (3) we know that a ∈ AF and a ∈ AG

and therefore ΣF | G = T . Finally we note that if ΣF = T for some subprocess F of E
it must also follow that ΣE = T , since the definition of the latter composes the former
and T cannot be reduced. �

Proposition 6.5.10 For any process E and clock σ, σ ∈ TE implies σ /∈ ΣE .

Proof. By inspection of the definition of TE and ΣE in Table 6.3. There are three
classes of processes to consider:

• The non-composite processes for which σ ∈ ΣE are E ≡ ∆, ∆σ and τ.G (for any
G). For all of these TE = ∅ and hence σ /∈ TE as required.

• The three composite processes which can remove σ from TE are E ≡ F | G, F +G

and F/σ. The definition of TE for the first two explicitly removes ΣE and therefore
by definition σ /∈ TE . The third process has the same condition for setting ΣE = T

as setting TE = ∅.

• The remaining composite processes, such as µX.F , simply copy TE and ΣE for the
enclosed process and hence do not alter the definition.

Thus in all cases the statement follows. �

Finally, to prove Lemma 6.5.6 I prove three propositions. The first two prove the impli-
cation in one direction, and the third proves it in the other.

Proposition 6.5.11 For any process E, if α ∈ AE then ∃E′.E α→ E′

Proof. By induction on the process structure of E. Specifically, I use the definitions
found in Table 6.3 to prove for each CaSEip construct f and process sort Ẽ that whenever
α ∈ Af(Ẽ) it necessarily follows that ∃E′.f(Ẽ) α→ E′, on the basis that this is true for the
parts in Ẽ. The full proof can be found in Appendix B, Section B.1. �

Proposition 6.5.12 For any process E, if σ ∈ TE then ∃E′.E σ→ E′.

Proof. By induction on the structure of process E. See Appendix B, Section B.2. �

Proposition 6.5.13 For any process E, if ∃E′.E γ→ E′ then γ ∈ AE ∪ TE .

Proof. By induction on the structure of process E. See Appendix B, Section B.3. �

This completes the proof of Lemma 6.5.6, showing that we can treat transition presence
and membership of the initial action or clock sets as equivalent.



120 Chapter 6. A Timed Process Calculus for Component Oriented Systems

6.5.2 Free variables and Substitution

In this Section I prove some important Lemmas about process expressions with free vari-
ables (called open terms). Since my calculus has recursive terms with µ fixpoints over
otherwise free variables and substitution, there are certain important properties of sub-
stitution which we need to establish for future proofs about the equivalence theory. Once
again, the casual reader can safely skip this section.

For the purpose of this thesis I leave the definition of substitution undefined, because
this will usually be given by the implementation language (in particular I directly use
Haskell’s substitution mechanism in Chapter 8). Instead of a formal definition I simply
state that E{F/X} is the expression E with every free instance of X replaced by F ,
whilst taking account of the free variables in F . I assume that any such valid definition
of substitution avoids capturing F ’s free variables, possibly through use of de-Bruijn
indices (de Bruijn, 1972). In particular the substitution of the expression (µY.X) +Y into
itself as X must distinguish the free Y from the bound Y .

I first make the following definition of free variables in sequential terms (since non-
sequential terms are always closed):

Definition 6.5.14 Free variables
The free variables fv(E) of an expression E are the process variables not bound by a µ. They are
so defined:

• fv(0) , ∅

• fv(X) , {X}

• fv(E + F ) , fv(E) ∪ fv(F )

• fv(µX.E) , fv(E) \ {X}

In some circumstances we need to alter the order of substitutions. The following Lemma
shows when this is possible.

Lemma 6.5.15 Commutativity of nested substitutions
If Y /∈ fv(E) then G{µX.E/X}{µY.F{µX.E/X}/Y } ≡ G{µY.F/Y }{µX.E/X}

Proof. By induction on the structure of expression G.

• G ≡ 0. Follows trivially, as no substitution can occur.

• G ≡ Z, with Z 6= X and Z 6= Y . Also follows trivially.

• G ≡ X , with X 6= Y . Then since Y /∈ fv(E) and Y /∈ fv(X) it follows that in either
case the substitution results in µX.E.

• G ≡ Y , with Y 6= X . Then G{µX.E/X}{µY.F{µX.E/X}/Y } = µY.F{µX.E/X}
since X /∈ fv(Y ), and G{µY.F/Y }{µX.E/X} = µY.F{µX.E/X} as required.



6.5. Syntax and Operational Semantics 121

• G ≡ µZ.H , with H{µX.E/X}{µY.F{µX.E/X}/Y } ≡ H{µY.F/Y }{µX.E/X}.
If Z = X or Z = Y then the statement follows as no substitution for X or Y
can take place in H , as these variables are already bound by µZ and thus these
apparently identical variables are distinguished. Otherwise the case follows by
simple induction.

• G ≡ H + I . Follows by simple induction.

• G ≡ α.H . Follows by simple induction.

Each case is proven and thus the inductive proof is complete. �

Now I can prove the following important Lemma about recursion derivatives.

Lemma 6.5.16 Recursion derivatives of open terms
If µX.E γ→ F then there exists an E′ such that E γ→ E′ and F ≡ E′{µX.E/X}.

Proof. Since E can only contain prefixes, sums and recursions it follows that any min-
imal derivation of

γ→ can only have applications of rule Act at its leaves. If γ = α then
since none of the matching rules (Sum1, Sum2, Rec and Act) have more than one an-
tecedent it follows that there is only one application of Act. However, if γ = σ then
tSum1 requires that both sides have the transition and in that case there will be several
applications of Act. Hence, we know that there are n ≥ 1 subexpressions of E of the
form γ.Hi, for i = 1, · · · , n. It follows that ∃E′.E γ→ E′.

If the derivation of
γ→ involves applications of Rec, construct a G representing the

participative agents such that G =
n∑
i=1

γ.Hi{ ~Ki/~Yi}, where each Ki and Yi represents

lists of expressions and variables for each subexpression containing a nested µ, such that
G

γ→ E′.
Now, by rule Rec it follows that

∑
γ.Hi{µX.E/X}{ ~Ki/~Yi} γ→ F , because X is sub-

stituted for first, before any of the enclosed bindings are expanded. Since the X substi-
tution occurs first in each subexpression, we know that each expression in each ~Ki may
contain µX.E substituted for X , i.e. each K ∈ ~Ki can be written as L{µX.E/X} for
some unsubstituted expression L. We also know that for any Y ∈ ~Yi that Y /∈ fv(E), be-
cause substitution of µX.E for X is subject to all the variables bound in E. That is, since
every variable in each ~Yi is a variable bound by a µ in E, it follows that substitution of
µX.E into E, and hence each of the participative agents, differentiates E’s free variables
from its bound variables. Therefore by inductive application of Lemma 6.5.15, which
tells us that for each K there is a corresponding L, the expression can be rewritten as∑

γ.Hi{ ~Li/~Yi}{µX.E/X}, or simply
(∑

γ.Ii

)
{µX.E/X} with Ii = Hi{ ~Li/~Yi}. Since

E′ =
∑

Ii, we have an expression of the required form. �

Another issue which we will encounter is the problem of unguarded free variables – vari-
ables which occur in an expression unguarded by an action prefix. They are formally
defined thus:



122 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Definition 6.5.17 Unguarded Free Variables
X is an unguarded free variable of expression E, written E B X , if X ∈ fv(E) and X is a
subexpression of E.

The presence of such variables needs to be considered carefully when reasoning about
processes, as when a substitution occurs the behaviour can be changed in unexpected
ways, particularly in the presence of clocks. Hence I now prove the following Lemmas
about them.

Lemma 6.5.18 If E B X then ΣE{µX.H/X} = ΣE ∪ ΣµX.H

Proof. By induction on the structure of expression E.

• E ≡ 0, E ≡ γ.F and E ≡ Y with Y 6= X . These cases follow trivially, since then
E 6B X .

• E ≡ X . Then ΣE = ∅ and hence ΣX{µX.H/X} = ΣµX.H ∪ ΣE as required.

• E ≡ F + G. Then either F B X , G B X or both, and hence either ΣF{µX.H/X} =
ΣF ∪ΣµX.H or ΣG{µX.H/X} = ΣG∪ΣµX.H , or both. If F 6B X (and similarly forG 6B
X) then note that ΣF = ΣF{µX.H/X} since then X can only appear behind a prefix
in some subexpression of F , and the definition of ΣF ignores guarded expressions.
Therefore, in any case Σ(F+G){µX.H/X} = ΣE ∪ ΣF ∪ ΣµX.H = ΣE+F ∪ ΣµX.H as
required.

• E ≡ µZ.F . Then X 6= Z and F B X . Hence this case follows by simple induction.

Each case is proven and thus the inductive proof is complete. �

Lemma 6.5.19 If E B X then TE{µX.H/X} = TE ∪ TµX.H \ (ΣE ∪ ΣµX.H)

Proof. By induction on the structure of expression E.

• E ≡ 0, E ≡ γ.F and E ≡ Y with Y 6= X . These cases follow trivially, since then
E 6B X .

• E ≡ X . Then TE = ∅ and hence TX{µX.H/X} = TµX.H ∪ TE as required.

• E ≡ F + G. Then either F B X , G B X or both, and hence either TF{µX.H/X} =
TF ∪TµX.H \ (ΣF ∪ΣµX.H) or TG{µX.H/X} = TG∪TµX.H \ (ΣF ∪ΣµX.H), or both. As
per Lemma 6.5.18 we know thatE 6B X =⇒ TE = TE{µX.H/X} and also F 6B X =⇒
TF = TF{µX.H/X}, since the definition of T ignores guarded expressions. Therefore,
in any case T(F+G){µX.H/X} = TE∪TF ∪TµX.H \(ΣE∪ΣF ∪ΣµX.H) = ΣE+F ∪ΣµX.H

as required.

• E ≡ µZ.F . Follows by simple induction.



6.5. Syntax and Operational Semantics 123

Each case is proven and thus the inductive proof is complete. �

Lemma 6.5.20 If E 6B X then ΣE{µX.F/X} = ΣE

Proof. This follows from the fact that µX.F is guarded in E{µX.F/X} and since ΣµX.F

is not used in defining Σγ.µX.F for any γ, neither is it used in the definition of ΣE{µX.F/X},
since µX.F is behind such a γ. Therefore its definition is unaffected by the substitution.
�

Lemma 6.5.21 If E 6B X then TE{µX.F/X} = TE

Proof. Follows the same argument as Lemma 6.5.20. �

The remaining aim of this section is to prove a Lemma which is the partner of Lemma
6.5.16. Specifically, this Lemma (or Lemmas) will show us that, under certain conditions,
a substitution does not affect the transitions an expression can make. Naturally enough
there are caveats related to clocks, but these will be considered in due course. It is conve-
nient to do these proofs on vectors of substitutions, rather than singletons, and therefore
I give the following definition of substitution vectors:

E{H, ~H/X, ~X} , E{H/X}{ ~H/ ~X}
E{[]} , E

with the assumption that ~H and ~X have the same length. The two lemmas below prove
the substitution property about first actions and then clock ticks.

Lemma 6.5.22 Action Derivatives and Substitution
For any expression vector ~H and corresponding variable vector ~Y , if E α→ E′ then E{ ~H/~Y } α→
E′{ ~H/~Y }.

Proof. By induction on the structure of E.

• Cases E ≡ 0, E ≡ ∆, E ≡ ∆σ, E ≡ σ.F and E ≡ X follow trivially as then
@E′.E α→ E′.

• E ≡ µX.F , and for any ~H and ~Y , F α→ F ′ implies F{ ~H/~Y } α→ F ′{ ~H/~Y }. By
Lemma 6.5.16 there is a F ′ such that F α→ F ′ and E′ ≡ F ′{µX.F/X}. There-
fore by induction we also know that F{µX.F, ~I/X, ~Z} α→ F ′{µX.F, ~I/X, ~Z}, for
some vectors ~I and ~Z. Furthermore, since X is bound in µX.F , it follows that
X /∈ fv(I) for any I in ~I . Then by rule Rec and E′ ≡ F ′{µX.F/X} it follows that
proving µX.F{~I/~Z} α→ E′{~I/~Z} requires proof of F{~I/~Z}{µX.F{~I/~Z}/X} α→
F ′{µX.F/X}{~I/~Z}. Finally, since F{µX.F, ~I/X, ~Z} α→ F ′{µX.F, ~I/X, ~Z}, it suf-
fices to show that F{~I/~Z}{µX.F{~I/~Z}/X} ≡ F{µX.E/X}{~I/~Z}, which follows
by inductive application of Lemma 6.5.15.



124 Chapter 6. A Timed Process Calculus for Component Oriented Systems

• E ≡ α.F . Then E′ = F and α.F{ ~H/~Y } α→ F{ ~H/~Y } as required.

• E ≡ F + G. Then either F α→ E′ or G α→ E′ and hence the statement follows by
induction.

Each case is proven and thus the inductive proof is complete. �

The equivalent lemma for clocks is more complicated than the case for actions be-
cause substituting a variable can cause a clock either to be stalled or the substituted
process could synchronise on it. Therefore it is also necessary to ensure that whenever
a variable is unguarded in E, the corresponding processes must neither stall nor enable
the clock in question. Hence the following Lemma has a second precondition.

Lemma 6.5.23 Clock Derivatives and Substitution

For any expression vector ~H and corresponding variable vector ~Y , ifE σ→ E′ and for any Y ∈ ~Y
unguarded in E the corresponding H ∈ ~H has σ /∈ ΣH ∪ TH , then E{ ~H/~Y } σ→ E′{ ~H/~Y }.

Proof. By induction on the structure of E.

• Cases E ≡ 0, E ≡ ∆, E ≡ ∆σ, E ≡ α.F and E ≡ X follow trivially as then
@E′.E σ→ E′.

• E ≡ µX.F . This case follows the same proof as the corresponding case in Lemma
6.5.22.

• E ≡ σ.F . Then E′ ≡ F and σ.F{ ~H/~Y } σ→ F{ ~H/~Y } as required.

• E ≡ F +G. We know that whenever F B Y or G B Y with Y ∈ ~Y the correspond-
ing expression H ∈ ~H has σ /∈ TF ∪ ΣF or σ /∈ TG ∪ ΣG, respectively. There are
three matching rules for F +G

σ→ E′ which I consider in turn:

– tSum1. Then F
σ→ F ′ and G

σ→ G′ with E′ ≡ F ′ + G′. By induction we
know that F{ ~H/~Y } σ→ F ′{ ~H/~Y } and G{ ~H/~Y } σ→ G′{ ~H/~Y }. Hence, (F +
G){ ~H/~Y } σ→ (F ′ +G′){ ~H/~Y } as required.

– tSum2. Then F
σ→ F ′ with E′ ≡ F ′ and σ /∈ ΣG ∪ TG. If F B Y it follows

that that σ /∈ ΣH ∪ TH for the corresponding H and hence, by Lemmas 6.5.18
and 6.5.19, it follows that σ /∈ ΣG{H/Y } ∪ TG{H/Y }. Otherwise, if F 6B Y then
by Lemmas 6.5.18 and 6.5.19 it follows that ΣG{H/Y } = ΣG and TG{H/Y } =
TG, and hence also σ /∈ ΣG{H/Y } ∪ TG{H/Y }. Thus σ /∈ ΣG{ ~H/~Y } ∪ TG{ ~H/~Y }.
Therefore, since by induction F{ ~H/~Y } σ→ F ′{ ~H/~Y } it follows that that F +
G{ ~H/~Y } σ→ F ′{ ~H/~Y } as required.

– tSum3. This case can be shown by the symmetric proof of tSum2.



6.6. Equivalence Theory 125

Each case is proven and thus the inductive proof is complete. �

Finally in this Section I prove the following very useful Lemma, which shows that a sub-
stitution for an unguarded variable yields an expression which retains all the transitions
of the substituted expression.

Lemma 6.5.24 Immutability of substituted processes
If E γ→ E′, then for any process H with H B X and γ /∈ TH ∪ΣH , it follows that H{E/X} γ→∑

E′ (i.e. an arbitrary length summation: E′ + E′ + · · ·+ E′).

Proof. By induction on the structure of process H .

• H ≡ 0, H ≡ ∆, H ≡ ∆σ, H ≡ γ.G, H ≡ µX.G (for any G) and H ≡ Y (with
X 6= Y ). The statement follows trivially since H 6B X .

• H ≡ X . This case also follows easily, since then H{E/X} ≡ E.

• H ≡ F+G. We know that eitherX B F orX B G. Also, we know that γ /∈ TF ∪ΣF

and γ /∈ TG ∪ ΣG. If γ = α then by induction F{E/X} α→
∑

E′ or G{E/X} α→∑
E′, and therefore by either Sum1 or Sum2 (F+G){E/X} α→

∑
E′ as required.

Alternatively, if γ = σ then a similar line follows since we know neither F nor G
stalls σ or has a σ transition (by Lemma 6.5.6). The exception is that possibly both
F B X and G B X , and therefore (F +G){E/X} σ→

(∑
E′
)

+
(∑

E′
)

. But this

is nevertheless also
∑

E′ as required.

• H ≡ µY.G (withX 6= Y ). By rule Rec it suffices to show thatG{E/X}{µY.G/Y } γ→∑
E′. We know that Y /∈ fv(E), because when we substituteE into µY.Gwe know

that the free variables of E are distinct from Y (by our restrictions on substitution
made at the beginning of this section). By induction we also know thatG{E/X} γ→∑

E′. If γ = α then by Lemma 6.5.22, G{E/X}{µY.G/Y } α→
∑

E′{µY.G/Y } fol-

lows. But since Y /∈ fv(E) and hence also Y /∈ fv(E′), then this is simply
∑

E′.
Alternatively, if γ = σ then since we know that σ /∈ TH ∪ ΣH , we can apply 6.5.23
to achieve the same end.

Each case is proven and thus the inductive proof is complete. �

6.6 Equivalence Theory

As with CCS and CaSE before it CaSEip needs an equivalence theory so that the be-
haviour of syntactically distinct processes can be identified. This is important so that
processes can be decomposed into constituent parts, and some of these parts replaced
with other, equivalent processes. To quote Milner again, this equivalence theory should
ensure that “two systems are indistinguishable if we cannot tell them apart without pulling



126 Chapter 6. A Timed Process Calculus for Component Oriented Systems

them apart”. I shall be using weak bisimulation as a basis as it fits in well with a component
based system where only visible actions need be considered in an interface.

The equivalence theory we now develop is somewhat more complicated than that
of CaSE, owing to the set theoretic approach taken in CaSEip. Unlike CaSE, a patient
CaSEip process does not register a tick, that is σ /∈ ΣE does not entail E σ→. Therefore it
necessary to ensure that the stable derivatives of equivalent processes possess the same
instability set if bisimulation is to be a congruence relation. For instance, the standard
definition of strong bisimulation would have processes a.E + ∆σ and a.E equivalent in
this calculus because neither has a σ transition. The difference is only observed when a
context requests a σ tick, where the latter will permit it, but the former won’t.

Therefore, to begin this investigation of the equivalence theory I redefine strong bisim-
ulation to account for this nuance.

Definition 6.6.1 Temporal Strong Bisimulation (with Explicit Urgency)
A symmetric relationR is a Temporal Strong Bisimulation provided ∀〈E,F 〉 ∈ R:

• If E γ→ E′ then ∃F ′.F γ→ F ′ and 〈E′, F ′〉 ∈ R

• ΣE = ΣF

We write E ∼ F if there is aR with 〈E,F 〉 ∈ R andR is a Temporal Strong Bisimulation.

Aside from insisting that each pair of matched states have the same instability set,
another more subtle difference to CaSE’s bisimulation relation is present. Since patience
no longer generates a transition, a clock tick must be matched by another tick explicitly.
So for instance, whereas in CaSE it was true that b0cσ(0) ∼ 0, the equivalent equality in
CaSEip, σ.0 ∼ 0, does not hold: since clock ticks decide choices whereas patience does
not, the left hand process would cause a choice to be resolved upon σ ticking, whereas
the right would not. Specifically, σ.0 + a.E

σ→ 0, but 0 + a.E has no σ transition and thus
the choice is only resolved by a.

We could argue that for the purposes of checking bisimulation, we could gloss over
the difference between explicit and implicit clock ticks (patience), thus making σ.0 ∼ 0
and rewriting Definition 6.6.1 to enforce the second condition only in the first state. This
might seem to work, as only the initial actions of a process may decide a choice it is com-
posed into. But this overlooks other subtle differences in CaSEip. For instance, clock
hiding only produces a τ for explicit clock transitions, where CaSE also produces a τ for
patience. Thus CaSEip distinguishes σ.0 and 0 with σ hidden. The same distinction is
made by parallel composition and clock renaming, and therefore the second condition
must be applied in every subsequent state. Therefore, we cannot overlook the funda-
mental difference between patience and clock ticks, and thus the second condition must
be enforced in all states.

Clearly my new definition of strong bisimulation remains an equivalence relation,
that is it is reflexive, transitive and symmetric, since the additional second condition is



6.6. Equivalence Theory 127

itself defined in terms of an equivalence relation (set equality). This is proven in the
following Theorem.

Theorem 6.6.2 Temporal Strong Bisimulation is an equivalence relation

Proof. We need to show that ∼ is symmetric, reflexive and transitive.

• Symmetry – follows by definition, since the conditions of each pairing are identical
for both components.

• Reflexivity – it suffices to note that IdE is a temporal strong bisimulation since
every process can match its own transitions and ΣE = ΣE .

• Transitivity – consider three processes E, F and G with E ∼ F and F ∼ G. Then
there are bisimulations S1 and S2 with 〈E,F 〉 ∈ S1 and 〈F,G〉 ∈ S2. This can be
represented by the following two diagrams:

E

γ

��

S1 F

γ

��

F

γ

��

S2 G

γ

��
E′ S1 F ′ F ′ S2 G

Since ΣE = ΣF = ΣG then composing these bisimulations yields the following
commutative diagram:

E

γ

��

S1 · S2 G

γ

��
E′ S1 · S2 G′

and since ΣE = ΣF = ΣG it follows that S1 · S2 is also a temporal strong bisimula-
tion as required, and hence that ∼ is transitive.

Therefore it follows that ∼ is an equivalence relation. �
It will also be convenient to prove a few useful algebraic rules about some of the con-
structs of CaSEip for the proofs later. I first show that + is commutative, associative and
idempotent.

Lemma 6.6.3 Summation is commutative, associative and idempotent w.r.t. ∼

Proof. I demonstrate each property in turn, by considering various temporal strong
bisimulations, R. The second condition of Definition 6.6.1 follows easily in all three
cases properties (e.g. note that ΣE+F = ΣF+E). Therefore I concentrate only on the first
condition.



128 Chapter 6. A Timed Process Calculus for Component Oriented Systems

• Commutativity. R = {〈E + F, F + E〉}∪ u. When E + F
γ→ G it follows that the

transition was induced by a rule in the set {Sum1,Sum2,tSum1,tSum2,tSum3}. If
γ = α then either E α→ E′ with G ≡ E′ or F α→ F ′ with G ≡ F ′, and then F + E

can match these transitions exactly. Otherwise if γ = σ then either E σ→ E′ ≡ H

and σ /∈ ΣF ∪ TF by tSum2, F σ→ F ′ ≡ H and σ /∈ ΣE ∪ TE by tSum3, or else both
E

σ→ E′ and F σ→ F ′ with H ≡ E′+F ′ by tSum1. In the former two cases the exact
transition can be matched by the converse rule. In the third case the transition is
F + E

σ→ F ′ + E′ and clearly 〈E′ + F ′, F ′ + E′〉 ∈ R as required. The converse of
this proof gives symmetry, thus we are done.

• Associativity. R = {〈E + (F + G), (E + F ) + G〉}∪ u. If E + (F + G) α→ H

then clearly one of the three can perform an α transition, thus leading to identical
transitions for both compositions. Otherwise, if E + (F +G) σ→ H then any subset
of the three can tick. I consider only three cases (the others are similar):

– F
σ→ F ′ only. It follows that σ /∈ TG ∪ ΣG by tSum2 and also σ /∈ TE ∪ ΣE

by tSum3. Therefore E + F
σ→ F ′ by tSum3 and also (E + F ) + G

σ→ F ′ by
tSum2. Since F ′ u F ′ we are done.

– E
σ→ E′ and G

σ→ G′ only. It follows that F + G
σ→ G′ with σ /∈ TF ∪ ΣF by

tSum3 and E + (F + G) σ→ E′ + G′ by tSum1. Therefore also E + F
σ→ E′

by tSum2 and (E + F ) + G
σ→ E′ + G′ by tSum1 with E′ + G′ u E′ + G′ as

required.

– E
σ→ E′, F σ→ F ′ and G σ→ G′. Then clearly E + F

σ→ E′ + F ′ by tSum1. Also
(E + F ) + G

σ→ (E′ + F ′) + G′ by tSum1 and clearly 〈E′ + (F ′ + G′), (E′ +
F ′) +G′〉 ∈ R as required.

The converse of this proof gives, symmetry so we are done.

• Idempotence. R = {〈E + E,E〉}∪ u. If E + E
α→ H then by Sum1 or Sum2 it

follows that E α→ E′ with H = E′ and clearly E′ u E′. Otherwise, if E + E
σ→ H

then the only matching rule is tSum1, whence E σ→ E′ and thus H ≡ E′ + E′ and
〈E′ + E′, E′〉 ∈ R as required. The converse of this proof gives symmetry, so we
are done.

With all three properties proved, we are done. �

This shows that the order and replication of summed processes can effectively be ig-
nored. The main use of Lemma 6.6.3 is to allow the rearrangement of subexpressions,
in fact we can now consider a summation of sequential agents as simply a set of those
agents, e.g. E+(F+G+(F+F )) ∼

∑
{E,F,G}. For instance, we can now treat Lemma

6.5.24 as if
∑

E′ = E′, which is clearly much more convenient.
Strong bisimulation provides a useful foundation but it is, nevertheless, very limited

for reasoning about processes as it does not abstract silent actions and thus a more useful



6.6. Equivalence Theory 129

{σ, ρ} b //∅

// ∅ a // {σ, ρ} b // ∅ // ∅ a // T //___

;;w
w

w
w

##G
G

G
G {σ, ρ} b //∅

{σ, ρ} b //∅

Figure 6.6: Matching weakly accessible stable states (states annotated by ΣE)

equivalence theory based on weak bisimulation is sought. I start by directly adapting the
regular CCS definition of weak bisimulation, using the standard weak transition relation
⇒ as given in Definition 2.3.2 (in Chapter 2).

Definition 6.6.4 Naı̈ve Temporal Weak Bisimulation
A symmetric relationR is a Naı̈ve Temporal Weak Bisimulation provided ∀〈E,F 〉 ∈ R:

• If E γ→ E′ then ∃F ′.F γ̂⇒ F ′ and 〈E′, F ′〉 ∈ R

We write E ≈n F if ∃R.〈E,F 〉 ∈ R and R is a n.t.w.b.

Whilst Naı̈ve Temporal Weak Bisimulation is an equivalence relation as it does not
divert from Milner’s definition (Milner, 1989a), it is not a congruence. In particular, it is
not compositional through parallel composition because it does not ensure that stalled
clocks are matched. Once again, a.E+ ∆σ and a.E are equivalent in this definition, even
though the context C[ ] = | σ.F distinguishes them. The correction was simple to make
in strong bisimulation since every pairing simply had to have the same instability set.
We cannot do this in weak bisimulation though, because matching clocks may only be
present after a sequence of τs, i.e. after the process has stabilised.

This is illustrated by the two processes in Figure 6.6 (the states are annotated by
the stalled clocks set). Performing an a moves the left-hand process directly to a stable
state which holds up σ and ρ. However, the right-hand process move to an unstable
state after performing an a with three weakly accessible stable states holding up σ and
ρ (the dashed arrows represent a τ sequence). It is not the clocks which are held up in
the unstable state which matter (since by definition no clocks can tick at this point), but
those held up in each of the weakly accessible stable states. If provision is not made for
ensuring these match it is possible that a τ sequence could lead to a stable state where
a clock that should be stalled is not. Therefore the clocks stalled after any τ sequence
are defined by the intersection of clocks held up in all weakly accessible stable states, or
formally:

Definition 6.6.5 Weakly Stalled Clocks
The Weakly Stalled Clocks set Σ⇒E is the set of clocks which are held up by every stable state
weakly accessible from E. It is defined thus: Σ⇒E =

⋂
{ΣE′ | E τ̂⇒ E′and E′ is stable}.



130 Chapter 6. A Timed Process Calculus for Component Oriented Systems

If a clock is not within the set Σ⇒E then it follows that it is patient in at least one weakly
accessible stable state. Hence, a composed process will be allowed to tick this clock
should a suitable τ sequence occur. I also define the equivalent set for active clocks –
note the use of union instead of intersection:

Definition 6.6.6 Weakly Active Clocks
The Weakly Active Clocks set T ⇒E is the set of clocks which have explicit transitions in at least
one weakly accessible stable state of E. It is defined thus: T ⇒E =

⋃
{TE′ | E τ̂⇒ E′}

I now prove the following useful Lemma about weakly stalled clocks:

Lemma 6.6.7 If E ≈n F then TE ∩ Σ⇒F = ∅.

Proof. By contradiction. Assume that E ≈n F and there is a σ such that, σ ∈ TE and
σ ∈ Σ⇒F . Then it follows by Lemma 6.5.6 that ∃E′.E σ→ E′. Furthermore, since σ ∈ Σ⇒F
then by Definition 6.6.5 for any stable F ′′ such that F τ̂⇒ F ′′ it follows that σ ∈ ΣF ′′ . Thus
by Proposition 6.5.10 it follows that σ /∈ TF ′′ and therefore by Lemma 6.5.6 it also follows
that @F ′.F ′′ σ→ F ′, and hence @F ′.F σ̂⇒ F ′. Therefore E 6≈n F as Definition 6.6.4 cannot
be satisfied for σ, contradicting our assumptions.

Therefore no such σ can exist. �

I now use the notion of “weakly stalled clocks” to define a more restricted form of weak
bisimulation, which is a smaller relation than the naive definition.

Definition 6.6.8 Temporal Weak Bisimulation (with Explicit Urgency)
A symmetric relationR is a Temporal Weak Bisimulation provided ∀E F.〈E,F 〉 ∈ R:

1. If E γ→ E′ then ∃F ′.F γ̂⇒ F ′ and 〈E′, F ′〉 ∈ R

2. Σ⇒F ⊆ ΣE

We write E u F if ∃R.〈E,F 〉 ∈ R andR is a Temporal Weak Bisimulation.

The second clause ensures that, for each pairing, every patient clock is matched after
an unspecified sequence of τs. Without this clause 0 u ∆ would follow for instance,
which is clearly incorrect as the latter stalls all clocks. In CaSE, since patient clock ticks
were regular transitions, all that was required was matching on a theoretically infinite
clock universe. This definition overcomes the need for a specific clock context by instead
ensuring that pairings only stall equivalent clock sorts. Nevertheless, the second clause
seems at first sight unnecessarily complicated and one might try and simplify it to:

If E and F are stable then ΣE = ΣF

thus emulating the definition of strong timed bisimulation; when a stable pairing is made
the stalled clocks must match. However, this will not suffice because it assumes that



6.6. Equivalence Theory 131

every process will inevitably stabilise. Processes with τ loops like µX.τ.X do not, and
thus this second clause would have 0 u µX.τ.X which is incorrect as one permits all
clocks whilst the other blocks all clocks indefinitely. (However, if a process doesn’t have
any infinite τ loops, this definition would suffice).

With a new definition of equivalence in hand, I now proceed to prove some useful
properties about it. Firstly, it is a subset of the Naı̈ve definition:

Lemma 6.6.9 Temporal Weak Bisimulation with Explicit Urgency is contained within Naı̈ve
Temporal Weak Bisimulation. That is, u⊆≈n.

Proof. It suffices to show that every Temporal Weak Bisimulation with Explicit Urgency
R is also a Naı̈ve Temporal Weak Bisimulation. This follows from the fact that the first
condition of Definition 6.6.8 is identical to the condition of Definition 6.6.4, and hence
every pairing 〈E,F 〉 in R also satisfies the condition of Naı̈ve Temporal Weak Bisimu-
lation. Therefore it follows that R is a Naı̈ve Temporal Weak Bisimulation, and hence
u⊆≈n as required. �

It also should be the case that u is an equivalence relation, like ∼ is. It is first conve-
nient to prove the following Lemma which solidifes the idea the weak bisimulation can
essentially be seen as bisimulation on a weak transition system.

Lemma 6.6.10 Weak Transition Bisimulation
If E u F then whenever E γ̂⇒ E′ it follows that ∃F ′.F γ̂⇒ F ′ and E′ u F ′.

Proof. First of all, if E ε⇒ E then clearly F ε⇒ F with E u F . Therefore, we need only
consider the case when E

γ⇒ E′. In this case, it suffices to fill in the following diagram:

E

γ

��

u F

γ̂
��

E′ u F ′

When E
γ⇒ E′ it follows that ∃E′′E′′′.E τ→ · · · τ→ E′′

γ→ E′′′
τ→ · · · τ→, and since E u

F it follows that there are corresponding F derivatives as illustrated in the following
diagram:

E
τ // τ // E′′

γ // E′′′
τ // τ // E′

u u u u

F
τ̂ +3 τ̂ +3 F ′′

γ̂ +3 F ′′′
τ̂ +3 τ̂ +3 F ′

Composing the transitions between F and F ′ simply gives F
γ̂⇒ F ′ as required. �

Now I show that u is indeed an equivalence relation.

Theorem 6.6.11 Temporal Weak Bisimulation is an equivalence relation



132 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Proof. We need to show that u is symmetric, reflexive and transitive.

• Symmetry – follows by definition, since the conditions of each pairing are identical
for both components.

• Reflexivity – it suffices to note that IdE is a Temporal Strong Bisimulation since

whenever a process E
γ→ E′, it automatically follows that E

γ̂⇒ E′ and ΣE′ ⊆ ΣE′ .

• Transitivity – consider three processes E, F and G with E u F and F u G. Then
there are two weak bisimulations S1 an S2 with 〈E,F 〉 ∈ S1 and 〈F,G〉 ∈ S2. This
can be represented by the following two diagrams:

E

γ

��

S1 F

γ̂

��

F

γ

��

S2 G

γ̂

��
E′ S1 F ′ F ′ S2 G

However, by Lemma 6.6.10 the rightmost diagram can be expressed as:

F

γ̂

��

S2 G

γ̂

��
F ′ S2 G

Also, since ΣE ⊆ ΣF ⊆ ΣG, and therefore ΣE ⊆ ΣF , then composing the two
bisimulations yields the following:

E

γ

��

S1 · S2 G

γ̂

��
E′ S1 · S2 G′

Demonstrating that S1 · S2 is also a temporal weak bisimulation as required, and
hence that u is transitive.

Therefore it follows that u is an equivalence relation. �

I now proceed to prove that u is a congruence with respect to parallel composition and
hiding. But first I need to prove a few additional Lemmas. I first formally prove the
maximal progress property for this calculus:

Lemma 6.6.12 Maximal Progress
If E σ→ E′ then @E′′.E τ→ E′′.

Proof. IfE σ→ E′ then by Lemma 6.5.6 it follows that σ ∈ TE . Then, by Proposition 6.5.10
it follows that σ /∈ ΣE , and therefore by Proposition 6.5.9 τ /∈ AE . Finally, by Lemma
6.5.6 we can conclude that @E′′.E τ→ E′ as required. �



6.6. Equivalence Theory 133

From now I will sometimes use the shorthand E
γ→ to refer to ∃E′.E γ→ E′ and E

γ9 to
refer to @E′.E γ→ E′.

Lemma 6.6.13 Stable processes and Weak Bisimulation
When E u F , if τ /∈ AE then whenever F τ̂⇒ F ′ it follows that E u F ′.

Proof. By Lemma 6.5.6 it follows that E can do no τ transitions. But since E u F then
by Definition 6.6.8 whenever ∃F ′.F τ→ F ′ it follows that E τ̂⇒ E′. Thus E must match F
by doing an empty sequence, i.e. E ε⇒ E with E′ = E. Hence for any τ sequence which
F can perform to become F ′ it follows that E u F ′ as required. �

I can now also prove the following Lemma:

Lemma 6.6.14 If E u F and E is patient then TE = T ⇒F .

Proof. I will show that (1) T ⇒F ⊆ TE and (2) TE ⊆ T ⇒F .

1. It suffices to show for any σ that σ ∈ T ⇒F entails σ ∈ TE . If σ ∈ T ⇒F then by Defini-
tion 6.6.6 it follows that there is an F ′ such that F τ̂⇒ F ′ and σ ∈ TF ′ . Therefore by
6.5.6 it follows that ∃F ′.F ′ σ→ F ′′. Since E is patient, we know by Proposition 6.5.9
that E is also stable, i.e. that τ /∈ AE . Thus by Lemma 6.6.13 we know that E u F ′

and by Definition 6.6.8 that ∃E′.E σ→ E′. Finally by Lemma 6.5.13 it follows that
σ ∈ TE as required.

2. By contradiction. Assume there is a σ with σ ∈ TE and σ /∈ T ⇒F . Then by Definition
6.6.6 ∃F ′.F τ̂⇒ F ′ with σ /∈ TF ′ and since E is stable by Lemma 6.6.13 〈E,F ′〉 ∈ R.
Furthermore, by Lemma 6.5.6 it follows that @F ′′.F ′ σ→ F ′′. But thereforeR is not a
weak bisimulation, since by Lemma 6.5.12 ∃E′.E σ→ E′ but @F ′′.F σ̂⇒ F ′′, meaning
Definition 6.6.8 cannot be satisfied. Therefore no such σ exists and TE ⊆ T ⇒F .

From the two inclusions I conclude that TE = T ⇒F . �

Finally I can prove that Temporal Weak Bisimulation with Explicit urgency is a con-
gruence relation with respect to all operators other than + and µX , following Milner’s
outline (Milner, 1989a). However, in order to do this I need an extended version of Defi-
nition 6.6.8 which will account for expressions with free process variables.

Definition 6.6.15 Open Temporal Weak Bisimulation (with Explicit Urgency)
A symmetric relationR is an Open Temporal Weak Bisimulation provided ∀E F.〈E,F 〉 ∈ R:

1. If E γ→ E′ then ∃F ′.F γ̂⇒ F ′ and 〈E′, F ′〉 ∈ R

2. If E B X then F B X

3. Σ⇒F ⊆ ΣE

We write E u F if ∃R.〈E,F 〉 ∈ R andR is an Open Temporal Weak Bisimulation.



134 Chapter 6. A Timed Process Calculus for Component Oriented Systems

The second condition ensures that open terms possess the same set of unguarded
free variables. This is necessary to ensure, for instance, that a.E +X u a.E + Y does not
hold, as in the context of µX. they have different behaviour. Hence from now on I use
this redefinition of u. Now, at last, I proceed to prove compositionality of u.

Theorem 6.6.16 Compositionality of Temporal Weak Bisimulation
Temporal Weak Bisimulation is a congruence with respect to all the operators of CaSEip other
than + and µX .

Proof. In order to show that this is true I construct a relation R = {〈C[E], C[F ]〉 | E u
F}∪ u, where C is a context (e.g. C[ ] = | G) and show that it is a weak bisimulation.
That is, that every element satisfies both conditions of Definition 6.6.8. Specifically, I will
demonstrate:

1. Whenever ∃H.C[E]
γ→ H it follows that ∃I.C[F ]

γ̂⇒ I with 〈H, I〉 ∈ R (for static
operators) or H u I (for dynamic operators);

2. Whenever C[E] B X it follows that C[F ] B X ; and

3. Σ⇒C[F ] ⊆ ΣC[E].

To prove the first of these I consider each rule from Table 6.3 which could have induced
the C[E] transition, and prove the case from the premises of the rule. I enumerate the
possible constructs to be proved for below and then proceed with the structural induc-
tion on these cases for the sub-language of CaSEip.

1. C[E] = α.E

2. C[E] = σ.E

3. C[E] = E | G

4. C[E] = E \ a

5. C[E] = E{[a 7→ b]}

6. C[E] = E{[σ 7→ a]}

7. C[E] = E/σ

1. C[E] = α.E. By rule Act it follows that α.E α→ E. The proof of condition (1)
of Definition 6.6.8 follows trivially, specifically whenever α.E α→ E it follows by
rule Act that α.F α→ F , therefore α.F α̂⇒ F and since E u F , then 〈E,F 〉 ∈ R.
Condition (2) follows trivially since there is no X such that α.E B X or α.F B X .
Condition (3) holds when α = a, in which case Σa.E = Σ⇒a.F = ∅, and when α = τ ,
in which case Στ.E = T . In both cases clearly Σ⇒α.F ⊆ Σα.E as required.



6.6. Equivalence Theory 135

2. C[E] = σ.E. Similar to the case for α.E.

3. C[E] = E | G. I first give a proof of condition (1) for each possible γ:

(a) Case when γ = α. This case follows the standard proof for CCS (Milner,
1989a).

(b) Case when γ = σ. There are three possible rules which induce E | G σ→ H :
tCom1, tCom2 and tCom3. I consider all three cases in turn to prove condition
(1) (though in a different order):

• E σ→ E′, σ /∈ ΣG ∪ TG and H = E′ | G (matching tCom2)

– By Definition 6.6.8 it follows that F σ̂⇒ F ′ with E′ u F ′ (and therefore
〈E′ | G,F ′ | G〉 ∈ R), and Σ⇒F ⊆ ΣE

– Thus F τ→∗ F ′′ σ→ F ′′′
τ→∗ F ′

– By Com1, F | G τ→∗ F ′′ | G and F ′′′ | G τ→∗ F ′ | G
– Since F ′′ σ→ F ′′′ and σ /∈ ΣG ∪ TG, by tCom2 it follows that F ′′ | G σ→
F ′′′ | G

– Therefore also F | G α̂⇒ F ′ | G, satisfying condition (1).

• G σ→ G′, σ /∈ ΣE ∪ TE and H = E | G′ (matching tCom3)

– By Definition 6.6.8 (2) it follows that Σ⇒F ⊆ ΣE

– Hence according to Definition 6.6.5 there is a τ derivative F ′′ of F (i.e.
F

τ→∗ F ′′) with ΣF ′′ ⊆ ΣE and F ′′ is stable

– By Lemma 6.6.12 (maximal progress) since E | G σ→ it follows that
E | G τ9

– Therefore also E τ9 and by Lemma 6.5.6 it follows that τ /∈ AE

– Thus by Lemma 6.6.13, E u F ′′

– Since F ′′ τ9 it follows that Σ⇒F ′′ = ΣF ′′ and therefore ΣF ′′ ⊆ ΣE

– Hence , since σ /∈ ΣE , it follows that σ /∈ ΣF ′′

– Furthermore, by Lemma 6.6.14 it follows that T ⇒F ′′ = TE and since F ′′

is stable, TF ′′ = TE . Therefore σ /∈ TF ′′

– By Com1 F | G τ̂⇒ F ′′ | G and by tCom3 F ′′ | G σ→ F ′′ | G′

– Thus F | G σ⇒ F ′′ | G′ with 〈E | G′, F ′′ | G′〉 ∈ R satisfying condition
(1).

• E σ→ E′, G
σ→ G′ and H = E′ | G′ (matching tCom1)

– By Definition 6.6.8 F σ̂⇒ F ′ with E′ u F ′

– Hence by Com1 and tCom3, F | G σ̂⇒ F ′ | G′ with 〈E′ | G′, F ′ | G′〉 ∈
R satisfying condition (1).

Condition (2) holds because E B X implies F B X , and hence E | G B X implies
F | G B X . To show condition (3) holds, i.e. Σ⇒F | G ⊆ ΣE | G, first consider that
E | G is either patient or impatient. If E | G is impatient, i.e. ΣE | G = T , then



136 Chapter 6. A Timed Process Calculus for Component Oriented Systems

Σ⇒F | G ⊆ T trivially. Otherwise, when E | G is patient, consider that ΣE | G =
ΣE ∪ ΣG. By Proposition 6.5.9 we know that E | G is also stable, i.e. τ /∈ AE | G.
Furthermore since G is stable it follows that Σ⇒G = ΣG. Since E | G is stable, it
follows that E and G don’t synchronise, that is either there does not exist an a, E′

and G′ such that E a→ E′ and G
a→ G′. Furthermore by Lemma 6.6.13 every τ

derivative F ′′ of F is weakly bisimilar with E. Therefore, it follows for any such
F ′′ that @F ′.F ′′ a→ F ′ with G a→ G′. Since any such F ′′ and G do not synchronise,
the only possible τ transitions of F | G are those already present in F . Hence,
Σ⇒F | G = Σ⇒F ∩Σ⇒G = Σ⇒F ∩ΣG, which is clearly a subset of ΣE∪ΣG since Σ⇒F ⊆ ΣE .

4. C[E] = E \ a. I first give proof of condition (1) for C[E] = E \ a for each possible γ:

(a) Case when γ = α. This case follows the standard proof for CCS (Milner,
1989a).

(b) Case when γ = σ. Easily follows, since if E \ a σ→ E′ \ a then by rule Res,
E

σ→ E′. Hence also F σ̂⇒ F ′ (since E u F and therefore by rule Res F \ a σ̂⇒
F ′ \ a as required.

Condition (2) follows directly from the knowledge that any subexpression of E is
also a subexpression ofE \a. Condition (3) follows from the fact that we know that
Σ⇒F ⊆ ΣE . Since for any P , ΣP\a = ΣP the condition follows easily.

5. C[E] = E{[a 7→ b]}. Proof of condition (1) is standard for CCS (Milner, 1989a),
except for clock ticks in which case the condition follows since if E{[a 7→ b]} σ→
E′{[a 7→ b]} then E

σ→ E′, and then F{[a 7→ b]} σ̂⇒ F ′{[a 7→ b]} follows easily. Con-
dition (2) follows easily as the above case. Condition (3) follows trivially from the
fact that ΣE{[a7→b]} = ΣE .

6. C[E] = E{[σ 7→ a]}. To prove condition (1) for the case when C[E] = E{[σ 7→ a]}, I
assume E{[σ 7→ a]} γ→ E′{[σ 7→ a]} and prove for every γ possibility:

• Case when γ = ρ. Whenever E{[σ 7→ a]} ρ→ E′{[σ 7→ a]} then by rule Rel

it follows that E
ρ→ E′. Hence, since E u F it follows that F

ρ̂⇒ F ′ with
E′ u F ′. Therefore, also by rule Rel F{[σ 7→ a]} ρ̂⇒ F ′{[σ 7→ a]}, and 〈E′{[σ 7→
a]}, F ′{[σ 7→ a]}〉 ∈ R as required.

• Case when γ = b. If b 6= a then proof of condition (1) follows the same struc-
ture as the previous case. Otherwise, if b = a then by Rel it follows that E σ→
E′. Therefore also F σ̂⇒ F ′ with E′ u F ′. By Rel F{[σ 7→ a]} a⇒ F ′{[σ 7→ a]},
and therefore 〈E′{[σ 7→ a]}, F ′{[σ 7→ a]}〉 ∈ R as required.

Condition (2) follows easily as the case for E{[a 7→ b]}. Condition (3) follows easily,
since ΣE = ΣE{[σ 7→a]}.

7. C[E] = E/σ. To prove the case when C[E] = E/σ, we assume E/σ
γ→ E′/σ and

prove for every γ possibility.



6.6. Equivalence Theory 137

• Case when γ = a – follows easily.

• Case when γ = τ :

– E
τ→ E′, H = E′/σ – follows easily.

– E
σ→ E′, H = E′/σ

∗ By Definition 6.6.8 F σ̂⇒ F ′ with E′ u F ′

∗ Therefore, ∃F ′′ F ′′′.F τ̂⇒ F ′′
σ→ F ′′′

τ̂⇒ F ′

∗ Hence, by rules Hid and tHid1 it follows that F{[σ 7→ a]} τ̂⇒ F ′′{[σ 7→
a]} τ→ F ′′′{[σ 7→ a]} τ̂⇒ F ′

∗ Therefore F{[σ 7→ a]} τ̂⇒ F ′{[σ 7→ a]}, and 〉E′{[σ 7→ a]}, F ′{[σ 7→ a]}〈∈ R
as required.

• Case when γ = ρ:

– E
ρ→ E′, H = E′/σ. Follows easily through rule tHid2.

Condition (2) follows easily as the above case. To show condition (3) consider that
when σ ∈ TE , ΣE/σ = T and thus Σ⇒F ⊆ ΣE/σ trivially. Otherwise the proof
follows through as for the previous cases.

The converse cases give symmetry. Therefore the proof is complete. �

As is true for CaSE, Temporal Weak Bisimulation is not a congruence with respect to +,
for much the same reasons. Firstly there is the standard leading τ issue present in CCS
(Milner, 1989a) which can be easily fixed. Secondly, since + can be static with respect
to clocks, for instance in the process σ.E + σ.F , it is important that any leading clock
tick sequences are unbroken by τs. For instance the processes σ.ρ.E and σ.τ.ρ.E whilst
weakly bisimilar can be distinguished by the context C[ ] = + σ.ρ.F , since the τ in the
former process will cause the choice to be resolved.

Temporal Weak Bisimulation is not a congruence with respect to µX as a side-effect
of + not being a congruence. In fact it is possible to directly represent the contexts given
above as open terms. For example, it is clear that τ.c.(σ.P+X) u c.(σ.P+X), but placing
both processes in the context of C[ ] = µX. will lead to different behaviours since the
substitution for X in the former will stall σ, but not so in the latter. This represents
the two processes τ.c.E and c.E, which are weakly bisimilar, but distinguished by the
context C[ ] = σ.P + . Therefore, fixing the problem with + will also fix the problem
with µX .

To fix this issue, CaSE forces initial clock sequences to be strongly matched. I do the
same and add the requirement of matching instability sets. This leads to a new definition
of Temporal Observation Congruence.

Definition 6.6.17 Temporal Observation Congruence (with Explicit Urgency)
A symmetric relationR is a temporal observation congruence provided ∀〈E,F 〉 ∈ R:

1. If E α→ E′ then ∃F ′.F α⇒ F ′ and E′ u F ′



138 Chapter 6. A Timed Process Calculus for Component Oriented Systems

2. If E σ→ E′ then ∃F ′.F σ→ F ′ and 〈E′, F ′〉 ∈ R

3. If E B X then F B X

4. ΣF ⊆ ΣE

We write E uu F if ∃R.〈E,F 〉 ∈ R andR is a temporal observation congruence.

I first prove that this relation is compositional with respect to summation:

Lemma 6.6.18 Compositionality wrt. +
Temporal Observation Congruence is a congruence with respect to +.

Proof. To show this we construct a relation R = {〈E + G,F + G〉|E uu F}∪ uu for
any G and show it is a temporal observation congruence. We do this by induction on the
possible transitions of E + G

γ→ H and showing that the four conditions of Definition
6.6.17 hold.

1. Case when γ = α. This case follows the standard proof for CCS (Milner, 1989a).

2. Case when γ = σ, there are three rules which could induce E +G
γ→ H :

• By tSum1, E σ→ E′, G
σ→ G′ with H ≡ E′ + G′. By Definition 6.6.17, F σ→ F ′

withE′ uu F ′ and thus by tSum1, F+G σ→ F ′+G′ with 〈E′+G′, F ′+G′〉 ∈ R
as required.

• By tSum2, E σ→ E′, σ /∈ ΣG ∪ TG with H ≡ E′. By Definition 6.6.17, F σ→ F ′

with E′ uu F ′, and therefore 〈E′, F ′〉 ∈ R as required.

• By tSum3, G σ→ G′, σ /∈ ΣE ∪ TE with H ≡ G′. By Definition 6.6.17, Σ⇒F ⊆ ΣE

and therefore σ /∈ ΣF . Furthermore, since σ /∈ TE then σ /∈ TF . Therefore it
follows that F +G

σ→ G′ and clearly 〈G′, G′〉 ∈ R.

3. Condition (2) holds easily, since if X is a subprocess E + G then clearly it is ei-
ther a subprocess of E or G. In the former case it can be matched in F + G by an
equivalent subprocess of F , or in the latter it can be matched by G. To show condi-
tion (3) holds, that ΣF+G ⊆ ΣE+G, consider from Definition 6.6.17 that ΣF ⊆ ΣE .
Therefore, it follows that ΣF+G ⊆ ΣE+G as required.

The converse cases give symmetry. Thus our proof is complete. �
In order to prove this for the recursion operator I also need to define an “up to” re-

lation. This allow a bisimulation to be represented as a smaller relation by only storing
pairs which are unique up to bisimilarity, thus avoiding duplication. The following rela-
tion is an adaptation of the one found in Sangiorgi and Milner (1992) which corrects the
unsound original version found in Milner (1989a).

Definition 6.6.19 Asymmetric Temporal Weak Bisimulation up to u
A relationR is an Asymmetric Temporal Weak Bisimulation up to u provided ∀E F.〈E,F 〉 ∈ R:



6.6. Equivalence Theory 139

1. If E γ→ E′ then ∃F ′F ′′.F γ̂⇒ F ′ and 〈E′, F ′〉 ∈ ∼Ru

2. If E B X then F B X

3. Σ⇒F ⊆ ΣE

Using a slight modification of the standard proof, I can show that every Temporal
Weak Bisimulation up to u is contained within u. After Milner, I do this in two parts:

Lemma 6.6.20 If R is an Asymmetric Temporal Weak Bisimulation up to uu then ∼Ru is a
Temporal Weak Bisimulation.

Proof. First note that every member of R satisfies the second condition of Definition
6.6.8 and therefore we need only consider the satisfaction of the first condition. To do
this I follow the same procedure as in Milner (1989a). To show that ∼Ru is a Temporal
Weak Bisimulation assume that 〈E,F 〉 ∈∼Ru and that ∃E′.E α→ E′. It then suffices to
fill in the following diagram:

E

γ

��

∼Ru F

γ̂
��

E′ ∼Ru F ′

First I assume two process E1 and F1 with E ∼ E1, 〈E1, F1〉 ∈ R and F u F1. We can
then build the following diagrams from left to right:

E

γ

��

∼ E1

γ

��

E1

γ

��
R F1

γ̂

��
00000

00000 F1

γ̂
��

u F

γ̂

��
E′ ∼ E′1 E′1 ∼ R u F ′1 F ′1 u F ′

The right-most diagram follows by Lemma 6.6.10 since F u F1. Composing these three
diagrams gives the required result. �
Finally, I can invoke the following standard Lemma from Milner (1989a):

Lemma 6.6.21 If S is a Temporal Weak Bisimulation up to u then S then S ⊆u.

Proof. Since, by Lemma 6.6.20, ∼ S u is a temporal weak bisimulation then it follows
that∼Su⊆u. But since IdE ⊆∼ and IdE ⊆u and hence S ⊆∼Su it follows that S ⊆u
as required. �

Therefore, if we wish to show thatE u F it suffices to find a temporal weak bisimulation
up to u containing 〈E,F 〉. Furthermore, we need an equivalent technique for temporal
observation congruence.

Definition 6.6.22 Asymmetric Temporal Observation Congruence up to uu

A relation R is an Asymmetric Temporal Observation Congruence up to uu provided that
∀E F.〈E,F 〉 ∈ R:



140 Chapter 6. A Timed Process Calculus for Component Oriented Systems

1. If E α→ E′ then ∃F ′.F α⇒ F ′ and E′ u F ′

2. If E σ→ E′ then ∃F ′.F σ→ F ′ and 〈E′, F ′〉 ∈ ∼Ruu

3. If E B X then F B X

4. ΣF ⊆ ΣE

A much simpler diagram chase than the one used for temporal weak bisimulation up
to can be used to demonstrate that any pair within a temporal observation congruence
up to uu are also within uu. We can now apply these techniques to prove that temporal
observation congruence is compositional with respect to recursion. Because every tem-
poral observation congruence R relies on action derivatives being weakly bisimilar it is
first necessary to prove the Lemma below.

Lemma 6.6.23 Temporal weak bisimulation and substitution

If E u F then it follows that for any G and X , E{G/X} u F{G/X}.

Proof. To prove this I construct a relation R = {〈E{G/X}, F{G/X}〉 |E u F}∪ u
and show that it is a temporal weak bisimulation. I do this by induction on the possible
transitions ofE{G/X} γ→ H and show that the corresponding pairing satisfies the condi-
tions of Definition 6.6.15. For reference, this proof will follow a similar line of argument
to the proof of Lemma 6.5.16. Conditions (2) and (3) of Definition 6.6.15 follow easily
for all such expressions, since substituting for X simply removes this variable from the
guarded variables and a substitution for the same variable does not alter the instability
sets. Hence I focus on condition (1).

First notice that if E B X then E{G/X} contains a collection of µ-guarded subex-
pressions of the form γ.J which together form the γ transition, one such expression if
γ = α or many if γ = σ. Hence, both G and E may contain a collection of these subex-
pressions. Therefore we know that any transitions are somewhere derived through a
summation. For instance E = a.0 +X and G = b.0. Therefore, we can split up the cases
for E{G/X} γ→ according to how the transition was induced.

• γ = α, then either:

– E
α→ E′. Then by Lemma 6.5.22 it follows that E{G/X} α→ E′{G/X}. Fur-

thermore, since E u F then F
α̂⇒ F ′ and also F{G/X} α̂⇒ F ′{G/X}, with

E′ u F ′. Thus 〈E′{G/X}, F ′{G/X}〉 ∈ R as required.

– G
α→ G′ (with E B X). Then by Lemma 6.5.24 we know that E{G/X} α→ G′.

Therefore also F{G/X} α→ G′ since F B X and the bound variables of F are
likewise independent of those in G, and 〈G′, G′〉 ∈ R as required.

• γ = σ, then either:



6.6. Equivalence Theory 141

– E
σ→ E′ and σ /∈ TG ∪ ΣG. Then by Lemma 6.5.23 it follows that E{G/X} σ→

E′{G/X}. Since E u F it follows that F σ̂⇒ F ′ with E′ u F ′. There-
fore by Lemmas 6.5.22 and 6.5.23 it follows that F{G/X} σ̂⇒ F ′{G/X}, and
〈E′{G/X}, F ′{G/X}〉 ∈ R as required.

– G
σ→ G′ and σ /∈ TE ∪ΣE (with E B X). Then by Lemma 6.5.24 we know that

E{G/X} σ→ G′. Now, because E u F it may follow that F τ→ (which could
potentially cause problems). However, since Σ⇒F ⊆ ΣE and ΣE 6= T we know
that there is a stable τ derivative F ′ of F by Lemma 6.5.6, i.e. F τ̂⇒ F ′ with
ΣF ′ 6= T . Furthermore, it follows by Lemma 6.6.13 that E u F ′. Therefore, it
also follows that F ′ B X with TE = TF ′ and ΣF ′ ⊆ ΣE . Hence σ /∈ TF ′ ∪ ΣF ′

and thus F ′{G/X} σ→ G′ (by Lemma 6.5.24), with 〈G′, G′〉 ∈ R as required.

– E
σ→ E′ and G

σ→ G′ (with E B X). Thus also F
σ⇒ F ′ and F B X , with

E′ u F ′. We also know that ∃F ′′F ′′′.F τ̂⇒ F ′′
σ→ F ′′′, E u F ′′ and thus F ′′ B

X . We know that there are n subexpressions of E of the form σ.Ii and thus

E′ =
n∑
i=0

Ii{ ~Ki/~Yi}. There are likewisem subexpressions of F of the form σ.Jj

and F ′ =
m∑
j=1

Jj{ ~Lj/ ~Zj}. Therefore, E{G/X} σ→
∑

Ii{G/X}{ ~K ′i/~Yi} + G′

and F{G/X} σ⇒
∑

Jj{G/X}{ ~L′j/ ~Yj} + G′, where K ′i and L′j have X substi-

tuted for G. By Lemma 6.5.15 we can rewrite these to
∑

Ii{ ~Ki/~Yi}{G/X}
and

∑
Jj{ ~Kj/ ~Yj}{G/X}. Finally, from the fact that 〈

∑
Ii{ ~Ki/~Yi}{G/X},∑

Jj{ ~Kj/ ~Yj}{G/X}〉 ∈ R and are thus bisimilar, we can apply Lemma 6.6.18

to show that
∑

Ii{ ~Ki/~Yi}{G/X} + G′ u
∑

Jj{ ~Kj/ ~Yj}{G/X} + G′ as re-
quired.

The converse cases give symmetry. Thus the proof is complete. �
To begin showing that temporal observation congruence is compositional with re-

spect to recursion I first create the following schema for temporal weak bisimulation up
to.

Lemma 6.6.24 Temporal Weak Bisimulation up to schema

If E uu F then a relation Su
E,F = {〈G{µX.E/X}, G{µX.F/X}〉} is an asymmetric temporal

weak bisimulation up to u.

Proof. I assume that G{µX.E/X} γ→ H and show that the conditions of Definition
6.6.19 are satisfied. Condition (2) follows easily since by the fact that E uu F we know
that the unguarded variables of µX.E and µX.F are identical. Therefore if we substi-
tute both for the same variable in G, then both results must have the same unguarded
variables. Condition (3) follows from the fact that ΣF ⊆ ΣE . Whenever F is insistent
with ΣF = T it also follows that ΣE = T . Therefore also Σ⇒µX.F ⊆ ΣµX.E , since when



142 Chapter 6. A Timed Process Calculus for Component Oriented Systems

ΣµX.E 6= T it follows that Σ⇒µX.F = ΣµX.F . Therefore, since also Σ⇒G ⊆ ΣG, it follows
that Σ⇒G{µX.F/X} ⊆ Σ⇒G{µX.E/X}.

The remainder of this proof focuses on proof of condition (1). Throughout I use S as
a shorthand for Su

E,F . I split the inductive proof into three possible transition cases after
Norton, based on the summation rules. Specifically, if G{µX.E/X} γ→ H then one the
following cases must be true:

• G γ→ G′, and either γ /∈ TµX.E ∪ ΣµX.E (i.e. the transition is purely from G) or
G 6B X , since in the latter none of the µX.E transitions are enabled. Either γ = α

or γ = σ.

– If γ = α then by Lemma 6.5.22 it follows that G{µX.E/X} γ→ G′{µX.E/X}
with H ≡ G′{µX.E/X}. Therefore also by Lemma 6.5.22 it follows that
G{µX.F/X} γ→ G′{µX.F/X} and clearly 〈G′{µX.E/X}, G′{µX.F/X}〉 ∈ S
as required.

– Alternatively, γ = σ and either G B X or G 6B X . Now, if G 6B X then
the proof follows easily through Lemmas 6.5.21 and 6.5.20. Therefore I con-
sider the case when G B X . We know that if X is unguarded in G then
σ /∈ TµX.E ∪ ΣµX.E . Hence, by Lemma 6.5.23 it follows that G{µX.E/X} σ→
G′{µX.E/X}. The goal is to show that G{µX.F/X} σ⇒ G′{µX.F/X}. Now,
since E uu F and σ /∈ TE , it follows that σ /∈ TF by Lemma 6.5.6. Fur-
thermore, since σ /∈ ΣE and ΣF ⊆ ΣE it follows that σ /∈ ΣF . Therefore,
by Lemma 6.5.23 it follows that G{µX.F/X} σ→ G′{µX.F/X} and clearly
〈G′{µX.E/X}, G′{µX.F/X}〉 ∈ S as required.

• µX.E γ→ J (with G B X) and γ /∈ TG ∪ ΣG. Then by Lemma 6.5.16 it follows that
∃E′.E γ→ E′ and J = E′{µX.E/X}. Furthermore by Lemma 6.5.24 it follows that
G{µX.E/X} γ→ J and thus H = J . Also since E uu F , it follows that ∃F ′.F α⇒ F ′

with E′ u F ′. Therefore by either Lemma 6.5.22 or 6.5.23 (depending on whether
γ = α or γ = σ) it follows that F{µX.F/X} γ⇒ F ′{µX.F/X}. Furthermore by
Lemma 6.5.24 it follows that G{µX.F/X} γ→ F ′{µX.F/X}. By Lemma 6.6.23 it
also follows that F ′{µX.F/X} u E′{µX.F/X} (i.e. E′ with the same substitution
made). Then since 〈E′{µX.E/X}, E′{µX.F/X}〉 ∈ S we can fill in the following
diagram (illustrating Definition 6.6.19) :

G{µX.E/X}

γ

��

S G{µX.F/X}

γ

�'GGGGGGGGGGGGGGGGGG

GGGGGGGGGGGGGGGGGG

E′{µX.E/X} S E′{µX.F/X} u F ′{µX.F/X}

This demonstrates that 〈E′{µX.E/X}, F ′{µX.F/X}〉 ∈∼Su and therefore that



6.6. Equivalence Theory 143

〈G{µX.E/X}, G{µX.F/X}〉 ∈ S as required.

• G σ→ G′ and µX.E
σ→ J , with γ = σ and G B X . By Lemma 6.5.16 it follows

that J = E′{µX.E/X} with E
σ→ E′. Then it follows that X is a subexpression

of G and hence H ∼ (F ′ + G′){µX.E/X} by Lemma 6.6.3 (i.e. modulo the order
and recurrence of the resulting sub-terms). Likewise by Definition 6.6.17 it follows
that µX.F σ→ K with J uu K. Then also G{µX.F/X} σ→ I with I ∼ (F ′ +
G′){µX.F/X}. We can now apply a similar logic to the previous case. Firstly
notice thatE′ uu F ′. Therefore, by Lemma 6.6.18 it follows thatE′+G′ uu F ′+G′,
and hence also E′ + G′ u F ′ + G′. Therefore also by Lemma 6.6.23 if follows that
(E′ + G′){µX.F/X} u (F ′ + G′){µX.F/X}. This allows us to fill in the following
diagram:

G{µX.E/X}

σ

||zzzzzzzzzzzzzzzzzz
S G{µX.F/X}

σ

&&LLLLLLLLLLLLLLLLLLLLLL

H ∼ (E′ +G′){µX.E/X} S (E′ +G′){µX.F/X} u (F ′ +G′){µX.F/X}

Which demonstrates that 〈(E′ +G′){µX.E/X}, (F ′ +G′){µX.F/X}〉 ∈∼Su and
therefore that 〈G{µX.E/X}, G{µX.F/X}〉 ∈ S as required.

The converse cases give symmetry. Thus the proof is complete. �

Finally we can build a schema similar to the weak bisimulation up to schema for tempo-
ral observation congruence up to. This will conclude the proof that Temporal Observa-
tion Congruence is indeed a congruence relation by demonstrating that if E uu F then
µX.E uu µX.F . We do this by taking G = X in the following schema:

Lemma 6.6.25 Temporal Observation Congruence up to schema
If E uu F then a relation Suu

E,F = {〈G{µX.E/X}, G{µX.F/X}〉} is an asymmetric temporal
observation congruence up to uu.

Proof. I assume thatG{µX.E/X} γ→ H and show that the conditions of Definition 6.6.22
are satisfied. Condition (3) follows easily since by the fact that E uu F we know that the
unguarded variables of µX.E and µX.F are identical. Therefore if we substitute both
in the same variable in G, then both results must have the same unguarded variables.
Condition (4) follows from the fact that ΣF ⊆ ΣE . Whenever F is insistent with ΣF = T

it also follows that ΣE = T . Therefore also ΣµX.F ⊆ ΣµX.E as required.

The remainder of this proof focuses on proof of conditions (1) and (2). Throughout
I use S as a shorthand for Suu

E,F . I split the inductive proof into three possible transition



144 Chapter 6. A Timed Process Calculus for Component Oriented Systems

cases after Norton, based on the summation rules. Specifically, ifG{µX.E/X} γ→ H then
one the following cases must be true:

• G γ→ G′. Follows an identical proof to this case in 6.6.24.

• µX.E γ→ J . This follows a very similar proof to the equivalent case in 6.6.24. The
difference comes when γ = α, because at this point we need to show that the
resulting expressions are in Su

E,F . This of course follows easily through the same
proof.

• G σ→ G′ and µX.E σ→ J . Again, this follows the same proof as the equivalent case
in Lemma 6.6.24.

The converse cases give symmetry. Thus the proof is complete. �

To sum up, I state the Theorem which is one of the main results of this Chapter.

Theorem 6.6.26 Temporal Observation Congruence uu is a congruence relation.

Proof. By combination of Theorem 6.6.16 with Lemmas 6.6.18 and 6.6.25. �

Now that I have shown that uu is indeed a congruence with respect to all operators
of CaSEip, it is necessary to show it is the largest congruence in u. That is, we must
show that uu≡u+. I first recall the following fact from universal algebra (borrowed
from (Lüttgen, 1998)):

Proposition 6.6.27 Largest Congruence

Let X be an equivalence over an algebra R. Then the largest congruence X+ in X exists and
X+ = {〈P,Q〉}|∀R-contexts C[X].〈C[P ], C[Q]〉 ∈ X}, where a R-context C[X] is a R term
with one free occurrence of the variable X .

We can show that uu≡u+ by proving the two inclusions uu⊆u+ and u+⊆uu. We
have already shown in Theorem 6.6.26 that uu⊆u+ since we know that uu is a congru-
ence and is therefore no larger than the largest congruence. As a result all that remains
is to prove the latter inclusion, u+⊆uu. We must first characterise the difference be-
tween u+ and u. Since u is a congruence for every operator except +, we can define an
auxiliary relation:

ua , {〈E,F 〉 |E + G(E,F ) u F + G(E,F )}

where G(E,F ) , µX.

 ∑
σ∈TE+F

σ.X

+ c.0

 and c is fresh in E and F.



6.6. Equivalence Theory 145

This process discriminates the cases when two weakly bisimilar processes are distin-
guishable. It follows that u+⊆ua since the definition of ua is less restrictive, it only
mandating the equality over a specific class of contexts, whereas u+ is defined over ev-
ery context in existence. Therefore, if we can now show that ua⊆uu this will prove the
remaining inclusion.

Theorem 6.6.28 Temporal Observation Congruence is the largest congruence contained
in Temporal Weak Bisimulation

Proof. As before, I prove this by showing that each member of the relation ua sat-
isfies the 3 conditions of Definition 6.6.17. In order to demonstrate this it is necessary to
show that whenever E +G u F +G (where G is defined above) it follows that E uu F .
We do this by starting with each precondition from the three conditions along with the
knowledge that E +G u F +G, and then form the postcondition.

1. We assume the precondition of the first condition: E α→ E′. Then E +G
α→ E′, and

therefore since E +G u F +G then by Definition 6.6.8, F +G
α̂⇒ H with H u E′.

Now, it follows that H 6= F + G, since G c→ which E′ cannot match. Because of
this, it follows that F +G

α⇒ F ′ with F α⇒ F ′ and E′ u F ′. Thus the first condition
is satisfied.

2. Second precondition: E σ→ E′. Then E + G
σ→ E′ + G, since G σ→ G. Therefore

since E + G u F + G then by Definition 6.6.8, F + G
σ̂⇒ H with H u E′ + G. But

since G c→ G′ and c /∈ L(F ) then H ≡ F ′ + G with F
σ̂⇒ F ′. Therefore, F σ→ F ′,

as otherwise the choice would be resolved. Moreover, since E′ + G u F ′ + G, it
follows that 〈E′, F ′〉 ∈ua, thus satisfying the second condition.

3. Third condition: ΣF ⊆ ΣE . If E is not patient the condition holds trivially (ΣE =
T ). Therefore, we start by assuming E is patient, then E

τ9 and E + G is also
patient. Therefore, by Definition 6.6.8, it follows that Σ⇒F+G ⊆ ΣE+G. But since
ΣG = ∅ it follows that Σ⇒F = Σ⇒F+G, since whenever F + G

τ⇒ H then F τ⇒ H . We
can also determine that @F ′.F τ→ F ′ because then F + G

τ→ F ′ and by Definition
6.6.8 it follows that E + G u F ′ which is impossible since G c→ and c is fresh in
F ′. Since F τ9 then Σ⇒F = ΣF . Furthermore, ΣE+G = ΣE and therefore and the
postcondition ΣF ⊆ ΣE follows.

The converse follows by symmetry. Thus the proof is complete. �

An alternative characterisation of weak bisimulation which uses the standard CCS
definition can be formed by creating an enriched derived transition relation. The stan-
dard definition is more convenient to use in many instances since standard partition re-
finement algorithms can then be used to decide weak bisimulation. This relation makes
patient clock ticks explicit again, so that they can simply be matched as usual by weak



146 Chapter 6. A Timed Process Calculus for Component Oriented Systems

bisimulation. It also assumes that TE is non-empty, because otherwise ∆ ≈ 0 holds,
which isn’t true for our original definition. Regular active clock ticks over σ are repre-
sented by a σ1 transition, whilst patient ticks are represented by a σ0, as defined below:

Definition 6.6.29 Explicit Patience Derived Transition Relation
Given a CaSEip LTS (E ,A ∪T ,→), there is an Explicit Patience LTS (E ,A ∪T0 ∪T1,→u),
where Tn = {σn|σ ∈ T }. The transition relation→u is defined thus:

E
σo→u E ⇐⇒ σ /∈ (ΣE ∪ TE) ∧ τ /∈ AE

E
σ1→u E

′ ⇐⇒ E
σ→ E′

E
α→u E

′ ⇐⇒ E
α→ E′

The associated weak transition relation ⇒u is as given in Definition 2.3.2 (Chapter 2).
The standard definition of weak bisimulation can then be applied.

Definition 6.6.30 Temporal Weak Bisimulation (t.w.b.)
A symmetric relationR is a t.w.b. provided ∀〈E,F 〉 ∈ R:

• If E γ→u E
′ then ∃F ′.F γ̂⇒u F

′ and 〈E′, F ′〉 ∈ R

We write E ≈ F if ∃R.〈E,F 〉 ∈ R and R is a t.w.b.

The derived definition of Temporal Weak Bisimulation can be shown to be equivalent
to Temporal Weak Bisimulation with Explicit Urgency:

Theorem 6.6.31 Every Temporal Weak Bisimulation is a t.w.b.e.u.

Proof. Assume the existence of a t.w.b. R. We must show that R is also a t.w.b.e.u.
To this end we choose a pair 〈E,F 〉 ∈ R, assume the precondition of each condition of
Definition 6.6.8 for the given pairing, and finally show that Definitions 6.6.29 and 6.6.30
entail the postcondition.

• Condition (1) – show that if E
γ→ E′ then ∃F ′.F γ̂⇒ F ′ ∧ 〈E′, F ′〉 ∈ R.

– Option 1 : γ = α. Then by Definition 6.6.29, E α→u E
′ and thus by Definition

6.6.30, ∃F ′.(F α⇒u F
′ ∧ 〈E′, F ′〉 ∈ R) as required.

– Option 2 : γ = σ. Follows the same proof as γ = α.

• Condition (2) – Show that if ΣE ⊂ T then Σ⇒F ⊆ ΣE

– Suppose that ΣE ⊂ T

– It follows that there is at least one σ such that σ /∈ ΣE

– To show that Σ⇒F ⊆ ΣE it suffices to show, for any such σ, if σ /∈ ΣE then
σ /∈ Σ⇒F



6.7. Timed Transition Systems 147

– It follows from σ /∈ ΣE that by Definition 6.6.29 that E σ0→u E

– Therefore by Definition 6.6.30 it follows that ∃F ′.(F σ̂0⇒u F
′ ∧ 〈E,F ′〉 ∈ R)

– Furthermore, by Definition 2.3.2, ∃F ′′F ′′′.F τ→∗u F ′′
σ0→u F

′′′ τ→∗u F ′

– But by Definition 6.6.29 we know that it must follow that F ′′ ≡ F ′′′

– Since F ′′ is patient, it follows that F ′′′ ≡ F ′ and therefore F τ̂⇒u F
′

– By Definition 6.6.29 it follows that F τ̂⇒ F ′ ∧ σ /∈ ΣF ′

– Therefore it also follows that σ /∈ Σ⇒F as required.

The converse cases follow by symmetry. �
The disadvantage of converting to an explicit patience transition system is that, in-

evitably, a certain amount of data is lost, since it is necessary to fix T to a specific finite
set to derive the self-transitions. It means composition with this sort of transition system
is not possible, since if a σ0 transition is not present then that clock is stalled. Therefore,
whilst being absolutely necessary for use with standard verification algorithms based on
the standard weak bisimulation definition, it cannot replace the set theoretic semantics
entirely.

6.7 Timed Transition Systems

I highlighted at the end of the previous Section a deficiency in CaSEip transitions that
follows for multiple-clock timed process calculi generally, particularly those with pa-
tience. When a labelled transition system is produced for a CCS process all the data
needed for composition is contained within the transitions. Effectively the process labels
can be ignored for the purpose of composing the transition system with another CCS
process since every CCS LTS is isomorphic to a sequential CCS process. However, this is
not the case with CaSE and CaSEip, as the creation of a clock transition depends upon
whether the process syntax stalls any clocks. To reiterate, though the process ∆ has no
transitions it does not suffice to simply represent it a single-state LTS as this would then
be considered equivalence with 0.

It is possible, as proved in Lemma 6.6.31, to represent patient clocks as self-transitions
like CaSE does, but only if the T sort is collapsed to a finite clock universe. Clearly
though for component systems which use as many clocks as there are components, it
should be possible to represent a process accurately in a transition system by repeatedly
collapsing and expanding T . Although the derived transition relation in the previous
section provides a nearest approximation of CaSEip in a standard LTS, what is really
needed is an expanded form of LTS.

In approaching the same problem, CaSE has the notion of a symbolic transition system,
which stores the collection of stalled clocks at the states. This is illustrated well in Norton
and Fairtlough (2004), where transition systems like the following are utilised:



148 Chapter 6. A Timed Process Calculus for Component Oriented Systems

//{σcn}
c

!!•
σcn

cc cnbb

This is a simple isochronic broadcast agent which inputs a value on c (whilst holding
up σcn) and then repeatedly outputs cn until σcn ticks. Different classes of states are
symbolised differently:

• States holding up several clocks (e.g. ∆σ) are annotated with elements of the set of
clocks ΣP ;

• States holding up all clocks other than those with outgoing transitions are repre-
sented by a bullet •;

• States patient on all clocks are represented by a bullseye state©• .

The second case is not entirely possible with CaSEip as there is no way of represent-
ing a globally insistent clock prefix, only one insistent on several clocks. Therefore to
represent a transition system in CaSEip it is adequate to represent the states as the set
of clocks in ΣP . If empty, the process is fully patient. Additionally the set must have a
“full” or top state, which represents that all clocks in T are held up. By using this form
of transition system it is possible to accurately represent the equivalence class of each
process. The resulting LTS would therefore be something like (L,A ∪ T ,→t) with an
associated mapping relation L 7→ T̃ which associates the set of stalled clocks with each
state label.

Additionally the weak transition relation ⇒ gives rise to a weak timed transition
system. Each weak state in the weak transition system should be annotated with Σ⇒P ,
the set of weakly stalled clocks.

This fact will prove vital for producing an efficient implement of CaSEip since it is
neccessary to represent the state of a process minimally. Whilst the process syntax itself
provides all the information required, it is inefficient to be constantly regenerating the
set ΣP and hence it is important to represent the minimal amount of data needed to
represent a timed processes state. This allows a programmer to shortcut the process
syntax and instead represent the process in its entirety as a graph.

6.8 Refinement Theory

In this final section, my aim is the definition of a preorder which will be used as a refine-
ment or subtyping relation for Web service choreographies. Due to time constraints, this
is only proved for CCS so far, but it demonstrates the foundational concept. This is not
an immediately important issue, as clocks in the Cashew-A semantics will only be used
internally within orchestrations, and not in choreography descriptions. The relation is
formulated below:



6.8. Refinement Theory 149

Definition 6.8.1 Alternating Simulation
A relationR is an Alternating Simulation provided ∀〈E,F 〉 ∈ R:

• If E a→ E′ and a ∈ Λ then ∃F ′.F a⇒ F ′ and 〈E′, F ′〉 ∈ R;

• If F a→ F ′ and a ∈ Λ then ∃E′.E a⇒ E′ and 〈E′, F ′〉 ∈ R;

• If E τ→ E′ then ∃F ′.F ε⇒ F ′ and 〈E′, F ′〉 ∈ R;

• If F τ→ F ′ then ∃E′.E ε⇒ E′ and 〈E′, F ′〉 ∈ R.

We write E / F if 〈E,F 〉 ∈ R for any Alternating SimulationR.

Alternating Simulation is adapted from de Alfaro and Henzinger (2001) and Norton
and Fairtlough (2004). It is a behavioural relationship which describes when one compo-
nent adequately satisfies a context. Specifically, it requires that the component provides
at least as many inputs required (covariance), and no more outputs than the environ-
ment can accept (contravariance). This must be true in every state of a component’s
interaction. It is useful for ensuring conformance between a given template choreography
entailed by an orchestration, and a concrete Web service choreography.

I will prove some basic propositions with respect to our basic equivalence, weak
bisimulation, namely that Alternating Simulation is a partial order. I first prove the
following useful lemma:

Lemma 6.8.2 If S1 and S2 are Alternating Simulations then so is S1 · S2

Proof. To show this is true, it suffices to show that for any 〈P,R〉 ∈ S1 · S2, it follows that
P / R. Specifically, that both conditions of Definition 6.8.1 hold. It follows that there is
a Q such that 〈P,Q〉 ∈ S1 and 〈Q,R〉 ∈ S2. I will use this to demonstrate that the four
conditions of Definition 6.8.1 hold.

• If P a→ P ′ and a ∈ Λ then ∃R′.R a⇒ R′ with 〈P ′, R′〉 ∈ S1 · S2

– Suppose that P a→ P ′ and a ∈ Λ

– By Definition 6.8.1, Q a⇒ Q′

– Specifically, ∃Q′Q′′Q′′′.Q ε⇒ Q′′
a→ Q′′′

ε⇒ Q′, with 〈P ′, Q′〉 ∈ S1.

– Therefore R ε⇒ R′′ with 〈Q′′, R′′〉 ∈ S2

– Furthermore, since Q′′ a→ Q′′′ and a ∈ Λ then ∃R′′′.R′′ a⇒ R′′′ with 〈Q′′′, R′′′〉 ∈
S2

– And, since Q′′′ ε⇒ Q′ then R′′′ ε⇒ R′ with 〈Q′, R′〉 ∈ S2

– Therefore, ∃R′.R a⇒ R′ with 〈P ′, R′〉 ∈ S1 · S2 as required.

• If R a→ R′ and a ∈ Λ then ∃P ′.P a⇒ P ′ with 〈P ′, R′〉 ∈ S1 · S2



150 Chapter 6. A Timed Process Calculus for Component Oriented Systems

– Similar to the above, but taking the path, R a→ R′ to Q a⇒ Q′ to R a⇒ R′.

• The two remaining τ conditions follow the same respective structures as the two
above.

Thus it follows that S1 · S2 satisfies the conditions for Alternating Simulation. �

With this lemma, I can now prove that Alternating Simulation is a preorder.

Lemma 6.8.3 Alternating Simulation is a preorder

Proof. To show that alternating simulation is a preorder we need to show that it is
reflexive and transitive.

• Reflexivity – it suffices to note that the identify IdE is an alternating simulation.

• Transitivity – consider three processes P,Q and R with P / Q and Q / R. Then
there are two alternating simulations S1 and S2 with 〈P,Q〉 ∈ S1 and 〈Q,R〉 ∈ S2.
By Lemma 6.8.2 it follows that S1 · S2 is an alternating simulation and therefore
transitivity holds.

Thus alternating simulation is a preorder. �

Proposition 6.8.4 Alternating Simulation is antisymmetric

Proof. To show that alternating simulation is antisymmetric consider two processes P
and Q with P / Q and Q / P . We need to show that it follows that P ≈ Q. There
are two alternating simulations R and S with 〈P,Q〉 ∈ R and 〈Q,P 〉 ∈ S . Therefore, it
suffices to show that R ∪ S−1 is a weak bisimulation. We do this by inducting over all
possible transitions P may perform to prove our relation satisfies the conditions of weak
bisimulation.

• From P
α→ P ′ we need to show that ∃Q′.Q α̂⇒ Q′ with 〈P ′, Q′〉 ∈ R ∪ S−1. This

breaks down into three possibilities:

– P
a→ P ′ with a ∈ Λ. Using R with the first condition of Definition 6.8.1 it

follows that ∃Q′.Q a⇒ Q′ with 〈P ′, Q′〉 ∈ R. Furthermore 〈P ′, Q′〉 ∈ R ∪ S−1,
which satisfies the definition of weak bisimulation.

– P
a→ P ′ with a ∈ Λ. Using S with the second condition of Definition 6.8.1 it

follows that ∃Q′.Q a⇒ Q′ with 〈Q′, P ′〉 ∈ S . Furthermore 〈P ′, Q′〉 ∈ R ∪ S−1,
which satisfies the definition of weak bisimulation.

– P
τ→ P ′. Using R with the third condition of Definition 6.8.1 it follows that

∃Q′.Q ε⇒ Q′ with 〈P ′, Q′〉 ∈ R. Furthermore 〈P ′, Q′〉 ∈ R ∪ S−1, which
satisfies the definition of weak bisimulation.



6.9. Conclusion 151

• The converse case gives symmetry.

Thus we have proved that Alternating Simulation is a antisymmetric. �
Thus, based on the fact that Alternating Simulation is both a preorder and antisym-

metric we now have the basis for the following theorem:

Theorem 6.8.5 Alternating Simulation is a partial order �

Finally, although Alternating Simulation is a partial order, it is not a precongruence
relation, for the same reason that weak bisimulation is not a congruence for CCS. There-
fore, I define the following precongruence:

Definition 6.8.6 Alternating Precongruence A relation R is an Alternating Precongruence
provided ∀〈E,F 〉 ∈ R:

• If E a→ E′ and a ∈ Λ then ∃F ′.F a⇒ F ′ and 〈E′, F ′〉 ∈ R;

• If F a→ F ′ and a ∈ Λ then ∃E′.E a⇒ E′ and 〈E′, F ′〉 ∈ R;

• If E τ→ E′ then ∃F ′.F τ⇒ F ′ and 〈E′, F ′〉 ∈ R;

• If F τ→ F ′ then ∃E′.E τ⇒ E′ and 〈E′, F ′〉 ∈ R.

We write E ≤ F if 〈E,F 〉 ∈ R for some Alternating SimulationR.

Alternating Precongruence differs from Alternating Simulation in only one respect –
once again any initial τ must be matched by at least one τ .

6.9 Conclusion

In this Chapter I have taken an in-depth look into the core theoretical features required
for modelling Web service based component systems. I started out from the timed pro-
cess calculus CaSE and investigated some of the potential problem areas for defining
a compositional semantics for service composition. The culmination of this was the
definition of three process calculi. The first, an extension of CCS with support for lo-
calised interruption, had several theoretical problems, notably an inadequate definition
of observation equivalence. This led to the realisation that abstract time itself is an ideal
paradigm for expressing interrupting component systems.

I then proceeded to examine timed process calculus in general, and found that CaSE
has a number of problems and abnormalities relating to its handling of patient clock
ticks. As a result of this I sought a new and more flexible approach. The first attempt at
this, CaSEmt, is very flexible but introduces too much complexity in defining different
patterns of patience between clocks. Therefore the successful process calculus, CaSEip,
was developed using a new style of semantics based on instability sets. The new calculus
possesses a distinct formulation of patience, which is one of three states a clock can be



152 Chapter 6. A Timed Process Calculus for Component Oriented Systems

in. This allow some of the existing problems, such as patient clock prefix, to be solved in
a more elegant fashion, whilst adding new possibilities such as timed choice.

As a further addition to this calculus I added a new clock renaming operator, which
allows clocks to be realised as standard CCS actions. This provides both a more flexible
approach to clock scoping, in that the implicit total order introduced by hiding can be
avoided when required, and allows further synchronisation patterns , such as a one-
to-many synchronisation between a synchronous agent and a temporal region. All in
all, CaSEip contributes a significant increment from its predecessor, CaSE, whilst still
remaining faithful to the latter’s concept of abstract time.

The majority of the time in this Chapter has been spent on adapting a weak bisim-
ulation semantics to CaSEip. Although the formulation is very similar to that in CaSE
it has provided a number of issues which have been dealt with. In particular CaSEip

formalises the notion of a clock being patient only after a process stabilises. I have
proven that my new equivalence theory, Temporal Observation Congruence, is the largest
equivalence within temporal weak bisimulation, and also that it can be reformulated to
standard weak bisimulation on an enriched labelled transition system. As a short ad-
dendum, I also considered alternating simulation and how it provides an ideal semantic
theory for describing compatibility between behavioural component interfaces, such as
a Web service choreography.

Although the work in this Chapter is significant, it is still in its infancy. I do not
claim that CaSEip solves all the problems which CaSE can, and indeed it can be argued
that CaSE’s simplification of patience is a strength in certain circumstances rather than
a weakness. For instance, weak bisimulation is more directly adapted in CaSE than
in CaSEip . Nevertheless it is certainly a step forward in the options it provides for
representing timed component systems, and as we shall see in the remaining Chapters
provides a better foundation for giving a semantics to service composition.



Chapter 7

A Compositional Operational
Semantics for Cashew-A

In this Chapter I will give an Operational Semantics to Cashew-A in the form of
a CaSEip denotation, the process calculus introduced in Chapter 6. At the core of
this denotation are a number of protocols which allow components of a workflow to
share the same meta-state and negotiate permission to execute from the environment.
These protocols provide an approach to semantics which means that different parts
of the system are maximally decoupled, and can thus evolve independently. The
semantic framework is therefore both extensible and compositional. I first describe
the regular part of the language, in terms of its protocols, data flow and control flow.
I then describe an experimental compensable fragment of the language and show that
my semantic approach favours a flexible compensatory strategy.

7.1 Overview

HAVING defined the operational calculus CaSEip in Chapter 6, I now pro-
ceed to use it to give an operational semantics to Cashew-A . I will seek to
justify the choice of calculi by demonstrating that abstract time is an essen-

tial ingredient in describing workflows with explicit preconditions, postconditions, and
eventually, compensation.

Cashew-A is given a behavioural semantics though a number of schedulers, each of
which is composed in parallel with one or more actor processes. Each actor process plays
the part of a fragment of the workflow and in this way a complete director model can be
inductively acquired, an approach adapted from Norton et al. (2005). For instance, the
semantics of a Cashew-A process like JP #QKwill be described (broadly) as J#K | JP K | JQK,
that is the semantics of the two processes parallel composed with the # (sequential)
scheduler. Each scheduler will coerce the sub-components into a specific synchronisation
pattern using its various channels, resulting in a particular execution scheme (such as

153



154 Chapter 7. A Compositional Operational Semantics for Cashew-A

sequential, choice, parallel etc.). The details of these channels and how they synchronise
will be given throughout this chapter.

The semantics will be given formally using a series of semantic relations which will
map each structure of Cashew-A to a CaSEip process. In general, the signature of this
relation is defined thus:

−
−J−K

−,−
−,− : Constructor × (Name× N)× Expression× (Ã× B̃)× (M̃× M̃)→ E

The sorts W,A,B,M,W and P were defined in Chapter 5 Section 5.1. A Constructor
is simply a 2 or 3 letter code which distinguishes the context of a particular construct.
For instance, the semantics of P #Q are different when in a normal workflow to when in
a compensable workflow. Thus I distinguish these two cases by the use of constructors
wf and cwf, respectively. A Name is the name of the structure being given a semantics,
either a performance or a workflow, thus Name = P∪W. Each name is associated with a
granularity given by a natural number, which represents the granularity of the internal
RTC in basic units. An Expression is any expression in the Cashew-A language to which
we are giving a semantics. Each construct will also possess a set of inputs and a set of
outputs (top-right), taken from Ã× B̃. Finally, each construct also possesses a set of input
messages and a set of output messages (bottom-right), taken from M̃× M̃.

Thus wf

w,g
JP #QKãP ,b̃P

m̃,ñ
means the semantics of P #Q with input set ãP , output set b̃P , input

messages m̃, output messages ñ, name w and granularity g, under the wf constructor. We
now proceed to describe the semantics and thus populate this relation, first for normal
workflows and then for compensable workflows.

At the core of all of these semantics is a scheduling protocol and clock phase transition
system, which all parts of a component adhere to. The advantage of this approach is
that the semantics are directly extensible, and so long as a new construct’s semantics
adheres to the protocols it will fit into the existing framework. This is important because
as I illustrated there are several possibilities for the Cashew-A control flow language,
and expansion with additional constructs may be required in the future. The protocol is
effectively a conversation between the component and its environment. By contrast, the
phase transition system allows all the subcomponents of a workflow to share a common
state.

A note about the syntax of these semantics. An italicised letter sequence, e.g. a, is
a variable. A bold letter sequence, e.g. a, is a value. Variables can have both a subscript
and a superscript applied. A superscript means that the given superscript valuation
is applied to the underlying value of the variable, so for instance, if a = input and
w = wfname, then aw = inputwfname. In contrast, a subscript is simply a decoration
of an existing variable name, creating a new distinct variable name, for instance ai is a
distinct variable from a. A subscript decoration has no effect on the underlying variable
valuation. Finally, a tilde over a variable name produces a distinct variable name, but
this time it is a set. For instance, if we have ã, this is a variable distinguished from a, with



7.2. Normal Workflow Semantics 155

a set valuation. These rules do not apply to clock names, which are different. Lower case
variables like p are names or atomic values of some sort, whereas upper case variables
like P range over part of the Cashew-A syntax.

7.2 Normal Workflow Semantics

7.2.1 Phases

5w
1

�w

�w

5w
2 5w

3 5w
4

5w
5

b c d e f

�w

a
5w

0

Figure 7.1: Phases of a normal workflow

All of the workflow components follow a common phase transition system built us-
ing a number of distinct clock sets per workflow. The phase transition systems enable
the components of the workflow to simultaneously share the state. When defining the
semantics for the process calculus CaSEip in Chapter 6 I used greek symbols (σ, ρ · · · ) to
represent clocks. However, since there are now many different clock classes and using
these symbols would be confusing, I use the following clock sort:

T = {5wn |w ∈W ∧ n ∈ {0 · · · 5}} ∪ {�w |w ∈W}
∪ {�w |w ∈W} ∪ {�w |w ∈W} ∪ {�w |w ∈W}
∪ {σm |m ∈M} ∪ {5p | p ∈ P} ∪ {5pn | p ∈ P ∧ n ∈ {1 · · · 4}} ∪ {σ, ρ}
∪

{
�bp
∣∣∣ p ∈ P ∧ b ∈ B

}
The complete phase transition system is illustrated in Figure 7.1. In a normal work-

flow there are a total of 5 phases (a through e), which indicate what the current action of
the workflow is. These phases are delimited by what can be called the “normal” work-
flow clocks, namely 5w0 · · ·5w5 . All workflows begin in phase a, which is the inactive
phase. Here the workflow can perform literally no behaviour, other than receiving an
activation signal. The first workflow clock (0) signals when the workflow has been acti-
vated, thus moving it into phase b, the state where it can begin to receive its inputs before
executing. Since the workflow will be contained within a performances, these inputs will
be fed in via the performance inputs buffers. The second clock (1) ticks when sufficient
inputs have been received to execute, and at this point the control flow is activated. This



156 Chapter 7. A Compositional Operational Semantics for Cashew-A

means that, for instance, any initial messages can be obtained at this point. The third
clock (2) signals when the workflow has reached the ready phase (d) – it has satisfied
sufficient preconditions so as to enable execution. The fourth clock (3) signals that the
environment of the workflow has permitted execution to take place and thus the control
flow should start executing. It is also possible that permission to execute may be denied
by the environment at this point (if another competing process became ready first), and
if so the �w cancellation clock will tick instead to signal that the sub-components should
discard their inputs and return to inactivity. During the execution phase (e) the yield
clock �w and real-time clock (RTC) can also repeatedly tick, I will describe the former in
more detail when I explain yielding. The RTC ticks once in between each time interval
predefined by the workflow head. The fifth clock (4) ticks when execution of the con-
trol flow has completed, moving the workflow into the penultimate phase (f), where the
outputs are gathered together and passed to the environment. Finally, the sixth clock
(5) indicates that all postconditions have been populated and the workflow returns to
inactivity (phase a).

The remaining phase clock type which I have not described is �w, which is not used
in this phase transition system as it relates to compensation and so will be dealt with
in Section 7.3. However, it is important to emphasise that these workflows enforce a
specific priority on the clocks using the hiding operator. For instance, in P/σ/ρ, if P
is capable of ticking both σ and ρ it is the σ transition which will occur first, since it is
converted to a τ lower down, blocking ρ. This demonstrates an important property of
the clock phases since it removes the possibility of non-determinism between two phases
(unless explicitly required). For instance, if the workflow execution is cancelled in phase
c, the ticking of �w takes precedence over 5w3 . Furthermore, as we shall see, entering the
compensation phase is prioritised above yielding.

5w
1 5w

2 5w
3 5w

4

Inputs Outputs

5w
5

�w

Internal

τ

Clock

Action

5w
0

Figure 7.2: Overall workflow timeline (not all clocks and actions shown)

The phase transition system provides a necessary skeleton for the workflow. All
agents can tap into it to get information about their peers and act accordingly. It also
provides an overall structure which all workflows (and in general all components) ad-
here to – this is shown in Figure 7.2. In particular, note that for 5w3 to tick a path must be
found through the input section, signifying the satisfaction of the preconditions.



7.2. Normal Workflow Semantics 157

Nevertheless, the phase transition system does not allow much protocol commu-
nication between individual agents, and thus on top of the clock phases there is also
a negotiation protocol with which all performances (and thus workflows) must obtain
permission to execute from their environment. This is described in the next section.

Before moving on though, there are four other clock types in the sort which are not
specifically related to workflow phases. The first 5pn are performance clocks, and are used
to represent phases in a performance, if required. Since performances are less structured
than workflow, these clocks are optional. In addition, there are two anonymous clocks
σ and ρ, which are used in contexts where no name is available to decorate them (but
see Section 7.2.10 for potential problems). In addition to the performance clocks, there
are also the performance data flow clocks, �bp, which are used to broadcast data from
perform outputs. These will be explained properly in the performance semantics section.

The remaining clock type is central to message flow. In my semantics, messages are
represented intermediately as clocks, e.g. σm. These are then renamed to channels at
the workflow head, using CaSEip’s new clock renaming operator, which I discussed in
Chapter 6, Section 6.4. This is to ensure that a message cannot be received whilst there
is internal activity taking place in the workflow, which is judged to be faster. If, for in-
stance, there exists a choice between receiving several messages then once one of these
messages has been received the remainder must be instantly disabled, so the choreogra-
phy is correct. If we were to use a regular action this wouldn’t be possible as they are
not prioritised and therefore simply interleaved if placed in parallel processes. However
it is possible to hold up a clock via maximal progress. The receive also can only happen
if the environment provides a message. Therefore a message receive is a one-to-many
decision, it can only occur if both the environment provides the message and all agents
in the workflow permit its receipt. Also note that this has the further effect of ensuring
that message-less paths through the workflow have higher priority. In other words, if
it is possible to complete the workflow without exchanging messages, no messages will
ever be exchanged. For instance in (Receive m ∅) � ε it is impossible to receive message
m, since the skip can always execute immediately thus disallowing σm from ticking.

7.2.2 The Orchestration Protocol

g

s

a

s s

r
e

mnb

X

Figure 7.3: A basic Workflow transition system



158 Chapter 7. A Compositional Operational Semantics for Cashew-A

In addition to adhering to the phase transition system, all components of a workflow
follow a common protocol. This ensures that the semantic framework is extensible, in
that new workflow constructs can easily be added, provided they adhere to the protocol.
The protocol is an extension of the one used in our previous OWL-S semantics (Norton
et al., 2005), which is itself an extension of the protocol used by Norton and Fairtlough
(2004) for Digital Signal Processor components.

The orchestration protocol uses five channels, g, r, e,X and s, which are used to in-
struct the component as to which action it should perform:

• g stands for go and is input at the very beginning of a component’s execution. It is
essentially an activation signal.

• r stands for ready and is issued by a component once the readiness phase is reached.
This is a declaration to the environment that the component can proceed to execute
without outside intervention.

• e stands for execute and may be issued to a component by the environment as per-
mission to begin actual execution.

• s which stands for stop and is issued if the environment has alternatively decided
the component should not execute, for example if another component has been
chosen instead.

• t stands for tick and indicates that the component’s internal clock wishes to tick.
This is used to mediate between the RTCs of a parent and child component.

• FinallyX is issued by the component at the end of execution, signalling completion
and its return to the inactive state.

In the workflow semantics it is usual that these channels will be given superscripts
i and j to denote whether they refer to the left component or the right component of a
binary operator. Furthermore, the i subscript is sometimes used to refer to the internals,
as opposed to the environment. I thus define two renaming sets, F and G, which will be
used to distinguish between the channels of internal components being scheduled, and
also set R which contains all these decorated channels and will be used for restriction.
These are defined in terms of C, which contains all the protocol channels in the language:

C = {g, r, e, s,X,gc, rc, ec,Xc}
F =

{
a 7→ ai | a ∈ C

}
G =

{
a 7→ aj | a ∈ C

}
R =

{
ai | a ∈ C

}
∪
{
aj | a ∈ C

}



7.2. Normal Workflow Semantics 159

This protocol has substantially evolved since our previous work (Norton et al., 2005),
where only r and e were required. A clock σ was used in place ofX, which simply used
maximal progress to detect completion asynchronously. However, in order to represent
the choice and loop constructs the additional g and s are required so that precondition
satisfaction is separated from execution, as the former does not necessarily precipitate
the latter. Furthermore, X is required as each workflow construct is anonymous and
therefore cannot easily be given its own clock. To reiterate, the fundamental purpose of
a common protocol is to enable standardised extension, verification, and so on.

An example of this protocol in action is shown by the (weak) LTS in Figure 7.3. Here
we have a workflow which requires a single input a to execute, during execution sends a
messagem and then receives a message n, finally returning a single output b. Notice also
that if the input, output and protocol channels are removed the result is a choreography
IO automaton.

7.2.3 Derived Syntax

In order to make the process of writing the semantics more convenient, I have created
a number of derived operators. First of all, a simple disabling operator E Bγ G, which
proceeds with executing process E, but all the while allows G to interrupt it with any
of its initial actions. Once E performs action γ though, G is disabled and can no longer
interrupt. It is useful for describing situations in which an escape route is possible until
some “point of no return” is reached, indicated by action γ. I only derive it for dynamic
operators, as it will not be used in a static context. I also define distributive parallel com-
position Π, which composes a process with a free variable in parallel several times, each
time with a substitution from the given set. Below are the derivations:

δ.E Bγ G ,

δ.E +G if δ = γ

δ.(E Bγ G) +G otherwise

E + F Bγ G , E Bγ G+ F Bγ G
0Bγ G , G

∆Bγ G , ∆ +G

∆σ Bγ G , ∆σ +G

X Bγ G , X

µX.E Bγ G , µX.(E Bγ G)∏
x∈{a···z}

E , E{a/x} | E{b/x} | · · · | E{z/x}

I also define the following conventions (Note: in this context only σ and decorations
thereof are variables):



160 Chapter 7. A Compositional Operational Semantics for Cashew-A

Control Flow Semantics

Workflow Semantics

Acceptor Semantics

Offeror SemanticsPerformance Semantics Data Flow Semantics

Component Semantics

Figure 7.4: Overview of the operational semantics

E \ {a, b, · · · , z} , E \ a \ b \ · · · \ z
E/[σ1, σ2, · · · , σn] , E/σ1/σ2/ · · · /σn

bEcσ(F ) , E + σ.F

γ{σ1,σ2,··· ,σn}
.E , γ.E + ∆σ1 + ∆σ2 + · · ·+ ∆σn

(γ)n.E ,

γ.(γ)(n−1).E if n > 0

E otherwise

I use a vector for clock hiding instead of a set because the order in which clocks are hid-
den is important as it enforces a total order on the clocks’ priority in the enclosure. I also
derive the timeout operator from CaSE (though it doesn’t behave exactly the same) and
insistent prefix γ

σ̃
, which makes an action insistent over a particular clock sort. Finally I

define a simple repetition prefix (γ)n.E, with n ∈ N, which performs the action γ n times
before enabling E.

7.2.4 Structure

The semantics are broken down into individual Sections as illustrated by Figure 7.4. This
shows a simple sequential workflow with control flow and data flow between a total of
three performances. Each key semantic component of the workflow has a dotted line
around it and a label indicating its name. These are:

• the workflow semantics, defined in Section 7.2.5;

• the performance semantics, defined in Section 7.2.6;



7.2. Normal Workflow Semantics 161

• the control flow semantics, defined in Section 7.2.7;

• the data flow semantics, defined in Section 7.2.8;

• the acceptor and offeror semantics, also defined in Section 7.2.8; and

• the component semantics, defined in Section 7.2.9.

All of these parts semantically composed form a complete behavioural semantics for
a workflow. I will now consider each of these in turn.

7.2.5 Workflow semantics

The workflow semantics describes the behaviour of an abstract workflow. It gives a
semantics to the acceptors, offerors, control and dataflow, and orchestrates them all using
the various clock phases.

wf

w,g
Jw[A{C ×D}B]gKã,b̃

m̃,ñ
,(

wac

w
JAKã

∣∣∣ wof

w
JBK̃

b∣∣∣ (wcf

w,g
JCKãcf ,b̃cf

m̃,ñ

∣∣∣ df

w
JDKãdf

b̃df

)
{[a 7→ aw|a ∈ ã]}{[b 7→ bw|b ∈ b̃]} \ b̃df)

\ {aw|a ∈ ã} ∪ {bw|b ∈ b̃}{[�w 7→ s]}/[5w0 · · ·5w5 ,�w]/[�pa | ap ∈ ãcf ∪ ãdf ]

{[σm 7→ m|m ∈ m̃]} {[σn 7→ n|n ∈ ñ]} {[�w 7→ t ]}

The semantics of a workflow consists of an acceptor wac

w
JAKã which handles precon-

dition negotiation, an offeror wof

w
JBK̃

b
which handles postcondition negotiation, a control

flow wcf

w,g
JCKãcf ,b̃cf

m̃,ñ
and a dataflow df

w
JDKãdf

b̃df
. The dataflow is composed with the control

flow, and the acceptor and offeror are composed together. The acceptor and offeror
define a set of inputs to the workflow ã and a set of outputs from the workflow b̃, re-
spectively. Likewise the dataflow, through the workflow input and output connections,
entails a set of workflow inputs and outputs, ãdf and b̃df respectively.

Dataflow inputs and outputs not having corresponding acceptor inputs or offeror
outputs, are restricted . The remainder are decorated with a w superscript (i.e. the work-
flow name), so they don’t clash with the actual workflow input and output channels.
The acceptor and offeror connect with these decorated channels. For instance a work-
flow may have an input a, which is received by the acceptor. This is then passed onto
relevant dataflow connections through a decorated channel aw. These decorated chan-
nels are then restricted (so they aren’t viewed outside the workflow) and the phase clocks
hidden in order. The exception is the cancellation clock �w which is instead renamed to
the stop channel s. This means that if the workflow is instructed to deactivate, this in-
struction will be converted into a tick of the �w (which otherwise cannot tick). The input



162 Chapter 7. A Compositional Operational Semantics for Cashew-A

and output message clocks are then renamed to their respective channels and the RTC
clock is also renamed to a channel, so the context can control how fast time passes.

I now proceed to define all the different parts of this workflow. A sequence diagram
representing the normal overall timeline of a workflow is shown in Figure 7.5. The thick
black horizontal lines within the thick black box represent clock ticks on the labelled
clock. The box represents the scope of these clocks, and thus the boundary of the work-
flow. The presence of a blob on one of the horizontal lines indicates that the process
below is a key participant in allowing the clock tick to take place. The other processes
observe it, but are not directly involved. Not all possible behaviours are represented, but
it provides a rough overall timeline of a workflow when successfully executed, in terms
of the interactions between the control flow, dataflow and the workflow’s context. This
diagram should aid in understanding how all the different parts (which I define below)
communicate.

I first define the semantics of the acceptor and offeror processes:

wac

w
JAKã ,

((
ac

w
JAKã | µX.5w0 .(r5w1 .5

w
1 .X B5w1 �w.X)

)
\ r {[a 7→ ai|a ∈ ã]}

|
∏
a∈ã

µX.5w0 .(a.µY.(ai.Y + 5w2 .X)B5w2 �w.X)
)
\ {ai|a ∈ ã}

wof

w
JBK̃

b
,

(
of

w
JBK̃

b
| µX.5w4 .r5w5 .5

w
5 .X

)
\ r

Acceptor Offeror

//• 5w0 //• r //

�w
XX •

5w1

��

�w

YY
//• 5w4 //• r //•

5w5

dd

//• 5w0 //• a //

�w
XX •

5w1

��

�w

YY aibb

The acceptors and offerors exist to decide if sufficient inputs have been received to al-
low the workflow to execute. The acceptor composes the precondition semantics ac

w
JAKã

(defined in Section 7.2.8) with an agent to decide when sufficient preconditions have
been satisfied. The acceptor only becomes active once the workflow is activated, indi-
cated by 5w0 ticking. The enclosed precondition process accepts requisite inputs and will
output an r once satisfied, which the top-level agent here synchronises with in the first
step. Until this happens, the second phase clock 5w1 is held up (indicated by the under-



7.2. Normal Workflow Semantics 163

:Context :Governor :CFlow :Accept :Offer :DFlow

gi

g

5w
1In

p
u
ts

In
p
u
ts

r

e

5w
2

ri

ei

Xi

O
u
ts

O
u
ts

X

Dataflow Exchange

5w
3

5w
4

5w
5

5w
0

Figure 7.5: The key actors’ interaction in a normal workflow timeline

(Note: CFlow = Control Flow, DFlow = Dataflow, Accept = Acceptor, Offer = Offeror,
and Outs = Outputs)



164 Chapter 7. A Compositional Operational Semantics for Cashew-A

lining and subscript). Afterwards, 5w1 ticks indicating the workflow is has received all its
required inputs, and so the control flow can be activated. Once the control flow is ready
to execute 5w2 ticks to signal that the workflow is ready to execute. If the environment
permits it, this is by followed 5w3 , signalling the beginning of execution. However, until
the latter ticks it is also possible for the cancellation clock �w tick to reset and disable the
workflow. In this case the acceptor will reset. The channel r is restricted and each input
collected in ã, the set of inputs provided by the acceptor process, is decorated with i.

The acceptor also contains a second process, composed with the one described above,
which takes care of input broadcasting. It consists of a collection of agents, each corre-
sponding to the possible inputs of the workflow contained in ã. Each agent broadcasts
their respective input to the precondition process, as the input may appear several times
in the precondition expression even though the environment will only supply it once.
For instance the semantics of precondition (at b)u (at c) would need to receive a twice.
Thus the input is broadcast, and the decorated input channels are restricted.

The offeror semantics is much the same as the acceptor composition, it composes
the postcondition semantics of

w
JBK̃

b
(defined in Section 7.2.8) with a decider agent. The

difference is that until the postcondition is satisfied, the workflow clock 5w5 may not
tick. It also does not require a broadcaster, since each output is only supplied once (the
performance which contains the workflow takes care of output broadcasting).

wcf

w,g
JCKãcf ,b̃cf

m̃,ñ
,

(
cf

w,g
JCKãcf ,b̃cf

m̃,ñ
{[F]}

∣∣∣Governorw
)
\{gi, ri, ei, si,Xi,y}

where

Governorw , µX.gTw .〈5
w
0 〉.〈5w1 〉� .gi

Tw
.

(ri
Tw\{�w}.〈5w2 〉� .rTw\{�w}.eTw\{�w}.〈5w3 〉.ei

Tw .

µY.
(
yTw\{�w}.µZ.(y.Z + 〈�w〉.Y ) + �w.Y

+Xi.〈5w4 〉.〈5w5 〉.XTw .X
)

Be �w.si
Tw .〈�w〉.X)

Tw , {5w0 · · ·5w5 ,�w,�w,�w}

〈σ〉.E , σTw\{σ}

〈σ〉� .E , σTw\{σ,�w}



7.2. Normal Workflow Semantics 165

•�w

		
•

X
��

•
5w5

oo •
5w4

oo

�w

�� y

II

•
Xi

oo •
ei

oo

//• g //• 5w0 //• 5w1 //

�w

��:::::::: • gi
//• ri //

�w
����������

• 5w2 //

�wss

• r //

�wnn

• e //

�w
jj

•
5w3

``

•
�w

]]::::::::
•

si
oo

The control flow semantics consists of the encapsulated flow process cf

w,g
JCKãcf ,b̃cf

m̃,ñ
(de-

fined in Section 7.2.7) composed with a process called Governor. The Governor is the
central linking point of the workflow, and largely manages the workflow’s timeline and
negotiation with the environment (hence its name). It acts as a mediator between the
scheduling protocol and the phase transition system, in that it defines which clock can
tick at each point of negotiation. It also schedules the top-level workflow construct.

The semantics of the control flow results in a set of control flow inputs and outputs,
ãcf and b̃cf , respectively. These represent the inputs and outputs of all the encapsulated
performances. Inputs and outputs which are not handled by the dataflow connections,
and thus do not appear in ãdf and b̃df , respectively, are restricted. The renaming set F

is applied to decorate all the scheduling channels of the top-level scheduler with an i

superscript. The resulting control flow process is then composed with the Governor.
The Governor defines exactly which clocks can occur at which point. It does this

via urgency, which is indicated by underlining the associated action, and with a clock
to be stalled in the subscript (see derived syntax in Section 7.2.3). In addition, I enclose
some clock ticks with angle brackets 〈σ〉 to indicate that every phase clock other than σ

is stalled, where Tw is the set of phase clocks in workflow w. The Governor is one of the
only agents in a workflow to prevent clocks from ticking, and thus effectively defines
the phase transition system.

The Governor first requires a g input before anything can be done in the workflow.
All phase clocks are held up at this point. Following g the Governor ticks 5w0 to indicate
activation, which the acceptor process (already described) listens for. Once the requisite
workflow inputs have been received 5w1 ticks and the governor then sends a gi signal to
the top-level scheduler, allowing it to attempt to fulfil its preconditions. The Governor
then waits for the top-level scheduler to output an ri to indicate it is ready. When this
happens, the third clock ticks to indicate that all the preconditions are fulfilled (provided
the acceptor also allows this).

The Governor then informs the environment via r that the workflow as a whole is
ready to execute, to which the environment can either respond with an e or an s. The
s can occur at any point up until e is received, and will cause the entire workflow to
reset and not execute. This is done via the derived disabling operator at the bottom the
process definition. If an s is received it is converted into a �w signal which the Governor



166 Chapter 7. A Compositional Operational Semantics for Cashew-A

detects (as does the acceptor) and sends an si to the top-level scheduler, forcing it to reset
and then ticks the yield clock �w, which completes cancellation. On the other hand, if
e is received the Governor ticks the third clock 5w3 , to indicate the execution phase, and
passes execution permission onto the top-level scheduler via ei. From this point on, the
workflow must run its course.

During the execution phase, the Governor permits three possibilities. The yield clock
can tick if a request is received via y, the RTC can tick, or the top-level scheduler can
indicate its completion via Xi. No other phase clocks can occur during execution. Once
the top-level scheduler completes, the Governor begins the post-execution commit phase
by ticking 5w4 . In this phase the offeror picks up all the outputs it requires from the body.
Once this has done, the sixth and final workflow phase clock 5w5 ticks, the Governor
passes a X to its environment to signal the workflow is complete, and the whole work-
flow resets. All that remains to be done in the control flow semantics is the restriction of
the internal scheduling channels used by the Governor. The completes the discussion of
the workflow semantics as a whole.

7.2.6 Performance Semantics

cf

w,g
Jp[P ]K{ap|a∈ã},{bp|b∈b̃}

m̃,ñ
,
(

pf

p,gi
JP Kã,b̃

m̃,ñ

|
∏
b∈b̃

µX.5w3 .(µY.b�pb .(�
p
b .Y +5w5 .X +�w.Y ) + 5w5 .X)

| µX.(�w)gi/g.t.X)
\b̃ \ {t,Xi}{[a 7→ ap|a ∈ ã]}{[Xc 7→ X]} \ x

Output buffer RTC Mediator

//• 5w3 //•

5w5

�� b //•
�bp
XX

�w

��

5w5

YY
//• �w // �w //•

t

cc

The performance wrapper places a component semantics pf

p,gi
JP Kã,b̃

m̃,ñ
(defined in Sec-

tion 7.2.9) into the context of a workflow. It has two functions: mediating data flow and
mediating the RTC between the performance and the enclosing workflow. Data flow is
mediated by converting the inputs and outputs of the performance into a form which
can be relayed to the dataflow connections of the workflow. The inputs are simply re-
named to a unique name by decorating them with the performance name p (the actual
input buffers are provided by input connections) via ap 7→ a. In contrast the outputs
are buffered and can only be conveyed to respective connections when the respective
performance output clock (�bp) ticks, which synchronises with appropriate connections.
Alternatively, if either the yield clock or final workflow clock ticks before the output can



7.2. Normal Workflow Semantics 167

be conveyed, it is purged. This is necessary so that new data from the encapsulated
component can be output should the performance be executed in a loop.

The use of clocks to directly convey data passing is used instead of isochronic broad-
cast because its use ensures that each recipient receives the input exactly once. The prob-
lem with isochronic broadcast is that looping receivers will simply receive the same in-
put again and again. Direct use of a clock avoids this also cuts down on the number of
transitions required for the broadcast.

The wrapper also mediates between the workflow’s RTC and the performance’s RTC
using the t channel. Recall that the workflow semantics in Section 7.2.5 renamed the RTC
clock to the t channel, so it would communicate with its respective performance wrapper.
The t channel outputs every time the performance’s RTC ticks, and the workflow must
tick its clock several times before allowing the performance clock to tick. The number of
workflow RTC ticks is calculated statically by dividing the performance time granularity
gi by workflow granularity g. The workflow clock then must tick this number of times,
and then a t is input from the performance allowing its clock to tick. This ensures that a
form of global synchrony can be ensured without the need for a global clock.

The performance wrapper also restricts the x channel which is used to force a com-
pensation in an enclosed compensating workflow. This is not relevant for normal work-
flows. Also, the compensation completion channel Xc is renamed to a normal X as
normal workflows do not distinguish completion from compensation.

7.2.7 Control flow semantics

This section describes the semantics for each of the workflow control flow operators.
The basic idea is that every construct in the language has a scheduler associated with it,
which defines the execution order of its sub-components, an idea we have utilised in the
past (Norton et al., 2005; Foster, 2007). In order to add a new construct to the language,
all one needs do is define a new scheduler. All of the schedulers utilise the protocol
to schedule their encapsulated processes. The main difference between these semantics
and our previous work is the use of binary operators, which makes the semantics more
flexible and elegant.

Skip and Halt

I first consider the two simplest workflow constructs, skip and halt:

cf

w,g
JεK∅,∅∅,∅ , µX.(g.r.e.X.X Be s.X)

cf

w,g
JδK∅,∅∅,∅ , µX.g.s.X

skip: //• g //• r //
s]]

• e //

s

[[ •

X

~~ halt: //• g //•

s

		



168 Chapter 7. A Compositional Operational Semantics for Cashew-A

Both of these are naturally very simple. Skip is activated by receiving a g and imme-
diately becomes ready to execute, conveying an r to its environment. It can then either
be executed via e, which is simply a dummy run returning a X immediately, or it can
be stopped via the s signal. In contrast, halt once activated never can become ready,
and will only accept a stop signal. Both have neither inputs, outputs, nor messages and
therefore the four associated sets are simply ∅.

Sequence

cf

w,g
JP #QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,

(
cf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ cf

w,g
JQKãj,b̃j

m̃j,ñj
{[G]}∣∣∣µX.g.gi.(ri.r.e.ei.Xi.gi.rj.ej.Xj.X.X Be s.si.X)

)
\R

•
X

  

•
Xj
oo •

ej

oo •
rj
oo •

gj

oo •
Xi
oo

//• g //• gi
//• ri //

sqq

• r //

s
ii

• e //

s

ee

•
ei

``

•
si

]]::::::::

Sequence, though one of the simplest constructs, illustrates well the protocol and
style of composition in the rest of the semantics. As such, I will explain it in more detail
than the rest. As is the case with all binary operators, the semantics for both components
P and Q have their channels renamed for distinction using F and G, which decorate the
protocol channels with i and j respectively. They are composed with a scheduler, which
enforces the execution order using the protocol channels. Furthermore, the input sets, ãi
and ãj (for processes P andQ respectively), and output sets, b̃i and b̃j, of each component
are composed to form the overall sets for the composition. The input message and output
message sets of both sides are composed in the same way.

The scheduler for sequence first waits for an activation signal g from the environ-
ment; either the top-level governor or a parent scheduler. Upon receiving this, the sched-
uler in turn activates the left component and then waits for it to declare readiness to ex-
ecute via ri. Upon doing so, the scheduler will declare its readiness to the environment
via r, since we make the assumption for sequence that readiness only depends on the
readiness of the first element. The environment can then give permission to execute via
e or can order execution to stop via s. Notice the use of the derived disabling operator to
do this – between receiving ri and e it is possible for the environment to provide the stop
signal. Upon doing so the scheduler orders the left component to stop and then returns
to inactive.

Alternatively, if given permission to execute, the scheduler will pass on permission
to the left component via ei and then wait for a completion signal via Xi. Then the



7.2. Normal Workflow Semantics 169

right component is executed using the same sequence of actions, although at this point
stopping is not an option. Once the second component is complete the scheduler issues
a tickX indicating its own completion. Both sets of internal channels are restricted using
the R set.

Choice

cf

w,g
JP �QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,(

cf

w,g
JP Kãi,b̃j

m̃i,ñi
{[F]}

∣∣∣ cf

w,g
JQKãj,b̃j

m̃j,ñj
{[G]}

∣∣∣ µX.g.gi.gj. ( ri.sj.(r.e.ei.Xi.X.X Be s.si.X)

+rj.si.(r.e.ej.Xj.X.X Be s.sj.X)
+s.si.sj.X)) \R

•
si

��

•

X

��

•Xi
oo •eioo •eoo

s

OO

• sj //•
r

OO s

mm

//• g //• gi
//• gj

//•
s

ww
rj
��

ri

II

•
sj

UU

•sioo • si //•
r
��

s

qq

•

X

RR

•Xj
oo •ejoo •eoo

s

��
•

sj

PP

Choice is a little more complicated than sequence, though follows much the same
sequence of actions. The main differences are that, since readiness is indicated by one
of the two components becoming ready, both sides are activated (gi,gj) and the one
declaring readiness first becomes the execution candidate, with the other being stopped.
Alternatively, if an s is received, both will end up being stopped.

Synchronous Parallel Composition

cf

w,g
JP | QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,((

cf

w,g
JP Kãi,b̃i

m̃i,ñi

∣∣∣ cf

w,g
JQKãj,b̃j

m̃j,ñj

)
{[F]}

∣∣∣ µX.g.gi.gi. (ri.ri.r.e.ei.ei.Xi.Xi.X.X
Be s.si.si.X)) \R



170 Chapter 7. A Compositional Operational Semantics for Cashew-A

•
X

��

•
Xi
oo •

Xi
oo •

ei

oo •
ei

oo

//• g //• gi
//• gi

//• ri //

s

����������
• ri //

s

ss

• r //

s

nn

•

sjj

e

VV

•si

UU

•
si
oo

Synchronous parallel composition is similar to choice, although much simpler as
both sides are executed and thus must both be ready. Notice that I do not distinguish
between the two sides with separate channels (F is used to rename both sides), this is
because parallel composition is symmetric and thus as long as both become ready and
execute it doesn’t matter in which order. All that is required for readiness is that two ri

signals are received.

Asynchronous Parallel Composition

cf

w,g
JP ‖ QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,((

cf

w,g
JP Kãi,b̃i

m̃i,ñi

∣∣∣ cf

w,g
JQKãj,b̃j

m̃j,ñj

)
{[F]}

∣∣∣ µX.g.gi.gi. (ri.r.e.ei.ri.ei.Xi.Xi.X.X
Be s.si.si.X)) \R

•
X

��

•
Xi
oo •

Xi
oo •

ei

oo •
ri
oo

//• g //• gi
//• gi

//• ri //

s

����������
• r //

s

ss

• e //

s

nn

•
ei

VV

•si

UU

•
si
oo

Asynchronous parallel execution is similar to synchronous parallel composition ex-
cept that it needs only one side to be ready before the whole construct is ready. However,
it does require both sides to complete execution for it to complete.

Yield

cf

w,g
J↑P Kã,b̃

m̃,ñ
,
(

cf

w,g
JP Kã,b̃

m̃,ñ
{[F]}

∣∣∣ µX.g.gi.(y.�w .ri.r.e.ei.Xi.X.X Be s.si.X)
)
\R

•
X

		

•
Xi

oo •
ei

oo

//• g //• gi
//• y //

s

����������
• �w //

s

xxrrrrrrrrrrrrr • ri //

s

rr

• r //

s

nn

•
e

VV

sjj•si

UU

The yield operator’s semantics is, naturally, based around the yield clock �w which
must tick before the encapsulated process can execute. This forces all other behaviour



7.2. Normal Workflow Semantics 171

within the workflow to progress as much as possible, either to completion or to a yield,
and only then will the process be executed. It thus ensures that all possible preconditions
are satisfied by other parallel processes executing.

Wait

cf

w,g
J◦P Kã,b̃

m̃,ñ
,
(

cf

w,g
JP Kã,b̃

m̃,ñ
{[F]}

∣∣∣ µX.g.(�w.gi.ri.r.e.ei.Xi.X.X Be s.si.X)
)
\R

•
X

		

•
Xi

oo •
ei

oo

//• g //• �w //

s

��

• gi
//

s

����������
• ri //

s

ss

• r //

s

nn

•
e

VV

sjj•si

UU

The wait operator’s semantics is virtually identical to that of yield, the main differ-
ence being the use of the RTC �w. In addition, the time operator only activates the inner
workflow when the time unit has passed, this is to ensure that if another time unit is
inside it can only pass afterwards.

Fork

cf

w,g
J� P Kã,b̃

m̃,ñ
,
(

cf

w,g
JP Kã,b̃

m̃,ñ
{[F]}

∣∣∣ µX.g.gi.(ri.r.e.ei.X.Xi.X Be s.si.X)
)
\R

•
Xi

		

•
X

oo •
ei

oo

//• g //• gi
//• ri //

s

����������
• r //

s

ss

•
e

VV

s

nn•si

UU

The semantics of fork is very simple, largely because it relies on the structure of the
workflow to function correctly. It performs the readiness cycle in the usual way, but
when coming to completion it sends out X before it has received the completion signal
from the enclosed process. This means that relative to the control flow context, the nor-
mal progress can continue. However, the workflow as a unit cannot finish until all forked
processes have completed, as for 5w4 to tick no internal τ actions must remain. If placed
in a loop, the process will not become ready to execute again until the internal Xi has
been received.



172 Chapter 7. A Compositional Operational Semantics for Cashew-A

Interleaving

cf

w,g

r
9k ~P

z
ã,b̃

m̃,ñ
,
(
µX.g.µY .(gi.Y + σ.ri.r.e.σ.ei.Xi.µZ. (ri.ei.Xi.Z

+�w .µY.(si.Y + σ.X.X))
Be s.µZ.(si.Z + ρ.X))∣∣∣∣∣

k−1∏
n=1

µX.σ.(σ.µY.(ri.ei.Xi.Y +�w.σ.X) + ρ.X)

∣∣∣ bag

w,g

r
~P
z
ã,b̃

m̃,ñ
{[F]}

)
\R/σ/ρ

bag

w,g

r
P : ~Q

z
ãi∪ãj,b̃i∪b̃j
m̃i∪m̃j,ñi∪ñj

, cf

w,g
JP Kãi,b̃i

m̃i,ñi

∣∣∣ bag

w,g

r
~Q
z
ãj,b̃j
m̃j,ñj

bag

w,g
JNilK∅,∅∅,∅ , 0

Main Scheduler Mini Scheduler

•
ei

**•
Xi

����������

•
X

		

•σoo
si�� •�woo

ri
]]::::::::

•Xi
oo

//• g //•
gi

�� σ //• ri //

s
ww

• r //

soo

• e //

s
ii

• σ //•
ei

VV

•
si��

UU

•
σ

		
//• σ //• σ //

ρ
ff •

�w
gg

ri

����������

• ei 55

Xi

[[88888888

The semantics for interleaving is the most complicated in the non-compensating frag-
ment, as well as the most versatile. To reiterate, interleaving is a construct which runs
up to k of the bag of processes in parallel, in an arbitrary order. Usually all of the bag
of processes would execute, but if some cannot for some reason they are left out. The
actual order of execution would usually be resolved by the dataflow and/or message
flow. The interleaving scheduler is composed of a main scheduler which acts as a kind
of mini Governor agent and k − 1 under-scheduler agents, making a total of k agents.
The job of the main scheduler is ensure that at least one sub-process in the bag is ready
to execute and negotiate with the environment. It also detects when all internal activity
of the construct has ceased following execution of the bag, and outputs a completion
signal. The remaining k − 1 schedulers run the other parallel processes, alternatively if
k = 1 only the main scheduler will exist (the bag is sequentially executed).

The main scheduler, in addition to using the yield clock to tell when all its subpro-
cesses have completed, uses private clocks σ and ρ to broadcast the activate signal and
stop signal if need be (they are similar to workflow phase clocks). The yield clock cannot
be used for this purpose because stopping may be required before the enclosing work-
flow has entered the execute phase (if an interleave is unguarded in the control flow).



7.2. Normal Workflow Semantics 173

The interleaving scheduler first activates all its sub-processes, using σ to help per-
form this broadcast. It then waits for any one of the processes to become ready via ri,
and passes the request on to its environment. If successful, execution of the first pro-
cess proceeds as normal (otherwise all processes are stopped, and ρ ticks). Once com-
pleted, the scheduler enters an inner loop which readies and then executes each of the
sub-processes in turn. Furthermore, once σ has ticked twice, indicating that the main
scheduler has been given permission to execute, the other k− 1 schedulers are activated
and begin executing other processes in parallel.

Once the yield clock can tick it is assumed that all possible internal behaviour has
completed and thus the scheduler terminates. One could question if the RTC could be
used for this purpose, but the RTC only detects completion of immediate dataflow, and
not all performances. If other performances exist in the workflow which can satisfy
some of the preconditions of processes in the interleaving construct then they must be
permitted to execute before the interleaving completes. Before terminating the scheduler
broadcasts a stop signal to any internal workflows which did not execute for whatever
reason. Thus the semantics allows the maximum number of workflows to execute which
are able to, but requires at least one to do so. In addition the semantics invokes an
auxiliary semantic constructor bag which parallel composes all the internal processes
and gathers their inputs, outputs and messages together. The bag is composed with
the schedulers and, as for parallel composition, all processes are given the same proxy
channels because they needn’t be distinguished by the schedulers.

Kleene Star

cf

w,g
JP ∗QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
=(

cf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ cf

w,g
JQKãj,b̃i

m̃j,ñj
{[G]}

| µX.g.gi.gj. ( ri.sj.(r.e.ei.Xi.IterateBe s.si.sj.X)

+ rj.si.(r.e.ej.Xj.X.X Be s.sj.X)

+ s.si.sj.X)
)
\R

where Iterate = µY.gi.gj.(ri.sj.ei.Xi.Y + rj.si.ej.Xj.X.X)



174 Chapter 7. A Compositional Operational Semantics for Cashew-A

•
sj

zz

•

X

��

•
Xj
oo •

ej

oo •
si
oo

//• g //• gi
//• gj

//•
s

ww
rj
��

ri //• si //• r //

s

kk

• e //

s

pp

• ei //

stt

• Xi
//• gi

//• gj
//• ri //

rj
gg

•
sj

ww•
sj

UU

•sioo • si //•
r
��

s

qq

•
Xi

UU

•eioo

•

X

RR

•Xj
oo •ejoo •eoo

s

��
•

si

PP

Kleene star represents a loop with a body P and exit condition Q, specifically a type
of “until” loop. The semantics are very similar to that of the choice operator, the main
difference being that P (i.e. the loop body), if permitted to execute will perform the nor-
mal scheduling protocol, execute the body and then activate the Iterate process. This
process executes the body over and over until the condition is picked. The choice be-
tween the body and the condition is entirely non-deterministic, although as I showed in
Chapter 5, Section 5.5.2 by using yields prioritisation of either the body or condition can
be achieved. This would then turn it into a proper iteration construct similar to those
found in programming languages – in particular it is normal for the condition evalu-
ated to have priority over the body. Alternatively, if the preconditions of body and exit
condition are naturally exclusive then a yield may not be needed.

7.2.8 Dataflow semantics

The dataflow semantics take care of moving data around the workflow and ensuring the
preconditions and postconditions are fulfilled before allowing the next workflow phase.
The precondition and postcondition agents, also known as acceptors and offerors use a
much simplified scheduling protocol to decide when sufficient conditions for execution
have been met. There is only one channel, r, which indicates when a condition has
been satisfied. Another two points to be reiterated are that 5w2 is the workflow ready
phase and 5w4 is the workflow finished phase. Thus the acceptors and offerors hook into
these clocks in particular to perform their duties. Additionally if �w ticks to indicate
deactivation of the workflow, all acceptor agents are terminated, usually via use of the
derived disabling operator.

Preconditions

ac

w
JA1 tA2Kã1∪ã2 = (( ac

w
JA1Kã1 | ac

w
JA2Kã2 ){[r 7→ ri]}

| µX.5w0 .(ri.r.ri.0B (5w1 .X + �w.X)) \ ri



7.2. Normal Workflow Semantics 175

//• 5w0 //• ri //
��
XX • r //��
[[ • ri //
��
ZZ •

5w1

��

�w

ZZ

Choice between two conditions A1 t A2 is satisfied, naturally, when one of the two sub-
agents declares readiness. It is also possible, of course, that both may become ready and
so this is allowed for as well. Like all of the acceptor agents, this choice may only become
active once the workflow itself is active, indicated by 5w1 ticking. The agent then waits
for an ri, which may come from either of the sub-conditions. It then passes readiness
up to the agent above and waits for 5w2 to tick, also allowing the other side to indicate
readiness via ri at this time.

ac

w
JA1 uA2Kã1∪ã2 = (( ac

w
JA1Kã1 | ac

w
JA2Kã2 ){[r 7→ ri]}

| µX.5w0 .(ri.ri.r.0B (5w1 .X +�w.X))) \ ri

//• 5w0 //• ri //
��
XX • ri //��
[[ • r //
��
ZZ •

5w1

��

�w

ZZ

Composition of two conditions A1 u A2 works in much the same way as choice, except
of course it requires both sub-conditions to declare their readiness before passing r up-
wards.

ac

w
J0K∅ = 0

False (0) is the condition which is never satisfied and thus does not return an r and has
no behaviour.

ac

w
J1K∅ = µX.5w0 .(r.5w1 .X B�w.X)

//• 5w0 //• r //
�w]]

•

5w1

��

�w
[[

True (1) is the condition which is always satisfied, and thus passes r upwards immedi-
ately.



176 Chapter 7. A Compositional Operational Semantics for Cashew-A

ac

w
JaK{a} = µX.5w0 .(a.r.aw.0B (5w1 .X +�w.X))

//• 5w0 //• a //
�w]]

5w1�� r //

�w
ZZ

5w1
�� • aw //

�w

ZZ

5w1
��

•

�w

ZZ

5w1

��

Input (a) works in much the same way as other acceptor agents, except it also requires
that an input is passed to it by the environment before it can declare readiness. In addi-
tion, once it has passed on the readiness condition it will broadcast its input on an inter-
nal channel aw to the relevant input connectors, whose semantics we shall see shortly.

Postconditions

of

w
JB1 tB2Kb̃1∪b̃2 = ((of

w
JB1Kb̃1 |

of

w
JB2Kb̃2 ){[r 7→ ri]}

| µX.5w4 .(ri.r.ri.5w5 .X Br 5w5 .X)) \ ri

//• 5w4 //• ri //
��

• r //�� • ri //
�� •

5w5

��

Choice between two postconditions is virtually identical to the analogue for precondi-
tions, the only difference being that its behaviour occurs between the clocks 4 and 5, i.e.
in the commit phase of the workflow.

of

w
JB1 uB2Kb̃1∪b̃2 = ((of

w
JB1Kb̃1 |

of

w
JB2Kb̃2 ){[r 7→ ri]}

| µX.5w4 .(ri.ri.r.5w5 .X Br 5w5 .X)) \ ri

//• 5w4 //• ri //
��

• ri //�� • r //
�� •

5w5

��

Composition for postconditions, as is the case with choice, is virtually identical to its
precondition counterpart, and the same goes for the next two agents as well.



7.2. Normal Workflow Semantics 177

of

w
J0K∅ , 0

of

w
J1K∅ , µX.5w4 .(r.5w5 .X +5w5 .X)

of

w
JbK{b} , µX.5w4 .(bw.r.b5w5 .0B5

w
5 .X)

//• 5w4 //• r //
5w5]]

•
5w5

[[ //• 5w4 //• bw //
5w5]]

• r //

5w5

[[ • b //•

5w5

^^

Finally, the actual output agents are very similar to the input agents also. The difference
is that the output agent’s condition is satisfied when the respective output is communi-
cated to it on the internal channel bw. This output is then relayed exactly once from the
workflow (it is picked up from here by the performance wrapper and broadcast to the
environment).

Connections

Dataflow connections� are effectively wires which pass data from one part of a work-
flow to another. There are three types of connection:

• Passthrough, which connect a performance output to a performance input (either
asynchronous or synchronous);

• Workflow input, which connect an input of the workflow to a performance input;

• Workflow output, which connect a performance output to a workflow output.

Unlike other semantics, the connection semantics return only two sets, one for work-
flow inputs and one for workflow outputs. These are used in the workflow semantics to
ensure internal dataflow channels are restricted (see Section 7.2.5).

df

w
Jp.b� q.aK{a

q}
{bp} = µX.5w3 .µY.(�pb .aq.Y B5w4 .X)

df

w
Jp.b� q.aK{a

q}
{bp} = µX.5w3 .µY.(�pb .aq.�w .Y B5w4 .X)

Asynchronous Synchronous

// • 5w4 // • �pb //
�� •

5w4

��

aq

hh // • 5w4 // • �pb //
�� • aq //
�� •

�w
jj

5w4

��

The simplest type of connection is the passthrough, which simply inputs from the output
of a performance via clock 5pb , and then passes this on to the input of another perfor-
mance via aq. A passthrough is therefore simply a one-place buffer, indeed they provide



178 Chapter 7. A Compositional Operational Semantics for Cashew-A

the input buffer for their respective performances. As I described back in Chapter 5 there
are two variants of the passthrough, the synchronous and the asynchronous. The only
difference between them is that the latter waits for a yield before accepting another input
to be passed onto its receiver. This forces the synchronous connection to only pass data
on once per phase period, whilst the asynchronous variant will repeatedly pass on. Nat-
urally, passthroughs are only enabled during the execution phase. The input and output
sets are populated with the respective performance inputs and outputs.

df

w
Ja1 � p.a2K{a1}

{ap2}
= µX.5w1 .(a1.a

p
2.0B (5w2 .X +�w.X))

// • 5w1 // • a1 //
��
XX • ap2 //
��
ZZ •

5w2

��

�w

ZZ

Workflow input connections are similarly simple, they take a workflow input from an
acceptor agent and pass this onto a performance input. This is stopped either by cancel-
lation, or by the execution phase beginning. The workflow input a1 is returned in the
input set.

df

w
Jp.b1 � b2K{b

p
1}
{b2}

= µX.5w4 .(�pb1 .b2.5w5 .X +5w5 .X)

// • 5w4 // •
5w5

__
�pb2 // • b2 // •

5w5

||

Finally, workflow output connections convey data from performance outputs to work-
flow outputs. They simply wait for the penultimate workflow clock to tick (5w4 ) and
then either input from the performance via �pb1 and in turn pass this on to the workflow
output via b2, or else simply exit with 5w5 if there is no output available.

df

w
JD ·D′Kã∪ã′

b̃∪b̃′
, df

w
JDKã

b̃
| df

w
JD′Kã′

b̃′

df

w
J1K∅∅ , 0

This last part simply joins all the dataflow wires together by parallel composing them
and joining together the workflow input and output sets.



7.2. Normal Workflow Semantics 179

Dataflow caveats

The Boolean algebra I have adopted for preconditions is heavily dependent on the work-
flow’s abstract time system, be it logical (yield) or physical (RTC). In CCS there is no way
of ensuring that, if a possible synchronisation exists in a process, it will be conveyed be-
tween the two agents, since all communications are interleaved. As a result optional in-
puts cannot be implemented, since they would be populated non-deterministically with
the readiness signal. However in CaSEip , and abstract time process calculi in general,
signal presence can be detected by maximal progress. Thus if we require a clock tick in a
dataflow scope (i.e. a workflow), we are guaranteed that all signals are indeed conveyed.

However, this does mean that we need to seek a trade-off in determining whether
or not an optional input will appear. If we force a yield before a given performance
executes, it guarantees that all performances unguarded by a yield in the workflow are
complete. Normally, this should be adequate since it is unusual for a performance to
execute in parallel with other performances it depends on. Unusual that is, until we
consider graph based control-flow like Interleaved Routing which relies on this. In these
circumstances more care is needed when crafting a workflow. For instance, instead of us-
ing yield a workflow designer could use time wait, which ensures that all data available
at a particular time can be picked up (dataflow is instantaneous, relatively speaking).
If we don’t force any kind of synchronisation, we end up with the CCS position where
optional inputs may not be transmitted, even if they exist. This is the case even in a sim-
ple sequential workflow, e.g. P # Q – if P outputs an optional input for Q the decision
whether it is consumed or not is not deterministic.

It is therefore perhaps better to force an RTC synchronisation in this situation, e.g.
P # ◦Q. Since the RTC can only tick when all possible synchronisations have taken place,
this would force all dataflow currently available to be transmitted before Q is activated.
This is better than a yield, as the data will still be transmitted whilst performances are
part way through, whereas yield forces all internal activity to cease. Therefore, this mit-
igates the problems of optional inputs, though it does drop a unit of time and forces a
synchronisation with the parent workflow. Nevertheless this demonstrates why having
two forms of time in workflows is so important (besides its use in speculative paral-
lelism).

7.2.9 Component semantics

Having defined semantics for workflow, control flow and dataflow, I now proceed to
give a semantics to the different types of component in Cashew-A . These semantics
likewise follow the standard protocol.



180 Chapter 7. A Compositional Operational Semantics for Cashew-A

pf

p,g
JWf W Kã,b̃

m̃,ñ
, wf

w,g
JW Kã,b̃

m̃,ñ

pf

p,g
JCWf W Kã,b̃

m̃,ñ
, cwf

w,g
JW Kã,b̃

m̃,ñ

A workflow performance is a straightforward link to the standard workflow semantics.
A compensating workflow performance is the same.

pf

p

r
Receive m B̃

z
∅,b̃
{m},∅ , µX.g.(σm.r.e.seq(b̃).X.X Be s.0)

where seq(b̃).E =

E if b̃ = ∅
b.seq(b̃ \ {b}).E otherwise

//• g //• σm //

s
]] • r //

s

[[ • e //

s

ZZ • b1 //• b2 // bn //•

X

��

A message receive process is activated and then waits for its associated message clock
σm to tick signifying that a message has been received. Once the message arrives the
process declares readiness – to reiterate, the message is received prior to readiness so
that message choice decisions are possible. Once given permission to execute, the receive
simply releases all the values contained in the message as dataflow and then terminates.
The message parts are propagated via the seq process constructor, which simply outputs
each of the values in turn.

The message clock σm is renamed to channel m at the top of the workflow (see the
workflow semantics in Section 7.2.5). The semantics returns a set of all the outputs the
message contains, and the message name in the message input set.

pf

p

r
Send m Ã

z
ã,∅
∅,{m} ,

(
µX.g.seq(ã).r.e.σm.X.X Be s.X

where seq(ã).E =

E if ã = ∅
a.seq(ã \ {a}).E otherwise

//• g //•
s

ff
a1 //• a2 //

s
dd

an //• r //
s

hh • e //

s

gg • σm //•

X

��

The message send performance is different to a receive in that the message is only
sent after it has permission to execute. A send process first waits for all the needed data
items to populate the message, again using the seq process constructor. Once every item



7.2. Normal Workflow Semantics 181

is input the send is free to declare readiness as normal. The performance then ticks the
message clock, signifying the message transmission and then terminates.

pf

p

r
Eval x Ã B̃

z
ã,b̃

∅,∅ , µX.g.(seqI(ã).(τ.r.e.seqO(b̃).X.X + τ.0)Be s.X)

where seqI(ã).E =

E if ã = ∅
a.seqI(ã \ {a}).E otherwise

seqO(b̃).E =

E if b̃ = ∅
b.seqO(b̃ \ {b}).E otherwise

//• g //•
s

ff
a1 //• a2 //

s
dd

an //•

s

ee τ //

τ

��:::::::: • r //

s

{{ • e //

s

}} • b1 //• b2 // bn //•

X

||

•
s

XX

An evaluation take a list of inputs, performs side-effect free evaluation using them
and either produces a list of outputs or stalls. It can be considered analogous to a Haskell
function (a1 · · · aj)→ Maybe (b1 · · · bk) which may or may not produce a value. It thus
consists of a collection of input and output agents, similar to the message send and
receive processes. The process is activated and then waits for receipt of the required
inputs. An internal choice is then executed which represents the evaluation of the ex-
pression producing either a value or nothing. If nothing is produced then the process
only accepts s from that point – it has halted. Otherwise, the process proceeds with the
readiness protocol as normal and then outputs all the values produced.

pf

g,p
JGoalTemplate g A BKã,b̃∅,∅ ,

(µX.g.5p1 .bs.�p .Xc5p2 (ri.r.e.µZ. ( τ.�p .5p3 .rj.5p4 .X.X

+ τ.t.Z)

Be s.�p .X)∣∣∣ gi

p
JAKã∅ {[r 7→ ri]}

∣∣∣ go

p
JBK∅

b̃
{[r 7→ rj]}

)
/[5p1,5p2,5p3,5p4,�p] \ {ri, rj}

The GoalTemplate semantics is similar to an expression evaluation, except it will not
halt once its preconditions are satisfied and it uses a full Boolean algebra for precon-
ditions and postconditions (like workflows). Furthermore, since Goals are not instan-
taneous, time can pass while they execute and thus the Goal execution is represented



182 Chapter 7. A Compositional Operational Semantics for Cashew-A

as an internal choice of completing the goal or allowing a further RTC tick via the t

channel. The semantics consists of a scheduler and two processes which handle precon-
ditions and postconditions. The scheduler agent follows the normal protocol, and is in
many ways similar to the Governor agent of Section 7.2.5, using four clocks to schedule
preconditions and postconditions (to a workflow’s six clocks). The first clock indicates
activation, and allows the preconditions to be fulfilled. The second clock ticks when all
the preconditions are fulfilled. The scheduler then requests permission to execute from
the environment (the ri is just house-keeping), and if this is given it enters a loop.

The loop makes a non-deterministic choice between finishing or sending a t, to in-
dicate the passage of time. This t is turned into an RTC clock tick in the encapsulated
workflow by the performance wrapper (see Section 7.2.6). When the loop exits, �p ticks
to cause the precondition process to exit and 5p3 ticks to enable the postcondition pro-
cess. The scheduler then waits for an rj to indicate the postconditions are satisfied, ticks
the final clock, causing the postcondition process to exit, and sends outX.

gi

p
JA1 tA2Kã1∪ã2 , ((gi

p
JA1Kã1 | gi

p
JA2Kã2 ){[r 7→ ri]}

| µX.5p1 .(ri.r.ri.0B (5p2.X +�p.X)) \ ri

gi

p
JA1 uA2Kã1∪ã2 , ((gi

p
JA1Kã1 | gi

p
JA2Kã2 ){[r 7→ ri]}

| µX.5p1 .(ri.ri.r.0B (5p2.X +�p.X))) \ ri

gi

p
J0K∅ , 0

gi

p
J1K∅ , µX.5p1 .(r.5p2 .X B�p.X)

gi

p
JaK{a} , µX.5p1 .(a.r.5p2 .X B�p.X))

go

p
JB1 tB2Kb̃1∪b̃2 , ((go

p
JB1Kb̃1 |

go

p
JB2Kb̃2 ){[r 7→ ri]}

| µX.5p3 .ri.r.(τ.(bri.5p4 .Xc5p4(X)) + τ.5p4 .X) \ ri

go

p
JB1 uB2Kb̃1∪b̃2 , ((go

p
JB1Kb̃1 |

go

p
JB2Kb̃2 ){[r 7→ ri]}

| µX.5p3 .(ri.ri.r.5p4 .X Br 5p4.X)) \ ri

go

p
J0K∅ , 0

go

p
J1K∅ , µX.5p3 .r.5p4 .X

go

p
JbK{b} , µX.5p3 .(r.b5p4 .5

p
4 .X +5p4.X)



7.2. Normal Workflow Semantics 183

The semantics for Goal preconditions and postconditions are essentially the same
as for workflows (see Section 7.2.8), but with a change to the postcondition semantics.
Goals are essentially abstract entities, and therefore I assume that all output possibilities
are equally likely. Therefore it is necessary to allow a non-deterministic valuation of
postconditions. The semantics of B1tB2, after receiving readiness from one side (which
is mandatory), makes a non-deterministic choice between allowing readiness from the
other (optional) side or not. This means that all output possibilities become possible.

7.2.10 Compositionality Problems

The majority of the semantics specified in this Section are by nature compositional, they
are given in terms of the semantics of the parts together which some scheduling device
which combines them. There are, however, a number of exceptions which make com-
positionality more difficult to prove. In particular, the semantics of yield and wait are
only compositional in the context of a specific workflow context. The reason for this is
a long-standing theoretical issue with CaSE(and to a degree CaSEip ) – clocks names
must be globally unique.

E
σ→ E′

E/σ
τ→ E′/σ

E
α→ E′

E/σ
α→ E′/σ

E
ρ→ E′ E

σ9
E/σ

ρ→ E′/σ
ρ 6= σ

In the original CaSE semantics, when a clock is hidden it also forcibly removed from
the clock context permanently. Specifically, a clock may not be reused by a process which
has already hidden a clock of the same name in a sub-process. The operational rules only
allow clocks other than σ to tick over E/σ, even when E σ9. I am uncertain of the reason
for this, but conversations with the author1 lead me to believe that parts of the CaSE
theory would not work without this restriction. Certainly there is a problem with ∆, as
if we were to allow σ to tick over E/σ, then it would be necessary to establish if there are
any ∆s present in E. Normally this is done simply by checking if σ can also tick in the
subprocesses, but clearly this wouldn’t work as σ ticking in E would prevent σ ticking
in E/σ. A possible alternative may be to create a “distinguished” clock δ, which may
not be used in the process syntax, but is used to ensure E is not insistent on all clocks.
I would treat parametrised ∆σ as localised to the σ hiding boundary in which it exists,
thus having no effect on a clock outside.

E
δ→ E

σ9
E/σ

σ→ E/σ

This would potentially fix the problem in CaSE. Of course, I’m not using CaSE, I’m
using CaSEip which doesn’t have the same problem. The way I fix it is through the
set Σ, which defines the set of clocks a process stalls explicitly (see Chapter 6, Section
6.3). Since ΣE/σ does not contain σ, any parallel process which wishes to tick σ will be

1Barry Norton



184 Chapter 7. A Compositional Operational Semantics for Cashew-A

permitted to by the parallel composition rules.

Nevertheless, even though this is true, I am still apprehensive about having missed
another theoretical problem. Therefore, for the time being I err on the side of caution
and avoid re-using hidden clocks. This is not possible in some instances, for example
the semantics of interleaving uses private clocks to decide when all sub-processes have
been activated. If it does prove to be the case that globally unique clock names really
aren’t necessary then they can easily be removed from the semantics by removing the
name superscripts from all clocks (e.g. 5w1 7→ 51).

Having globally a unique clock name does, unfortunately, lead to implementation
problems. For instance it isn’t possible to compose two arbitrary control flows and place
them in a workflow, as the workflow name must be known beforehand. Therefore their
removal, or partial removal, would be of potential benefit.

7.3 Compensation Semantics

Having completed the denotation for the normal workflow section of Cashew-A , I now
proceed to define the semantics for the compensable fragment from Chapter 5 Section
5.5.3. The original structure for compensation was documented in my earlier paper (Fos-
ter, 2007), and abstract time is once again central to the approach. Much of the basic
protocol remains unchanged from normal workflows, and many parts of the existing se-
mantics will be reused. The brevity of the section demonstrates that, having given a ba-
sic framework for Cashew-A workflows, expanding it with additional features requires
minimal work. In particular the dataflow model is largely unchanged. Nevertheless the
work in this Section is much less developed and as such is not central to my Thesis. As
such I provide only the symbolic semantics and a relatively brief explanation. The unin-
terested reader can safely skip to Chapter 8. The main purpose of this Section is to show
that my approach can easily be extended to handle compensation.

7.3.1 Protocol

5w
1

�w

�w

5w
2 5w

3 5w
4

5w
5

b c d e f

�w

�w g

5w
4

�w

�w

a
5w

0

Figure 7.6: Phases of a compensating workflow



7.3. Compensation Semantics 185

The behaviour of the protocol for compensation in Figure 7.6 contains all the stan-
dard behaviour for a non-compensating workflow (specifically, the compensable proto-
col simulates the normal protocol), but adds the ability for a compensation to be sched-
uled during and after execution of each process. During the execution of a workflow,
i.e. the phase between 5w3 and 5w4 , a compensation may be triggered by the raising of an
exception indicated by the new clock �w signalling, moving the workflow into a com-
pensation phase (g). This will only occur once the entire workflow has yielded – a sub-
process cannot be broken midway unless it explicitly permits this by use of the compen-
sation yield operator ⇑ . Compensation is orchestrated using the channels gc, rc, ec and
Xc, which are analogous to their non-compensatory counterparts. There is no equiva-
lent of the sc channel because the compensation flow cannot contain choices, only atomic
performances. A choice in the workflow is compensated for by running the compensa-
tions of the branch which executed. Therefore a compensation need never be stopped
via sc. Compensation can only be initiated one time in a workflow.

Unlike in the normal workflow semantics, processes in the compensable semantics
remain “live” even after completion. A process only becomes inactive and thus accepting
g again after the workflow as a whole signals completion via 5w5 . Until this point it is
possible for compensation to be scheduled via gc, since compensation of the workflow
may begin after the process executes. This is the main reason why a loop cannot be
represented in a compensable workflow, as it would be impossible to keep track of its
complete status in a static process topology.

As we saw in Section 5.5.3, each sub-process can be composed with a compensation
performance. For example P ÷ Q indicates that P is compensated by performing Q.
When execution initially begins Q is inactive, it can only be executed once P has suc-
cessfully completed, thus being “installed”. If P has not executed then obviously no
compensation at all is needed. On the other hand, if P has partially executed – i.e. it has
received the e command but has yet to output X – then responsibility for compensation
must be taken by the individual components of P , to which rc, ec and Xc are simply
passed. The only way P can partially complete is if it contains at least one compen-
sation yield. If P has completed then the compensation is installed, and therefore the
compensation performance is executed if need-be.

In addition to the compensation readiness protocol, I also supply a method of forcing
a transaction to compensate. In the new semantics each workflow (though not all per-
formances) exposes an x channel, which will force the workflow into the compensation
phase, similar to if a  process had been present inside. This exists primarily because
of speculative parallelism (see Section 7.3.6), but could potentially also be used to link a
workflow with its parent as a single transaction.

In a sense, the compensation semantics are similar in style to that of cCSP (Butler,
Hoare and Ferreira, 2005) (see Chapter 2, Section 2.4.1), not only in terms of the com-
pensation strategy, but also in terms of processes used. Calculi like StAC (Chessell et al.,
2002) represent the compensation stack by encapsulating it in the transition system, stor-



186 Chapter 7. A Compositional Operational Semantics for Cashew-A

ing a separate compensation context outside the process being executed. By contrast, in
cCSP compensations are contained in the process syntax itself. In the Cashew-A seman-
tics a compensation is represented as an agent which can either be active, in which case
it will schedule its associated performance when called, or inactive. This is also the rea-
son why loops may not be represented in the transaction control-flow language T , as
compensations must be represented statically.

In terms of the four compensation strategies presented by Bruni, Butler, Ferreira,
Hoare, Melgratti and Montanari (2005), the strategy here is broadly centralised with inter-
ruption, since the entirety of an individual workflow must yield to compensation. Nev-
ertheless, a certain amount of distribution may be achieved by hierarchically arranging
compensating workflows and using dataflow to testify whether an enclosed workflow
successfully completed or not.

Having described the overall idea behind the semantics, we can now proceed to give
them formally.

7.3.2 Compensable workflow semantics

The processes in this section follow a very similar timeline to that of a normal workflow.
The main difference is the addition of the compensation phases, and machinery needed
to deal with this. The timeline of a compensation can be seen in Figure 7.7. It is represents
what happens when the control-flow raises an exception somewhere during execution.

cwf

w,g
Jw[A{C ×D}B]gKã,b̃

m̃,ñ
,(

wac

w
JAKã

∣∣∣ wof

w
JBK̃

b∣∣∣ ( cwcf

w,g
JCKãdf ,b̃df

m̃,ñ

∣∣∣ cdf

w
JDKãdf

b̃df

)
{[a 7→ aw|a ∈ ã]}{[b 7→ bw|b ∈ b̃]} \ b̃df)

\ {aw|a ∈ ã} ∪ {bw|b ∈ b̃}{[�w 7→ s]}/[5w0 · · ·5w5 ,�w,�w]/[�pa | ap ∈ ãcf ∪ ãdf ]

{[σm 7→ m|m ∈ m̃]} {[σn 7→ n|n ∈ ñ]} {[�w 7→ t ]}

The top-level workflow semantics of a transaction block is very similar to that of a
normal workflow (see Section 7.2.5). The acceptor and offeror semantics is identical,
since compensation can only occur when neither process is active. The control flow and
dataflow processes are composed in the same way, but have a different semantics. The
only other difference is that the compensation clock�w is hidden in addition to the other
workflow clocks. It is hidden after every other clock, as compensation should only occur
if it is the only option and therefore has the lowest priority.



7.3. Compensation Semantics 187

cwcf

w,g
JCKãdf ,b̃df

m̃,ñ
,

(
ccf

w,g
JCKãcf ,b̃cf

m̃,ñ
\ {a|a ∈ ãcf ∧ a /∈ ãdf} ∪ {b|b ∈ b̃cf ∧ b /∈ b̃df}{[F]}

∣∣CGovernorw
)
\{gi, ri, ei, si,Xi, gic, r

i
c, e

i
c, s

i
c,Xi

c}

The compensable control flow semantics is also similar to normal workflow seman-
tics, the difference being the new governor process, CGovernor which is composed with
the compensable control flow. The new compensable channels are restricted to this com-
position in addition to the normal channels.

CGovernorw , µX.gTw .〈5
w
0 〉.〈5w1 〉� .gi.ri

Tw .〈5w2 〉� .rTw .eTw .〈5w3 〉.ei
Tw .

µY.
(
�wTw\{�w,�w}.Y

+Xi. ( 〈5w4 〉.〈5w5 〉.XTw .X

+ x.〈�w〉.gi
c.r

i
c.ei

c.Xi
cTw

.〈5w4 〉.〈5w5 〉.XcTw .X)

+ �w .gi
c.r

i
c.ei

c.Xi
cTw

.〈5w4 〉.〈5w5 〉.XcTw .X

+ x.〈�w〉.gi
c.r

i
c.ei

c.Xi
cTw

.〈5w4 〉.〈5w5 〉.XcTw .X)
Be s.si

Tw .〈�w〉.X

where

Tw , {5w0 · · ·5w5 ,�w,�w,�w,�w}

〈σ〉.E , σTw\{σ}

〈σ〉� .E , σTw\{σ,�w}

The CGovernor process is extended with the ability to orchestrate a compensation.
There are two ways compensation can be triggered: by �w ticking directly (i.e. orig-
inating from a throw  within the control flow), or by receipt of an x from the envi-
ronment, which causes the CGovernor to force �w. Compensation always begins when
�w is forced during what would normally be a yield by stalling �w. When �w ticks,
the CGovernor begins compensation scheduling by first passing gc onto the top-level
scheduler, and then following the compensation protocol. It ends when Xi

c is received,
indicating the control flow has finished compensating. When this occurs the CGovernor
proceeds to tick the two remaining normal phase clocks 5w4 and 5w5 to allow the offeror
to fulfil the workflow’s postconditions.

When compensation begins, all workflow output data collected so far is purged, leav-
ing the compensation action to populate the workflow outputs. All the schedulers act in



188 Chapter 7. A Compositional Operational Semantics for Cashew-A

:Context :CGovernor :CFlow :Accept :Offer :DFlow

gi

g

5w
1

In
p
u
ts

In
p
u
ts

r

e

5w
2

ri

ei

Dataflow Exchange

5w
3

O
u
ts

O
u
ts

Xc

5w
4

5w
5

�w

gi
c

ric

ei
c

Xi
c

Dataflow Exchange

5w
0

Figure 7.7: The key actors’ interaction in a workflow compensation timeline

(Note: CFlow = Control Flow, DFlow = Dataflow, Accept = Acceptor, Offer = Offeror,
and Outs = Outputs)



7.3. Compensation Semantics 189

reverse, using the compensation channels to run the compensations of their respective
workflows. Once compensation has completed, the normal workflow commit phases are
begun with the clocks 5w4 and 5w5 guiding the workflow using the new data.

7.3.3 Performance Semantics

cwf

w,g
Jp[P ]K{ap|a∈ã},{bp|b∈b̃}

m̃,ñ
,
(

pf

p,gi
JP Kã,b̃

m̃,ñ

|
∏
b∈b̃

µX.5w3 .(µY.b�pb .(�
p
b .Y +5w5 .X +�w.Y ) + 5w5 .X)

| µX.(�w)gi/g.t.X

| µX.gc.rc.ec.Xc.X)
\b̃ \ {t,Xi}{[a 7→ ap|a ∈ ã]}{[Xc 7→ X]} \ x

The performance wrapper in the context of a compensable workflow is very similar
to the performance wrapper in a normal workflow. Since the enclosed performance can-
not be compensated by the enclosing workflow a dummy compensation agent is added,
which ensures the process follows the protocol. Therefore, a compensable workflow in a
performance has no effect on and is not affected by the workflow in which it operators.
However, if the enclosed workflow does compensate it can indicate this by its dataflow
outputs.

cwf

w,g
Jp[P ]TK{a

p|a∈ã},{bp|b∈b̃}
m̃,ñ

,
(

pf

p,gi
JP Kã,b̃

m̃,ñ

|
∏
b∈b̃

µX.5w3 .(µY.b�pb .(�
p
b .Y +5w5 .X +�w.Y ) + 5w5 .X)

| µX.(�w)gi/g.t.X

| µX.gc.rc.ec.Xc.X)
\b̃ \ {t,Xi}{[a 7→ ap|a ∈ ã]}

A compensable performance wrapper is identical to a normal performance wrapper,
except the x channel isn’t restricted. It is used exclusively in the context of a compensable
workflow, where the x channel may be required to force cancellation of an encapsulated
performance. Also the Xc channel is not renamed, as it is used to distinguish whether
compensation took place or not.



190 Chapter 7. A Compositional Operational Semantics for Cashew-A

7.3.4 Dataflow semantics

cdf

w
Jp.b� q.aK{a

q}
{bp} , µX.5w3 .µY.(�pb .aq.Y )B5w4 .X)

cdf

w
Jp.b� q.aK{a

q}
{bp} , µX.5w3 .µY.(�pb .aq.(�w.Y + �w.Y )B5w4 .X)

cdf

w
Ja� p.a′K{a}∅ , µX.5w0 .a.(a′p.0B (5w2 .X +�w.X))

cdf

w
Jp.b� b′K{b} , µX.5w3 .(b′p.µY.(�w.b′p.Y +�w.b′p.Y )

B5w4 .(b.5w5 .X +5w5 .X))

cdf

w
JD ·D′Kã∪ã′

b̃∪b̃′
, cdf

w
JDKã

b̃
| cdf

w
JD′Kã′

b̃′

cdf

w
J1K∅∅ , 0

The dataflow model is virtually unchanged from Section 7.2.8. The only difference is
that connections, in addition to clearing on yield, also clear on the compensation clock
to ensure that only new data is using during compensation. The precondition and post-
condition semantics are identical to those in Section 7.2.8 and thus are not reproduced.

7.3.5 Control Flow

Most of the control flow semantics are very similar to their non-compensating counter-
parts, but as with the CGovernor they are augmented with facilities for compensation.
We start by considering the simplest four, skip, halt, compensation yield and throw.

Basic Agents

ccf

w,g
JεK∅,∅∅,∅ , µX.(g.r.e.X.(5w4 .X + gc.rc.ec.Xc.X)Be s.X)

ccf

w,g
JδK∅,∅∅,∅ , µX.g.s.X

ccf

w,g
J⇑K∅,∅∅,∅ , µX.(g.r.e.(�w.X.(5w4 .X + gc.rc.ec.Xc.X) + �w.gc.rc.ec.Xc.X)

Be s.X)

ccf

w,g
J K∅,∅∅,∅ , µX.g.r.e.�w�w .gc.rc.ec.Xc.X Be s.X

ccf

w,g
J◦P Kã,b̃

m̃,ñ
,
(

ccf

w,g
JP Kã,b̃

m̃,ñ
{[F]}

| µX.g.(�w.gi.ri.r.e.ei. (Xi. (5w4 .X

+gc.gi
c.r

i
c.rc.ec.ei

c.Xi
c.Xc.X)Be s.si.X

+gc.gi
c.r

i
c.rc.ec.ei

c.Xi
c.Xc.X

)
\R

The semantics of the basic agents are changed to allow compensation at the appro-
priate places. Skip ε, after issuing the completion signal via X, does not immediately



7.3. Compensation Semantics 191

return to the initial state, but waits for the workflow as a whole to finish (signalled by
5w4 ). Until then, the process may begin compensation via communication of gc. Skip
then executes the compensation protocol, which of course is a dummy run like the for-
ward flow, ending with aXc which returns it to the initial state. Halt δ is identical to the
original semantics as it can never reach a state where compensation is possible.

Compensation yield (⇑ ) is similar to skip, except that for it to complete the yield clock
must tick, between e and X. It is thus different to normal yield as the yield clock ticks
after the process execution has started and not before. If the compensation clock ticks
instead of the yield clock, the process executes compensation, the same as skip. Also in
common with skip, after executing it must wait for the commit clock before sending X,
should compensation be triggered.

Throw  is likewise similar to compensation yield, the difference being that it forces
�w to tick after receiving e by holding up the yield clock �w. This means the compensa-
tion phase must start next time the workflow offers to yield. When it does, throw simply
performs a dummy compensation, as for skip.

Finally, the wait operator as in a normal workflow enables its parameter when a unit
of time has passed, indicated by �w ticking. It also provides additional machinery for
passing compensation scheduling communications onto the enclosed performance.

Sequence

ccf

w,g
JP #QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,(

ccf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ ccfw,g
JQKãj,b̃j

m̃j,ñj
{[G]}

∣∣∣
µX.g.gi.(ri.r.e.ei. (Xi.gj.rj.ej. (Xj.X. (5w4 .X

+CompensateQthenPw)

+CompensateQthenPw)

+CompensatePw)

Be s.si.X)) \R

CompensatePw , �w.gc.gi
c.r

i
c.rc.ec.ei

c.Xi
c.Xc.X

CompensateQthenPw , �w.gc.g
j
c.r

j
c.rc.ec.e

j
c.Xj

c.gi
c.r

i
c.ei

c.Xi
c.Xc.X

There are two possible compensations which sequence may need to do, compensa-
tion of P , or compensation of Q followed by compensation of P , depending on when
compensation was triggered. These two strategies are encapsulated in the definitions of
CompensatePw and CompensateQthenPw. If execution has begun, butXi has not yet been
received then the former is run, otherwise the latter is run.



192 Chapter 7. A Compositional Operational Semantics for Cashew-A

Compensable sequence proceeds to follow the normal scheduling protocol, but when
waiting for the process completion signalXi there is the additional option of performing
CompensatePw. This process is activated by �w ticking, and follows the compensating
protocol, sending compensation signals to P only. If P successfully completes, the next
possibility for compensation is when the scheduler is waiting for Xj, during the execu-
tion of Q. If compensation is raised here then CompensateQthenPw is activated, which
also follows the compensation protocol, but applies compensation to Q followed by P .
Finally, if both P and Q complete, but the workflow as a whole hasn’t signalled com-
pletion via 5w4 , then if compensation is triggered CompensateQthenPw is also activated,
since both must be compensated.

Choice

ccf

w,g
JP �QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,(

ccf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ ccf

w,g
JQKãj,b̃j

m̃j,ñj
{[G]}

∣∣∣ µX.g.gi.gj.

( ri.sj.(r.e.ei.(Xi.X.5w5 .X B5w5 �w.gc.gi
c.r

i
c.r.e.ei

c.Xi
c.Xc.X)Be s.si.X)

+ rj.si.(r.e.ej.(Xj.X.5w5 .X B5w5 �w.gc.g
j
c.r

j
c.r.e.e

j
c.Xj

c.Xc.X)Be s.sj.X)

+ s.si.sj.X)
)
\R

Choice compensates only the branch which has (partially) executed. As in sequence,
a compensation can be triggered between the sending of ei/ej and receiving of Xi/Xj,
or afterwards. Compensation is triggered, as before, by �w ticking at this point, which
causes the scheduler to compensate the side which was executing. Obviously the other
side wasn’t started, so it is left alone.

Synchronous Parallel Composition

ccf

w,g
JP | QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,((

ccf

w,g
JP Kãi,b̃i

m̃i,ñi

∣∣∣ ccf

w,g
JQKãj,b̃j

m̃j,ñj

)
{[F]}

| µX.g.gi.gi. (ri.ri.r.e.ei.ei. (Xi.Xi.X.5w5 .X

B5w5 �w .gc.gi
c.gi

c.r
i
c.r

i
c.rc.ec.ei

c.ei
c.Xi

c.Xi
c.Xc.X)

Be s.si.si.X)
)
\R

The compensation semantics for synchronous parallel composition follows the same
pattern, but both sides are compensated in parallel.



7.3. Compensation Semantics 193

Compensation

cwf

w,g
JP ÷QKãi∪ãj,b̃i∪b̃j

m̃i∪m̃j,ñi∪ñj
,

(
ccf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ ccf

w,g
JQKãj,b̃j

m̃j,ñj
{[G]}

∣∣∣
µX.g.(gi.ri.r.e.ei. (Xi.X.(5w5 .X +�w.(gc.gj.rj.rc.ec.ej.Xj.Xc.X +5w5 .X)))

+�w .gc.gi
c.r

i
c.rc.ec.ei

c.Xi
c.X

Be s.si.X)
)
\R

Apart from compensation yield, compensation composition is the only new opera-
tor in the language. It composes a compensable process P on the left-hand side with a
non-compensable performance Q on the right-hand side, which acts as the compensa-
tion action. The compensation performance Q is only executed if P has executed and
completed, as is normal for this kind of operator. If execution of P is part-way through,
the compensation has not been “installed” and therefore it is assumed that P contains
other compensations to handle it internally. For instance in (A÷A′ # B÷B′)÷C ′, com-
pensation performance C ′ is only executed if both A and B have finished, otherwise the
encapsulated compensation performances are executed.

The compensation agent therefore passes the readiness protocol signals onto P as
normal. If compensation is raised between ei being sent and Xi being received back,
then gi

c and the other compensation signals are passed on to P as before. If, however,Xi

has been received, the compensation is installed and therefore requests to compensate
will be turned into regular protocol signals (rj, etc.) and communicated to Q which will
cause the compensation action to execute.

7.3.6 Speculative Parallelism

The consideration of an abstract time semantics for speculative parallelism raises a num-
ber of interesting and important questions, not least with regard to my choice of calculus.
As a result I devote an entire section to discussing it.

The basic idea of speculative parallelism in this setting is this: a number of compens-
able workflows are run in parallel, all of which achieve the same goal. One of them will
complete first, and thus will be the successful method, or the “winner”. The remain-
ing, partially complete threads are compensated and the outer workflow continues. The
problem is, how do we give this a semantics, or more specifically how do we, in an ab-
stract time setting, decide which of the executed threads completes first? The answer is
to use the RTC which I have taken pains to include. In fact, speculative parallelism was
my original motivation for including a real-time timing system.

It is important that each thread receives equal opportunity to execute to completion.
If I were simply to allow use of a similar semantics to the standard parallel operator this



194 Chapter 7. A Compositional Operational Semantics for Cashew-A

wouldn’t be directly possible, as the receipt of the final X from one branch or another
is entirely non-deterministic. Quite simply, without some form of time there is no way
of measuring which branch completed first. It is necessary therefore to have a notion of
“faster than” in order to ensure the winner is picked. It is possible to do this without an
RTC using the yield clock, but yield is only meaningful within the context of a specific
workflow – it cannot be used as an absolute measure. Thus, the only way to do this fairly
is via a real-time model, so that the enclosing workflow can ensure the transactions are
lock-stepped using a common measure. In fact, with the addition of the time media-
tors which we have already seen in Section 7.3.3, speculative parallelism becomes very
simple.

ccf

w,g

r
|∗|~P

z
ã,b̃

m̃,ñ
,

(
sp

w,g

r
~P
z
ã,b̃

m̃,ñ

∣∣∣ µX. g
σ
.σ.σ.r{σ,ρ}.e{σ,ρ}.σ.

µY. ( Xi
c.Y

+Xi.µZ.(xi.Z +Xi
c.Z + ρ

σ
.Xσ.X)

+�w�w .gcσ
.rcσ

.ecσ
.µZ.(xi.Z + ρ

σ
.Xcσ

.X))

Be s.ρ
σ
.X
)
/σ/ρ

sp

w,g

r
P : ~P

z
ãi∪ãj,b̃i∪b̃j
m̃i∪m̃j,ñi∪ñj

,

(
ccf

w,g
JP Kãi,b̃i

m̃i,ñi
{[F]}

∣∣∣ µX.σ.gi.(ri.σ.σ.ei.X B
ei ρ.si.X)

)
\ {gi, ri, ei}

∣∣∣ sp

w,g

r
~P
z
ãj,b̃j
m̃j,ñj

sp

w,g
JNilK∅,∅∅,∅ , 0

The semantics is given is two parts. The first part is the central scheduler which
activates and readies the transactions via a pair of private clocks which act as proxies
for the various channels. The second part is the scheduler which is composed with each
individual transaction and takes care of supplying readiness conditions, but nothing
else.

The main scheduler is akin to a mini-governor agent, using two private clocks to
synchronise the processes representing the parallel branches. It first receives activation
via g and then waits for two σ ticks before continuing. In this context the clock σ is used
to begin and end the process of allowing the parallel branches to fulfil their preconditions
(all parallel branches must become ready). The parallel composed branch schedulers
each wait for the first σ and upon observing it send a gi to their respective process, and
if ri is returned, they allow σ to tick the second time. Once this happens, indicating
all branches are ready, the main scheduler engages in the normal process of negotiating



7.3. Compensation Semantics 195

permission to execute from the environment. If permission is received, σ ticks for the
third time which allows the branches to begin execution. Each branch’s scheduler sends
an ei to its respective branch and they start.

The main scheduler waits until one of three things happens:

• One of the branches outputs a Xi
c, meaning the branches attempted to complete

but failed and thus compensated. Clearly this should not be treated as a successful
completion, and therefore this option simply causing the scheduler to continue
waiting for another signal;

• One of the branches outputs aXi, meaning that the “winner” has been declared. If
this happens the scheduler repeatedly sends out xi to the other branches, causing
them to cancel. It also repeatedly inputsXi

c to receive completion signals from the
compensated branches. Once all the branches have finished compensating ρ will
tick and the scheduler finally outputsX to indicate completion.

• The compensation clock �w ticks to indicate the workflow has entered the com-
pensation phase. This being the case, basically the same strategy as the previous
option is followed, but the compensation protocol is first honoured.

Notice that we do not have to specifically mention the RTC, fairness is automatically
enforced by the time mediators and thus we know that whichever transaction responds
withX first is the fastest.

7.3.7 Evaluation

The semantics of Cashew-A follows a broadly centralised approach to compensation. A
participant in a workflow may raise an exception, which will force the workflow into
compensation mode when the next yield occurs. Naturally, if no yields are present the
parallel processes will continue to completion (or until they too fail) and only then will
compensation occur. Thus, referring to the four compensation strategies from Bruni,
Butler, Ferreira, Hoare, Melgratti and Montanari (2005) (see also Chapter 2, Section 2.4.1),
my semantics are immediately capable of both No interruption and centralised compensation
and Coordinated interruption. Furthermore, if the parallel processes of a transaction are
wrapped in performances, then they will act independently of the parent transaction,
compensating when needed. If a compensation does occur, this can be indicated to the
parent process by the dataflow postcondition, e.g. success t failure.

In this context Distributed interruption is complicated to implement. The primary rea-
son for this is data flow, as if it were possible to start compensating without synchroni-
sation, there would be data flow relating to both forward and compensation flow in the
same scope. Therefore, a better approach may be to allow child workflows to be com-
pensated in a distributed manner. This would require having a semantics which would
allow a workflow to send an interrupt signal to all its children. Part of this is already



196 Chapter 7. A Compositional Operational Semantics for Cashew-A

present, since there are interruptible performances PT . It is certainly possible within this
semantic framework, but time constraints do not permit further extension.

7.4 Conclusion

In this Chapter I gave a compositional operational semantics to Cashew-A in the form
of a CaSEip denotation. The aim of this exercise on the one hand was to give Web ser-
vice composition a semantics. On the other hand I have sought to show that CaSEip

is an ideal calculus for representing this type of component system. Clearly Cashew-
A is well featured, and is comparable to modern workflow languages. Therefore, with
additional work CaSEip can be expected to provide a basis for Web service composi-
tion. Furthermore through the use of common protocols, Cashew-A’s semantic model is
highly extensible. Additional language constructs can easily be added, so long as they
conform to this protocol.

It is also the case, as I indicated in Section 7.2.10 that there are some compositionality
problems related to naming of clocks. If it is possible that clocks can be anonymous in a
workflow then this would give a great deal of additional scope to the language.

In the next Chapter I will provide a partial implementation of non-compensable frag-
ment of this semantics in order to demonstrate its viability.



Part III

Implementation

197





Chapter 8

Implementation of CaSEip

In this Chapter I will describe, step-by-step, how the CaSEip process calculus can be
implemented in the purely functional programming language, Haskell. The purpose
of this exercise is to demonstrate that the formal underpinnings for Cashew-A can
be represented and used to form the basis of a service composition engine. I will begin
with a basic CCS process calculus model, and describe how the simulation of such
processes may be used to drive real-world interactions using Haskell Monads. I
will then extend this implementation to CaSEip, and show how abstract time fits in
with the monadic model. I will also describe my verification framework for CaSEip

processes, and demonstrate my command-line tool ConCalc. Finally, I will detail
my efforts at implementing Cashew-A itself, using the CaSEip implementation.

8.1 Introduction

A MAJOR ADVANTAGE OF THE CCS PROCESS ALGEBRA, along with its various
timed derivatives, is that it can be faithfully implemented, primarily due the
simplicity of its operators. By “faithful” I refer to the implementation provid-

ing a true representation of the formal model described in the calculus. Implementation
provides at least two benefits:

• Verification of abstract processes, such as bisimulation and refinement checking;

• Execution, for the purposes of testing.

In order to simplify the former I have chosen the purely functional programming
language Haskell (Peyton-Jones, 2003). Haskell allows a very concise implementation
which is also very close to the operational semantics, and thus reduces the possibility of
error. Furthermore, recent extensions to Haskell’s type-system allow us to make certain
guarantees about processes, for instance restricting process to those which are finite state.

Thee contributions in this Chapter come under three main sections:

199



200 Chapter 8. Implementation of CaSEip

• An implementation of CaSEip in Section 8.2. I will begin building an incremental
implementation of a timed process calculus, starting with a basic CCS process al-
gebra and setting some principles for how computation is abstracted in CCS. I will
seek to justify my use of Haskell by showing that Monads provide a clean way of
binding computations to the process syntax. I will then move on to explore how
Haskell’s type system can be used to make static guarantees about process syntax.
Finally, I will add abstract time to the model, resulting in an implementation of
CaSEip.

• An LTS verification framework in Section 8.3. This general framework will pro-
vide a library of tools for studying Labelled Transition Systems. I will describe
a number of Haskell classes which provide and LTS interface onto processes and
then use these to build verification functions. The main contribution of this Sec-
tion is a partition refinement algorithm, which allows both bisimulation checking and
LTS minimisation , both of which are directly applicable to Cashew-A . I also intro-
duce my verification tool ConCalc, which has been used for extensive testing of
the CaSEip implementation.

• A partial reference implementation of Cashew-A in Section 8.4. This draws to-
gether all the other implementation work and show the viability of the Cashew-A
operational semantics presented in Chapter 7. I will present how I implement the
semantic mapping, and show some sample transition graphs. In particular I will
show the graph for the calculator example introduced in Chapter 4.

8.2 Process Calculus Implementation

8.2.1 Background: Computation in CCS

CCS , at its core, is not specifically a model of computation. Unlike CSP it provides
no inherent notion of process state beyond the communications a process is willing to
make at a particular time. CCS is rather an abstract model of communication which is
used to explore different types of models which can be represented purely in terms of
abstract synchronous processes. Therefore, if we are to make CCS processes executable it
is first necessary to consider exactly where computations occur. Physical computations
can then be bound to the process syntax which will allow a CCS process to drive an
execution model.

We must consider, therefore, exactly what a CCS process means so that we can un-
derstand where computations should occur. On the one hand we must remain faithful
to CCS, ensuring that the model cannot do anything that CCS does not permit. On the
other hand we must also allow the implementation to “fill in the gaps” which CCS leaves
undefined.



8.2. Process Calculus Implementation 201

An important point to remember about CCS is its use of interleaving semantics, that
is processes in the calculus are resolved into several sequences of atomic steps. Parallel
behaviour is achieved by interleaving the steps of two such processes. An atomic step
represents an instantaneous event which occurs at some specific point in the process’s
time-line. They are never composite tasks which take time to resolve, otherwise a process
being executed would have to constantly wait for them to complete. This assumption
is vital for concurrency in an interleaving setting, since in a process like a.0 | b.0 it then
does not matter whether a or b occurs first in the transition system – they both occur at
effectively the same instant.

Therefore, a visible action is not a representation of computation, rather it is simply
a signal. Any time-consuming computation takes place in the space between two obser-
vations. For instance, the CCS process a.b.0 may, at first sight, seem to refer to a process
which immediately performs a b after an a, but this is naı̈ve. Such a CCS process may
be represented, to borrow the illustration from van Glabbeek (2001), by a machine with
a screen on it which displays the action which the process is performing1. When observ-
ing this process we would first see an a on the screen, but straight afterwards the screen
goes blank. We don’t know what the machine is doing at this point, but we do know at
some point in the future it will print out a b and then stop. Thus, the . operator in CCS
actually refers to an unspecified time period between two observations.

CCS’s observation equivalence semantics further solidifies this idea by allowing any
two observations to be separated by an unbounded number of silent steps, represented
by τs. So the process a.b.0 is equivalent to a.τ.b.0 or a.τ.τ.b.0, and so on. Thus silent
steps represent the presence of computation – some unobservable action which takes an
unknown length of time to complete and somehow affects the state of the world. Silent
actions are not themselves the computations, as like all steps in an interleaving seman-
tics they must be instantaneous. Rather they represent the explicit presence of internal
activity which must be completed before the process can advance down that path. Thus,
an unguarded τ is a sign that invisible work is in progress. When the τ transition is
resolved it means that this activity has completed, and thus the process can continue. It
is therefore fair to say that in CCS concurrency is not present in interleaving, but in the
silence between observations. It is not the tasks themselves which are interleaved, but
rather the actions scheduled or used to observe those tasks. These ideas are made even
more explicit with the addition of abstract time, but for now we stick with basic CCS as a
model.

When we come to implement this idea in Haskell, we find an analogous notion of
hidden, internal and unobservable activity in the Monad . A monad is principally an
abstract mathematical object, but mostly they are used to represent computations and
provide primitives for connecting these computations in different ways. A particularly
interesting class of monads are the IO monads, which allow impure computations to be

1Ignoring for the moment that these actions are instantaneous and would therefore be invisible to the
naked eye.



202 Chapter 8. Implementation of CaSEip

represented in an otherwise purely functional programming language. The IO monad
allows file access, socket communication and any sort of activity for which the result
cannot be directly observed or influenced by the program, and is thus unsafe. More
importantly, when we add in the features of Concurrent Haskell (Peyton-Jones et al., 1996),
a monadic action can schedule a thread, or see if one has completed.

In this implementation of CCS I will use monads to represent the silent computations
taking place in CCS processes. Every operator which can emit a silent action must have
some form of monadic computation associated with it, which must be successfully exe-
cuted before the associated τ step can be taken. We could have it executing after, but this
would violate the CCS semantics, since there would still be internal activity occurring.
This will become particularly important when we introduce abstract time, as maximal
progress requires that all internal computations are complete for the clock to tick. This
approach has the advantage that there is a definite separation between the abstract and
concrete behaviour of a process, rather than combining the two. Hence, the abstract
theory developed thus far remains sounds.

However, the concept of choice in CCS raises another interesting problem. When we
consider choices in CCS, the silent steps allow us to fundamentally alter the semantics
of a process from one where the choice is resolved by an observer, a.P + b.Q, to one
which is resolved purely internally, τ.P + τ.Q. As a result an unguarded silent action
is very different to a guarded one, and therefore choices require special handling in any
implementation. If we were to stick with the above definition of computations, execut-
ing before a τ path could be taken, choices would involve each branch having its own
internal guard. These guards would have to be executed in parallel and the first one to
complete would have its branch chosen. This raises a number of problems, not least the
fact that the guards would have to be completely independent, when in reality they are
rarely so.

As a result we adopt a slightly more conservative notion of choice. Each internal
choice is decided by a single computation, whose result causes one of the τ paths to be
chosen. This is consistent with our definition of a τ representing the completion of a
computation, but with the addition of some guard-data being passed internally.

The next question to be answered is how parallel composition should be dealt with.
Since our processes have underlying abstract computations, how should two processes
exchange data at synchronisation? First we need to consider exactly what the CCS op-
erators mean in terms of data transfer. CCS at its core is completely abstract – the terms
a and a mean nothing more than complementary actions, they are not concretely in-
put and output. However in extensions of CCS such as the value passing variant and
π-calculus they are, nevertheless, interpreted concretely as inputs and outputs with as-
sociated data. The value passing calculus works purely by substitution, with parallel
composition working like this:



8.2. Process Calculus Implementation 203

E
av→ E′, F

a(x)→ F ′

E | F τ→ E′ | F ′{v/x}

The process on the left outputs a value, and the process on the right inputs the value
and substitutes it for every instance of x. Of course, this is essentially π-calculus (Milner,
1999), the difference being that the data sort is disjoint with the channel sort. Such an
approach provides a useful inspiration for data transfer. Nevertheless, this approach
inherits many of the theoretical problems of π, related to of binding channel names. It
also restricts the possibilities for abstraction, since synchronisation cannot be reduced to
a τ , as this will remove the flow of data. For instance (a(x).bx.0 | b(y).cy.0) \ b is not
simply equal to a(x).τ.cy.0, where basic CCS would identify the equivalent value-less
processes. It also makes separating the LTS from the execution model difficult, since the
actual process syntax can be influenced by the impure real-world, which makes finite
verification impossible.

Therefore rather than embedding value passing directly into the calculus, CCS re-
tains the standard syntax, but every synchronisation has an implicit transfer of data as-
sociated with it. Rather than treating these simply as a pure substitution, we treat them
as monadic actions to be composed. The reason for this is that data may originate from
an impure source, and thus cannot be substituted into the process syntax itself. Instead
the computation is kept within the monad, so that the LTS can be built without impure
computations. As in CSP, we will make the simplification that each process simplifies to
a hierarchy of sequential agents. Each sequential agent will have its own distinct state-
space into which data is written, and from which it is read. As a result, synchronisations
will only be able to move data from one agent to another and not perform any complex
IO operation. This means we don’t have to deal with the complexity of sharing two state
spaces. All “external” data acquired via interaction with the real world will originate
from explicit τ prefixes.

In the next section I will begin to expand on some of these details.

8.2.2 Basic CCS

I begin by looking at standard CCS processes with choices, parallel composition and
restriction as defined by Milner (1989a). For the time being all computations will be rep-
resented using abstract monads. Throughout this chapter I will be using the Generalised
Algebraic Datatype (GADT) notation explained in Chapter 3 Section 3.5 in order to explic-
itly define the constructors, which will become convenient later. I adapt the basic syntax
found in Chapter 2 Section 2.3.3 to the following algebraic data types.



204 Chapter 8. Implementation of CaSEip

data Process a v m where

− The stalled process; 0
NIL :: Process a v m

− Observable action prefix ; a.P
OBS :: Action a v m → Process a v m → Process a v m

− (External) Choice / Summation; P + Q
SUM :: Process a v m → Process a v m → Process a v m

− Silent action prefix ; τ.P
TAU :: m Bool → m () → m Bool → Process a v m → Process a v m

− Parallel Composition; P |Q
PAR :: Process a v m → Process a v m → Process a v m

− Restriction; P \ a
RES :: a → Process a v m → Process a v m

− Renaming ; P {[a 7→ b]}
REN :: Process a v m → (a, a) → Process a v m

data Action a v m = Input a (v → m ()) | Output a (m v)

This initial data type has three type parameters:

• a, representing the action name sort Λ;

• v, representing the type of data to be passed between parallel processes by syn-
chronisations;

• m, representing the underlying Monad used for the execution model.

At this stage I assume that all processes pass the same type of data for the sake of
simplicity. The Action type represents observable actions, i.e. a and a, specifically the
union of names and co-names Λ ∪ Λ. An output action is associated with a computation
in Monad m producing a value of type v. An input action is associated with a function
from a value of type v to a computation with an empty output. These two components
are composed together with monadic bind >>= upon synchronisation. The output com-
ponent produces a value which is then passed to the input component, the result being
an internal computation of type m(), which can directly be executed.

An observable action with constructor OBS takes an observable action and a process to
evolve into, after performing the action. Silent action prefix, TAU has three monadic com-
putations. The first is the pre-guard, which decides whether the computation has started
executing or not, the second is the actual computation and the third is the post-guard,
which decides whether the computation has finished or not. If the pre-guard evaluates
to False, it means that the computation does not yet have requisite preconditions to ex-
ecute, and thus cannot be started. If the post-guard evaluates to False, this means the



8.2. Process Calculus Implementation 205

τ prefix cannot yet reduce, and the execution semantics will pass over this transition
at that point. The pre- and post-guards should be instantaneous actions, in that they
shouldn’t do any actual work, simply perform a check. The computation should like-
wise be a non-blocking operation (e.g. spawning a thread), which when finished will
set the post-guard to true. When putting together an internal choice, the programmer
should use a process like τ.(τ.P + τ.Q), in which the leading τ holds the actual compu-
tation which makes the choice, whilst the others are mutually exclusively guarded and
contain a null computation.

Equipped with a data-type to represent the calculus, I now proceed to give it a seman-
tics. The semantics is defined using a function step :: Process a v m→ [Transition a v m],
which gives a list of transitions which the given process can immediately enact.

data Transition a v m = Tran (TransitionLabel a v m) (Process a v m)
data SilentType a = External | Synchronize a

data TransitionLabel a v m = Observable (Action a v m)
| Silent (SilentType a) (m Bool) (m ()) (m Bool)

A Transition is a label with a process, with the label representing either an observable
action or a silent action with associated computation. TransitionLabel is equivalent to the
CCS action sort A , i.e. Λ∪Λ∪{τ}. The Observable constructor simply links to observable
actions, whilst Silent consists of the silent action triple of pre-guard, computation, post-
guard, together with a SilentType. The SilentType data-type contains information on the
origins of the silent action, where in CCS this can either be from a τ prefix (External) or
a synchronisation (Synchronize).

I now define step, which is derived from the CCS transition relation→, specifically
p

α→ p′ =⇒ Tran α p′ ∈ step p. I define step recursively as shown below:

step NIL = []
step (OBS l p′) = [Tran (Observable l) p′]
step (TAU pr m po p′) = [Tran (Silent External pr m po) p′]
step (SUM p q) = step p ++ step q

NIL has no transitions, so simply returns an empty list. OBS produces a single observable
action, whilst TAU produces a silent action with type External. SUM simply concatenates
the transition lists produced by either side. Notice that each of these definitions (except
for the NIL case) corresponds to one or more rules in CCS (See Chapter 2, Section 2.3.3).
The OBS and TAU cases together make up the Act rule. The SUM case combines the rules
Sum1 and Sum2 – it makes two recursive calls to step, each corresponding to the re-
spective antecedents. Indeed, a recursive call to step is equivalent to a rule antecedent
being checked.

The definition for PAR combines the two computations, as shown below:



206 Chapter 8. Implementation of CaSEip

step (PAR p q) = let tp = step p; tq = step q in

[ Tran a (PAR p′ q) | Tran a p′ ← tp ] ++
[ Tran a (PAR p q′) | Tran a q′ ← tq ] ++

[Tran (Silent (Synchronize a) (return True) (o >>= i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Input a i)) p′) ← tp

, (Tran (Observable (Output b o)) q′) ← tq, a == b] ++

[Tran (Silent (Synchronize a) (return True) (o >>= i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Output b o)) p′) ← tp

, (Tran (Observable (Input a i)) q′) ← tq, a == b]

The first line generates the transitions for each process and places them into two
variables tp and tq for convenience. The independent actions from either side of the
operator are then calculated by building a transition where one side is changed but not
the other. It does this using list comprehensions, which mirror a set comprehension by
performing an operation on every element of a list. The first two lists correspond to
CCS rules Com1 and Com2 respectively. These two list comprehensions simply decon-
struct the transition to pull out the label and resultant process. A new transition is then
built from the label with the resultant process being a parallel process with one side
unchanged.

The remaining two list comprehensions collect the synchronisations by matching an
input with an output from either side, corresponding to CCS rule Com3. Both compre-
hensions are essentially the same, but for Input/Output and Output/Input on the left
and right side respectively – this is necessary because it isn’t possible to encode the fact
that a = a. The transition formed is a silent synchronisation transition containing a com-
putation made by composing the output and input computations. Notice that the pre-
and post-conditions are both set to True – this is because synchronisations are deemed
instantaneous, being simple data-transfer, and thus do not have pre- or post-conditions.

Notice that all the semantics are defined by creating one or more lists for each se-
mantic rule and then concatenating them. This is the way that all the semantics in this
Chapter will be defined, with an increasing emphasis on list comprehensions since this
mirrors the logical definition in the Structural Operations Semantics (SOS). Next I define
the semantics for the restriction operator:



8.2. Process Calculus Implementation 207

step (RES p h) = [Tran (Observable (Input a m)) (RES p′ h)
|Tran (Observable (Input a m)) p′ ← tp, not (a == h)] ++

[Tran (Observable (Output a m)) (RES p′ h)
|Tran (Observable (Output a m)) p′ ← tp, not (a == h)] ++

[Tran (Silent t pr m po) (RES p′ h)
|Tran (Silent t pr m po) p′ ← tp]

where

tp = step p

The restriction operator’s semantics filters out input and output transitions from the
enclosed process possessing the restricted label. This is again done using a simple list
comprehension, which checks if a transition’s label a is the restricted label h. All silent
transitions are simply passed through.

Once step has been defined for all operators of the language the process can be exe-
cuted. By “executed” I mean that all the monadic computations emitted by the process
can be sequentially composed and invoked by whatever method is specific to the given
monad. The idea is that the programmer will choose a suitable monad for their spe-
cific task. I assume that a process to be executed will be fully restricted, only emitting
silent transitions and thus will be executable, as observable actions are partial and can-
not therefore be executed. Before this can happen though some sort of transition picker
function is needed. This is needed because step returns a list of possible transitions, and
it is necessary therefore to pick one as the next to execute. Thus the runProcess function,
which executes a process, has three arguments:

• The maximum number of simulation steps (or Nothing for unbounded);

• A monadic picker function, returning the chosen transition and the others;

• The actual process to be executed.

runProcess :: Maybe Int →
([Transition a v m] → m (Transition a v m, [Transition a v m])) →
Process a v m → m ()

In each iteration the algorithm for runProcess is as follows:

1. Obtain a list of transitions for the process using step;



208 Chapter 8. Implementation of CaSEip

P |Q |R
a b

c b c

State space

P = a.b.0
Q = c.0
R = b.c.0

P

Q R

Figure 8.1: A basic state space BTree

2. If the list is empty or the maximum number of cycles is passed, terminate. Other-
wise continue;

3. Use the picker function to ascertain which transition will be executed next;

• The picker returns the first observable action it encounters, or the first ready
silent action. Readiness is based on the silent action’s precondition.

4. Based on the next transition:

• If the transition is an observable action then do nothing;

• Otherwise execute the associated body of the silent action.

5. Iterate with the new process.

Thus we have accomplished building a framework which can produce code from a basic
CCS process annotated with monadic actions. This framework is fairly primitive thus
far, and therefore I will now go about enhancing it in the following Sections.

8.2.3 Hierarchical State Space

Moving on from the basic CCS model, we now turn our attention to process state. To
reiterate, we are modelling processes as a hierarchy of sequential processes, each having
its own internal state. Behind this exists the world-state, which is distinct and can obvi-
ously be manipulated to a lesser degree. So far all interactions have simply been within
an abstract monad which tells us very little about state. This monad, for instance, could
simply be IO which would give us access to the real world. However, the IO monad
does not provide an explicit state space for each distinct agent. Thus, in this section I



8.2. Process Calculus Implementation 209

will further expand my CCS implementation to provide a realistic state-space which can
be used to write τ bindings.

An important aspect to consider here is compositionality – even at the level of imple-
mentation it should still be the case that the semantics of the whole is a composition of
the semantics of the parts. The question is how do we allow each agent to have a distinct
state space and still maintain this, all within the context of a monad? The usual way
of maintaining internal state is via a variant of the State monad (see Chapter 3, Section
3.3), which is parametrised over the type of state. The more useful relative, StateT, the
state transformer monad, allows another monad to be enclosed inside. For example, we
might type our computations as StateT MyState IO which would allow us to manipulate
MyState via get and put, but also perform IO operations.

But how should MyState represent a state-space for each agent? The naive way
would simply be a list, each element of which is a process state and each agent would
be associated with an index of this list. But aside from the obvious problem of allocating
numeric indices, this does not allow composition of computations in the hierarchy. Con-
sider composition of two processes, P and Q, assuming they are laden with computa-
tions working on different parts of a state. How should these computations be composed
in such a way that there is no state overlap? If they both work on a flat state space, and
indices of the respective computations clash, there will be problems. Clearly then it’s
not easy, the main problem being that a flat state space is incongruous with the process
hierarchy. Therefore, what is needed is a state space which is also hierarchical, therefore
mirroring the process hierarchy. We start from a simple binary tree:

data BTree a = BBranch (BTree a) (BTree a) | BLeaf a | BStub

We view a process as simply a binary composition of processes, ignoring restriction,
and use this data-type to associate a state variable with each agent (a leaf). This is exem-
plified in Figure 8.1 where we have three parallel processes P,Q and R, each of which
having a state corresponding to its channels, the idea being that data acquired or sent
is stored in these variables. Clearly this tree can easily be expanded upwards as other
processes are composed in parallel.

The tree grows at run-time, initially starting with a BStub and then adding data as
computations are executed from different parts of the process. This is done via two func-
tions, stateLeft and stateRight which are used in conjunction with parallel composi-
tion to build a path for the given composition’s state-space. For instance, if a τ originates
from the left-hand side of a parallel composition, the step function will augment the
associated computations with stateLeft which will enable the computation to find the
correct position for its state variable in the BTree. In the example in Figure 8.1 the path
to P is l, whilst the path to R if rr. Hence, when the synchronisation on b occurs, the
computation associated with b will be augmented with stateLeft once, whilst the com-



210 Chapter 8. Implementation of CaSEip

putation associated with b will be augmented with stateRight twice. The two resulting
computations can then be composed and applied to the state tree.

The code for stateLeft is shown below; its partner is almost identical, the only dif-
ference being it transforms the right rather than left branch.

stateLeft :: Monad m =⇒ StateT (BTree s) m a → StateT (BTree s) m a
stateLeft m = do s ← get

(l, r) ← case s of

BBranch l r → return (l, r)
BStub → return (BStub, BStub)

(a, l′) ← lift $ runStateT m l
put (BBranch l′ r)
return a

The function assumes a StateT Monad with a polymorphic BTree as the state pa-
rameterised over s, the type of the agent variables. It transforms a computation in this
monad into another of the same type, shifting computations to use the left subtree. The
function deconstructs the tree in the state, pulls out the left branch, runs the computation
using that as the state, places the resulting state back into the left branch and finally re-
turns the value produced. If the given tree is empty (i.e. it is a BStub) then the tree is first
grown by one-level, with a stub at each branch. If a BLeaf is present then the function
is undefined – this should never happen in practice as the tree should only ever mimic
the process topology. Using this function I build another pair of functions actLeft and
actRight, which transform an Action by transforming its computation to the left or right
subtree:

actLeft :: Monad m =⇒ Action a (BTree s) m → Action a (BTree s) m
actLeft a = case a of

Input a f → Input a (stateLeft . f)
Output a m → Output a (stateLeft m)

data Action a s m = Input a (Dynamic → StateT s m ())
| Output a (StateT s m Dynamic)

In addition I have changed the syntax of Action so that all computations are wrapped
in the StateT transformer (cf. Chapter 3 for details of transformers). Furthermore I have
removed the v parameter and replaced it with an s to represent the type of state for
each process. Each value being exchanged is now a Dynamic rather than an arbitrary
type. A Dynamic may contain any value, so long as its type can be reflected at runtime.
This allows differently typed values to be exchanged, which is naturally vital to writing
realistic τ bindings. This change is also reflected in the Process type, which has an extra
parameter:



8.2. Process Calculus Implementation 211

data Process a s m where

· · ·
− Observable action prefix ; a.P
OBS :: Action a s m → Process a s m → Process a s m

− Silent action prefix ; τ.P
TAU :: StateT s m Bool → StateT s m () → StateT s m Bool→ Process a s m

→ Process a s m· · ·

Additionally, the TAU constructor is altered to have its associated pre-guard, compu-
tation and post-guard running in the StateT monad, but using the s state instead of a
BTree. The BTree will be merged in via the semantics. Therefore, I also define a function
liftStateM which lifts a computation using the StateT monad with state s (i.e. the state
of an individual agent) into one using a BTree state:

liftStateM :: (Monoid s, Monad m) =⇒ StateT s m a → StateT (BTree s) m a
liftStateM m = do s ← get

sl ← case s of

BLeaf l → return l

BStub → return mempty
(a, s′) ← lift $ runStateT m sl
put (BLeaf s′)
return a

actLeaf :: (Monoid s, Monad m) =⇒ Action a s m → Action a (BTree s) m
actLeaf a = case a of

Input a m → Input a (liftState . m)
Output a m → Output a (liftState m)

This function, liftStateM, takes the current state-space tree, assuming it is either
empty or a leaf, and uses the state to run the given computation. It gets the current
state, pulls a state value out and uses this with the monad execution function runStateT

to run the computation with the given state. The resulting state value is then lifted
back into the monad and the output value returned. If the initial state-space is empty
(i.e. the tree is BStub) then an empty state is used, the assumption being that the agent
will write to the state. Therefore, to ensure an empty state value exists, the state type
s must be have an instance of the Monoid class, which provides a zero value (mempty)
and a binary composition function (mappend). The second function, actLeaf, converts
an Action computation into one running in a leaf-node state-space. Finally, I create an
expanded version of step for OBS and PAR (as only these cases change), along with a
redefined TransitionLabel which takes account of the hierarchy:



212 Chapter 8. Implementation of CaSEip

data TransitionLabel a s m = Observable (Action a (BTree s) m)
| Silent (SilentType a c)(StateT (BTree s) m Bool)

(StateT (BTree s) m ())
(StateT (BTree s) m Bool)

− Transform the computation in l to one working on a leaf node state
step (OBS l p′) = [Tran (Observable (actLeaf l)) p′]

− Transform the computations from p and q to the left and right state tree branches
− (respectively)
step (PAR p q) =

let tp = step p; tq = step q in

[Tran (Observable $ actRight o) (PAR p qq)
|Tran (Observable o) qq ← tq] ++

[Tran (Observable $ actLeft o) (PAR pp q)
| Tran (Observable o) pp ← tp] ++

[Tran (Silent t (stateLeft pr) (stateLeft m) (stateLeft po)) (PAR p′ q)
| Tran (Silent t pr m po) p′ ← r] ++

[Tran (Silent t (stateRight pr) (stateRight m) (stateRight po)) (PAR p q′)
| Tran (Silent t pr m po) q′ ← s] ++

[Tran (Silent (Synchronize a) (return True) (stateRight o >>= stateLeft.i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Input a i)) p′) ← tp

, (Tran (Observable (Output b o)) q′) ← tq, a == b] ++

[Tran (Silent (Synchronize a) (return True) (stateLeft o >>= stateRight.i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Output b o)) p′) ← tp

, (Tran (Observable (Input a i)) q′) ← tq, a == b]

The new definitions add state-space transformers for all the cases, making sure the
state is picked from the correct branch of the tree. The case for OBS transforms the com-
putation into one running on a leaf node, and the case for PAR into one on a branch.
In particular notice that when binding the computations from each side of a synchro-
nisation in PAR, the opposite branches of the state tree are used for each binding using



8.2. Process Calculus Implementation 213

stateRight and stateLeft, respectively. The only question that remains to be answered
is how should the state s be represented? For the time being I do not set any specific state,
but it seems that the most sensible state is a Map from action labels to Dynamic values
(Map a Dynamic). Then when a value is input on a channel it can be stored at the respec-
tive index, or when sent it can be taken from the respective index. Using this kind of
state the following process can be built:

p :: a → a → Process a (Map a Dynamic) IO

p a b = OBS (Output a aB)$ TAU (return True) tB (return True)
$ OBS (Output b bB NIL)

where

aB x = do s ← get

put (insert a x s)

tB = do s ← get

x ← lookup a s

y ← getLine

let z = ((fromDyn x (0 :: Int)) + (read y))
put (insert b (toDyn z) s)

bB = do s ← get

x ← lookup b s

return x

This process demonstrates both the internal state and a simple IO interaction. Func-
tion p represents the CCS process a.τ.b.0, where the two parameters are the input and
output channels. It inputs an integer value (wrapped up in a Dynamic), internally re-
quests another integer value to be input from the keyboard (within the τ binding) and
outputs the sum. This is done in terms of three bindings, aB, tB and bB, the bindings
for the input, τ and output, respectively. The first takes the value passed to it by the
environment and places it in the state map under the key named by the input channel.
The second does the actual computation: it pulls the input value out of the state map,
requests a value from the keyboard, adds these two values together and places them in
the state map under the output channel. The third simply pulls the output value out of
the map and returns this to be output to the environment.

One thing to note: for the sake of brevity, the middle TAU action is implemented
slightly incorrectly. The associated binding tB waits on the keyboard input via getLine

before continuing, to input a number. Action bindings should take negligible time to
execute, and therefore tB should spawn a thread to get the keyboard input and immedi-
ately return. The associated postcondition, rather than returning True as it does in the
example, should return False until this keyboard input is supplied. This will prevent
the guarded process (which outputs b) from being activated until the input is available,



214 Chapter 8. Implementation of CaSEip

but allow other parallel processes to schedule their bindings, thus leading to proper con-
currency. Incidentally, the precondition (return True) is correct, since the only condition
of execution is that the input a has been received, which is enforced by the process se-
mantics.

A slightly more difficult problem exists though. The state space is not directly type-
safe, as two parallel processes exchanging data may disagree on a value’s type. This
is very obvious from this example as it assumes the input Dynamic contains an integer
value which it may not (however, in this instance if it doesn’t it substitutes a 0 as default).
Thus, in the next section we explore how the problem of type safety could potentially be
overcome.

8.2.4 Towards Strong Typing

Up until now, all the data being exchanged between processes has been effectively un-
typed. Although the parameter v can be set to any single type, this will be retained
through the whole process structure and for every channel. This is inconvenient, and
channels may obviously require to exchange different types of data. As I explained in
the previous Section, using Dynamic values for this purpose is not directly safe. There-
fore, in this section we will exploit some of the newest features of Haskell, in particular
GADTs and Type Families (see Chapter 3), to enrich CCS processes with type information
for the data being exchanged. This work is currently very experimental, but I think is
very interesting for showing how Haskell can be potentially used for compile-time static
verification.

Each CCS process will be associated with a typing context Γ. This typing context will
associate a type, ranged over by θ, with each channel name, representing the type of data
it carries. To aid in describing this type-system, we will imagine a calculus syntax with
embedded type annotations (although I will not give this an operational semantics, as
the annotations are purely for pre-execution static analysis):

Et ::= 0 | a :θ.Et | τ : ã×θ.Et | Et + Et | Et | Et | Et \ a :θ

Notice that τ witnesses a set of type associations. This is because I assume that every
silent action reads from and writes to any of the values in scope. The expressions of the
language are then typed as follows:

Γ ` 0
Γ ` E

(a, θ),Γ ` a :θ.E
Γ ` E

ã×θ,Γ ` τ : ã×θ.E

Γ ` E,Γ ` F
Γ ` E + F

Γ ` E,Γ ` F
Γ ` E | F

(a, θ),Γ ` E
Γ ` E \ a :θ

Effectively, restriction behaves like an existential quantifier which witnesses the type



8.2. Process Calculus Implementation 215

of the given channel. This type system can be embedded directly into Haskell’s type
system through GADTs, which allow each expression of the Process type to be given
a different type (in terms of type parameter qualification). However due to limitations
in Haskell’s current implementation of type-families and other issues, we need to make
some simplifications. Instead of having a type-context which associates channel names
with types, we will have a type stack and use de-Bruijn indices (de Bruijn, 1972) to attach
type data to the channels. The reason for this is two-fold:

• We cannot directly implement an array of types in Haskell due to type functions
being severely limited in terms of recursion. This may be lifted at some point by
so-called closed type families (Schrijvers et al., 2008) which promise to allow more
liberal definition, but at the moment this problem is insurmountable;

• Even if we could have an array of types, we cannot represent a channel name/type
pair because one is value-level whilst the other is type level. Thus we need to use
de-Bruijn indices as an intermediary and then use the Template Haskell (Sheard and
Peyton-Jones, 2002) meta-language to create macros to generate them from action
names (Template Haskell, being at meta-level, can happily work with both types
and values as they’re both just syntax).

So, first of all we need to define these type-level indices. They will be represented as
type-level natural numbers, with a Zero type and a parametric Successor type:

data Z = Z

data S n = S n

Using these we have access to a complete set of natural numbers at type level, for
instance 3 is S S S Z. Along with natural numbers I also need type lists and union types.
The former will be used to represent type contexts, and the latter, elements of the context.

data Nil

data Cons x xs

The type-list is based on normal value level lists, though instead of two data con-
structors it has two type constructors, one for the empty list, and one for a type followed
by a list. In addition a type family (see Chapter 3) is needed which will act as a type-level
indexed lookup function for lists:

type family ts :!! : i

type instance (Cons x xs) :!! : Z = x

type instance (Cons x xs) :!! : (S n) = xs :!! : n



216 Chapter 8. Implementation of CaSEip

This defines an infix type-function :!!: which is parameterised over a type-list ts and
a natural number i, the lookup index. The lookup implementation is a straightforward
recursive function. If the index is Z then the type is the head of the type list, and thus x
is returned. Otherwise the index is decremented and used in a recursive call using the
tail of the list. For instance, the type Cons Int (Cons Float Nil) :!! : S Z collapses to Float.

data UnionType ts where

It :: t→ UnionType (Cons t ts)
Alt :: UnionType ts → UnionType (Cons t ts)

A type union defines values whose type is one of a number of given types. In this
instance a type union is parametrised over a list of types a value could be ts. A value
in a type union is built using two constructors. The first, It, refers to a value which is
typed by the type at the head of the union’s type-list. The second, Alt, is a value whose
type is in the tail of the list. For instance, we could define Alt (Alt (It ′a′)) which has
type UnionType (Cons a (Cons b (Cons Char ts))), where a and b may be any type, and
ts is the remainder of the type-list. A satisfactory monomorphic type for the union might
be UnionType (Cons Int (Cons Float (Cons Char Nil))). I now also define a type-class for
manipulating this union-type:

class Union ts i where

mkUnion :: i → ts :!! : i → UnionType ts

appUnion :: Monad m =⇒ i → (ts :!! : i → a) → UnionType ts → m a

Union types are not easy to manipulate by default. I therefore provide the above
class which enables the two most important manipulations, namely creating a union and
applying a function to one. The reason for using a class rather than a function is because
the input is obviously polymorphic, and therefore not definable in a single function. The
two instances follow:

instance Union (Cons t ts) Z where

mkUnion Z x = It x

appUnion Z f (It x) = return (f x)

instance Union ts n =⇒ Union (Cons t ts) (S n) where

mkUnion (S n) x = Alt (mkUnion n x)
appUnion (S n) f (Alt x) = appUnion n f x

The first function, mkUnion, takes a list index and a value of the type at that index in
the list and returns a union type containing the given value. For example the expression



8.2. Process Calculus Implementation 217

mkUnion (S Z) ”hello” creates a union where String is at index 1. The second function,
appUnion, takes an index, a function from the type at that index to another polymorphic
type, and a union type with the same type-list and attempts to apply the union type to
the function. For instance appUnion (S S Z) f u would apply the function f to the value
stored in union u, whose value is at the 3rd index. In the latter function the index is
not strictly needed since it could be derived from the type, but Haskell requires both
parameters to be explicitly quantified.

With all the underlying types defined I now proceed to define the new typed CCS
process type:

data Process a ts m where

− The stalled process; 0
NIL :: Process a ts m

− A data action, the data is scoped over the guarded process via a function
DOBS :: DAction a ts m → Process a ts m → Process a ts m

− Data restriction, existential quantification of the encapsulated type t
DRES :: Process a (Cons t ts) m → Process a ts m

− Choice / Summation; P + Q
SUM :: Process a ts m → Process a ts m → Process a ts m

− Parallel Composition; P |Q
PAR :: Process a ts m → Process a ts m → Process a ts m

− Silent action prefix
TAU :: m Bool → m () → Process a ts m → Process a ts m

data DAction a ts m = Union ts i =⇒ DOutput i a (m (ts :!! : i))
| UnionF ts i =⇒ DInput i a (m Bool) ((ts :!! : i → m ()))

I have not included typed silent actions (i.e. DTAU), as for now I don’t know the
best way to represent them. The first thing to note is that Process now has parameter
ts instead of v. This is the list of types which the given process exposes. The most
interesting constructors in our new data-type are DOBS and DRES, the new version of
prefix and restriction – the other constructors simply propagate the type-list through the
process topology. The new typed action prefix uses the DAction type, which is the same
as Action except the monadic operations are strongly typed using the type-list.

Both of the constructors existentially quantify the type i (see Chapter 3, Section 3.2.2).
The parameter represents the index used to decide which type is being used from the
type-list in the computation. The first, DOutput has a computation of type (m(ts :!! : i)),
a value of the ith type in the type-list, returned in monad m. The Union constraint is there
to make sure that a union type can be built using the index and type list. In theory, if
i were closed, for example if it had a natural number kind and could thus only be a
natural number this would not be required. However, since by default i can be any type



218 Chapter 8. Implementation of CaSEip

and not just a natural number this constraint is needed to effectively make sure it is a
natural number type.

The second constructor, DInput, is much the same as the former. The difference
being the type represents a monad function rather than a value. Also instead of using
the Union class constraint, another class UnionF is used. UnionF is similar, but it works
on unions of functions instead of unions of scalar types. For reasons of implementation
these need to be handled differently, and thus a different class (and type) is used.

Moving on from DOBS, DRES the restriction constructor is an existential quantifica-
tion of the type of the restricted channel. Thus it takes a process with a given type-
list and produces a process with the head type removed from the type-list. If we have
p :: Process a (Cons Int Nil) m, for instance, and p = a :: Int.0 then DRES p :: Process a Nil m.
It is unfortunate that DRES can only restrict the channel numbered as 0, but the reason
is that removing an arbitrary element from the type-list would require a transformation
more complex than type families allow. Thus processes must be crafted carefully to en-
sure that they are restricted correctly.

Because of these restrictions, although certainly Haskell is showing promise in allow-
ing this kind of compile-time verification, it is not currently practical for my needs. As a
result, whilst I include this section for interest, ultimately I will not be using it further.

8.2.5 Recursion

Returning to the untyped model, I now add the final operator of CCS: recursion. Recur-
sion in CCS can be described in several ways, but in my model I will use the fix-point
operator µX.E. The question of recursion is therefore really a question of process vari-
able substitution, and the most efficient way of doing this. There are two possible ways
of writing the recursion rule for CCS:

Rec(1)
E

α→ E′

µX.E
α→ E′{µX.E/X}

Rec(2)
E{µX.E/X} α→ E′

µX.E
α→ E′

The difference between these rules is the point at which substitution is performed.
To see if a process µX.E can perform a transition with rule (1), we first see if E can do
a transition, and then substitute the recursion variable afterwards. In rule (2), we first
apply the substitution to E and then see if the resulting process can do a transition.
In guarded processes, such as µX.a.X , there is no difference between these rules. The
difference occurs in unguarded processes, such as µX.(a.X + X). If the first rule is
applied, the process is capable of doing only a single transition a→ to µX.(a.X+X), since
the unguarded X yields no transitions. In contrast rule (2), since it does the substitution
first, would yield an infinite number of a→ transitions. Rule (2) is the “original” CCS rule,
and the one on which all the standard proofs depend, in particular compositionality of
µX.E with respect to observation equivalence.



8.2. Process Calculus Implementation 219

type PVar = · · ·
data Process a s m where

− Fix point ; µX .E
MU :: PVar → (Process a s m → Process a s m) → Process a s m

UMU :: PVar → Process a s m → Process a s m

− Recursion variable; X
VAR :: PVar → Process a s m

DVAR :: Process a s m

There are two possible ways of representing a fix-point in Haskell. The first represen-
tation, MU, uses a function to represent the equation. This approach is the most natural
for Haskell since it uses the built-in substitution engine. Thus, for instance, the Process
µX.a.X would be represented as (in pseudo-code) MU X (λx→ a.x). The second repre-
sentation, UMU, is slower during simulation, but more flexible for performing syntactic
transformations. Rather than using Haskell functions, a process is represented as a reg-
ular process containing an instance of VAR wherever a variable is located. In this case
substitution must be performed manually.

In my implementation I use both of these, the former for simulation and the latter
for syntactic manipulation. Processes of the latter form can be “fixed” to turn them into
the former. The reason for not simply using the former alone is due to the way functions
work. If one wishes to perform a transformation Process a s m→ Process a s m on a MU

process, the transformation function must be composed onto the existing recursion func-
tion contained inside, as it is not possible to directly transform a function, only apply it
to something. The transformation is then effectively hidden in the recursion function. If
the transformation isn’t idempotent then, during simulation, it will be applied over and
over whenever the MU is expanded. Clearly this is inadequate, and therefore the latter
form is used in these circumstances. The implementation of step is then as follows:

step (MU a f) = step (f (MU a f))

This follows rule (2), firstly substituting the MU expression into the process syntax and
then calculating the transitions. Clearly, if the given process is unguarded (e.g. λx→ x)
this will loop infinitely. If required, rule (1) can be implemented thus:

step (MU a f) = [ Tran t (map (λ x → replaceDVar x (MU a f)) ps)
| Tran t ps ← step c (f DVAR) ]

step DVAR = []

This relies on function replaceDVar :: Process a s m→ Process a s m→ Process a s m,
which replaces every occurrence of the distinguished variable DVAR in the first process



220 Chapter 8. Implementation of CaSEip

with the second process. This alternative implementation calculates the possible tran-
sitions of the process with every occurrence of the recursion variable substituted with
DVAR (which has no transitions). Each resultant process is then turned back into a MU

expression by fixing it using replaceDVar.

8.2.6 Abstract Time

Now that we have fully explored the CCS process calculus implementation, it is possible
to proceed to implement CaSEip . The key difference of course is the addition of the new
timing operators, so I first present the new syntax (cf. Chapter 6 Section 6.5):

data Process a c s m where

− The stalled process; 0
NIL :: Process a c s m

− The stalled process; ∆
DELTA :: Process a c s m

− The stalled process; ∆σ

DELTAC :: c → Process a c s m

− Observable action prefix ; a.P
OBS :: Action a s m → Process a c s m → Process a c s m

− Silent action prefix ; τ.P
TAU :: StateT s m Bool → StateT s m () → StateT s m Bool→ Process a c s m

→ Process a c s m
− Clock prefix ; σ.P
TICK :: c → ClockB s m → Process a c s m → Process a c s m

− (External) Choice / Summation; P + Q
SUM :: Process a c s m → Process a c s m → Process a c s m

− Parallel Composition; P |Q
PAR :: Process a c s m → Process a c s m → Process a c s m

− Restriction; P \ a
RES :: a → Process a c s m → Process a c s m

− Renaming ; P {[a 7→ b]}
REN :: Process a c s m → (a, a) → Process a c s m

− Clock renaming ; P{[σ 7→ a]}
CREN :: Process a c s m → CRen a c → Process a c s m

− Clock Hiding ; P / σ

HID :: Process a c s m → c → ClockB (BTree s) m → Process a c s m

Much of this is familiar, the differences are the addition of time oriented operators.
I have introduced a further sort as a type parameter to mimic the clock sort T called
c. Before I move on to redefining step for the new syntax, we must first consider how



8.2. Process Calculus Implementation 221

monadic bindings work with respect to clocks. I have introduced two types to convey
these, which are used in clock renaming and prefix respectively:

data CRen a c = CRenI c a | CRenO c a ([Dynamic] → Dynamic)
data ClockB s m = ClkBInput ([Dynamic] → StateT s m ())

| ClkBOutput (StateT s m [Dynamic])
| ClkBNone

I treat clock ticks as multi-party computations formed by combining together the
bindings of all the constituent clock prefixes. Thus clock prefixes carry a ClockB, which
allows three types of binding to be associated with a clock prefix. A clock tick can either
be:

• a broadcast if each prefix is inputting via ClkBInput;

• an aggregation if each prefix is outputting via ClkBOutput;

• null, via ClkBNone in which case the given prefix does not contribute to the over-
all effect of the clock tick.

This has two implications: firstly all the clock prefixes in a clock’s domain must agree
on whether the clock is input or output, and secondly the data has to come from some-
where, or go somewhere, respectively. The data sink/source can be either the clock
hiding or renaming boundary. The type CRen has two constructors which are used to
define what the behaviour should be in the case of an input or output.

A clock prefix input takes a list of dynamic values and produces a computation in
the StateT monad. A clock prefix output is a computation producing a list of dynamic
values. When a clock tick is formed these are combined by concatenating the respec-
tive lists. I provide an instance of Monoid which allows concatenation of clock prefix
bindings:



222 Chapter 8. Implementation of CaSEip

instance (ActionHeader h, Monad m) =⇒ Monoid (ClockB h s m) where

mappend (ClkBInput f) (ClkBInput g) = ClkBInput (λ x → f x >>= g x)
mappend (ClkBInput f) = ClkBInput f

mappend (ClkBOutput m1 n1) (ClkBOutput m2 n2)
= ClkBOutput (do x ← n1

y ← n2
return (x ++ y))

mappend (ClkBOutput m1 n1) = ClkBOutput m1 n1

mappend ClkBNone b = b

mempty = ClkBNone

If two clock bindings are unalike then the first of the two is used as the combination
and the second is ignored. If both the computations are input bindings then a new com-
putation function is produced by sequentially composing the two computations, both
applied to the same input. If both are output bindings then the results of the two com-
putations are concatenated. The step function uses mappend to combine the bindings
of the clock ticks on either side of a parallel composition or summation to produce a new
clock tick.

When the tick finally reaches the hiding or renaming boundary it should, as for regu-
lar input/output action, be composed with a complementary action. If a hiding bound-
ary, a simple clock binding is present which should be complementary. The hiding bind-
ing does not have an intrinsic state, but in theory has access to the entire state-space
tree below it. However, since the hiding operator doesn’t really have its own individual
state it is normally expected to supply a constant value as input, or perform an IO action
with the output. The more useful binding is present in the clock renaming boundary.
Here the binding maps a clock tick binding onto an action binding. If the tick represents
an input using CRenI then the value is simply sent to all the consumer processes (i.e.
all those agents with clock prefixes). If an output using CRenO a function is supplied
which converts the list of Dynamics into a single value which is simply output via the
channel. This system allows a neat approach to forming one-to-many synchronisations,
since clock inputs form a real broadcast operator in the style of CBS (Prasad, 1991) or
CSP (Hoare, 1985). Outputs allow the opposite, where data is gathered from multiple
locations and sent out over a single channel.

Having discussed the way bindings work, we now proceed to look at how the se-
mantics should be defined. My approach mirrors that of the Operational Semantics in
Chapter 6, Section 6.3. I first define the three important sets, namely the instability set
ΣE , the Initial Clock set TE and the Initial Action set AE . To do this I first define a de-



8.2. Process Calculus Implementation 223

rived type called TopSet which represents the concept of a Set with a maximal value
(“full”). This is needed since the instability set can be equal to the countably infinite set
T for a process like ∆.

type TopSet a = Maybe (Set a)

tsEmpty :: TopSet a

tsEmpty = Just (Set.empty)

tsBot :: TopSet a

tsBot = tsEmpty

tsTop :: Ord a =⇒ TopSet a

tsTop = Nothing

I also define the standard set functions such as union (tsUnion), intersection (tsInter),
membership (tsElem) and so on. This type is then used to define stallC, which in turn
uses the other two sets initA and initC.

data Act a = I a | O a | T

initA :: (Ord a, Ord c) =⇒ Process a c s m → Set (Act a)
initC :: (Ord a, Ord c) =⇒ Process a c s m → Set c

stallC :: (Ord a, Ord c) =⇒ Process a c s m → TopSet c

For the sake of brevity (and as they are rather uninteresting) I don’t provide full
definitions here, they essentially reiterate the original definitions using Haskell syntax.
With these three sets in hand it is now possible to give the new definition of step. First
I redefine TransitionLabel to add the new clock transition type:

data TransitionLabel a c s m = Tick c (ClockB (BTree s) m)
| Observable (Action a (BTree s) m)
| Silent (SilentType a c)(StateT (BTree s) m Bool)

(StateT (BTree s) m ())
(StateT (BTree s) m Bool)

data SilentType a c = ClockTick c | External | Synchronize a

The new TransitionLabel simply adds a clock tick transition with associated binding
using ClockB. Notice that as before I am using a BTree, so data is gathered from the
various parts of the state-space tree. I can now proceed to redefine step:



224 Chapter 8. Implementation of CaSEip

step :: (Ord a, Ord c, Monad m, Monoid s) =⇒ Process a c s m → [Transition a c s m]
step NIL = []
step DELTA = []
step (DELTAC c) = []
step (OBS l p′) = [Tran (Observable (actLeaf l)) p′]
step (TICK c m p′) = [Tran (Tick c (clockBLeaf m)) p′]

The basic constructors are very simple and similar to those experienced so far. As
with actions, when a clock tick is formed the binding is raised to the leaf level of the
state-space tree and placed into the transition. This is done using the analogous function
clockBLeaf.

Summation

step (SUM p q) =
let tp = step p; tq = step q

iap = initA p; iaq = initA q; icp = initC p; icq = initC q in

[ tpq | tpq@(Tran tl ) ← tp ++ tq, not (isTick tl) ] ++

[ tp′ | tp′@(Tran (Tick c ) ) ← tp

, c ‘tsNotMember‘ uq, c ‘notMember‘ icq ] ++

[ tq′ | tq′@(Tran (Tick c ) ) ← tq

, c ‘tsNotMember‘ up, c ‘notMember‘ icp ] ++

[ Tran (Tick c1 (mappend m n)) (SUM p′′ q′′) | Tran (Tick c1 m) p′′ ← tp

, Tran (Tick c2 n) q′′ ← tq

, c1 == c2 ]

The semantics of SUM is somewhat more involved than before. The action transitions
are the same – the first list gathers together transitions from both sides which are not
clock ticks (indicated by the condition not (isTick tl)). There then are three ways of
forming a clock tick, corresponding to the three SOS rules tSum1-3. The first is a tick
originating from the left hand side, with the precondition that the clock is not in the
instability set up or initial clock set icp of the right hand side. The second is simply
the reflection of the first. The third is when a clock ticks on both sides simultaneously,
causing both sides to advance. Notice in this case that the two clock bindings m and n are
combined using the Monoid function mappend.



8.2. Process Calculus Implementation 225

Parallel Composition

step (PAR p q) =
let tp = step p; tq = step q

t =
[Tran (Observable $ actRight o) (PAR p qq)
|Tran (Observable o) qq ← tq] ++

[Tran (Observable $ actLeft o) (PAR pp q)
| Tran (Observable o) pp ← tp] ++

[Tran (Silent t (stateLeft pr) (stateLeft m) (stateLeft po)) (PAR p′ q)
| Tran (Silent t pr m po) p′ ← r] ++

[Tran (Silent t (stateRight pr) (stateRight m) (stateRight po)) (PAR p q′)
| Tran (Silent t pr m po) q′ ← s] ++

[Tran (Silent (Synchronize a) (return True) (stateRight o >>= stateLeft.i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Input a i)) p′) ← tp

, (Tran (Observable (Output b o)) q′) ← tq, a == b] ++

[Tran (Silent (Synchronize a) (return True) (stateLeft o >>= stateRight.i)
(return True)) (PAR p′ q′)

|(Tran (Observable (Output b o)) p′) ← tp

, (Tran (Observable (Input a i)) q′) ← tq, a == b]

icp = initC p; icq = initC q; up = stallsC p; uq = stallsC q

ias = not $ T ‘elem‘ initA (PAR p q)
in (if ias

then [ Tran (Tick cn1 (mappend (clockBLeft m) (clockBRight n))) (PAR p′′ q′′)
| (Tran (Tick cn1 m) p′′) ← tp

, (Tran (Tick cn2 n) q′′) ← tq

, cn1 == cn2] ++
[ Tran (Tick c (clockBLeft m)) (PAR p′ q) | (Tran (Tick c m) p′) ← tp

, c ‘tsNotMember‘ uq
, c ‘notMember‘ icq] ++

[ Tran (Tick c (clockBRight m)) (PAR p q′) | (Tran (Tick c m) q′) ← tq

, c ‘tsNotMember‘ up
, c ‘notMember‘ icp]

else []) ++ t



226 Chapter 8. Implementation of CaSEip

This semantics of PAR is rather long and involved, so I’ll break it down. Firstly t

is set to contain all the non-clock transitions, using the same rules as for standard CCS.
This accounts for more than half of the function, but is included for completeness. The
majority of the code dealing with clock transitions comes after the in keyword. The value
ias is set to False if P | Q can perform a τ , checked using the initial action set of the
composition initA (PAR p q). This value is then used to decide if any clock ticks should
be added. If so a similar algorithm to that used for the SUM clause is used, the difference
being that no reductions take place (i.e. the parallel operator remains in place). The
complete set of transitions therefore comprises the non-clock transitions concatenated
with the clock transitions, provided no τ transitions are present. The monoid function
mappend is again used to combine the bindings, but this time m and n are transformed into
the tree context, using functions clockBLeft and clockBRight, which enable to bindings
to find their respective agent’s state.

Clock Hiding

step (HID p cs m) =
[Tran (compClkB cn m n) (HID p′ cs m) | Tran (Tick cn n) p′ ← tp, cn == cs] ++
[Tran (Silent t pr mo) (HID p′ cs m) | Tran (Silent t pr mo) p′ ← tp] ++
[Tran (Observable a) (HID p′ cs m) | Tran (Observable a) p′ ← tp] ++
(if (null $ [1|Tran (Tick cn ) ← tp, cn == cs])

then [Tran (Tick cn mo) (HID p′ cs m) | Tran (Tick cn mo) p′ ← tp

, not $ cn == cs]
else [])

where tp = step p

For the semantics of HID the first list is formed from any clock ticks on the hidden
clock. The silent action is produced by composing the clock bindings of the tick and
hiding operator using compClkB. The function compClkB produces a silent action Tran-
sitionLabel containing a binding made by composing the output binding with the input
binding, in the same way that an action synchronisation works. To reiterate, this relies
on the bindings in the clock tick and operator being complementary, a null binding is
produced otherwise.

The next two lists simply allow silent and observable transitions through the operator
without altering them. The final list is formed by allowing other clock ticks through
without changing them, provided there is no tick on the hidden clock, in which case the
produced τ would hold up all other clocks.



8.2. Process Calculus Implementation 227

Clock Renaming

step (CREN p rn@(CRenI c a)) =
map (λx → case x of

Tran (Tick t b) p →
let ta = if (t == c)

then

case b of

ClkBInput f → Observable (Input a (λx → f [x]))
→ Observable (Input a (λx → return ()))

else Tick t b

in Tran ta (CREN p rn)

Tran a p′ → Tran a $ (CREN p′ rn)) tp

where tp = step p

Renaming a clock to an input action is the simpler of the two options. The function
maps over the list of transitions tp, and upon finding a tick on the correct clock converts
it into an input action. Specifically, when a tick on clock c is encountered with an input
binding f an input action is produced whose binding applies its input value x to the
clock input binding in a singleton list. This means that every clock prefix performing
an action will input a single value when the input action synchronises with a suitable
output. Bindings that do not match result in an input action with a null binding. All
other types of actions are left alone.

step (CREN p rn@(CRenO c a f)) =
map (λx → case x of

Tran (Tick t b) p →
let ta = if (t == c)

then case b of

ClkBOutput m →
Observable (Output a (m >>= return . f))
→ Observable (Output a (return (toDyn ())))

else Tick t b

in Tran ta (CREN p rn)

Tran a p′ → Tran a $ (CREN p′ rn)) tp

where tp = step p

Renaming a clock to an output action is very similar, but in addition it uses the ag-
gregator function f in the renaming operator to produce a single output from the list



228 Chapter 8. Implementation of CaSEip

of values produced by the clock tick. The resulting binding first executes the clock tick
binding and then applies the aggregator to the list returned. Again, if the clock binding
does not match, a null output is produced.

The remainder of the step cases relate to the standard non-clock related operators,
such as restriction. I don’t list these as the only difference is an additional transition
list in each one which simply allows all clock transitions through without altering them.
This completes the discussion of the CaSEip implementation. I have now introduced
a framework which will allow CaSEip processes to be given a semantics and, when
equipped with appropriate bindings, executed.

8.3 Verification

Having described how the process calculus CaSEip can be implemented in Haskell,
I now proceed to form a verification framework. This framework provides the com-
ponents needed for finite-state based verification of processes. It is a general frame-
work and hence can be applied to a wide variety of process models, not just CCS and
CaSEip. This gives rise to my plugin based process experimentation environment, Con-
Calc, which I describe in Section 6.6.10.

8.3.1 Labelled Transition Systems

Verification of labelled transition systems is performed completely independently of the
Process Calculus itself. Each LTS (P,A ,→) consists of two data-types representing P ,
the state label alphabet, and A , the transition label alphabet. These two data-types are
then associated with the transition relation via the following type-class:

class (Eq s, Trans (LTSTran s), Ord s, Monoid (LTSCtx s)) =⇒ LTS s where

type LTSTran s

type LTSCtx s

prepareState :: s → s

step :: LTSCtx s → s → [(LTSTran s, s)]
stateCtx :: s → LTSCtx s

The type-class LTS brings together the transition type and state type, and defines the
transition relation. LTS could be a three parameter type-class, parametrised over the
state alphabet, transition alphabet and state context alphabet, but this would be cumber-
some. As it is, I’m using GHC’s class associated type synonyms (Chakravarty et al., 2005)
to hide the other two parameters within the class (see Chapter 3, Section 3.6), since in
most instances they are derivatives of the state type anyway. By “derivative” I mean



8.3. Verification 229

that a particular state type will often have an associated transition label type which is
only relevant to that particular state type, and not others.

LTSTran is a type function from the state type to the type of transitions (A ), and
LTSCtx is a type function to the LTS context type, which is used when an invisible but
important context is required to determine the transitions (such as the clock context in
CaSE or a process variable definition context). The class provides a total of 3 func-
tions for manipulating a labelled transition system. The most important function is step
which takes an LTS context and state, and returns a list of transition label / new state
pairs – it embodies the transition relation→. In addition prepareState is a general pre-
step state function, which allows a transformation to be performed on the state, such as
pruning (should there be structural congruence rules, for instance). Finally, stateCtx
returns the default context of the given state.

Closely associated with the LTS class is the Trans class, which is used to describe
transition labels:

class Eq t =⇒ Trans t where

silentTrans :: t

isSilentTrans :: t → Bool

isInputTrans :: t → Bool

isOutputTrans :: t → Bool

isTimeTrans :: t → Bool

This type-class allows classification of different types of transitions. Specifically silent
actions, inputs, outputs and time transitions. It enables, for instance, observation ab-
straction by identifying which transitions are silent. These two type-classes together
form the basis for the verification functions. For instance, I provide a basic function for
extracting the traces of a process:

traces :: LTS s ⇒ s → [[LTSTran s]]

This takes an initial LTS state and produces a (potentially infinite) list of all the pos-
sible partial traces. In the following section I will produce an algorithm for generating
transition graphs, and then use this for verification.

8.3.2 Graph Generation

An instance of LTS makes it possible to generate transition graphs for a given process.
The idea is that process is simulated using the step function, and the entire behaviour of
the process is recursively mapped out a state at a time. Generating a graph is effectively
the hardest part of verification, and certainly a major bottle-neck. The major problem is
how to decide if a given transition is actually a loop back to a state node in the graph



230 Chapter 8. Implementation of CaSEip

already considered, or if a new node is needed. This comes down to a problem of imple-
menting an efficient syntactic equality checker, which I will explore later in this section.

To provide a starting point, I am using a version of the Haskell Functional Graph Li-
brary (FGL), created by Erwig (2001). FGL is a well featured library for manipulating
functional representations of labelled directed graphs. In particular it provides a back-
end for Graphviz (Ellson et al., 2004) through the DOT language. Graphviz is a flexible
utility for automatic drawing of various types of graphs. I have used it extensively in
Thesis for the purpose of drawing directed graphs to represent transition systems (in
particular see Section 8.4.3).

FGL provides a type-class Graph which is instantiated for each graph type gr. The
graph type is binary kinded, parametrised over the node label type and edge label type,
respectively. The standard definition for a graph in FGL is essentially a map from nodes
to the “context” of that node, where a context is the incoming and outgoing edges. Each
node is uniquely identified in the graph by the type Node, which is just a synonym for
Int.

class Graph gr a b where

empty :: gr a b

isEmpty :: gr a b → Bool

match :: Node → gr a b → Decomp gr a b

mkGraph :: [LNode a] → [LEdge b] → gr a b

labNodes :: gr a b → [LNode a]
labEdges :: gr a b → [LEdge b] · · ·

This partial definition shows some of the functions available in the basic Graph class.
For reference, the type LNode is a labelled node, LEdge is a labelled edge and Decomp
is a graph decomposition, containing a node, its context, and the remaining graph. The
class definition I show above is slightly different to the standard FGL class, as it includes
the label and transition type in the class head. The reason for this is that in order to
generate a transition graph it is necessary to place restrictions on these, but the standard
class won’t allow this. Therefore I have exposed them. In addition to Graph there is a
class called DynGraph, which represents graphs which can be altered.

The graph generation is performed within a State monad, LtsM:

type LtsGraph gr l s = gr s l

type LtsM gr l s k = State (LtsGraph gr l s, LtsGraph gr l s, Int, Int, Map s Node) k

The state contains two graphs used during generation. They have identical nodes,
one for each state in the graph, but different transitions. The first contains the visible
transitions, whilst the latter contains silent transitions – this helps in producing weak



8.3. Verification 231

transition systems. The state also contains two integers; the first represents the highest
Node index in the graph, and the second represents the maximum number of nodes
allowed (which can be used to prevent infinite graphs), or 0 if there is no limit. Finally
the state contains Map, which associates state labels with Node indexes, and is used to
decide whether a given state is in the graph.

extendLtsGraph :: LTS s ⇒ LTSCtx s → s → Node → LtsM gr (LTSTran s) s ()
extendLtsGraph c s sn =

let ts = step c s in

do ( , , sz, up, ) ← get

if ((up > 0) && ((length ts + sz) > up))
then return ()
else mapM (λ tr → let t = transitionLabel tr; s′ = snd tr in

do n′ ← addNodeEdge sn t s′

maybe (return ()) (extendLtsGraph c s′) n′) ts

This function orchestrates the process of creating a graph by stepping the given state
to get the possible transitions, and then iteratively adding new nodes to the graph. It
takes an LTS context, a state, and an integer representing the index of the current state
node. It first evaluates step using the context and state. It then extracts the state, and
queries up, the maximum state node number. If adding all the new transitions to the
graph will exceed this number, then no computation is done. Otherwise, mapM is used
to iterate over the list of transitions. Each iteration extracts the transition label and the
next state. The computation addNodeEdge is then executed which will (possibly) add
a new node to the graph, representing the state, and direct an edge from the current
state to the new state. If a new node is added, this function will return Just its index,
otherwise Nothing. If a new node index was returned, extendLtsGraph is recursively
called for the new state node.

addNodeEdge :: LTS s⇒ Node→ LTSTran s→ s

→ LtsM gr (LTSTran s) s (Maybe Node)

The body of addNodeEdge is long and rather uninteresting, so I will simply sum-
marise it. Its job is to query the existing graph and see if the given node is already
present. If it is, then a new edge is formed from the current node (passed in) and the
existing node. Otherwise, a new node is created and its index returned. If the given
transition is silent then it is added to the silent graph in the state, otherwise it is added
to the visible graph.

The advantage of storing two graphs becomes apparent if one wishes to create a weak
graph. If a strong graph is required, then all that is required is the edge sets of the two



232 Chapter 8. Implementation of CaSEip

graphs are combined. If weak, then we can capitalise on the split. In order to determine
the definition of τ̂⇒, the weak transition relation, we can take the reflexive transitive
closure of the weak graph. This will give a graph which describes the states which may
be bridged silently. It is then simply a matter of applying transition composition for
each transition in the strong graph with the transitions in the weak graph, i.e. τ̂⇒ · α→
· τ̂⇒. The weak graph is of particular use since it enables the efficient checking of weak
bisimulation and reduction of a transition system to the minimally visible graph.

To conclude this Section, I return to a problem posed earlier – i.e. the definition of
addNodeEdge depends on a how we check if a given state node is already present in the
graph. There are several issues with this. Although the state of LtsM includes a Map
from state labels to nodes, it is difficult to use. Map is a tree structure, with the values
at the leaves, and ordered by the key values. Therefore, in order to use this an ordering
algorithm is needed for process syntax. Without it, we have to revert to checking every
node in the graph for equality individually. When one considers that typical Cashew-A
processes consist of over a hundred individual agents, graph generation is going to be
time consuming. Therefore an instance of Ord must be present for a process to be prac-
tically verifiable. This unfortunately is a rather inefficient process since it is necessary to
descend through the process syntax of at worst every process in the graph so far every
time addNodeEdge is evaluated2. Therefore it is vital that graph generation is performed
sparingly.

8.3.3 Timed Transition Graphs

Having introduced a method for transition graph generation for process calculi, I now
briefly turn back to an issue which I considered in Chapter 6 Section 6.7. In order to
stream line generation of a process semantics it should be possible to shortcut some of
the processes to graphs. Then instead of generating one large transition graph, smaller
ones can be generated and combined, thus leading to a speed up (particularly when the
smaller graphs are minimised – see Section 8.3.6). However, whilst this is easy with CCS
processes since they are isomorphic with labelled transition systems, this is not the case
with CaSEip and other abstract timed process calculi. Hence, as I said back in Chapter
6, we need a kind of symbolic transition graph to represent the extra clock context data.
Specifically, each state needs to store the instability set ΣP which will allow composition
with further processes. I therefore extend the CaSEip syntax thus:

2In fact my current implementation simply uses the string representation for comparison, since this turns
out to be a very efficient algorithm!



8.3. Verification 233

data Process a c s m where

· · ·
− Expanded transition graph
GRAPH :: (LtsGraph g (TransitionLabel a c h s m) (TopSet c, Process a c s m), Node)

→ Process a c s m

The new GRAPH construct holds a timed transition graph which stores a TopSet at the
states, representing ΣP , together with the process itself. This is paired with a Node which
references the current state. The implementation of step can then be expanded to simply
extract the outgoing edges of the current state to give the processes possible transitions,
whilst also updating the current state variable. This is of course much quicker in many
cases than recursing through the process syntax to determine the transitions.

8.3.4 Partition Refinement

In this section I describe my partition refinement algorithm for Haskell. Partition refine-
ment (Paige and Tarjan, 1987) is a method of dividing the states of a transition system
into blocks of equivalent states by comparing the transitions each state may do and re-
fining based on which states’ transitions lead to the same blocks. It arises from the ob-
servation that two processes are bisimilar (i.e. of the same equivalence class) when they
have the same action maps. An action map assigns to each action the set of equivalence
classes to which performing that action may lead. This can be well illustrated by the
categorical definition of bisimulation:

P

α

��

∼ Q

α

��
P ′ ∼ Q′

That is, whenever P can do an action α to a process (or equivalence class) P ′, Q must
have a matching α transition which leads into a member of the same equivalence class,
Q′ (and conversely). The partition refinement algorithm takes the set of all states of an
LTS and iteratively splits it up into blocks based on whether this condition holds. Once
no further partition refinement is possible, the set of blocks in the partition is the set of
equivalence classes.

Haskell provides an elegant way of partitioning such a graph, and I have imple-
mented partition refinement using several functions. The first function to be considered
is actMap, which calculates a block’s action map:



234 Chapter 8. Implementation of CaSEip

actMap :: (Ord t, Graph gr s t)⇒ gr s t → Set Node → Set (Set Node)
→ Map Node (Map t (Set (Set Node)))

actMap g b parts = Map.fromList $ map (λp . (p, Map.fromList

$ map blocks (sucMap p))) (Set.toList b)
where

sucMap :: s → Map t [s]
sucMap p = Map.toList $ Map.fromListWith (++) $ map (λ(x, y) . (y, [x])) $ lsuc g p
blocks (a, ps) = (a, (Set.filter (λc . or $ map (λp′ . p′ ‘Set.member‘ c) ps) parts))

The function actMap is the backbone function in my partition refinement algorithm.
It takes the transition graph, together with the block being examined and the partition as
it stands and calculates the action map for each state in the given block. This data comes
in the form of a map of maps, the inner map from transition labels to block sets (i.e. the
possible blocks the action may lead into) and the outer map from states to the inner map.
Thus, each state in the given block is associated with a map from the action labels it may
invoke to the set of blocks each transition can lead to.

The function works by first building an associative list from actions to lists of suc-
cessor states for each state in the block (using sucMap). It then converts this into an
associative list from actions to blocks, depending on which block each successor state
is in (using blocks). Finally the list is converted into a map, associated with the state
being queried and the final action map is returned.

The next function to be considered is part:

part :: Ord t =⇒ Map Node (Map t (Set (Set Node))) → Set (Set Node)
part m = case Map.keys m of

[] → Set.empty

k : → let

(n, n′) = Map.partition (== (fromJust $ Map.lookup k m))
(Map.delete k m)

in

(Set.fromList (k : Map.keys n)) ‘Set.insert‘ (part n′)

This function takes the state/action-map map and partitions the states into groups
with the same action map. For instance, if state P can do only an α, resulting either in a
member of blocks B or C, then Q would be in the same block if and only if it also could
only do α into blocks B or C. States with different outgoing actions and resultant block
are distinguished.

The function works by taking the first state from the map (i.e. the first key), gathering
states with the identical action map, placing these states in a block and then proceeding
with the next state. It finishes when there are no more states remaining, when all have
been placed into a block.



8.3. Verification 235

partitionr :: (Ord t, Graph gr s t) =⇒ gr s t → Set (Set Node)
partitionr g = partition′ g

[Set.fromList $ nodes g]
(Set.singleton (Set.fromList $ nodes g))

partition′ :: (Ord t, Graph gr s t)⇒ gr s t → [Set Node] → Set (Set Node)
→ Set (Set Node)

partition′ [] parts = parts

partition′ g (b : bs) parts =
let newPart = part $ actMap g b parts

newParts = (Set.delete b parts) ‘Set.union‘ newPart
in if ((Set.size newPart) <= 1)
then partition′ g bs parts

else partition′ g (Set.toList $ Set.filter ((>1) . Set.size) newParts) newParts

Finally, these two functions put it all together. The second, partition’ does the
actual partition refinement. It takes the transition graph (g), block queue (bs) (i.e. the
blocks remaining to be partitioned) and the partition so far (parts), and produces the
optimal partition. It first uses actMap and part to partition the first block on the queue.
If this partitioning produces a partition of only 1 block, it means it was optimally re-
fined and partitioning moves onto the next block. Otherwise, it produces a new set of
partitions by removing the old block and adding the new blocks. It then creates a new
block queue using the new partition and recurses using the new partition. If the queue
becomes empty, it means the partition is optimal and thus it is returned.

The remaining function, partitionr is the function which is actually called by the
user. It takes the transition graph and builds an initial partition and block using all
the states in the graph and then proceeds to evaluate partition’. This completes
the discussion of my partition refinement algorithm, except to note that the partition
refinement algorithm in the section is a proof of concept and not optimised. In latter
work I have optimised partition refinement to, for instance, work with transition graphs
where both states and transitions are enumerated as integers. This allows Haskell’s more
efficient IntSet and IntMap data types to be used for storage of the partition, which are
purpose built for use with integers and not arbitrary ordered types. This leads to a faster
decision. There are several applications of the partition refinement algorithm, I highlight
the two main ones.

8.3.5 Bisimulation Checking

Naturally enough, partition refinement can be used to create an efficient bisimulation
checker – indeed this is one of its main uses. For the purposes of comparison I have
actually implemented two algorithms, one of which uses partition refinement, and one
which uses a recursive depth-first search algorithm. The two algorithms are useful for



236 Chapter 8. Implementation of CaSEip

comparing the two techniques, and provide better performance under particular con-
ditions. Also note that both of these algorithms can be used for either weak or strong
bisimulation checking. Recall from Chapter 6 (specifically Lemma 6.6.10) that checking
for weak bisimulation on a strong graph is identical to checking bisimulation on the
weak graph. Therefore, to perform a weak bisimulation check, the algorithm is simply
applied to the weak graph instead of the strong graph.

Checking bisimulation through partition refinement is fairly trivial. It is simply a
case of merging the two graphs into a single graph with disjoint node names, performing
partition refinement and checking if the two start state nodes are in the same block. If
so, then the two graphs are bisimilar. The following function, bisimPR, implements this:

bisimPR :: (Ord b, DynGraph gr a b, Monad m)⇒ gr a b→ gr a b→ (Node, Node)
→ m (Set (Node, Node))

bisimPR g1 g2 (n1, n2) =
let g1ns = nodes g1
− Generate a map from nodes in graph 1 to new nodes in graph 2
ns = Map.fromList $ zip g1ns $ newNodes (length g1ns) g2
ns′ = Map.fromList $ zip (newNodes (length g1ns) g2) g1ns
g2nns = map (λ(n, l) → (fromJust $ Map.lookup n ns, l)) $ labNodes g1
g2nes = map (λ(m, n, l) → (fromJust $ Map.lookup m ns

, fromJust $ Map.lookup n ns, l)) $ labEdges g1
− Build the combined graph
gc = insEdges g2nes $ insNodes g2nns g2
− Get a list of partitions
ps = Set.toList $ partitionr gc
bns n = zip (repeat n) ( map (λx → fromJust $ Map.lookup x ns′)

$ filter (>= (fromJust $ Map.lookup n1 ns))
$ Set.toList $ fromMaybe Set.empty

$ find (Set.member n) ps )
in if (isJust $ find (λs →((fromJust $ Map.lookup n1 ns) ‘Set.member‘ s)

&& n2 ‘Set.member‘ s) ps)
then return $ Set.fromList $ concat $ map bns g1ns
else fail ”bisimPR : No bisimulation exists”

It takes two graphs and a start node for each graph, and returns a set of node pairings
wrapped in a monad (for the situations when the algorithm fails to find a bisimulation).
The set of node pairings represents the bisimulation relation R. The first part of the
function combines the two graphs, which requires that all nodes in the first graph must
be given new node identifiers so they don’t clash with the second graph. Naturally a set
of edges must also be produced between these new nodes. The new graph is then stored



8.3. Verification 237

at gc and fed through the partition refinement algorithm producing a partition at ps. I
then create a function called bns which will take a node from the first graph and produce
a list of bisimilar pairings for that node with the second graph.

Finally, the function checks to see if there is a block which both start states are mem-
bers of (meaning they are bisimilar). If this is the case then the bisimulation pairings are
produced by applying bns to every node in the first graph and placing the results in a
set. If the start nodes are not bisimilar then a failure is returned.

The alternative algorithm using a recursive search algorithm is implemented in the
function bisimRC shown below:

bisimRC :: (Eq b, Graph gr a b)⇒ gr a b → gr a b → (Node, Node)
→ StateT (Set (Node, Node)) Maybe ()

bisimRC g1 g2 (n1, n2) =
do b ← get

if ((n1, n2) ‘Set.member‘ b) then

return ()
else

let t1 = lsuc g1 n1; t2 = lsuc g2 n2 in

if (listEquiv (map snd t1) (map snd t2))
then do put (Set.insert (n1, n2) b)

let ts1 = map toMap $ groupBy′ (λx y → (snd x) == (snd y)) t1
ts2 = map toMap $ groupBy′ (λx y → (snd x) == (snd y)) t2
b′ = bisims ts1 ts2

mapM (λ(xs, ys) → existsBisim1 xs ys) b′

mapM (λ(xs, ys) → existsBisim2 xs ys) b′

else fail ”No bisimulation”
where

existsBisim1 t1 t2 = mapM (λy → msum $ map (λx → bisimRC g1 g2 (y, x)) t2) t1
existsBisim2 t1 t2 = mapM (λy → msum $ map (λx → bisimRC g1 g2 (x, y)) t1) t2

It has a similar type to the former algorithm, but works in a state monad to produce
the set of equivalent states. The state will be gradually built up during execution and is
used to see which pairings have already been made. The algorithm begins by checking
if the given node pairing is already in the state. If so then no further work is needed.
Otherwise, it proceeds to check if the two states are bisimilar. It first extracts the succes-
sor edges of each node (the outgoing transitions) and places them in t1 and t2. Each of
these is a list of node/transition label pairings. If the set of outgoing transition labels is
not the same (checked using listEquiv), then obviously no bisimulation can exist and a
failure is returned.

Otherwise the algorithm goes about attempting to see if each state from every transi-
tion in one graph, is equivalent to each state in the other graph with the same transition
label. The pairing of the two states is first added to the monad’s state. The action maps



238 Chapter 8. Implementation of CaSEip

of each state are then calculated (i.e. a map from transition labels to a list of states that
each transition leads to) and the results placed in ts1 and ts2. The bisimulations which
need to be checked are then calculated by bisims which produces a list of all necessary
pairings. Finally each pairing is fed recursively through bisimRC using mapM , a form of
monadic map which will stop if one of the pairing checks fails. If no failure occurs, the
end result will be a complete set of pairings for the graph.

In testing, the recursive algorithm frequently proves to be faster than partition re-
finement (even when optimised), though with a few caveats. Firstly it does not produce
a complete set of bisimulations for every single state in the graphs, only those needed
to prove the first two states are bisimilar. This makes the recursive algorithm useless
for performing bisimulation minimisation, which requires a complete set of equivalence
classes. Secondly the recursive variant is less memory efficient than partition refinement,
since it stores a complete tree-expansion of the graph in memory. In contrast partition
refinement is iterative and so only holds data on the block being considered. Therefore
both these algorithms certainly have their places.

8.3.6 Minimisation

Like bisimulation checking, minimisation is a very important technique for process cal-
culus. It involves taking “large” labelled transition system and applying some form of
algorithm to reduce the states to the minimal number, such that it remains within the
same equivalence class. A minimised graph will therefore always be bisimilar with its
original, but having less states it is more efficient for verification purposes. Minimisa-
tion is particularly useful to Cashew-A’scomponent model as it allows one to extract the
smallest equivalence class of a component. When combined with a weak graph, it allows
the interface of a component to be extracted whilst abstracting any irrelevant detail.

A minimisation can be acquired by the application of partition refinement:

− Minimisation algorithm, uses partition refinement
minimize :: (Ord b, DynGraph gr a b) ⇒ gr a b → gr a b

minimize g =
let es = labEdges g

s′ = supStates g

em = map (λ(f, t, l) →
let f′ = fromMaybe f $ Map.lookup f s′

t′ = fromMaybe t $ Map.lookup t s′

in insEdge (f′, t′, l) . delLEdge (f, t, l)) es
in if (null $ nodes g)

then g

else (delNodes (Map.keys s′) . (foldl (.) id em)) g



8.3. Verification 239

− Get a map defining which states should be replaced by other states for minimisation
supStates :: (Ord b, DynGraph gr a b) ⇒ gr a b → Map Node Node

supStates g = Map.fromList $ concat
$ map ((λs → map (λt → (t, head s)) (tail s)) . Set.toList)
$ Set.toList $ partitionr g

The main function is supStates which performs partition refinement and uses the
partition to create a map from old states to minimal equivalent states. Specifically it
maps over the partition and for each block creates a mapping from each state to the first
in the set. This is then used by the function minimize to produce the minimal set of states
and map the transitions to act on only these states.

8.3.7 Alternating Simulation

Alternating Simulation (Alur et al., 1998) is a semantic preorder which I briefly introduced
in Chapter 6, Section 6.8. It provides a basis for checking compatibility by ensuring that a
component provides more inputs and fewer outputs than the template at each state. It is
therefore also an ideal relation for checking choreography conformance. In this Section I
provide a basic Haskell implementation of the relation.

altsim :: (Eq b, Graph gr a b)⇒ gr a b→ gr a b→ (Node, Node)→ (b→ Bool)
→ (b→ Bool)→ StateT (Set (Node, Node)) Maybe ()

altsim p q (u, v) isIn isOut =
do b ← get

if ((u, v) ‘Set.member‘ b)
then return ()
else let ut = lsuc p u; vt = lsuc q v

extenip = nub $ filter isIn $ map snd ut
extenop = nub $ filter isOut $ map snd ut
exteniq = nub $ filter isIn $ map snd vt
extenoq = nub $ filter isOut $ map snd vt

in if ((all (‘elem‘ exteniq) extenip) && (all (‘elem‘ extenop) extenoq))
then do put (Set.insert (u, v) b)

let xs = map (λn → altsim p q n isIn isOut)
(listProduct us′ vs′)

if (null xs) then return () else msum xs
else fail ”No alternating simulation exists”

The function has a very similar type signature to the bisimulation algorithm. In ad-
dition it takes two predicates, one to check if a transition label is an input and one to
check if one is an output. It produces a list of pairings if an alternating simulation can be



240 Chapter 8. Implementation of CaSEip

found. It follows the same structure as the recursive bisimulation algorithm. It uses four
lists, the inputs and outputs the two graphs produce in the current states. It checks that
every input provided by the second graph is also provided by the first, and that every
output provided by the first is also provided by the second. If this is true then it recurses
with each pair of outgoing states. Otherwise it fails to provide an alternating simulation.
This algorithm is by no means optimal, but it provides a basic implementation.

8.3.8 A Process Experimentation Environment

ConCalc (Concurrency Calculator) is an interactive environment for process experimen-
tation, based on the implementation work already covered in this Chapter. I primarily
created it to be an aid to defining the semantics in Chapter 7. Previous experience has
shown that in a clock-oriented calculus it is very easy to make mistakes, particularly in
terms of which clocks are enabled, and which are disabled. Indeed our previous seman-
tics (Norton et al., 2005) has several errors in it, and thus ConCalc has enabled a much
more robustly designed semantic framework to be constructed. It has also allowed the
process calculus semantics to be thoroughly tested.

ConCalc provides a command-line interface into which process expressions may be
entered, tested for bisimilarity and drawn as graphs. A typical interaction with the Con-
Calc command-line may go like this:

__ __ _ _ __ _ __

/ _\ / \ | \| | / _\ /\ | | / _\

/ / / /\ \| \ |/ / / \ | | / /

\ \_ \ \/ /| \ |\ \_ / /\ \ | |_ \ \_

\__\ \__/ |_|\_| \__\/_/ \_\\___| \__\

The Concurrency Calculator

Version 0.1.20081217

Loading CaSE_ip ...

Calculus : Calculus of Synchronisation and Encapsulation + ip

Author(s) : Simon Foster

Variant : Full

CaSE_ip> :graph a.(T.b’.0 + T.c’.d.0)

The commandline provides a number of commands for manipulating processes, the
most imporant of which is graph generation.

This interaction produces the graph shown in Figure 8.2. The self-transitions in this
graph marked with !! bear witness to the fact that this is a timed transition system. This is
a special clock which is used to decide whether a state is patient or not. A !! transition is
produced whenever only a subset of the clocks is stalled. This is related to the deficiency



8.3. Verification 241

a.(T.b’.0+T.c’.d.0) !!

T.b’.0+T.c’.d.0

a

b’.0

T

c’.d.0

T

!!

0

b’

!!

!!

d.0

c’

d

!!

Figure 8.2: A typical ConCalc graph

of the standard LTS model in representing timed transition systems which I described in
Chapter 6, Section 6.7 and also touched on in Chapter 7, Section 7.2.10. This !! clock is
equivalent to the distinguished δ clock described in the latter reference.

ConCalc is plugin oriented, and supports any LTS based process calculus imple-
mented in Haskell. In the above interaction ConCalc uses the CaSE ip plugin, which
implements the LTS semantics of CaSEip. A plugin must provide two things:

1. An instance of the type-class Proc which provides process variable functions and
is a super-class of LTS;

2. A function procCalc of type ProcCalc which provides parsers and meta-data for
the process calculus.

class (LTS p, Show p, Typeable p, Show (LTSTran p), Ord v, Show v, Ord (LTSTran p))
=⇒ Proc p v | p → v where

procHasVar :: v → p → Bool

procSubstVar :: v → p → p → p

procFix :: v → p → (Maybe p)
procVar :: v → p

Proc is parameterised over p, the type of process (Process in the case of CaSEip or
CCS) and v the type of process variable, which should be determinable from the process



242 Chapter 8. Implementation of CaSEip

type. The class, aside from providing a number of super-classes which allow LTS based
facilities and visual output, allows manipulation of a process’s variables. The functions
listed:

• determine if a given process contains a given variable;

• perform a substitution for a given process and variable;

• fix a process over a particular variable (if possible); and

• return a process variable for the given variable

respectively. Variables are a central feature of ConCalc, in that a process may be assigned
to a variable and these variables may then be used in other processes. These functions
are used to employ late binding on the command-line.

ConCalc has been invaluable during the development of the work in this Thesis for
experimenting with different process calculus variants. Since it is plugin oriented it has
enabled me to compare and contrast the different process calculi and discover any flaws.
For instance, using ConCalc I was able to discover that CaSEmt from Chapter 6 Section
A.2 made clock choice too verbose, and was prone to causing infinite state-systems, due
to its use of recursion to describe patience.

Another important facility which ConCalc provides is bisimulation checking using
the algorithm described in Section 8.3.4. Below is an interaction with ConCalc which
checks for weak bisimulation between a.(τ.b.0 + c.0) + c.a.0 and (a.z.0 | z.b.0 + c.0) \ z.

CaSE_ip> a.(T.b.0 + c.0) + c.a.0 ˜˜ (a.z’.0 | z.b.0 + c.0)\z

(a.(T.b.0+c.0)+c.a.0,(a.z’.0|z.b.0+c.0)\z)

(T.b.0+c.0,(z’.0|z.b.0+c.0)\z)

(b.0,(0|b.0)\z)

(0,(z’.0|0)\z)

(0,(0|0)\z)

(a.0,(a.z’.0|0)\z)

0.002188s

Syntactically a’ refers to an output on a and T is a τ . The infix operator ∼∼ is weak
bisimulation, ≈, whilst strong bisimulation can be checked for with operator ∼. tries
to find a bisimulation via partition refinement, and if one exists displays the associated
process pairings, followed by the amount of time it took to make the decision. Otherwise
it displays No weak bisimulation exists.



8.4. Towards an implementation of Cashew-A 243

8.4 Towards an implementation of Cashew-A

8.4.1 Overview

I conclude this Chapter by looking at what is the eventual aim of this implementation
work, an execution semantics and verification environment for Cashew-A. As such this
work is incomplete as only a fragment of the Cashew-A language has been implemented.
However, what it demonstrates is the viability of my approach as a whole. Clearly if the
semantic framework works then correct extensions of it will work also. To reiterate, I
have a two-fold aim for the semantics presented in Chapter 7:

1. Verification of composite Web service descriptions using a variety of finite-state
modelling checking techniques;

2. Execution of said descriptions by application of monadic bindings to the processes
to realise data flow and message flow.

In Section 8.3 I introduced a variety of verification tools which I have developed,
most of which centre on partition refinement. Indeed, minimisation is one of the most
important techniques in allowing semantic generation in Haskell. As can be expected
the graphs generated from the Cashew-A semantics are very large, maybe even pro-
hibitively large. Although arguably this is due to an over reliance on non-deterministic
CCS actions to drive orchestration scheduling (though a degree of non-determinism is
always desirable), minimisation provides a way of optimising graph generation and ver-
ification. The idea is to minimise the generated graph at each level of abstraction in the
Cashew-A syntax tree, thus avoiding an over-large number of states. These graphs will
eventually be cached and used for regeneration of the workflow semantics, thus apply-
ing the compositionality property to cut down on unnecessary work.

Whilst a verification method is already available, the work presented in this Sec-
tion is far from complete. As such many questions remain unanswered for how exactly
the execution semantics should be formed. As we saw back in the Web services litera-
ture review in Chapter 2, WSMO employs Abstract State Machines (Börger, 1999; Fensel
et al., 2007) which provide a common framework for giving a low-level description of an
orchestration. As such, I have yet to formulate such a translation and clearly it is a non-
trivial problem to combine data from the process calculus with Semantic Web service
descriptions to give an executable ASM. Thus, for the time being I concentrate more on
a general monadic approach, for which I hope an ASM-based frontend may be given. I
will therefore provide a partial formulation of the Cashew-A operational semantics from
Chapter 7 in Haskell, to demonstrate its feasibility and elegance.

8.4.2 Semantic Generation Framework

The overall idea of the semantic generation framework is illustrated in Figure 8.3. Each
part of the workflow will be decomposed generated into a CaSEip transition graph. The



244 Chapter 8. Implementation of CaSEip

P #Q

Decompose Generate Minimise Compose

P

Q

J#K

Figure 8.3: Overview of semantic generation

graph will then be minimised and composed via the appropriate semantic combinator to
produce an overall transition graph. This process proceeds recursively until the seman-
tics of the whole system is generated. The generation of the Cashew-A semantics centres
around a collection of recursive functions, similar to those presented in Chapter 7. I first
provide a collection of data types to represent the different parts of the Cashew-A syntax.

data Workflow = Wf WfName Accept ControlFlow [Dataflow] Offer

data ControlFlow = Nary Nary | Cf CPat

data Accept = AOr Accept Accept | AAnd Accept Accept

| AFalse | ATrue | AElem CInput

data CPat = Seq CPat CPat

data Offer = OOr Offer Offer | OAnd Offer Offer

| OFalse | OTrue | OElem COutput

data Dataflow = SDPP (PfName, COutput) (PfName, CInput)
| ADPP (PfName, COutput) (PfName, CInput)
| DWP Input (PfName, CInput)
| DPW (PfName, COutput) COutput

data CPat = Seq CPat CPat

| SPar CPat CPat

| APar CPat CPat

| Cho CPat CPat

| Iter CPat CPat

| Skip

| Halt

| Yield

| Perf Performance

The type Workflow is equivalent to the BNF definition ofW in Chapter 5. Similarly,
Accept, Offer, ControlFlow and Dataflow are equivalent to A, B, C and D. I split the con-
trol flow up into the algebraic patterns and the n-ary patterns, though the latter are left



8.4. Towards an implementation of Cashew-A 245

unimplemented for now. With types for representing the Cashew-A language, I also re-
quire several types to represent the various clocks and channels in Cashew-A semantics:

data CAction = Activate Mod
∣∣∣ Ready Mod

∣∣∣ Execute Mod
∣∣∣ Done Mod

| Deactivate Mod
∣∣∣ RelInput CInput

∣∣∣ WfInput WfName CInput · · ·

data Mod = I | J | N

data CClock = WfClock WfName Int

| PfClock PfName Int

| WfCaClock WfName

| WfYiClock WfName

| · · ·
type CProcess m = Process CAction CClock (Map.Map CAction Dynamic) m

CAction represents the action sort A of a CaSEip process simulating a Cashew-A
workflow, for instance Activate represents channel g and Ready represents channel
r. The associated type Mod represents the modifiers which can be applied to the pro-
tocol channels, such as the i superscript represented as I for example. CClock is the
clock sort T for a CaSEip process. Workflow clock 5wn is represented as WfClock w n,
the performance clock is represented as PfClock p and the yield clock is represented as
WfYiClock w. CProcess represents a CaSEip process, with the agent state being a map
from CAction to a Dynamic value. With these defined, I now show a cross-section of the
associated semantic functions.

skipSem :: Monad m ⇒ CProcess m

skipSem = fixP varX (g?.((r!.e?.tk!.vx, inputN e) |> s?.vx))

haltSem :: Monad m ⇒ CProcess m

haltSem = fixP varX (g?.s?.vx)

choSem :: Monad m ⇒ CProcess m → CProcess m → CProcess m

choSem p q =
resLR

(rensL p ‘PAR‘
rensR q ‘PAR‘
(fixP varX (g?.gi!.gj!.(ri?.sj!.((r!.e?.ei!.tki?.tk!.vx, inputN e) |> (s?.si!.vx))

+rj?.si!.((r!.e?.ej!.tkj?.tk!.vx, inputN e) |> (s?.sj!.vx))
+s?.si!.sj!.vx))))



246 Chapter 8. Implementation of CaSEip

Above I demonstrate the semantics for skip ε, halt δ and choice �. Notice that the
choice semantics takes two processes, representing the two options, and produces a third
representing the choice between the two. To maintain readability of the Cashew-A se-
mantics I have defined several infix operators to make the processes textually similar
to the formal semantics in Chapter 7. The prefix operators are defined in the following
class:

class CCSSyntax a p where

(?.) :: a → p → p

(!.) :: a → p → p

I have also defined several functions to achieve the same effects as in the formal coun-
terpart. The functions rensL and rensR rename the channels of the internal processes,
in a similar way to F and G. Similarly, resLR restricts all these internal channels, like the
set R. The key protocol channels are all defined as constants in the semantics Haskell
module and given a similar name to the formal counterpart, for instance gi, ri and ei

become gi, ri and ei (= Execute I), respectively. The disabling operator is represented
as the binary function |>.

8.4.3 Examples

In this Section I provide a collection of workflows and their respective transition graphs
which exemplify my implementation. The simplest workflow which can be generated
has no preconditions, postcondition or dataflow, and has skip as the control flow. Clearly,
this is a vacuous workflow, but it nevertheless represents the overall semantics of a work-
flow. The data-type and transition graph are given below (note: the start state for this
and following graphs is always state 0):

wfSkip = Wf (read ”wfSkip”) ATrue (Cf $ Skip) [] OTrue

First a word about notation. Because Haskell does not directly support the same syn-
tax as the operational semantics I have had to make some changes. The workflow clocks
5wn are represented by the string ss-w-n. The yield clock �w is represented as yy-w.
The channels mainly adopt the correct names, although the usual i and j subscripts are
printed alongside the channel name. The graphs also have T to represent τ and annotate
silent actions with the channel or clock name which lead to it (for readability).

The first transition is the receipt of g from the environment to enable the workflow.
This is followed by the ticking of the first workflow clock, 5w0 . Then the acceptor imme-
diately issues an r signal to the governor, indicating the preconditions are met (there is
only an empty precondition). The next workflow clock then ticks, followed by the gov-
ernor enabling the control-flow process via gi. This immediately responds with a ready



8.4. Towards an implementation of Cashew-A 247

0

1

g

2
T

(s
s-

sk
ip

-0
)

3
T

(r
)

4
T

(s
s-

sk
ip

-1
)

5
T

(g
i)

6
T

(r
i)

7
T

(s
s-

sk
ip

-2
)

8

r’

16
s

9
e s

10

T
(s

s-
sk

ip
-3

)

11

T
(e

i)

12

T
(tk

i)

13

T
(s

s-
sk

ip
-4

)

14
T

(r
)

15

T
(s

s-
sk

ip
-5

)

tk
’

17

T
(s

i)

T
(y

y-
sk

ip
)

Figure 8.4: A simple “skip” workflow



248 Chapter 8. Implementation of CaSEip

0 1g 6T

7

s

10

m?

T

13
T

s

14

r’
s

15
e

26T 27n!’

32

T

tk’

Figure 8.5: The echo workflow

signal on ri and then the third workflow clock ticks. In the next two states it is possi-
ble for the workflow to be cancelled with the s channel, which will cause the top-level
control flow to be stopped, and the workflow to return to its initial state. Otherwise, the
workflow sends a readiness signal on r, receives permission to execute on e and then the
next workflow clock ticks, indicating the workflow is executing. This is followed by the
control flow being instructed to execute, which also immediately finishes (it is skip). The
penultimate workflow clock ticks, the offeror indicates postcondition satisfaction via r

(again it is empty) and the final workflow clock ticks to return the process to its initial
state.

The next workflow is a little more interesting. It receives a message m, extracts a
single part a, and then copies this into another message called n which is sent. Again,
this workflow has no preconditions or postconditions, but does have a single dataflow
connection between the two performances.

wfEcho = Wf (read ”wfEcho”)ATrue (Cf $ pfRec ”m” [”a”] ‘Seq‘ pfSend ”n” [”b”])
[adpp (”recM”, ”a”) (”sendN”, ”b”)]
OTrue

For the sake of brevity, I have minimised this graph so that only external communi-
cations are shown, and as a result the τs have no parameters.

For a more a concrete a example, I refer back to the Calculator example, which was
first shown in Chapter 4 and then again in Chapter 5. I reproduce the UML Activity
Diagram in Figure 8.6 for the sake of comparison. I have implemented this in in Cashew-
A using a total of four workflows:

• wfCalculator, the outer workflow which contains the main loop and handles receipt
and sending of the initial and final messages, respectively;



8.4. Towards an implementation of Cashew-A 249

Figure 8.6: A simple Calculator orchestration as a UML 2 Activity Diagram



250 Chapter 8. Implementation of CaSEip

• wfOperation, the inner workflow which receives one of four messages and per-
forms the necessary operation;

• wfDiv, which provides an implementation of integer division, and handles division
by zero;

• wfIfPos, which implements the “if positive” performance.

I will provide definition and transition diagrams for all but the last (it is very similar
to wfDiv, starting from the simplest. The most simple of the three is wfIfDiv, which inputs
two numbers num and den, and attempts an integer division. If the given denominator
is zero, the output nan is returned. Otherwise the result is returned in outpu t res. The
Haskell source for this workflow is shown below:

wfDiv :: Workflow

wfDiv = Wf (read ”wfDiv”)
(aelem ”num” ‘AAnd‘ aelem ”den”)
(Cf $ (Perf pfIsZero ‘Seq‘ Perf pfNaN) ‘Cho‘

(Perf pfNotZero ‘Seq‘ Perf pfUDiv))
[dwp ”num” (”pfIsZero”, ”num”)
, dwp ”num” (”pfNotZero”, ”num”)
, dwp ”num” (”pfUDiv”, ”v1”)
, dwp ”num” (”pfUDiv”, ”v2”)
, dpw (”pfNaN”, ”nan”) ”nan”
, dpw (”pfUDiv”, ”res”) ”res”
]
(oelem ”nan” ‘OOr‘ oelem ”res”)

The control-flow begins by making a choice between whether the input den zero or
non-zero. It makes this decision this via the two performances, pfIsZero and pfNotZero,
which are evaluations with mututally exclusive preconditions. The input den is fed into
both and whichever of the two declares readiness enables its respective choice branch. If
the denominator is indeed zero then the performance pfNaN is executed, which simply
provides a nullary output nan which is output from the workflow. If the number is non-
zero then the actual integer division is performed within performance pfUDiv, which is
also an expression evaluation. Depending on which branch of the choice executes either
nan or res will be output.

The workflow semantics gives the labelled transition system displayed in Figure 8.7.
The workflow is first activated and then must receive each of the two inputs (all the while
being stopped is a possibility). At this point the workflow makes an internal choice rep-
resenting the evaluation of one or the other zero test performances. On either branch the
workflow declares readiness, is passed permision to execute and then either outputs a



8.4. Towards an implementation of Cashew-A 251

nan or res. Notice state 51, which all the stop signals converge on. Also notice that unless
the previous workflows, this workflow does not display all the states. In fact this par-
ticular workflow has over 200 states, but minimisation brings this down to the 17 states
displayed. Nevertheless, I have retained the label names to make this fact conspicuous.

The next workflow I consider in the calculator example is the main operational work-
flow: wfOperation which actually performs an operation on the input. As can be seen
from Figure 8.6 it is a single step workflow, receiving a message, performing an opera-
tion on the supplied data and then returning it through one of the three outputs. It inputs
a single number in inNum which represents the accumulator (the workflow represents
a push-button calculator), and outputs either an intermediate output in outNum, a final
result in res or nan if one of the operations failed (e.g. division-by-zero). The Haskell
representation of this workflow is shown below:

wfOpCf :: CPat

wfOpCf = (pfRec ”reqAdd” [”val”] ‘Seq‘ Perf pfAdd) ‘Cho‘
(pfRec ”reqDiv” [”val”] ‘Seq‘ Perf pfDiv) ‘Cho‘
(pfRec ”reqIfPos” [”p1”, ”p2”] ‘Seq‘ Perf pfIfPos) ‘Cho‘
(pfRec ”reqReturn” [] ‘Seq‘ (Perf pfReturn))

wfOperation :: Workflow

wfOperation =
Wf (read ”wfOperation”)
(aelem ”inNum”)
(Cf $ wfOpCf)
[dwp ”inNum” (”pfAdd”, ”v1”)
, dwp ”inNum” (”pfDiv”, ”num”)
, dwp ”inNum” (”pfIfPos”, ”v”)
, dwp ”inNum” (”pfReturn”, ”v”)
, sdpp (”recReqAdd”, ”val”) (”pfAdd”, ”v2”)
, sdpp (”recReqDiv”, ”val”) (”pfDiv”, ”den”)
, sdpp (”recReqIfPos”, ”p1”) (”pfIfPos”, ”p1”)
, sdpp (”recReqIfPos”, ”p2”) (”pfIfPos”, ”p2”)
, dpw (”pfAdd”, ”res”) ”outNum”
, dpw (”pfDiv”, ”res”) ”outNum”
, dpw (”pfDiv”, ”nan”) ”nan”
, dpw (”pfIfPos”, ”res”) ”outNum”
, dpw (”pfReturn”, ”res”) ”return”
]
(oelem ”outNum” ‘OOr‘ oelem ”nan” ‘OOr‘ oelem ”return”)

This is essentially a reproduction of the workflow shown in Chapter 5, Section 5.7.
Note that pfDiv and pfIfPos are their two respective workflows wrapped into perfor-



252 Chapter 8. Implementation of CaSEip

0

1
g

2
T

3

de
n

51

s

19
5

nu
m

s

17
8

nu
m

25
26

r’

s

27
e s

45
T

49
re

s’

48

tk
’

T

T

89
s90

r’
s

91
e

10
7

T

na
n’

TT

s

de
n

Figure 8.7: The integer division workflow wfDiv



8.4. Towards an implementation of Cashew-A 253

mances. Performance pfAdd is simply an expression evaluation, and pfReturn echo the
current value to the workflow output res.

This workflow gives the labelled transition system in Figure 8.8. It becomes activated
in the usual way and then waits for one of the four input messages. Upon receiving one,
it declares readiness and then acts appropriately. If the message received is reqReturn
then workflow simply outputs the current value on return. If reqAdd or reqIfPos then the
workflow performs the operation on the current value and then outputs the intermediate
value on outNum. If the message is reqDiv then either a outNum or nan could result.

To complete the discussion of the calculator example, we come the main outer work-
flow, wfCalculator. This workflow takes wfOperation and runs it in a loop, exiting when
a final result is output.

wfCalc :: Workflow

wfCalc =
Wf (read ”wfCalc”)
ATrue

(Cf $ (pfRec ”initNum” [”num”] ‘Seq‘
(Iter ((Perf $ Pf (read ”pfWfOperation”) $ PfWf wfOperation) ‘Seq‘ Yield)
(Cho
(pfSend ”resReturn” [”v”])
(pfSend ”resNaN” [”nan”])

))))
[sdpp (”recInitNum”, ”num”) (”pfWfOperation”, ”inNum”)
, adpp (”pfWfOperation”, ”outNum”) (”pfWfOperation”, ”inNum”)
, adpp (”pfWfOperation”, ”return”) (”sendResReturn”, ”v”)
, adpp (”pfWfOperation”, ”nan”) (”sendResNaN”, ”nan”) ]
OTrue

The workflow has no (internal) preconditions and no (internal) postconditions – this
should be true of any workflow representing the top-level of a Web service. The initial
value is received in message initNum which also starts of the calculator main loop. This
input is passed on to the wfOperation workflow which executes on operation on it. An
output is then received which determines what happens next. If a res or nan is output
then the exit condition for the loop is satisfied, and hence an appropriate message will
be sent and the Web service terminates (or rather returns to the initial state). Otherwise
the loop is executed again, this time with the new input from the previous iteration.
Notice that the dataflow connection from the output of the operation workflow to its
input is asynchronous. This is important to ensure the value is not destroyed when the
yield occurs. In contrast, the initial value received by recInitNum should be destroyed
after it has been used once, and hence this connection is synchronous. This workflow
gives the transition system found in Figure 8.9.



254 Chapter 8. Implementation of CaSEip

0
1

g
2

T

3

in
N

um

32

s

20

T

s

89

re
qA

dd
?

16
4

re
qD

iv
?

39
8

re
qI

fP
os

?

60
7

re
qR

et
ur

n?

T

10
4

T

s 10
5

r’

s

10
6

e

13
3

T

13
4

ou
tN

um
’

13
5

T

tk
’

17
9

T

s 18
0

r’
s

18
1

e

T

32
0

T
na

n’

T

62
0

T
s62
1

r’
s

62
2

e

64
0

T

re
tu

rn
’

Figure 8.8: The calculator operation workflow wfOperation



8.5. Conclusion 255

0 1g 6T

7

s

10

initNum?

T

13
T

s

14

r’

s

15e
47

T

reqAdd?

reqIfPos?

196

reqDiv?

654
reqReturn?

T 387T 388resNaN!’

395

T

tk’

722
T

resReturn!’

Figure 8.9: Complete Calculator Example with scheduling

6

7

initNum?

44

T

reqAdd?

reqIfPos?

193reqDiv?

651

reqReturn?

T

384T

385

resNaN!’

T

719T resReturn!’

Figure 8.10: Calculator Interface

For completeness, and since this is the top-level workflow, I also provide the interface
automaton in Figure 8.10. The latter transition system hides away all the scheduling
channels since they are no longer needed by composing it with a coordination process,
the equivalent of a basic scheduler. This interface could readily be used to advertise the
behaviour of the calculator Web service. Therefore, this implementation certainly shows
that Cashew-A is a viable model for service composition.

8.5 Conclusion

In this Chapter I have examined in detail the question of how CaSEip, and CCS-style
process calculi in general, should be implemented. I have shown that Haskell provides
an excellent framework for specifying a process calculus’s syntax and operational se-
mantics. I have also shown that such a semantics, when implemented and combined
with the power of Monads, can be used to drive real-world interactions.

Furthermore, I looked at the whole issue of process verification. Firstly, I showed that
Type Families and Generalised Algebraic Datatypes provide the necessary foundations for



256 Chapter 8. Implementation of CaSEip

typing CCS process interactions. Although support is still in its infancy, this is clearly an
area of interest in the Functional Programming Community, even more so in Dependently
Typed languages, such as Epigram (McBride and McKinna, 2004) and Agda (Norell, 2007).
In the future I would expect that process monadic bindings could be fully typed, and
guaranteed safe, prior to execution.

Secondly I provided a foundation for Finite State based verification of processes. I
provided an algorithm for graph generation, and showed how this could be used to
implement minimisation and bisimulation via the Partition Refinement algorithm. This
work converges on ConCalc, my command line verification environment, which has been
invaluable in experimenting with the Cashew-A semantics.

Finally, I showed the beginnings of a framework for representing the semantic map-
ping from Cashew-A into CaSEip in Haskell. Although incomplete it shows that such a
mapping can be given using a syntax very close to the original formal semantics. In the
future, I would like to see this implementation completed and used to write a Web ser-
vice composition and verification server, which would support a graphical orchestration
design tool, and provide verification and testing features in real-time. In order to do this
though a better minimisation algorithm will be needed which can properly differentiate
internal choice from parallel composition of silent actions.

What is also missing from the implementation of Cashew-A is the ability to execute
a workflow. The framework exists as a I demonstrated in Sections 8.2.1, 8.2.3 and 8.2.6,
but due to time constraints I have not as yet been able to tie this to the process syntax.
Nevertheless, having tested out the bindings system, given further time this is certainly
a viable execution method.



Chapter 9

Conclusions and Future Work

In this final chapter I will provide a summary of all the work completed in this Thesis
and draw together some conclusions. There is still much work that can be done in
this area, and thus I outline my ideas for potential future work.

9.1 Summary

THE MAIN ACHIEVEMENT of this Thesis is a new paradigm for rapid develop-
ment of Composite Web services. Through the compositional semantic frame-
work I have developed a partial implementation, and it is now possible to build

a system for diagrammatically evolving a Web service, with verification facilities avail-
able in real-time. Furthermore, a future Abstract State Machines semantics would add the
possibility of execution and deployment, whilst retaining a model which can be incre-
mentally built without complete recompilation.

The work is unusual in some respects, because it focuses on such a wide variety of
subjects. This is somewhat inevitable as the service-oriented architecture is itself a multi-
disciplinary field. I have touched on subjects as diverse as Business Process Modelling,
Functional Programming and Process Algebra. The work in the Thesis is primarily under
three headings:

• Abstract Timed Process Calculus;

• Web service orchestration and choreography semantics;

• Functional implementation of the above.

Nevertheless the main aim of this Thesis has remained the same throughout, and that
is to provide a A Compositional Semantic Theory for Service Composition. Specifically, my
intention has been to provide a formal semantic framework for describing a wide variety
of service-oriented features in a compositional manner, and I believe this has been largely

257



258 Chapter 9. Conclusions and Future Work

achieved. A cornerstone of this theory is my abstract timed process calculus, but before
I could arrive at this goal, a number of intermediate steps were needed.

The first step was the development of a novel language called Cashew-A for de-
scribing orchestrations. This language draws on ideas from several preexisting Web ser-
vice languages and process algebras, primarily, the original language Cashew-S (Norton
et al., 2005), which was itself based on OWL-S (Martin et al., 2004). This language pro-
vided the basis for a dataflow based orchestration language, where precondition satis-
faction is integral to the language rather than an abstract and hidden afterthought. I then
took the dataflow model and expanded it to a full Boolean algebra, which allows more
complicated pre-conditions and post-conditions in line with WSMO Goals.

The control flow aspect is a CSP style language, with the usual process algebra op-
erators, but in addition several dataflow oriented constructs. The interleaving construct
allows the execution order of a bag of processes to be determined by their preconditions.
The yield construct forces a workflow to proceed maximally before allowing the process
it guards to execute, thus forcing all possible dataflow propagation. In a similar vein, the
language includes a wait operator, which forces the workflow to expend one time unit
(relative to a metric determined by the workflow head) before executing the guarded
process. Unlike yield, wait allows time to advance during the execution of a workflow’s
sub-components (as expected) and thus the wait operator is used to measure real periods
of time.

The language was then extended with compensation which allows the effects of a
workflow orchestration to be mitigated, whenever suitable compensation procedures
for each step are provided. This extended language contains a compensation operator
which allows a process to be paired with a compensation process. The language also
contains an operator to throw an exception and commence the compensation process.
Due to a lack of understanding as to how loops should interact with compensations, this
fragment contains no loop operator, as it would seemingly make the system non-finite
state.

I then turned my attention to giving Cashew-A an operational semantics. In Chapter
6 I explored some of the extensions which are needed to the base calculus CaSEin or-
der to permit description of service composition with an associated choreography. The
eventual result of this study was CaSEip , an extension of CaSE, which includes a more
liberal approach to patience which in turn allows, amongst other features, more timed
choice possibilities. I provided an update of CaSE’s Temporal Observation Congruence
equivalence theory called and briefly explored Alternating Simulation as a method for
describing choreography conformance.

I then used CaSEip to given an operational semantics to Cashew-A. The semantic
framework is designed in such a way that it is easily extensible, motivated by the fluid
nature of Web service languages. It provides a sophisticated scheduling system where
abstract time is central to deciding execution order. Dataflow also plays a key role, pro-
viding a graph structured layer on top of the traditional block-structured programming



9.2. Areas of Further Exploration 259

constructs. The Operational Semantics was extended with a compensation mechanism,
also driven by abstract time. As a result it is capable of representing various compensa-
tion strategies, though the compensation mechanism itself was limited to compensations
which cannot themselves fail.

I then took this one stage further and described an implementation of CaSEip, step-
by-step, which shows how processes can be used to orchestrate real world interactions
with the aid of Monads. I further provided a basic verification framework, including
support for graph generation and semantic bisimulation checking. In particular, my
plugin-oriented process experimentation environment ConCalc provides verification fea-
tures and is easily extensible. Finally I demonstrated a basic Cashew-A implementation
in Haskell, complete with a working example, which could provide the foundation for a
full service composition and verification server.

Having given a brief résumé of the work in this Thesis, I will now describe some
possible areas of future exploration.

9.2 Areas of Further Exploration

9.2.1 Negated Preconditions and Transient Inputs

A Cashew-A workflow allows the specification of input preconditions using a simple
Boolean algebra (A,t,u, 0, 1). When a workflow is executed a component with a non-
empty precondition begins in an unready state. Its inputs are then gradually populated
by the execution of other components connected by dataflow, eventually allowing it to
execute. An interesting question is what further behaviour could be modelled if in addi-
tion negative preconditions were allowed? With this system a component could become
ready, but if one of the negative preconditions is satisfied, it would later become unready
again.

In my analysis of the workflow patterns in Chapter 5, Section 5.8 I described the Crit-
ical Region pattern, in which two mutually exclusive regions in a workflow exist. This
cannot be modelled in Cashew-A as it stands, because it is only possible for one com-
ponent to enable another component via dataflow. With negative preconditions a com-
ponent could also disable a component temporarily, and re-enable it when (for example)
one critical region completes.

The reason this was not included in this work is because of uncertainty as to how
priority should be modelled in this context. If a dataflow element becomes available
which could disable a workflow, clearly it should be communicated immediately, or
else the workflow could start. Clocks don’t provide an obvious way of modelling this,
however. I could use yields, but this would lead to very inefficient workflows. A more
likely solution is the use of the RTC, and linking this to the readiness condition in a
similar way to the wait ◦P operator.



260 Chapter 9. Conclusions and Future Work

9.2.2 Value-added CaSEip

Value-added CaSEip is an idea which was partially developed during this Thesis, but not
sufficiently developed so as to include it. The idea is that when a WSMO Goal completes
execution, aside from preconditions it also specifies effects on the world. These effects are
specified logically, and are used by WSMO to do bespoke service composition. Currently
my semantic model does not account for them in any way, although clearly when a
number of Goals are composed an overall effect will be achieved.

My idea is to extend CaSEip’s action labels with a subscript denoting the effect or
cost this particular action has. Then when a process graph representing an orchestration
is minimised the overall effect could be computed and added the Goal description.

9.2.3 Protocol Mediation

The Cashew model presented thus far lacks an adequate form of mediating a service
choreography onto a template client choreography. A coordination currently directly
composes a Web service’s choreography with choreography of the enclosed workflow,
ensuring that a correspondence exists (via alternating simulation). This only works in the
limited cases where the protocol of a Web service can be directly predicted beforehand.
In many cases a more complex mapping will be required, such a mapping is known as a
protocol mediation. Specifically, a workflow defines the order it needs to receive data from
its partner Web service and this template protocol must be mapped onto an actual Web
service protocol.

A protocol mediation is a four-mode transition system, specifically with input and
output modifiers for each partner. Such a transition system is composed between the
Web service choreography and the client choreography, and must correspond to both IO
automata. It is unlikely that such a mediation can be derived directly given target chore-
ographies, since such a process will undoubtedly be intractable. Thus rather than direct
derivation, I propose a component library approach to protocol mediation. A protocol
mediation can be represented as a Cashew-A workflow, with only workflow and mes-
saging performances. There would be four messaging performances: ReceiveClient,
ReceiveServer, SendClient and SendServer. It seems likely that there are protocol me-
diation patterns, such that each protocol mediator can be modularised. Preliminary work
on service interaction patterns has already been done by Barros et al. (2005), who look at
the different ways in which a Web service can communicate.

These protocol mediation patterns would describe how part of a protocol can be me-
diated to another protocol part. They would then be composed to form a complete me-
diation for the service protocol.



9.2. Areas of Further Exploration 261

9.2.4 Enhanced Compensation Mechanism

The compensation mechanism presented in Chapters 5 and 7 is little more than a proof-
of-concept. Whilst it shows that a compensation mechanism can be encoded in CaSEip,
it does not provide many of the more advanced compensation features found in lan-
guages like WS-BPEL (Jordan and Evdemon, 2007) and StAC (Chessell et al., 2002). A
particular missing feature is that a compensable transaction may only be contained in a
single workflow. It ought to be possible that several workflows can be linked together in
a single transaction. Although it is possible to propagate failure upwards to the parent
workflow via outputs, it isn’t possible to propagate a failure in a workflow to a child.
To do this a change in the protocol is needed. This already somewhat exists in the form
of the x channel which is used for allowing the speculative parallel operator to cancel
unneeded threads. Currently, however, it only allows a workflow currently in progress
to be cancelled, not one that is complete. Clearly though this is possible in CaSEip.

Another feature which the compensation mechanism does not provide is a try-catch
mechanism, which would allow certain exceptions to be handled internally without the
need for compensation. Currently if an exception is raised the entire workflow uncondi-
tionally aborts. Instead it should be possible to have an exception handler which has the
option of either performing some corrective action, or passing the exception upward. In
addition a similar mechanism is needed to allow compensations which can fail. In this
case it should also be possible that a compensation action can throw an exception which
is caught by the workflow parent.

In addition investigation is needed into how loops should be compensated, if indeed
this is even possible in a finite state context. So to summarise the compensation mecha-
nism, whilst certainly an adequate start, needs further investigation.

9.2.5 Typed CaSEip implementation

In Chapter 8 Section 8.2.4 I studied how typed process bindings may be described using
the most recent features added to the GHC Haskell implementation, such as Generalised
Algebraic Data-Types (Peyton-Jones et al., 2006) and Type Families (Schrijvers et al., 2008).
Although my investigation proved unfruitful in the short term, it nevertheless shows
that a future Haskell will likely allow such an implementation. Indeed since this work
began a new version of GHC has been released adding many new features, so clearly
Haskell development is moving forward rapidly. It also seems likely that with so many
novel features appearing a new revision of the Haskell standard will be necessary1. With
respect to my work, it seems the most important future extension will be an overhaul of
the kind system. Currently Haskell only has kinds for type application, e.g. ∗ → ∗, but
kinds in the future will be customisable in a similar way to basic data-types, and thus
able to restrict the scope of type families. This will in turn improve decidability of type-

1Work on such a new standard can be seen at http://hackage.haskell.org/trac/
haskell-prime/

http://hackage.haskell.org/trac/haskell-prime/
http://hackage.haskell.org/trac/haskell-prime/


262 Chapter 9. Conclusions and Future Work

families and therefore flexibility, since their definitions will be closed over possible kinds.
For instance it may be possible to capture a proper type-list construct, something which
would be of great benefit. Such an extension is still a way off, though there is progress2.

9.2.6 Complete Web service composition engine

Thus far the implementation of Cashew-A described in Chapter 8 is far from complete.
Although I have provided a suitable basis using my Haskell CaSEip implementation, as
yet the semantics of Cashew-A are incomplete. I propose a representation of Cashew-A
where each workflow caches a minimised representation of the workflow’s semantics.
A query language must also be developed which enables the frontend to manipulate
the orchestration representation, such as adding a new performance or changing how
they are composed. Whenever a change is made the appropriate cached LTSs should be
updated and necessary verifications applied when necessary.

The minimisation algorithm will also need some work. For instance the existing al-
gorithm does not work well in concert with internal choice. The main reason for this
is interleaving semantics which means, that at a graph level, parallel actions and alter-
native actions look similar. Whilst the weak transition relation turns all silent actions
into appropriate non-determinism at the Web service interface level it is necessary to
distinguish internal choice from external choice. Furthermore an updated definition of
alternating simulation (Alur et al., 1998) from Section 6.8 will be needed to allow checking
conformance of CaSEip choreographies. Indeed, such an extension will likely motivate
a whole study in and of itself into the role of clocks (if any) in describing choreographies.

9.3 Outro

Although the overall theoretical contribution of this work is necessarily restricted, I ar-
gue that it is important in its context. In contrast to previous work on CaSE (Norton
et al., 2003; Norton and Fairtlough, 2004; Norton, 2005a), I have made a relatively shal-
low exploration of the new calculus, and have instead gone on to explore a wide variety
of subjects. I believe that the work in parallel areas is thus useful because it links theory
with practice.

In my opinion, the greatest single achievement of this Thesis is the Operational Se-
mantics given in Chapter 7. Here we have an extensible framework which is highly
modular in nature and governed by standard protocols. What I have effectively shown
in the semantics is that Timed Process Calculus is indeed an ideal theoretical paradigm for
service composition. It is flexible and capable of providing both standard features of pro-
gramming languages, along with a sophisticated dataflow model, message flow model,
and compensation. I believe the standardised nature of this model could potentially pay

2See the tracker at http://hackage.haskell.org/trac/ghc/wiki/KindSystem

http://hackage.haskell.org/trac/ghc/wiki/KindSystem


9.3. Outro 263

dividends should the ASM model be extended. It seems clear that it provides an ap-
propriate method of inspecting a components state, which links nicely into the ontology
structure. Much of my time in this work has been spent experimenting with the protocol,
trying to discover the minimal number of stages needed. I believe I have perfected this,
and along with the compensation protocol an excellent foundation is set down for future
work.

Though this is the greatest achievement, it is by no means the only achievement. I am
also very satisfied with the new libraries and programs I have implemented in Haskell
during this time. Even if CaSEip does not turn out to be useful to future researchers,
the extensible nature of ConCalc and the LTS library mean that they are useful in any
context. Indeed, I would say that the development of the Haskell tools has provided the
greatest personal enjoyment. Together with the semantic framework, the pieces are now
available to build a service composition server in Haskell. Indeed, it is my hope that
in the future, the service composition engine I have herein envisioned will be realised,
opening new possibilities for Web services, and advancing the Semantic Web vision.





Appendix A

Rejected Process Calculi

In this Appendix I consider two process calculi which where developed and rejected
as part of this Thesis work. Although not directly useful, they do illustrate two
alternative pathways I attempted. The two calculi are called Interruptible CCS
(ICCS), which focuses on localised interruption, and CaSEmt , which focuses on
generalisation of CaSE. The latter calculus is particularly informative in that it
illustrates how CaSE became my final calculus, CaSEip.

A.1 Interruptible CCS

Interruptible CCS (ICCS) follows the example of Lüttgen (1998) by integrating higher
priority actions into CCS which will act as interrupts. Lüttgen previously created a cal-
culus called CCSch i.e. CCS with Cleaveland and Hennessy style prioritisation (Cleave-
land and Hennessy, 1990). In this calculus each action has an associated natural number
index denoting its priority, e.g. a : j and b : k, where j, k ∈ N. The higher the number of
the index the lower the priority, with 0 being the highest. When two actions synchronise,
a prioritised silent action τk is produced which will prevent parallel lower priority ac-
tions from occurring. The pre-emptive power of such an action in this calculus is global.
Therefore, if any process produces an action a : 0, every other action of lower priority is
pre-empted away.

However, since I desire a component setting, I distinguish this ICCS from Lüttgen’s
calculus in that it will localise pre-emption to a particular area of the process topology.
The new calculus extends CCS with action preemption, in a style similar to that de-
scribed above. Each action label has two varieties, a prioritised action written as a, and an
unprioritised action written as a. Whilst unprioritised actions behave exactly like regular
actions in CCS, prioritised actions have a different style of synchronisation. When two
complementary prioritised actions a and a synchronise, a special prioritised synchroni-
sation action 〈a〉 is created rather than a τ . This prioritised action then pre-empts all
unprioritised actions (including, by extension, clock ticks) within its boundary, which is
defined using a hiding operator. A hidden prioritised action is observed as a regular τ ,

265



266 Chapter A. Rejected Process Calculi

Λ = {a, b, c · · · } Λ = {a | a ∈ Λ} A = Λ ∪ Λ ∪ {τ}
Λ = {a | a ∈ Λ} Λ = {a | a ∈ Λ} A = Λ ∪ Λ ∪ {〈a〉|a ∈ Λ}
α ∈ A α ∈ A λ ∈ A ∪A

E ::= 0 | α.E | α.E | E + E | E|E | E{[a 7→ b]} | E \ a | E/a | µX.E | X

Table A.1: ICCS Core Syntax

with its pre-emptive power removed.

For instance the process 〈a〉.E + b.F is behaviourally equivalent to 〈a〉.E, since the
b action is always pre-empted. Furthermore, an interruptible component may be repre-
sented like so:

(µX.(a.b.c.X Bc x.0) | e.x.0) \ x/x

This component repeatedly inputs a, b and c. However, if at some point an e input is
encountered, the component immediately executes 〈x〉 and halts. Here e is a command
to stop, and x is the interruption channel which does it. Note, that this cannot be done
in CCS since x would be simply interleaved with the other actions. Notice that x must
be both restricted and hidden, the restriction removes the input and output actions and
the hiding converts 〈x〉 to a τ . Therefore any other process outside the hiding scope of x
will not be pre-empted. The operator Bc is called the disabling operator, and it allows the
process on the right to interrupt the process on the left until c occurs.

A.1.1 Syntax

The symbol definitions and syntax of ICCS are shown in Table A.1. I use the usual Λ and
Λ to represent names and conames, with the additional dual sets Λ and Λ to represent
prioritised names and conames. In addition A represents the set of all unprioritised
actions with τ , and A represents the set of prioritised actions, including a prioritised
synchronisation action for each name (and no τ ). Other than these different sorts, the
syntax of CCS is identical1. There are only two new operators, prioritised action prefix
α.E and interruption hiding E/a. This syntax does not include the disabling operator
directly, as it can be derived by recursively summing the interrupting process with each
action prefix.

A.1.2 Operational Semantics

The operational semantics for ICCS can be found in Table A.2. I use a standard LTS-
based operational semantics, that is (E ,A ∪A ,→), where→⊆ E × (A ∪A )× E . Many

1Except that in this calculus and throughout the Appendix I am using {[]} brackets for renaming. This is
because square brackets are used for vectors.



A.1. Interruptible CCS 267

Act
α.E

α→ E
Act

α.E
α→ E

Rel
E

λ→ E′

E{[f ]} f(λ)→ E′{[f ]}
Res

E
λ→ E′

E \ a λ→ E′ \ a
(1)

Hid
E

λ→ E′

E/a
λ→ E′/a

(2) Hid
E
〈a〉→ E′

E/a
τ→ E′/a

(4)

Sum1
E

α→ E′

E + F
α→ E′

(3) Sum1
E

α→ E′

E + F
α→ E′

Sum2
F

α→ F ′

E + F
α→ F ′

(4) Sum2
F

α→ F ′

E + F
α→ F ′

Com1
E

α→ E′

E | F α→ E′ | F
(5) Com1

E
α→ E′

E | F α→ E′ | F

Com2
F

α→ F ′

E | F α→ E | F ′
(5) Com2

F
α→ F ′

E | F α→ E | F ′

Com3
E

a→ E′, F
a→ F ′

E | F τ→ E′ | F ′
(5) Com3

E
a→ E′, F

a→ F ′

E | F 〈a〉→ E′ | F ′

1) λ /∈ {a, a, a, a, 〈a〉} 2) λ /∈ {a, a} 3) F
〈a〉9 4) E

〈a〉9 5) E|F 〈a〉9

Table A.2: ICCS Operational Semantics

of the rules are similar to their counterparts in CCS, but with the addition of extra side
conditions to deal with pre-emption. The rules with underlined names are the new rules
which take account of the prioritised actions. These rules are virtually identical to the
CCS rules as well, the exception being Com3 which produces an interruption action 〈a〉
instead of a τ . Rules Sum1 and Sum2 require that the opposing side is not capable of
performing a prioritised action. The same is true of Com1-Com3, but since the parallel
composition may also synchronise to produce an interruption, the composition E | F is
checked for interruption. Hid hides interruption actions as τs.

ICCS has a number of interesting features. Like CaSE it has an implicit notion of
priority hierarchy, but it works in the opposite direction. When an interrupt is hidden
any unhidden interrupts have the ability to pre-empt away the τ produced. Thus the
further up an action is hidden in the process topology, the more pre-emptive power it
has. This allows us to achieve a similar effect to the prioritised τs of CCSch, where each τ
has an index denoting its priority. Here, τs also have a priority, but based on their origin
rather than intrinsic nature.



268 Chapter A. Rejected Process Calculi

A.1.3 Equivalence Theory

As in CCS, my intention is to build a weak bisimulation based equivalence which can be
used for basic component substitutivity. As usual, I begin by considering a straightfor-
ward adaptation of weak bisimulation. I use the standard weak transition relation⇒ as
given in Definition 2.3.2 (Chapter 2). To reiterate, the weak transition relation abstracts
from silent actions by linking states which are accessible by doing a visible action sur-
rounded by any number of silent actions. With it I derive a straightforward derivative
of weak bisimulation for the new calculus:

Definition A.1.1 Naı̈ve Interruptible Weak Bisimulation
A symmetric relationR is a Naı̈ve Interruptible Weak Bisimulation provided ∀〈E,F 〉 ∈ R:

• If E λ→ E′ then ∃F ′.F λ̂⇒ F ′ and 〈E′, F ′〉 ∈ R.

We say that E ≈n F whenever ∃R.〈E,F 〉 ∈ R and R is a Naı̈ve Interruptible Weak Bisimula-
tion.

Whilst≈n is an equivalence it is not a congruence, particularly with respect to parallel
composition (which is vital for the base equivalence). To see why, consider the processes
E = 〈a〉.〈b〉.0 and F = 〈a〉.τ.〈b〉.0. Whilst it follows that E ≈n F , if we parallel compose
G = c.0 then they are distinguishable. This is because τ has less pre-emptive power than
〈b〉. Once F has performed its first action 〈a〉, other parallel unprioritised actions like
G’s c can also occur. In E this is not possible because there is no gap between the two
prioritised actions.

There is a similar effect in the processes E = a.b.0 and F = a.τ.b.0, with parallel
process G = a.(c.0 + b.0). Whilst F will allow c to occur after the synchronisation on a
due to the presence of a τ , E will not. It is thus clear that in order to define a congruence
relation, sequences of prioritised actions cannot be separated by silent actions. They
behave fundamentally differently to regular actions, and so I modify the definition of
weak bisimulation:

Definition A.1.2 Interruptible Weak Bisimulation
A symmetric relationR is an Interruptible Weak Bisimulation provided ∀〈E,F 〉 ∈ R:

• If E α→ E′ then ∃F ′.F â⇒ F ′ and 〈E′, F ′〉 ∈ R;

• If E
α→ E′ then ∃F ′.F α→ F ′ and 〈E′, F ′〉 ∈ R.

We say that E u F whenever ∃R.〈E,F 〉 ∈ R andR is an Interruptible Weak Bisimulation.

It is easy to prove this is a congruence for the static operators – it is effectively weak
bisimulation combined with strong bisimulation. I therefore only include the proofs for
hiding and parallel composition.



A.1. Interruptible CCS 269

Theorem A.1.3 Compositionality of Interruptible Weak Bisimulation
Interruptible Weak Bisimulation is a congruence with respect to parallel composition and hiding.

Proof. We construct a relation R = {〈C[E], C[F ]〉 | E u F}∪ u, where C is a context
(e.g. [− | G]) and show that it is a weak bisimulation. That is, every element satisfies
both conditions of Definition A.1.2. We perform case analysis on each of the following
constructs:

1. C[E] = E | G

2. C[E] = E/a

1. There are three possible transitions:

(a) E | G a→ H . Either E a→ E′ with H ≡ E′ | G by Com1, or G a→ G′ with
H ≡ E | G′ by Com2.

• If the former then by Com1 it follows that G
〈a〉9. Furthermore, since E u

F it follows that F a⇒ F ′ . Therefore by Com1 F | G a⇒ F ′ | G and
〈E′ | G,F ′ | G〉 ∈ R as required.

• If the latter then by Com2 it follows that E
〈b〉9, and since E u F it follows

that F
〈b〉9. Therefore F | G a→ F | G′ and 〈E | G′, F | G′〉 ∈ R as required.

(b) E | G τ→ H . This follows a very similar proof to the above, combined with the
standard CCS proof (Milner, 1989a) in the case of a synchronisation.

(c) E | G α→ H . Again, similar to the above items, but using rules Com1 and
Com2, and therefore dispensing with the negative side-condition.

2. There are three possible transitions:

(a) E/a b→ E′/a

• By Hid it follows that E b→ E′;

• Since E u F then F b⇒ F ′ with E′ u F ′;

• Therefore by Hid it follows that F/a b⇒ F ′/a and 〈E′/a, F ′/a〉 ∈ R as
required.

(b) E/a τ→ E′/a. Either E τ→ E′ or E
〈a〉→ E′.

• If the former, then the proof follows the previous case exactly.

• If the latter, then by Hid it follows that E
〈a〉→ E′. Therefore F

〈a〉→ F ′ with
E′ u F ′, and by Hid F/a τ→ F ′/a with 〈E′/a, F ′/a〉 ∈ R as required.

(c) E/a
α→ E′/a.

• By Hid it follows that E
α→ E′. Thus, F

α→ F ′ with E′ u F ′, and by Hid
F/a

α→ F ′/a, with 〈E′/a, F ′/a〉 ∈ R as required.



270 Chapter A. Rejected Process Calculi

The converse follows by symmetry. �

This definition, although theoretically correct and yielding a congruence, is not a
weak bisimulation relation. Although normal actions are abstracted in the usual way,
interruptions do not allow any amount of silence to be inserted, simply because silence
allows other actions to occur which interruption prevents. This is very unsatisfactory,
and very much conflicts with the abstract time view of silence, which does not distin-
guish an empty sequence from a silent action (as indeed CCS doesn’t). More impor-
tantly though, standard algorithms for checking weak bisimulation (such as partition
refinement) are useless, since in no way can this equivalence be derived from it.

Therefore an alternative must be found. The evidence suggests that for a relation
to be a weak bisimulation derivative, it must have a concept of τ as the highest prior-
ity action which can be inserted between two actions without changing the contextual
behaviour. This is the situation with CaSE and it is also the situation with Lüttgen’s
calculus, which had a highest priority τ : 0 which can always been inserted between two
actions.

Switching to a localised version of interruption removed this property, and made τ
prey to interruption actions. So a possible way to solve this problem may be to have τ
non-pre-emptable by 〈a〉 actions. However, this introduces further problems, as it would
mean that | is no longer associative. To see why consider the process a.P | a.Q | 〈x〉.R.
The two different bracketings of this expression lead to different results. If we bracket
the left two processes, a synchronisation occurs and τ is output, which subsequently will
be a possible transition along with 〈x〉. However, if we bracket the right two processes,
a will be pre-empted, meaning no synchronisation can occur. Thus even this solution
doesn’t work.

It seems to be clear that having an interruption action isn’t going to work in a lo-
calised setting. Since τs should be abstracted and components viewed opaquely, τ must
retain its privileged position, meaning that any solution would require a very different
calculus to CCS. Thus, although the exploration of ICCS has been interesting, I will take
it no further and seek another avenue for representing interruption.

A.2 CaSE Generalised

In this section, I build a process calculus which is a direct extension of CaSE, which seeks
to generalise the timeout operators. Since this calculus does not fundamentally alter the
assumptions of CaSE, such as maximal progress, determinism and the way patience
operates, the equivalence theory will be the same.

I showed in Chapter 6 Section 6.2 that CaSE cannot represent a clock choice be-
cause neither fragile timeout nor stable timeout provide a suitable basis. Fragile timeout
only allows clock choices where other clocks not involved in the choice are held up, e.g.
bb∆cσ(E)cρ(F ), in which only σ and ρ can tick. Stable timeout allows patience but, since



A.2. CaSE Generalised 271

the operator is partly static, when a clock tick does occur the enclosing stable timeout op-
erators will not reduce. For instance, in dd0eσ(E)eρ(F ) if σ ticks the enclosing timeout on
ρ will only reduce once E performs a non-clock action, i.e. dd0eσ(E)eρ(F ) σ→ dEeρ(F ) .

There is clearly a problem with the timeout operators which needs to be dealt with.
The first option for solving this problem is adding a new “patience” operator to CaSE
which overcomes the difficulties of fragile timeout:

Wait
∗.E σ→ E

The wait operator is similar to the patient 0 operator in CaSE, but more flexible.
Rather than simply idling on clock ticks, it waits for any clock tick permitted by the
context to occur, and then enables the guarded process when it does. When placed on
the left-hand side of a fragile timeout (the interrupting process) this operator will tick
over every clock except the timeout’s own. For instance in the process b∗.Ecσ(F ) if σ
ticks, F will become enabled. If any other clock ticks, E will become enabled.

The wait operator, when combined with fragile timeout and recursion, can replace
some of the functionality of stable timeout. In particular patient clock prefix can be
written as σ.E , µX.b∗.Xcσ(E), which is equivalent to d0eσ(E). I do not use stable
timeout for any purpose other than patient clock ticks, so this allows me to expunge
it from the language, which is in itself useful as stable timeout is not axiomatised by
(Norton, 2005a). More importantly however, the new operator allows a fully patient
clock choice operator to be produced, for example:

σ.E ⊕ ρ.F = µX.bb∗.Xcσ(E)cρ(F )

If σ ticks then E is enabled, if ρ ticks then F is enabled. Any other clock tick will
cause the process to loop to X , achieving the same effect as idling, and thus achieving a
patient clock choice which naturally extends to any number of options.

However, this is only half the problem. In addition to allowing any external clock to
patiently tick, we also need to prevent other clocks in the phase transition system from
ticking at the wrong time. But it is not possible to cleanly prevent a specific clock from
ticking in a process which only performs clock actions. We could try to do this using ∆σ,
for instance in trying to represent Figure 6.4 we might write:

µX.b∗.X + ∆{ψ,ρ}cσ(bµY.b∗.Y + ∆σcψ(X)cρ(µZ.b∗.Z + ∆{ψ,ρ}cσ(Y )))

where ∆σ̃ ,
∑
σ∈σ̃

∆σ

This process uses ∆σ summed with ∗.X to allow only clocks not used by the process
to tick at a particular moment. However this operator won’t suffice, if still using the



272 Chapter A. Rejected Process Calculi

standard CaSE definition of +, where both sides must advance on the clock simultane-
ously as in parallel composition. The process ∗.E + ∆σ therefore leaves the ∆σ in place
after the clock ticks. As behaviour proceeds round the transition system, a context of
∆s will build up, giving rise to a potentially infinite state transition system. This once
again is similar to the original issue with stable timeout, where contexts would be left
behind which should reduce. The problem thus lies in the semantics of +. Furthermore,
the wait operator seems a little arbitrary and perhaps more of a “hack” than a solution.
Thus, rather than simply modifying CaSE I will now proceed to look for a more general
solution.

Temporal CCS (Moller and Tofts, 1990) is a real-time process calculus, which I briefly
described in Chapter 2, Section 2.5.1. It contains two versions of the choice operator,
called strong choice ++ and weak choice +. Strong choice behaves the same as + in CaSE
with respect to time – it must progress at the same rate on both sides. However weak
choice allows time to decide which process should be taken, provided only one of the
two can tick. If both can tick they progress in parallel to maintain clock determinism, as
before.

I thus extend CaSE with the weak and strong choice operators. Furthermore, I re-
place the timeout operator with a simpler insistent clock prefix operator σ.E, which was
derived in CaSE as σ.E , b∆cσ(E). These operators partially solve our problem since
weak choice is effectively the same as timed choice⊕. In addition though we need a way
to inhibit clocks that should not tick. Thus as a dual to the clock prefix operator, I intro-
duce a negative clock prefix operator ¬σ.E, which reduces when any clock other than σ

ticks. I call this new calculus CaSEmt, i.e. CaSE with Moller and Tofts’ choice operator.
The full syntax can be found in Table A.3, where I define CaSEmt expressions E .

Λ = {a, b, c · · · } Λ = {a|a ∈ Λ} A = Λ ∪ Λ ∪ {τ} T = {σ, ρ · · · }

α, β ∈ A γ, δ ∈ A ∪ T E,F,G · · · ∈ E

E ::= 0 | 1 | α.E | σ.E | ¬σ.E | E + E | E ++ E | E|E | E \ a
| E{[a 7→ a]} | E/σ | µX.E | X

Table A.3: Syntax of CaSEmt

In addition to changes already outlined I have also made some additional, primarily
cosmetic changes. Firstly whereas CaSE has 0 and ∆ to represent the maximally patient
and stalled processes respectively, in CaSEmt these have been replaced by 1 and 0. I have
made this alteration because 0 is then the process which can never allow any transitions,
and thus is the identity of +. In contrast 1 allows all clock ticks, and is thus the identity
of ++ , with 0 being its annihilator.

The language’s structural operational semantics are given in Table A.4 using a La-
belled Transition System (E ,A ∪ T ,→) with →⊆ E × A ∪ T × E . I write E

γ→ E′



A.2. CaSE Generalised 273

whenever the rules provide a way for E to evolve into E′ by doing a γ. In addition, I
write E

γ→ as shorthand for ∃E′.E γ→ E′.

Act
−

α.E
α→ E

tTick
−

σ.E
σ→ E

tStall
−

¬σ.E ρ→ E
(1)

Sum1
E

α→ E′

E + F
α→ E′

tSum1
E

σ→ E′

E + F
σ→ E′

(a, b) tPatient
−

a.E
σ→ a.E

Sum2
F

α→ F ′

E + F
α→ F ′

tSum2
F

σ→ F ′

E + F
σ→ F ′

(a, c) tIdle
−

1 σ→ 1

Sum3
E

α→ E′

E ++ F
α→ E′

tSum3
E

σ→ E′, F
σ→ F ′

E + F
σ→ E′ + F ′

Sum4
F

α→ F ′

E ++ F
α→ F ′

tSum4
E

σ→ E′, F
σ→ F ′

E ++ F
σ→ E′ + F ′

tCom
E

σ→ E′, F
σ→ F ′

E | F σ→ E′ | F ′
(d)

Com1
E

α→ E′

E | F α→ E′ | F
Com2

F
α→ F ′

E | F α→ E | F ′
Com3

E
a→ E′, F

a→ F ′

E | F α→ E′ | F ′

Res
E

γ→ E′

E \ a γ→ E′ \ a
(2) Rel

E
γ→ E′

E{[f ]} f(γ)→ E′{[f ]}
Rec

E{µX.E/X} γ→ E′

µX.E
γ→ E′

Hid
E

α→ E′

E/σ
α→ E′/σ

tHid1
E

σ→ E′

E/σ
τ→ E′/σ

tHid2
E

ρ→ E′

E/σ
ρ→ E′/σ

(c)

1) ρ 6= σ 2) γ /∈ {a, a} a) E + F
τ9 b) F

σ9 c) E
σ9 d) E | F τ9

Table A.4: CaSEmt Operational Semantics

The majority of the CCS rules are present and unchanged, although the sum rules,
Sum1 and Sum2 for actions are replicated for weak choice and strong choice, Sum3 and
Sum4 respectively. Rules prefixed with a lower-case t are timed rules, relating to clock
ticks. Clock prefix is handled by rule tTick. Notice that the only possible transition that
this operator can make is the parametrised clock tick – there are no other matching rules.
This is important because it means that when placed in a choice a clock prefix will not
permit patience. Therefore when placed in a choice, it will not cause a synchronisation
with the other side. For instance σ.E + ρ.F performs an exclusive clock choice – if clock
prefix were patient this would act exactly the same as its CaSE counterpart. The weak
choice operator + has three rules to define its behaviour, which effectively mirror the
rules of normal action choice. The first rule tSum1 states that if E can perform a σ tick to
E′ and F cannot perform a σ tick, then E+F can tick to E′ (provided no τs are present).
The second rule tSum2 is the reflection of this rule for F . The third rule tSum3 is the same
as the standard CaSE rule, which simply states that if both sides tick simultaneously
then both advance. These three rules together provide a fully deterministic clock choice
operator, which only allows choice resolution if exactly one side permits the clock to tick.



274 Chapter A. Rejected Process Calculi

Strong choice is handled by the standard CaSE rule alone in tSum4. It cannot be
removed altogether because it requires that both sides tick to allow an advance and is
thus analogous to logical AND. Negative clock prefix is described by rule tStall, which
states that any clock other than the parametrised clock σ will allow the process to reduce,
while σ itself is held-up as in CaSE’s ∆ operator. The remainder of the rules are identical
to their CaSE equivalents. The representation of our phase transition system in Figure
6.4 is now possible:

µX.(σ.µY.(ψ.X + ρ.µZ.(σ.Y + (¬ρ.Z ++ ¬ψ.0)) + ¬σ.Y ) + (¬ρ.X ++ ¬ψ.0))

Nevertheless this does seem very complicated for such a simple process. The issue
lies in making sure only the correct clocks are held up at the correct instant. Instead of
using composed ∆s which leave a context behind, I now use composed negative clock
ticks. For instance ¬ρ.X ++ ¬ψ.0 prevents ρ and ψ (i.e. NOT ρ AND NOT ψ). When
another clock ticks, the process simply recurses as it should, emulating a patient wait.

So why not have ¬ρ.X ++ ¬ψ.X? The reason is because even now when a clock ticks
on both sides it must advance both sides – this is the only way clock determinism can be
honoured. If both processes recursed back to X we’d have the same problem as before
except a lot worse, with two identical copies existing! Instead, only the first negative
prefix in the summation guards the recursion variable X , the rest guard a 0. This still
leaves a context behind, but it disappears on any transition and isn’t such a problem.
Nevertheless this process is unnecessarily complex for such a simple system.

What the exploration of this calculus shows is that adding extra operators for defin-
ing precisely which clocks are enabled and which are held up, whilst flexible, leads to
very complex processes. The problem, therefore, is more one of how patience is handled
fundamentally within the calculus’s semantics. It shouldn’t be necessary to explicitly
disable a clock tick if it is not wanted, rather the calculus should assume that a clock tick
isn’t required if it is not explicitly present.



Appendix B

Proofs for Chapter 6

B.1 Proof of Proposition 6.5.11

For any process E, if α ∈ AE then there exists an E′ such that E α→ E′.

Proof. By induction on the structure of process E.

• Cases E ≡ 0, E ≡ ∆, E ≡ ∆ρ and E ≡ X trivially satisfy the statement since then
α /∈ AE .

• E ≡ σ.F . Trivially true since α /∈ Aσ.F .

• E ≡ β.F . If α 6= β then this is trivially true. Otherwise, E ≡ α.F and by rule Act
α.F

α→ F as required.

• E ≡ F + G. By hypothesis, α ∈ AF implies ∃F ′.F α→ F ′ and α ∈ AG implies
∃G′.G α→ G′. We know that α ∈ AF+G and therefore by definition either α ∈ AF

or α ∈ AG. Hence by rules Sum1 and Sum2, either F +G
α→ F ′ or F +G

α→ G′ as
required.

• E ≡ µX.F , where α ∈ AF implies ∃F ′.F α→ F ′. By definition AµX.F = AF ,
hence α ∈ AF and ∃F ′.F α→ F ′. Since Act is the only rule which can induce an α
transition without preconditions we know that an expression of the form α.G for
someGmust be a subexpression of F , and thus also of µX.F . Since the substitution
cannot remove these subexpressions it follows that F{µX.F/X} α→ F ′{µX.F/X}
and hence also µX.F α→ F ′{µX.F/X} as required.

• E ≡ F | G, where α ∈ AF implies ∃F ′.F α→ F ′ and α ∈ AG implies ∃G′.G α→ G′.
We know that α ∈ AF | G and therefore by definition either α ∈ AF , α ∈ AG, or
a ∈ AF and a ∈ AG for some a with α = τ . The first two cases follow using
the same proof as for the + operator but using rules Com1 and Com2. Otherwise
a ∈ AF and a ∈ AG, so by hypothesis there exist F ′, G′ such that F a→ F ′ and
G

a→ G′. Then by rule Com3 it follows that F | G τ→ F ′ | G′ as required.

275



276 Chapter B. Proofs for Chapter 6

• E ≡ F \ a, where α ∈ AF implies ∃F ′.F α→ F ′. Since α ∈ AF\a we know by
definition that α ∈ AF and α /∈ {a, a}. Therefore F α→ F ′ for some F ′, and by Res,
F \ a α→ F ′ \ a as required.

• E ≡ F/σ. If α 6= τ then this is trivially true, as then AF/σ = AF , and therefore by
the inductive hypothesis F α→ F ′ and hence by rule Hid F/σ α→ F ′/σ as required.
Otherwise either τ ∈ AF (then the former case holds), or else σ ∈ TF . In the latter
case by Lemma 6.5.12 it follows that ∃F ′.F σ→ F ′. Therefore, by rule tHid1 it follows
that F/σ τ→ F ′/σ as required.

• E ≡ F{[a 7→ b]}. Then α ∈ AF implies ∃F ′.F α→ F ′. We know that α ∈ AF{[a7→b]}.
If α = b then either a ∈ AF or α ∈ AF . Therefore by the inductive hypothesis
either F α→ F ′ or F a→ F ′, and it follows by Rel that F{[a 7→ b]} α→ F ′{[a 7→ b]} or
F{[a 7→ b]} b→ F ′{[a 7→ b]} as required.

• E ≡ F{[σ 7→ a]}, where α ∈ AF implies ∃F ′.F α→ F ′. We know that α ∈ AF{[σ 7→a]}.
If α 6= a then AF = AF{[σ 7→a]} and F

α→ F ′ hence by Rel, F{[σ 7→ a]} α→ F ′{[σ 7→ a]}
as required. Otherwise either a ∈ AF (then the former case holds), or else σ ∈ TF .
In the latter case by Lemma 6.5.12 it follows that ∃F ′.F σ→ F ′. Therefore, by rule
Rel it follows that F{[σ 7→ a]} a→ F ′{[σ 7→ a]} as required.

Each case is proven and thus the inductive proof is complete. �

B.2 Proof of Proposition 6.5.12

For any process E, if σ ∈ TE then there exists an E′ such that E σ→ E′.

Proof. By induction on the structure of process E.

• Cases E ≡ 0, E ≡ ∆, E ≡ ∆ρ and E ≡ X are trivially true since then σ /∈ TE .

• E ≡ α.F . Trivially true since σ /∈ Tα.F .

• E ≡ ρ.F . If σ 6= ρ then this is trivial. Otherwise, E ≡ σ.F and by rule Act σ.F σ→ F

as required.

• E ≡ F + G. Then σ ∈ TF implies ∃F ′.F σ→ F ′ and σ ∈ TG implies ∃G′.G σ→ G′.
We know that σ ∈ TF+G and therefore by definition σ /∈ ΣF+G, and either σ ∈ TF ,
σ ∈ TG, or both. Therefore by the inductive hypothesis there exist F ′, G′ such that
F

σ→ F ′, G σ→ G′, or both. If both are true then by tSum1 F + G
σ→ F ′ + G′. If

σ ∈ TF only, then by rule tSum2 and the fact that σ /∈ TG and σ /∈ ΣG we have
F +G

σ→ F ′. Similarly, if σ ∈ TG only, then by rule tSum3 F +G
σ→ G′. Therefore,

in all cases ∃E′.F +G
σ→ E′ as required.



B.2. Proof of Proposition 6.5.12 277

• E ≡ µX.F , where σ ∈ TF implies ∃F ′.F σ→ F ′. Since σ ∈ TµX.F = TF and there
is an F ′ such that F σ→ F ′. By induction on the operational rules it follows that
there is a process G such that σ.G is a subexpression of F , since this is the only
process which can induce a σ transition with no preconditions. Furthermore, it
follows that ∆, ∆σ and τ.H for any H are not subexpressions of F , as this would
prevent a σ transition. These subexpression statements also hold for µX.F . Now,
we know that the substitution F{µX.F/X} cannot introduce subexpressions not
in µX.F and F . Hence, it follows that σ.G is still a subexpression of F{µX.F/X}
and ∆,∆σ and τ.H for any H aren’t. Prevention of a σ transition would require,
by rules tSum1, tSum2 and tSum3, that σ ∈ ΣF (since rule Rec can only produce
more transitions not fewer than its encapsulated expression), but this would only
be possible if ∆, ∆σ or τ.H were subexpressions. Since we know they aren’t and
σ.G, it follows that an F ′ is already instantiated such that F{µX.F/X} σ→ F ′ and
hence µX.F σ→ F ′ as required.

• E ≡ F | G, with σ ∈ TF implies ∃F ′.F σ→ F ′ and σ ∈ TG implies ∃G′.G σ→ G′. By
hypothesis, σ ∈ TF | G. First it is necessary to prove that τ /∈ AF | G, as this side-
condition is required by all three clock rules for parallel composition. This can be
shown by application of Lemmas 6.5.9 and 6.5.10 since we know that σ ∈ TF | G.
Since TF | G = TF ∪ TG, this gives rise to three possibilites:

– σ ∈ TF and σ /∈ TG. Therefore ∃F ′.F σ→ F ′. Since we know that σ /∈ ΣF | G,
then σ /∈ ΣG. Since we already know that τ /∈ AF | G it follows by rule tCom2
that F | G σ→ F ′ as required.

– σ ∈ TG and σ /∈ TF . Follows the symmetric argument of the above with the
final application of rule tCom3.

– σ ∈ TF and σ ∈ TG. Therefore ∃F ′.F σ→ F ′ and ∃G′.G σ→ G′. Since we
already know that τ /∈ AF | G it follows by rule tCom1 that F | G σ→ F ′ | G′ as
required.

• E ≡ F \ a. Restriction has no effect on clocks, so this case follows by simple
induction.

• E ≡ F/ρ, where σ ∈ TF implies ∃F ′.F σ→ F ′. If σ = ρ then TE = ∅ and the result
follows. If ρ ∈ TF then likewise TE = ∅. Otherwise, it follows that TF/ρ = TF , and
therefore ∃F ′.F σ→ F ′ as required.

• E ≡ F{[a 7→ b]}. Action renaming has no effect on clocks, so this case follows by
simple induction.

• E ≡ F{[ρ 7→ a]}, where σ ∈ TF implies ∃F ′.F σ→ F ′. If σ = ρ then σ /∈ TF{[ρ7→a]}

and thus the result follows trivially. Otherwise σ ∈ TF and thus ∃F ′.F σ→ F ′ as
required.



278 Chapter B. Proofs for Chapter 6

Each case is proven and thus the inductive proof is complete. �

B.3 Proof of Proposition 6.5.13

For any process E, if ∃E′.E γ→ E′ then γ ∈ AE ∪ TE .

Proof. By induction on the structure of processE, and then case analysis using every
rule in Table 6.3. We can therefore omit processes which do not match any rule.

• E ≡ γ.F . By rule Act E
γ→ F . If γ = α then Aα.F = {α}, thus satisfying the

statement. If γ = σ then Tσ.F = {σ}, also satisfying the statement.

• E ≡ F +G, with (1) ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF and (2) ∃G′.G γ→ G′ implies
γ ∈ AG ∪ TG. The following rules can apply:

– Sum1. Then F
α→ F ′ with γ = α. Hence by assumption (1) α ∈ AF and

therefore α ∈ AF+G as required.

– Sum2. Then G
α→ G′ with γ = α. Hence by assumption (2) α ∈ AG and

therefore α ∈ AF+G as required.

– tSum1. Then F
σ→ F ′ and G

σ→ G′. Therefore it follows by assumptions (1)
and (2) that σ ∈ TF and σ ∈ TG. Then by Proposition 6.5.10 it follows that
σ /∈ ΣF and σ /∈ ΣG. Therefore σ ∈ TF+G.

– tSum2. Then F σ→ F ′ and σ /∈ TG ∪ ΣG. By assumption (1) it follows that σ ∈
TF . Furthermore, by Proposition 6.5.10 it follows that σ /∈ ΣF and therefore
σ ∈ TF ∪ TG \ ΣF ∪ ΣG = TF+G.

– tSum3. The same reasoning can be applied in the case of tSum2.

• E ≡ µX.F , with (1) ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF . By rule Rec it follows
that F{µX.F/X} γ→ E′. We know that F is sequential, and therefore the only way
to induce a transition in F{µX.F/X} is via rule Act. Hence it follows that γ.G for
someG is a subexpression of F . Therefore F without substitutions can only contain
additional unguarded X variables which do not prevent even a σ transition from
being produced. Therefore by assumption (1) it follows that γ ∈ AF ∪ TF . Since
AµX.E = AE and TµX.E = TE we are done.

• E ≡ F | G, with (1) ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF and (2) ∃G′.G γ→ G′ implies
γ ∈ AG ∪ TG. The following rules can apply:

– Com1. Then F
α→ F ′ with γ = α. Hence by assumption (1) α ∈ AF and

therefore α ∈ AF | G as required.

– Com2. Then G
α→ G′ with γ = α. Hence by assumption (2) α ∈ AG and

therefore α ∈ AF | G as required.



B.3. Proof of Proposition 6.5.13 279

– Com3. Then F
a→ F ′ and G

a→ G′. Hence by assumption (1) a ∈ AF and
by assumption (2) a ∈ AG. Therefore τ ∈ {τ | a ∈ AF ∧ a ∈ AG} and thus
a ∈ AF | G as required.

– tCom1. Then F
σ→ F ′ and G

σ→ G′. Therefore it follows by assumptions (1)
and (2) that σ ∈ TF and σ ∈ TG. Then by Proposition 6.5.10 it follows that
σ /∈ ΣF and σ /∈ ΣG. Therefore σ ∈ TF | G.

– tCom2. Then F
σ→ F ′, σ /∈ ΣG ∪ TG and τ /∈ AF | G. By assumption (1)

σ ∈ TF and by Proposition 6.5.10 it follows that σ /∈ ΣF . Therefore σ ∈
(TF ∪ TG) \ (ΣF ∪ ΣG) = TF | G as required.

– tCom3. Uses the same reasoning as tCom2.

• E ≡ F \ a, with ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF . Then by rule Res it follows
that F

γ→ F ′ and γ /∈ {a, a}. Hence γ ∈ AF ∪ TF . If γ = σ then σ ∈ TF = TF\a as
required. Otherwise, if γ = α then α ∈ AF \ {a, a} = AF\a, since α /∈ {a, a}.

• E ≡ F{[σ 7→ a]}, with ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF . If F
γ→ F ′ then γ ∈

AF{[σ 7→a]} ∪ TF{[σ 7→a]} as required. Otherwise, if γ = a then either F σ→ F ′ and hence
σ ∈ TF . Therefore σ ∈ TF{[σ 7→a]} as required.

• E ≡ F{[a 7→ b]}, with ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF . This follows using a very
similar argument to the above.

• E ≡ F/σ, with (1) ∃F ′.F γ→ F ′ implies γ ∈ AF ∪ TF . The following rules can
apply:

– Hid. Then γ = α and F α→ F ′. Hence by assumption (1) it follows that α ∈ AF

and therefore α ∈ AF/σ as required.

– tHid1. Then γ = τ and F
σ→ F ′. Hence by assumption (1) it follows that

σ ∈ TF and therefore τ ∈ AF ∪ {τ |σ ∈ TE} = AF/σ as required.

– tHid2. Then γ = ρ, F
ρ→ F ′ and σ /∈ TF . Hence by assumption (1) it follows

that ρ ∈ TF and since σ /∈ TF , TF/σ = TF as required.

Each case is proven and thus the inductive proof is complete. �





Bibliography

Aceto, L., Fokkink, W., Ingólfsdóttir, A. and Luttik, B. (2005), ‘CCS with Hen-
nessy’s merge has no finite-equational axiomatization’, Theoretical Computer Science
330(3), 377–405.

Alur, R., Henzinger, T., Kupferman, O. and Vardi, M. (1998), Alternating refinement
relations, in ‘Proc. 9th Intl. Conference on Concurrency Theory (CONCUR ’98)’, Vol.
1446 of Lecture Notes in Computer Science, Springer, pp. 163–178.

Andersen, H. and Mendler, M. (1994), An asynchronous process algebra with multiple
clocks, in ‘Proc. 5th European Symposium on Programming (ESOP ’94)’, Vol. 788 of
Lecture Notes in Computer Science, Springer, pp. 58–73.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I. and Weerawarana, S. (2003), Business Process
Execution Language for Web-Services version 1.1, Technical report, IBM. Accessed
10/03/2009.
URL: http://www.oasis-open.org/committees/download.php/2046/

BPELV1-1May52003Final.pdf

Ankolekar, A., Huch, F. and Sycara, K. P. (2002), Concurrent semantics for the web ser-
vices specification language DAML-S, in F. Arbab and C. Talcott, eds, ‘Proc. 5th Intl.
Conference on Coordination Models and Languages’, Vol. 2315 of Lecture Notes in Com-
puter Science, Springer, pp. 14–21.

Baeten, J. C. M. and Verhoef, C. (1995), Concrete process algebra, in ‘Handbook of logic
in computer science (vol. 4): Semantic Modelling’, Oxford University Press, Oxford,
UK, pp. 149–268.

Barros, A., Dumas, M. and Hofstede, A. H. M. (2005), Service interaction patterns, in
‘Proc. 3rd Intl. Conference on Business Process Management (BPM 2005)’, Vol. 3649 of
Lecture Notes in Computer Science, Springer, pp. 302–318.

Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger, M., Hull, R., Kifer, M., Martin,
D., McIlraith, S., McGuinness, D., Su, J. and Tabet, S. (2005), Semantic Web Services
Ontology (SWSO), Technical report, SWSI. Accessed 27/03/2009.
URL: http://www.daml.org/services/swsf/1.0/swso/

281

http://www.oasis-open.org/committees/download.php/2046/BPEL V1-1 May 5 2003 Final.pdf
http://www.oasis-open.org/committees/download.php/2046/BPEL V1-1 May 5 2003 Final.pdf
http://www.daml.org/services/swsf/1.0/swso/


282 BIBLIOGRAPHY

Bergstra, J. A., Ponse, A. and Smolka, S. A. (2001), Preface, in J. A. Bergstra, A. Ponse and
S. A. Smolka, eds, ‘Handbook of Process Algebra’, North-Holland, pp. v–ix.

Bergstra, J. and Klop, J. (1984), ‘Process algebra for synchronous communication’, Infor-
mation and Control 60(1/3), 109–137.

Bocchi, L., Laneve, C. and Zavattaro, G. (2003), A calculus for long-running transactions,
in ‘Proc. of the 6th International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS 2003)’, Vol. 2884 of Lecture Notes in Computer
Science, Springer, pp. 124–138.

Börger, E. (1999), High level system design and analysis using abstract state machines, in
W. Stephan, P. Traverso and M. Ullman, eds, ‘Current Trends in Applied Formal Meth-
ods (FM-Trends 98)’, Vol. 1641 of Lecture Notes in Computer Science, Springer, pp. 1–43.

Box, D., Ehnebuske, D., Kakivaya, G., Laymann, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S. and Winer, D. (2000), Simple object access protocol (SOAP) 1.1, Technical
report, World Wide Web Consortium. Accessed 10/03/2009.
URL: http://www.w3.org/TR/2000/NOTE-SOAP-20000508

Bravetti, M. and Zavattaro, G. (2007), ‘Service oriented computing from a process alge-
braic perspective’, Journal of Logic and Algebraic Programming 70(1), 3–14.

Bruni, R., Butler, M., Ferreira, C., Hoare, T., Melgratti, H. and Montanari, U. (2005), Com-
paring two approaches to compensable flow composition, in ‘Proc. 16th Intl. Confer-
ence on Concurrency Theory (CONCUR 2005)’, Vol. 3653 of Lecture Notes in Computer
Science, Springer, pp. 383 – 397.

Bruni, R., Melgratti, H. and Montanari, U. (2005), Theoretical foundations for compen-
sations in flow composition languages, in ‘Proc. of the 32nd ACM SIGPLAN-SIGACT
symposium on Principles Of Programming Languages (POPL’05)’, ACM Press, New
York, NY, USA, pp. 209–220.

Butler, M. and Ferreira, C. (2004), An operational semantics for StAC, a language
for modelling long-running business transactions, in R. D. Nicola, G. Ferrari and
G. Meredith, eds, ‘Proc. of Coordination 2004’, Vol. 2949 of Lecture Notes in Computer
Science, Springer, pp. 87–104.

Butler, M., Ferreira, C. and Ng, M. (2005), ‘Precise modelling of compensating busi-
ness transactions and its application to BPEL’, Journal of Universal Computer Science
11(5), 712–743.

Butler, M. J., Hoare, C. A. R. and Ferreira, C. (2005), A trace semantics for long-running
transactions, in A. Abdallah, C. B. Jones and J. Sanders, eds, ‘25 years of CSP’, Vol.
3525 of Lecture Notes in Computer Science, Springer, pp. 133–150.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508


BIBLIOGRAPHY 283

Butler, M. and Ripon, S. (2005), Executable semantics for compensating CSP, in
M. Bravetti, L. Kloul and G. Zavattaro, eds, ‘Proc. 2nd Intl. Workshop on Web Services
and Formal Methods (WS-FM 2005)’, Vol. 3670 of Lecture Notes in Computer Science,
Springer, pp. 243–256.

Chakravarty, M. M. T., Keller, G., Peyton-Jones, S. and Marlow, S. (2005), Associated
types with class, in ‘Proc. 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL 2005)’, Vol. 40 of ACM SIGPLAN Notices, ACM, New
York, NY, USA, pp. 1–13.

Chessell, M., Ferreira, C., Griffin, C., Henderson, P., Vines, D. and Butler, M. (2002),
‘Extending the concept of transaction compensation’, IBM Systems Journal 41(4), 743–
758.

Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. (2001), Web services de-
scription language (WSDL) 1.1, Technical report, World Wide Web Consortium. Ac-
cessed 10/03/2009.
URL: http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Cleaveland, R. and Hennessy, M. (1990), ‘Priorities in process algebras’, Information and
Computation 87(1), 58–77.

Cleaveland, R., Lüttgen, G. and Mendler, M. (1997), An algebraic theory of multiple
clocks, in ‘8th Intl. Conference on Concurrency Theory (CONCUR ’97)’, Vol. 1243 of
Lecture Notes in Computer Science, Springer, pp. 166–180.

de Alfaro, L. and Henzinger, T. A. (2001), ‘Interface automata’, SIGSOFT Software Engi-
neering Notes 26(5), 109–120.

de Bruijn, N. (1972), ‘Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem’, Indaga-
tiones Mathematicae 34(5), 381–392.

Dijkstra, E. (1975), ‘Guarded commands, nondeterminacy and formal derivation of pro-
grams’, Communications of the ACM 18(8), 453–457.

Ellson, J., Gansner, E., Koutsofios, E., North, S. and Woodhull, G. (2004), Graphviz and
dynagraph – static and dynamic graph drawing tools, in M. Jünger and P. Mutzel, eds,
‘Graph Drawing Software’, Springer, chapter 5, pp. 127–148.

Erwig, M. (2001), ‘Inductive graphs and functional graph algorithms’, Journal of Func-
tional Programming 11(05), 467–492.

Fensel, D., Polleres, A. and de Bruijn, J. (2007), ‘D14v1.0. ontology-based choreography’.
Accessed 10/03/2009.
URL: http://www.wsmo.org/TR/d14/v1.0/

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.wsmo.org/TR/d14/v1.0/


284 BIBLIOGRAPHY

Foster, S. (2005), HAIFA : An XML based interoperability solution for Haskell, in ‘Pre-
proc. 6th Symposium on Trends in Functional Programming (TFP 2005)’, Tartu Uni-
versity Press, pp. 103–118.

Foster, S. (2007), Modelling compensation in timed process algebra, in ‘Proc. 2nd Euro-
pean Young Researcher’s Workshop on Service Oriented Computing (YR-SOC 2007)’,
pp. 31–37.

Foster, S., Hughes, A. and Norton, B. (2005), Composition and semantic enhancement of
web-services : The CASheW-s project, in ‘Proc. 1st Young Researcher’s Workshop on
Service Oriented Computing (YR-SOC 2005)’, pp. 29–32.

Garcia-Molina, H. and Salem, K. (1987), Sagas, in ‘Proc. of the 1987 ACM SIGMOD inter-
national conference on Management of data (SIGMOD ’87)’, ACM Press, New York,
NY, USA, pp. 249–259.

Gray, J. (1981), The transaction concept: Virtues and limitations (invited paper), in ‘Proc.
7th Intl. Conference on Very Large Data Bases (VLDB 1981)’, IEEE Computer Society,
pp. 144–154.

Haas, H. and Brown, A. (2004), Web-services glossary, Technical report, W3C Working
Group. Accessed 10/03/2009.
URL: http://www.w3.org/TR/ws-gloss

Haerder, T. and Reuter, A. (1983), ‘Principles of transaction-oriented database recovery’,
ACM Computing Surveys (CSUR) 15(4), 287–317.

Hennessy, M. (1993), Timed process algberas: A tutorial, Technical Report 1993:02,
COGS, University of Sussex.

Hennessy, M. and Regan, T. (1995), ‘A process algebra for timed systems’, Information
and Computation 117(2), 221–239.

Hoare, C. A. R. (1978), ‘Communicating sequential processes’, Communications of the
ACM 21(8), 666–677.

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice Hall.
URL: http://www.usingcsp.com

Jordan, D. and Evdemon, J. (2007), Web Services Business Process Execution Language
version 2.0, Technical report, OASIS. Accessed 10/03/2009.
URL: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y. and Barreto, C. (2005),
Web services choreography description language version, Technical report, World
Wide Web Consortium.
URL: http://www.w3.org/TR/ws-cdl-10/

http://www.w3.org/TR/ws-gloss
http://www.usingcsp.com
http://www.w3.org/TR/ws-cdl-10/


BIBLIOGRAPHY 285

Kick, M. (1999), Modelling synchrony and asynchrony with multiple clocks, Master’s
thesis, University of Passau.

Kuropka, D. and Nern, H. (2006), ‘Semantics poses challenge for web services’, ICT Re-
sults . Accessed 10/03/2009.
URL: http://cordis.europa.eu/ictresults/index.cfm/section/news/
Tpl/article/ID/82454

Laneve, C. and Zavattaro, G. (2005), Foundations of web transactions, in ‘Proc. Founda-
tions of Software Science and Computational Structures (FOSSACS 05)’, Vol. 3441 of
Lecture Notes in Computer Science, Springer, pp. 282–298.

Lucchi, R. and Mazzara, M. (2007), ‘A pi-calculus based semantics for WS-BPEL’, Journal
of Logic and Algebraic Programming (JLAP) 70, 96–118.

Lüttgen, G. (1998), Pre-emptive Modeling of Concurrent and Distributed Systems, Shaker
Verlag. ISBN 3-8265-3932-X.

Lüttgen, G. and Mendler, M. (2005), When 1 clock is not enough, in L. Aceto and A. Gor-
don, eds, ‘Intl. Workshop on Algebraic Process Calculi: The First Twenty Five Years
and Beyond (PA 2005)’, Vol. NS-05-3 of BRICS Notes Series, BRICS – Basic Research in
Computer Science, Bertinoro, Italy, pp. 155–158.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayana,
S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N. and Sycara, K. (2004),
OWL-S : Semantic markup for web services, Technical report, OWL-S coalition. Ac-
cessed 10/03/2009.
URL: http://www.daml.org/services/owl-s/1.1/overview/

Martin, J., Hailpern, B., Tarr, P. and Arsanjani, A. (2003), ‘Web services: Promises and
compromises’, Queue 1(1), 48–58.

McBride, C. and McKinna, J. (2004), ‘The view from the left’, Journal of Functional Pro-
gramming 14(01), 69–111.

McIlraith, S. A., Son, T. C. and Zeng, H. (2001), ‘Semantic web services’, IEEE Intelligent
Systems 16(2), 46–53.

Milner, A. J. R. G. (1980), A Calculus of Communicating Systems, Vol. 92 of Lecture Notes in
Computer Science, Springer.

Milner, A. J. R. G. (1989a), Communication and Concurrency, Prentice Hall.

Milner, A. J. R. G. (1989b), ‘A complete axiomatisation for observation congruence of
finite-state behaviours’, Information and Computation 81(2), 227–247.

http://cordis.europa.eu/ictresults/index.cfm/section/news/Tpl/article/ID/82454
http://cordis.europa.eu/ictresults/index.cfm/section/news/Tpl/article/ID/82454
http://www.daml.org/services/owl-s/1.1/overview/


286 BIBLIOGRAPHY

Milner, A. J. R. G. (1999), Communicating and Mobile Systems: The Pi-Calculus, Cambridge
University Press.

Misra, J. and Cook, W. R. (2007), ‘Computation orchestration: A basis for wide-area
computing’, Journal of Software and Systems Modeling 6(1), 83–110.

Moller, F. and Tofts, C. M. N. (1990), A temporal calculus of communicating systems,
in ‘Proc. Intl. Conference on Concurrency Theory (CONCUR ’90)’, Vol. 458 of Lecture
Notes in Computer Sciences, pp. 401–415.

Narayanan, S. and McIlraith, S. A. (2002), Simulation, verification and automated com-
position of web services, in ‘Proc. 11th Intl. World Wide Web Conference (WWW2002)’,
pp. 77–88.

Nicollin, X., Sifakis, J. and Yovine, S. (1993), ‘From ATP to timed graphs and hybrid
systems’, Acta Informatica 30(2), 181–202.

Norell, U. (2007), Towards a practical programming language based on dependent type
theory, PhD thesis, Chalmers University of Technology.

Norton, B. (2005a), Behavioural types for synchronous software composition, in
‘Proc. of Workshop on Foundations of Interface Technologies (FIT 2005)’. Accessed
10/02/2009.
URL: http://dip.semanticweb.org/documents/Barry-Norton-Behavioural-Types-for-
Synchronous-Software-Composition.pdf

Norton, B. (2005b), Experiences with OWL-S, directions for service composition: The
Cashew position, in ‘Proc. OWL : Experiences and Directions Workshop (OWLED
2005)’.

Norton, B. and Fairtlough, M. (2004), Reactive types for dataflow-oriented software ar-
chitectures, in D. C. Martin, ed., ‘Proceedings of 4th IEEE/IFIP Conference on Software
Architecture (WICSA2004)’, Vol. P2172, IEEE Computer Society Press, pp. 211–220.

Norton, B., Foster, S. and Hughes, A. (2005), A compositional operational semantics for
OWL-S, in M. Bravetti, L. Kloul and G. Zavattaro, eds, ‘Proc. 2nd Intl. Workshop on
Web Services and Formal Methods (WS-FM 2005)’, Vol. 3670 of Lecture Notes in Com-
puter Science, Springer, pp. 303–317.

Norton, B., Lüttgen, G. and Mendler, M. (2003), A compositional semantic theory for syn-
chronous component-based design, in ‘14th Intl. Conference on Concurrency Theory
(CONCUR ’03)’, Vol. 2761 of Lecture Notes in Computer Science, Springer, pp. 461–476.

Norton, B., Pedrinaci, C., Henocque, L. and Kleiner, M. (2007), ‘3-level behavioural mod-
els for Semantic Web Services’, Journal of Multi-agent And Grid Systems (MAGS) .



BIBLIOGRAPHY 287

Paige, R. and Tarjan, R. (1987), ‘Three partition refinement algorithms’, SIAM Journal on
Computing 16(6), 973–989.

Peyton-Jones, S., ed. (2003), Haskell 98 Language and Libraries: the Revised Report, Cam-
bridge University Press.

Peyton-Jones, S., Gordon, A. and Finne, S. (1996), Concurrent Haskell, in ‘Conference
Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles Of
Programming Languages’, St. Petersburg Beach, Florida, pp. 295–308.

Peyton-Jones, S., Vytiniotis, D., Weirich, S. and Washburn, G. (2006), Simple unification-
based type inference for GADTs, in ‘Proc. 11th Intl. SIGPLAN Conference on Func-
tional Programming (ICFP 2006)’, Vol. 41 of ACM SIGPLAN Notices, ACM Press, New
York, NY, USA, pp. 50–61.

Plotkin, G. D. (1981), A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, University of Aarhus.

Prasad, K. V. S. (1991), A calculus of broadcasting systems, in ‘Proc. of the Intl. Joint
Conference on Theory and Practice of Software Development (TAPSOFT ’91)’, Vol.
493 of Lecture Notes in Computer Science, Springer, pp. 338–358.

Prasad, K. V. S. (1995), ‘A calculus of broadcasting systems’, Science of Computer Program-
ming 25(2-3), 285–327.

Rabin, M. and Scott, D. (1959), ‘Finite automata and their decision problems’, IBM Journal
of Research and Development 3(2), 114–125.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stollberg, M., Polleres, A., Feier,
C., Bussler, C. and Fensel, D. (2005), ‘Web service modeling ontology’, Applied Ontology
1, 77–106.

Sangiorgi, D. and Milner, R. (1992), The problem of ”weak bisimulation up to“, in
‘Proc. 3rd Intl. Conference on Concurrency Theory (CONCUR ’92)’, Vol. 630 of LNCS,
Springer, pp. 32–46.

Sangiorgi, D. and Walker, D. (2001), The π-calculus: A Theory of Mobile Processes, Cam-
bridge University Press.

Schrijvers, T., Peyton-Jones, S., Chakravarty, M. and Sulzmann, M. (2008), Type Checking
with Open Type Functions, in ‘Proc. 13th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2008)’, Vol. 43 of ACM SIGPLAN Notices, ACM, New
York, NY, USA, pp. 51–62.

Sheard, T. and Peyton-Jones, S. (2002), Template metaprogramming for Haskell, in
M. M. T. Chakravarty, ed., ‘ACM SIGPLAN Haskell Workshop 02’, ACM, pp. 1–16.



288 BIBLIOGRAPHY

Stollberg, M. and Norton, B. (2007), A refined goal model for Semantic Web Services,
in ‘Proc. of the 2nd Intl. Conference on Internet and Web Applications and Services
(ICIW 2007)’.

Tidwell, D. (2000), ‘Web Services – The Web’s Next Revolution’.
URL: http://www.ibm.com/developerWorks

van der Aalst, W. (2005), ‘Pi Calculus Versus Petri Nets: Let Us Eat Humble Pie Rather
Than Further Inflate the Pi Hype’, Business Process Trends .

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. and Barros, A. (2003), ‘Workflow
Patterns’, Distributed and Parallel Databases 14(1), 5–51.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. and Barros, A. (2006), Workflow
Control-Flow Patterns: A Revised View, Technical Report BPM-06-22, BPMcenter.org.

van Glabbeek, R. J. (2001), The linear time-branching time spectrum I: The semantics
of concrete, sequential processes, in J. A. Bergstra, A. Ponse and S. A. Smolka, eds,
‘Handbook of Process Algebra’, North-Holland, chapter 8, pp. 3–99.

von Neumann, J. (1951), The general and logical theory of automata, in L. A. Jeffress,
ed., ‘Cerebral Mechanisms in Behavior: The Hixon Symposium’, John Wiley and Sons,
pp. 1–41.

Wong, P. Y. and Gibbons, J. (2008), A Relative Timed Semantics for BPMN, in ‘Proc. 7th
International Workshop on the Foundations of Coordination Languages and Software
Architectures (FOCLASA 2008)’, Vol. 229 of ENTCS.
URL: http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/

foclasa2008.pdf

Yi, W. (1991), CCS + time = an interleaving model for real time systems, in ‘Proceedings
of the 18th international colloquium on Automata, languages and programming’, Vol.
510 of Lecture Notes in Computer Science, Springer, pp. 217–228.

http://www.ibm.com/developerWorks
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/foclasa2008.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/foclasa2008.pdf


Index

∆, see urgency operators
AE , see Initial Action set
u, see Temporal Weak Bisimulation
⇒, see Weak Transition Relation
π-calculus, 13, 20, 24, 32–33, 37, 73, 85, 100,

105
∼, see Temporal Strong Bisimulation
ΣE , see Instability set
τ , see silent action
TE , see Initial Clock set
B, see Unguarded Free Variables

ACP, 30, 34
ActiveBPEL, 16
Arbitrary Cycles, 19, 98

Bisimulation, 7, 24, 28, 199, 235
Temporal Strong, 126
Temporal Weak

from CaSE, 45
Naı̈ve, 129
with Explicit Urgency, 130

Weak, 25
BPEL4WS, see WS-BPEL
Business Process Modelling, 10

CaSE, 7, 17, 42–50, 106, 183, 258
CaSEip, 8, 72, 112–152, 153, 179, 183, 196,

199, 220, 232, 243, 258
Cashew-A, 7, 77–104, 105, 108, 113, 148, 153–

155, 179, 184, 195, 200, 238, 243–255
CBS, 50, 222
CCS, 20, 22, 27–30, 38, 85, 200–208
cCSP, 35
Choreography, 11

choreography, 21
clock hiding, see hiding
clock determinism, see Time determinism
clock renaming, 113, 157, 161, 167
Compensation, 14, 88, 184
compositionality, 6, 17, 22, 42, 106, 183, 209
ConCalc, 8, 228, 240–242
Control Flow, 10, 78, 85–90
cross-cut, see Choreography
CSA, 42
CSP, 26, 34, 85

dataflow, 7, 10, 17, 78, 80, 82–84, 161, 165,
172, 174–179

dynamic operators, 28, 108

Free variables, 120

GADTs, 62–63

Haskell, 8, 17, 53–66, 75, 91, 101, 199–256,
259, 261, 262

hiding, 42, 113, 126, 152

Initial Action set, 117
Initial Clock set, 117
insistent, 39, 43, 45, 141, 160, 183
Instability set, 117
internal choice, 27, 28
interruption, 89, 90, 108, 265–270
isochronic broadcast, 47, 106

maximal progress, 39–41, 41, 42, 115, 132
Minimisation, 200, 238, 243, 262
Monads, 57–61, 201
multi-party synchronisation, 27, 41

289



290 INDEX

Observation Congruence, 29
Temporal, 46, 137

Observation Equivalence, 10, 28
Ontology, 11
open terms, 120
Orchestration, 10, 11, 21
OWL-S, 10, 16–18, 21, 34, 47, 77, 88, 107

Partition Refinement, 145, 200, 233–235
patient, 39, 41, 43, 110

formal definition, 115
Petri-nets, 10, 17, 19
PMC, 42
pre-emption, 39, 106, 114

readiness, see scheduling

Sagas Calculi, 36
scheduling, 10, 48, 108, 154, 214, 243

phases, 155–157
protocol, 157–159

silent action, 25
SOAP, 12
stability, 115
StAC, 34
static operators, 28, 108
substitution, 120
Synchronisation Patterns, 7, 34, 72, 105, 152,

153
synchronous hierarchies, 43, 106

TCCS, 38, 42
Temporal Bisimulation, see Bisimulation
Time determinism, 40
timeout, 39, 41

fragile vs. stable, 42
TPL, 41, 42
Type class, 55
Type Families, 63–65, 214

UDDI, 12
Unguarded Free Variables, 122, 134
urgency operators, 43, 112

urgent, see insistent

Weak Transition Relation, 25
Web service, 5, 9–11
Workflow Patterns, 10, 18–20, 93–100
WS-BPEL, 6, 10–12, 13–15, 18, 21, 34, 35, 78,

88, 99–104
WS-CDL, 12
WSDL, 12
WSFL, 13
WSMO, 11, 20–21

XLANG, 13

yield, 86, 109, 156, 170, 253


	I Background
	Introduction
	Motivation
	Contributions
	Reading Pathways

	Literature Review
	Web services
	Technologies
	Basic Web service technologies
	WS-BPEL
	OWL-S
	Workflow Patterns
	WSMO

	Process Algebra
	Simulation and Bisimulation
	Communicating Sequential Processes
	Calculus of Communicating Systems
	Algebra of Communicating Processes and Basic Process Algebra
	-calculus

	Web services and Process Algebra
	Transaction Calculi
	-calculus based calculi

	Timed Process Calculi
	Temporal CCS and discrete real-time process calculi
	Temporal Process Language and abstract time
	Multiple Clock Calculi and CaSE
	Calculus of Broadcasting Systems

	Conclusion

	Functional Programming in Haskell
	Introduction to Haskell
	Types
	Defining Types
	Type-class Polymorphism

	Monads
	Concurrent Haskell
	Generalised Algebraic Datatypes
	Type Families
	Conclusion


	II Theory
	Contribution Overview
	Service Composition Language
	Overview
	Workflows
	Real-time Granularity
	Dataflow
	Control flow language
	Cashew-A Core
	Cashew-A AC
	Cashew-A T

	Components
	Examples
	Workflow Patterns
	Basic Control Flow Patterns
	Advanced Branching and Synchronization Patterns
	State-based
	Cancellation and Forced Completion Patterns
	Iteration
	Termination Patterns
	Trigger Patterns
	Analysis

	WS-BPEL Comparison
	Conclusion

	A Timed Process Calculus for Component Oriented Systems
	Motivation
	Overview
	Interruption
	Generalisation

	Introduction to CaSEip
	Clock Renaming
	Syntax and Operational Semantics
	Relationship between transitions and sets
	Free variables and Substitution

	Equivalence Theory
	Timed Transition Systems
	Refinement Theory
	Conclusion

	A Compositional Operational Semantics for Cashew-A
	Overview
	Normal Workflow Semantics
	Phases
	The Orchestration Protocol
	Derived Syntax
	Structure
	Workflow semantics
	Performance Semantics
	Control flow semantics
	Dataflow semantics
	Component semantics
	Compositionality Problems

	Compensation Semantics
	Protocol
	Compensable workflow semantics
	Performance Semantics
	Dataflow semantics
	Control Flow
	Speculative Parallelism
	Evaluation

	Conclusion


	III Implementation
	Implementation of CaSEip
	Introduction
	Process Calculus Implementation
	Background: Computation in CCS
	Basic CCS
	Hierarchical State Space
	Towards Strong Typing
	Recursion
	Abstract Time

	Verification
	Labelled Transition Systems
	Graph Generation
	Timed Transition Graphs
	Partition Refinement
	Bisimulation Checking
	Minimisation
	Alternating Simulation
	A Process Experimentation Environment

	Towards an implementation of Cashew-A
	Overview
	Semantic Generation Framework
	Examples

	Conclusion

	Conclusions and Future Work
	Summary
	Areas of Further Exploration
	Negated Preconditions and Transient Inputs
	Value-added CaSEip
	Protocol Mediation
	Enhanced Compensation Mechanism
	Typed CaSEip implementation
	Complete Web service composition engine

	Outro

	Rejected Process Calculi
	Interruptible CCS
	Syntax
	Operational Semantics
	Equivalence Theory

	CaSE Generalised

	Proofs for Chapter 6
	Proof of Proposition 6.5.11
	Proof of Proposition 6.5.12
	Proof of Proposition 6.5.13

	Bibliography
	Index


