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Abstract

Quantum computation is a new computational paradigm which can provide fun-

damentally faster computation than in the classical regime. This is dependent on

finding efficient quantum algorithms for problems of practical interest. One of the

most successful tools in developing new quantum algorithms is the quantum walk. In

this thesis, we explore two applications of the discrete time quantum walk. In addi-

tion, we introduce an experimental scheme for generating cluster states, a universal

resource for quantum computation.

We give an explicit construction which provides a link between the circuit model

of quantum computation, and a graph structure on which the discrete time quantum

walk traverses, performing the same computation. We implement a universal gate

set, proving the discrete time quantum walk is universal for quantum computation,

thus confirming any quantum algorithm can be recast as a quantum walk algorithm.

In addition, we study factors affecting the efficiency of the quantum walk search

algorithm. Although there is a strong dependence on the spatial dimension of the

structure being searched, we find secondary dependencies on other factors including

the connectivity and disorder (symmetry). Fairly intuitively, as the connectivity

increases, the efficiency of the algorithm increases, as the walker can coalesce on

the marked state with higher probability in a quicker time. In addition, we find as

disorder in the system increases, the algorithm can maintain the quantum speed up

for a certain level of disorder before gradually reverting to the classical run time.

Finally, we give an abstract scheme for generating cluster states. We see a linear

scaling, better than many schemes, as doubling the size of the generating grid in
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our scheme produces a cluster state which is double the depth. Our scheme is able

to create other interesting topologies of entangled states, including the unit cell for

topological error correcting schemes.
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Chapter 1

Introduction

1.1 Quantum Information

Although we perceive the world around us to be entirely classical in nature, it is

fundamentally quantum mechanical at its physical roots. Ever since the early part of

the 20th century, scientists have been able to better explain many physical phenom-

ena using quantum mechanics, as well as show remarkable differences between the

classical world we see and the quantum. See any good quantum mechanics textbook

for more information, for example Dirac [5]. In fact, many technologies we take for

granted are based on quantum mechanical principles, for example the transistor, an

integral part of any modern day computer. However, even though on a fundamental

level these devices operate using quantum mechanics, we still treat them as being

classical in the same way as we treat the idea of information that they process.

In his seminal work, Landauer [6] stated that information is ‘physical’ as physical

systems must be used to process information. As such, any properties or intuition

about information must stem from physical processes or laws. As mentioned above,

the physical world is inherently quantum mechanical and therefore it seems reason-

able that we should define our interpretation of information on this basis. Using this

idea of a quantum mechanical definition of information, both Manin [7] and Feynman

[8, 9] independently envisaged the idea of a quantum mechanical computer. Initially,
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Chapter 1. Introduction

their idea was to use a quantum mechanical system (or computer) to simulate other

quantum systems, a problem which is inherently difficult to do on classical com-

puters due to the number of degrees of freedom. It was only later that Deutsch

[10] thought of the same idea as a universal quantum computer, i.e. a quantum

mechanical version of a classical computer. As well as laying down the framework

for quantum computation in general, including the circuit model of quantum com-

putation, Deutsch also showed the first quantum algorithm in his work. Since then,

many other quantum algorithms have been found, most notably Shor’s factoring al-

gorithm [11, 12] and Grover’s algorithm for searching an unsorted dataset [13]. We

discuss these and the development of quantum algorithms in more detail in sec. 1.2.

In classical computing, the basic ‘unit’ of information is the bit which can take a

logical value of 0 or 1. Many bits are then manipulated by logic gates, for example

AND or NOT gates. In fact, universal classical computation can be obtained using

just NAND gates. In the quantum setting, the basic unit is the quantum bit or

‘qubit’. A qubit can take not just the values 0 and 1 but a linear combination of the

two, i.e. the qubit can be in a superposition of the two logical states. The state of

the qubit is represented as a vector but can also be pictorially shown on the Bloch

sphere, fig. 1.1, the logical 0 and 1 being represented as |0〉 =







1

0






and |1〉 =







0

1







respectively. An arbitrary state of a qubit is defined as a linear superposition of the

two logical basis states thus,

|ψ〉 = α|0〉 + β|1〉, (1.1)

where α = cos(θ/2), β = eiφ sin(θ/2) and |α|2 + |β|2 = 1. Individual qubits are

manipulated by quantum gates which are unitary operators on the state. For an

individual qubit, an operator is a 2 × 2 matrix which performs a rotation on the
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1.1. Quantum Information

Figure 1.1: Bloch sphere. Pictorial representation of the state of a single qubit. An
arbitrary qubit has the state |ψ〉 = cos

(

θ
2

)

|0〉 + eiφ sin
(

θ
2

)

|1〉.

state around the Bloch sphere. For example, the Hadamard operator,

H =
1√
2







1 1

1 −1






, (1.2)

performs a rotation from the |0〉 state to the |+〉 state as

H|0〉 =
1√
2

(|0〉 + |1〉) , (1.3)

producing an equal superposition of the 0 and 1 logical states. Obviously, some

form of manipulation of multiple qubits is also needed to allow universality. In the

quantum setting, this is accomplished by a controlled unitary operation on the state.

The most common of these is the Controlled-NOT (C-NOT),

C-NOT =



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















, (1.4)
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which acts on the state of two qubits,

|ψ〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉) , (1.5)

thus

C-NOT|ψ〉 =
1

2
(|00〉 + |01〉 + |11〉 + |10〉) . (1.6)

In this case, the logical state of the second qubit is flipped conditioned on the logical

state of the first qubit. To allow universal quantum computation, an arbitrary single

qubit rotation combined with the C-NOT gate is required. This construction is often

called the circuit model of quantum computation and is the quantum analogue of

the classical circuit model.

In addition to the circuit model, another paradigm of quantum computation was

introduced by Raussendorf and Briegel [14], known as one-way quantum computa-

tion or measurement-based quantum computation. In this model, a cluster state (or

more generally, a graph state) is created as a resource for the computation. This is

an entangled state of qubits which are all entangled using a Controlled-Phase gate

(C-Phase),

C-PHASE =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



















. (1.7)

The computation progresses across the cluster state by making single qubit measure-

ments, gradually destroying the initial resource state, hence the name ‘one-way’. The

result of each measurement is then ‘fed-forward’ to allow any errors to be corrected

by selecting the correct basis for measurement at a later state. Both models of

quantum computation are equivalent and more details can be found in any good

textbook on quantum computation, for example Nielsen and Chuang [15].

As in the case of classical computing (biological systems, mechanical analogue

systems and transistors), there are various proposals for the implementation of a
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quantum computer. These include systems based on trapped ions [16, 17], quantum

dots [18, 19], linear optics [20], nuclear magnetic resonance [21, 22] and supercon-

ducting qubits [23]. All these proposals have good and bad points and none have

yet provided a scaleable architecture. Much experimental research is still going on

in the attempt to build a quantum computer and it is yet unknown as to which

architecture may provide a working, large-scale quantum computer. In fact, due to

the problems encountered thus far experimentally, it may be that an entirely new

idea is needed.

One of the biggest problems experimentally is to maintain the coherence of large

systems for the required time of the computation. As such, both quantum error cor-

recting schemes [24, 25] and fault tolerant or topological architectures [26–30] have

both received much interest from the community as a whole. For more information

on how many of these schemes operate see both the references and also Nielsen and

Chuang [15]. In this thesis, we are primarily concerned with quantum algorithms

and we assume that a fault tolerant, scaleable quantum computer exists on which

they could be run.

1.2 Quantum Algorithms

In his seminal work, Deutsch [10] introduced the first quantum algorithm, one which

can establish whether a given function, f : {0, 1} → {0, 1}, is balanced or constant

in just one quantum query as opposed to two in the classical case. This problem was

then generalised to functions of the form f : {0, 1}n → {0, 1} by Deutsch and Jozsa

[31]. The complexity increases to two queries in the quantum case and to 2n−1 + 1

in the deterministic classical case. However (as is the case for many quantum /

classical algorithm comparisons), if a probabilistic classical algorithm is used, the

solution can be obtained with an error ǫ in O(log 1
ǫ ) queries. This was extended

again by Bernstein and Vazirani [32] to a certain family of functions where given

a ∈ {0, 1}n, b ∈ {0, 1} then fa(x) = a.x⊗b. Finally, Simon [33] found an exponential

separation in the number of queries needed from the quantum to classical case for
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another similar problem. This was the first example of a quantum algorithm with

an exponential difference in run time.

Shortly after these initial developments, Shor [11, 12] gave another example of

a quantum algorithm with a complexity exponentially smaller than the best known

classical algorithm. This algorithm, for factoring, is probably the most well known

and important of all quantum algorithms discovered thus far. It led to a surge of

interest into quantum algorithms and quantum computing in general due to the fact

it could render most current encryption techniques vunerable, as they rely on the

problem of factoring a number into its primes as being computationally intractable.

Shor introduces the quantum Fourier transform (QFT) and his algorithm can be

used to find orders and periods of functions and also discrete logarithms. These are

all special cases of the Abelian hidden subgroup problem.

The final early quantum algorithm is due to Grover [13] which is able to find

a specific item from an unordered dataset in a time quadratically faster than the

classical case. Although not as dramatic a speed up over classical, this is one of the

few quantum algorithms which is both optimal and provably faster than any possible

classical algorithm [34, 35], including those based on probabilistic techniques. This

algorithm uses amplitude amplification and was generalised in [36]. This technique

can be used in various other problems including 3-SAT and a generalised version of

Simon’s algorithm [37].

The continued development of a universal quantum computer is only viable if

more quantum algorithms can be found that are of practical use and also funda-

mentally faster than the equivalent classical algorithms. Since the discovery of the

first few quantum algorithms, more recent developments see new algorithms falling

(generally) within one of five main categories:

1. Algorithms based on the Quantum Fourier Transform (QFT)

2. Algorithms based on amplitude amplification

3. Quantum simulation algorithms
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4. Adiabatic algorithms

5. Quantum walk algorithms

We have already discussed most of the quantum algorithms which fall into the first

two categories. The next category, quantum simulation algorithms, is the basis of

Feynman’s original motivation for quantum computing.

The first simulation algorithms were given by Lloyd [38] and Zalka [39]. The

main idea is to simulate a given Hamiltonian by breaking it down into a sum of

simpler ones. We will not discuss these in detail here, instead we refer the reader to

the references or a recent review article, see Brown et al. [40].

Adiabatic algorithms are a fairly recent advance in quantum algorithms devel-

oped by Farhi et al. [41]. The idea is to encode the solution to a hard problem

into the ground state of a Hamiltonian which is easy to simulate. If we then let

the system evolve slowly, whilst keeping it in the ground state, then eventually the

system will end in the state representing the solution to the problem. Obviously, it

depends on how slowly is ‘slowly enough’ as to whether the algorithm is efficient.

Adiabatic algorithms have been used to solve 3-SAT, in a fashion which is close to

optimal [42, 43]

The final category of algorithms is that of the quantum walk. The quantum

walk is the quantum mechanical analogue of the classical random walk or Markov

chain and was introduced, with algorithmic application in mind by Aharonov et al.

[44] and Ambainis et al. [45]. As the bulk of this thesis deals with quantum walks,

in particular several quantum walk algorithms, we discuss these in detail in the

subsequent chapters.

For several recent reviews which give much more detail on all of the algorithms

we mention above, see Mosca [46], Smith and Mosca [47] or Childs and van Dam

[48].
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1.3 Numerical Methods

The work in this thesis is primarily numerical in nature. This includes the simu-

lations of the quantum walk search algorithm in Chapters 5-8 and also the work

on generating cluster states in Chapter 9. We discuss here details of methods and

computational tools used.

The simulations we ran of the quantum walk searching algorithm were primarily

written in MATLAB with some additional coding done in Python. All the code

written in for use in this thesis was done by myself, there was no inbuilt package used.

We attach a piece of sample code for a typical search on a 2D Cartesian lattice in

Appendix A. Much of the other code we wrote was much more complex, for example

simulating the quantum walk search algorithm on percolation lattices. Although the

code we wrote was in MATLAB, many of the inbuilt functions of MATLAB were

not used. It was primarily used for the ease of checking the numerical results and

their subsequent plotting.

In the work on fractal structures, percolation lattices and certain other struc-

tures, the underlying graph we ran the quantum walk search algorithm on also had

to be generated. This was primarily done using Python due to its ease of processing

graphs in general. This allowed us to visualise the underlying graphs easily using

Graphviz. This generation stage for the fractal structures was complex and became

computationally intractable after a few generations were computed. For example,

on a 2.2GHz MacBook, the generation of upto, and including, 7 generations took

just over a week.

Performing the quantum walk search algorithm on the fractal and non-periodic

structures required the repetition of the algorithm on each structure where the

marked state could be in any position. Using percolation lattices required run-

ning the algorithm on many different, randomly generated, percolation lattices. All

these simulations again took between 7-10 days to complete.

Finally, the work completed in Chapter 9 on the generation of entangled states

was completed using a combination of Python and C. The basic algorithms we wrote
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for establishing the structure produced was written in C, with the output processed

in Python to give the resulting graph. These simulations only took a non-trivial

amount of time in the cases where the generating grid was larger in size or more

complex, i.e. ‘structures within structures’.

1.4 Thesis Aim

The main aim of this thesis is to investigate applications of the discrete time quantum

walk. We primarily focus on the factors which affect the efficiency of the discrete

time quantum walk search algorithm. In previous work, only the dependence on

the spatial dimension of the structure to be searched has really been investigated.

In this thesis, we study not only this, but also how the layout (connectivity) of the

structure, disorder and also symmetry affect the efficiency of the search algorithm.

In addition, we also investigate the power of the discrete time quantum walk,

showing that it can be considered universal for quantum computation. The aim here

was to provide a mapping from the circuit model based interpretation of quantum

computation to a graphical model on which the discrete time walk propagates from

one side to the other, thus performing a computation.

Finally, by using graph theoretic knowledge obtained from the work completed

on quantum walks, we propose an experimental scheme to generate cluster states,

using cavity quantum electrodynamics (QED), for quantum computation. In fact,

it turns out this scheme can generate a variety of (useful) entangled graph states.

1.5 Thesis Overview

We start in Chapter 2 by giving a detailed overview of the quantum walk model as

background theory for the remainder of the thesis. We discuss the classical random

walk and its extensions to the quantum regime in both continuous and discrete time.

We show an example of quantum walk dynamics on both the infinite line and then

on higher dimensional structures. After discussing the applications of the quantum
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walk, in particular for algorithmic use, we conclude the chapter with a review of

experimental progress in realising a quantum walk thus far.

The power of the discrete time quantum walk is investigated in Chapter 3 where

we show that the discrete time quantum walk can be considered universal for quan-

tum computation. This is an extension of work done by Childs [49] which showed

universality of the continuous time quantum walk and the ‘lazy’ discrete time quan-

tum walk which can be used to approximate the continuous time quantum walk. We

give a set of graph structures on which the discrete time quantum walk propagates

deterministically. This chapter forms the basis of work published in Physical Review

A [1].

We introduce the searching problem in Chapter 4 along with the best classical

strategy for searching an unordered dataset. We then move to the quantum case and

give a description of Grover’s algorithm [13] before moving on to the model we use

for the remainder of the thesis: the quantum walk search algorithm first introduced

by Shenvi et al. [50]. This chapter also gives an overview of previous results known

for the quantum walk search algorithm and its efficiency.

The following four chapters, 5-8, show our investigation of the factors affecting

the efficiency, and hence the run time, of the quantum walk search algorithm. We

start in Chapter 5 by discussing structures on which the quantum walk search al-

gorithm is less efficient or fails completely. We start by investigating the search

algorithm on the line and cycle, which can obtain no quantum speed up as simple

arguments show, but reveal how the symmetry of the coin is important. We then

move to lattices with non-periodic boundary conditions where reflection effects ham-

per the progress of the quantum walk and thus the efficiency of the search algorithm.

This is shown on the Bethe lattice, fractal structures and also the 2D and 3D basic

Cartesian lattices.

In Chapters 6 and 7, we introduce a simple form of tunnelling which allow us to

interpolate between structures of varying spatial dimension and connectivity. The

work in these two chapters forms the basis of two pieces of work [2, 3], the former
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of which has been published. Using this simple model of tunnelling, we investigate

the effect, on regular lattices, of spatial dimension and connectivity respectively.

Finally, in Chapter 7, we show how the effect of disorder can affect the efficiency

of the search algorithm by using percolation lattices as a substrate for the quantum

walk. These allow us to gradually vary the level of disorder (and hence reduce

the symmetry) in the database arrangement, allowing us to investigate how much

disorder, if any, the quantum walk search algorithm can tolerate.

Our last main chapter contains work separate to that of quantum walks. Here,

we discuss an abstract scheme to experimentally create cluster states. We envision

the scheme to operate using streams of atoms interacting in cavities (or possible

regions of electric fields) to mediate an interaction, thus performing a Controlled

Phase gate. Using the graph theory knowledge obtained during my PhD, we show

how we can extend the scheme to generate not only cluster states but also other

useful entangled states. The work contained in this chapter forms the basis of work

published in [4].

Finally, we conclude the thesis with an overview of our results in Chapter 10.

We also discuss our plans for the future and how the work contained in this thesis

could be extended.
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Chapter 2

Quantum Walks

2.1 Introduction

Classical random walks have long been used in many areas of science, especially

mathematics and physics. In more recent years, they have found new applications

in classical computer science. Many new algorithms based on classical random walks

have been introduced for key problems which outperform the previously best known

algorithms. Many examples exist but perhaps the most notable being an algorithm

for the constraint satisfiability problem [51, 52], approximating the permanent of a

matrix [53] and estimating the volume of a convex body [54]. Random walks have

also been extensively used for random sampling of large state spaces in Monte Carlo

methods - see [55–58] and references therein for a good review of these methods and

other random walk-based algorithms.

Due to the success of applying classical random walks to algorithm design, a

natural place to look for faster quantum algorithms was a quantum version of a

classical random walk. The term ‘quantum random walk’ was first used by Aharonov

et al. [59] where a precursor to the two well known models of quantum walks was

introduced. In this work, intermediate measurements are made at each time step

of the walk. Several others used the concept of the quantum walk in varying forms

including Feynman and Hibbs [60] in the form of path integrals, Meyer [61, 62] in the
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context of quantum cellular automator and also Watrous [63] in the context of space

bounded computation. The first formal treatment and study of quantum walks for

algorithmic purposes was pioneered by Ambainis et al. [45] and Aharonov et al.

[44] who introduced a discrete time quantum walk. They proved that a quantum

walk on the line or cycle spread or mixed, respectively, in a time quadratically

faster than a classical random walk. Just as a classical random walk can also be

defined in continuous time, Farhi and Gutmann [64] introduced the continuous time

quantum walk which also provides the same algorithmic speed up. Although we

describe both types of quantum walk in later sections, we concentrate on the discrete

time quantum walk for the remainder of the thesis, since it is more convenient for

numerical calculations.

After the introduction of the two types of quantum walk, they have been studied

extensively. Many new quantum algorithms have been developed, with varying speed

ups over the best known classical algorithms. One of the most notable quantum walk

based algorithms is the ‘glued tress’ algorithm introduced by Childs et al. [65]. In

this algorithm, a quantum walker is above to traverse the structure, two binary trees

linked together randomly at the leaves, in a time exponentially faster than the best

known classical algorithm. This was extended from previously work also by Childs

et al. [66] where the same exponential speed up was found across a similar structure

with pairwise links of the leaves of the binary trees. Shortly after, Shenvi et al.

[50] introduced a quantum walk search algorithm which can match the quadratic

speed up of Grover’s algorithm. We discuss this algorithm at length in chapter

3. Many other quantum walk based algorithms have been discovered which give

a polynomial speed up over the best known classical algorithms, many of which

are of practical interest. For example, Ambainis [67] and Magniez et al. [68] gave

algorithms for element distinctness and the triangle finding problem respectively. In

addition, the continuous time quantum walk has recently been shown by Childs [49]

to be universal for quantum computation, and as such, a computational primitive.

Lovett et al. [1] later showed that the discrete time quantum walk is also universal
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for quantum computation, which we discuss in more depth in chapter 4. This means

that any quantum algorithm can be recast as a quantum walk algorithm in either

continuous or discrete time. As such, the quantum walk has now become a standard

tool in algorithm design, for a good review of algorithms based on quantum walks

see Ambainis [69].

In order to discuss quantum walks in detail we will need to define some notation

from standard graph theory. We first review this before moving on to define the

continuous time quantum walk. The discrete time quantum walk is defined next,

firstly on the line and then we review how it can operate on higher dimensional

structures. We then finish this chapter with a discussion of the applications of

quantum walks and current experimental progress thus far.

2.2 Graph theory

In order to discuss quantum walks, on both the line and in higher dimensions, we

must use some standard graph theoretical terms. We define all the terms we need

for the thesis here as we will use many of these terms in later chapters.

A general graph, G, is defined as an ordered pair formed from a set of vertices,

V , and a set E of edges. A member of the set of edges is a subset of vertices, i.e.

(x, y) ∈ V , where x and y are elements of the set V . To be precise, if the pair of

vertices in an edge is unordered, the graph we describe is then known as undirected.

All the graph structures we discuss will be of this type. An example of an undirected

graph is shown in fig. 2.1. We define the order of the graph to be the number of

vertices, |V |, and the size to be the number of edges, |E|. In fig. 2.1, we can see that

some vertices have more (or less) connections to other vertices than others. The

degree d, or valency, of a vertex is defined as the number of edges incident upon it.

If all vertices in a graph have the same degree we define it as regular, or k-regular

where k is the degree of every vertex. A 2D Cartesian lattice (either infinite or with

periodic boundary conditions) is an example of a k-regular graph where k = 4, i.e.

all vertices have degree d = 4. Edges which start and end at the same vertex are
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Chapter 2. Quantum Walks

Figure 2.1: An example of a general, undirected graph. It consists of 5 vertices, of
varying degree, and 6 edges.

known as self loops. In this thesis, we only consider graphs which have no self loops.

We will be studying graphs of varying topology and structures in later chapters.

We must define the structure of the underlying graph we are studying in a succinct

way. Most will be a single connected graph, that is there is a path, along edges,

from any vertex to any other, i.e. there is one connected component. One way to

define the connectivity of a structure is by the adjacency matrix. For a graph, G, of

N vertices, this is a N ×N matrix where the entries of the matrix, Aa,b, is nonzero

if an edge exists between vertices a and b. In an undirected graph with no self loops,

we define it as

Aa,b =











1 a, b ∈ G

0 otherwise
(2.1)

A similar matrix of connectivity is the Laplacian of the graph. This can be defined

as

L = A−Dd, (2.2)

where Dd is the diagonal matrix whose entries Da,a = da, where da is the degree of

each vertex. As an example, we show both the adjacency and laplacian matrices of
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2.3. The continuous time quantum walk

the graph in fig. 2.1,

AG =

























0 1 1 0 0

1 0 1 1 0

1 1 0 1 0

0 1 1 0 1

0 0 0 1 0

























, (2.3)

DG =

























2 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 1

























, (2.4)

LG =

























−2 1 1 0 0

1 −3 1 1 0

1 1 −3 1 0

0 1 1 −2 1

0 0 0 1 −1

























. (2.5)

2.3 The continuous time quantum walk

The continuous time quantum walk was introduced, with algorithmic applications

in mind, by Farhi and Gutmann [64]. Although we do not focus on them here

we describe both the continuous time classical random walk and continuous time

quantum walk next. In contrast to the discrete time quantum walk which we describe

later, the continuous time quantum walk takes place solely on the vertices of the

underlying graph and has no ‘coin’ operation.

2.3.1 Continuous time random walk

A continuous time random walk is a classical Markov process on a general graph, G.

We define a matrix, M , which is used to update the probability distribution across
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Chapter 2. Quantum Walks

the vertices of the graph at each timestep. The entries of the matrix, Ma,b, give

the probability of moving from vertex a to vertex b. As such, non-zero entries only

occur if a and b are connected. In a simple, unbiased walk, these non-zero entries are

equal to 1/da, where da is the degree of vertex a. If we define pt
a as the probability

of being at vertex a at time t then

pt+1
a =

∑

b

Ma,bp
t
b. (2.6)

This gives the probability of being at any vertex after a ‘step’ of the walk. If ~pt is

the probability distribution over the entire graph, ~pt =
(

pt
1, p

t
2, . . . , p

t
|V |

)

, then we

can write the updated probability distribution as

~pt+1 = M~pt. (2.7)

The transition matrix, M , for this simple, unbiased walk on a cycle with N vertices

would be of the following form,

M =
1

2















































0 1 0 0 . . . 0 0 1

1 0 1 0 . . . 0 0 0

0 1 0 1 . . . 0 0 0

...
. . .

...

...
. . .

...

0 0 0 . . . 1 0 1 0

0 0 0 . . . 0 1 0 1

1 0 0 . . . 0 0 1 0















































. (2.8)

Obviously, applying this transition matrix iteratively only gives us updated proba-

bility distributions at fixed time so is in effect discrete. In order to turn this into

a random walk in continuous time, we instead have a fixed hopping rate, γ, which

gives the transition probability between two (connected) vertices per unit time. The
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2.3. The continuous time quantum walk

new continuous time transition matrix, M c, then becomes of the form,

M c
a,b =























−γ a 6= b and a, b are connected

0 a 6= b and a, b are not connected

daγ a = b

(2.9)

In continuous time setting, we can write the probability of transition from one vertex

to another as we did in eq. 2.6 by the differential equation,

dpa(t)

dt
= −

∑

b

M c
a,bpb(t), (2.10)

where pa(t) is the probability of being at vertex a at time t. For the entire probability

distribution over all vertices, this becomes

~p(t) = e−Mct~p(0) (2.11)

as in eq. 2.7. This equation will transform an initial probability distribution accord-

ing to the matrixMc in continuous time. The structure of both the initial translation

matrix, M , and the continuous time translation matrix, Mc, is very similar. We note

this provides a direct link between the discrete time classical random walk and the

continuous time classical random walk. In fact, much work in classical Markov chain

theory is to show the equivalence of the two models, and also properties of interest,

for example mixing and hitting times [70].

An equivalent way of defining the continuous classical random walk is by the

structure of the underlying graph, using the adjacency or Laplacian matrices. We

note here that the transition matrix M is equivalent to the Laplacian of the graph

L up to a constant factor, −γ. The differential equation to describe the evolution

of the walk then becomes

dpa(t)

dt
= γ

∑

b

La,bpb(t). (2.12)
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Chapter 2. Quantum Walks

We note here the Laplacian is a probability conserving process, that is
∑

aLa,b =

0. We note that any process that obeys this conservation of probability can be

used here. This definition of the random walk is equivalent to eq. (2.10) and the

continuous time walk is often defined in this way. We will define the continuous time

quantum walk in the same fashion.

2.3.2 Continuous time quantum walk

A continuous time quantum walk is the quantum analogue of the classical continuous

time random walk previously defined. It takes places directly on the vertices of a

graph in a N dimensional Hilbert space spanned by the basis states | a〉, where

a ∈ G. We can then write the N complex amplitudes, qa(t), at each vertex in terms

of the general state of the walker, | ψ(t)〉,

qa(t) = 〈a|ψ(t)〉. (2.13)

The dynamics of the system can then be described by the Schrödinger equation,

i
dqa(t)

dt
=

∑

b

Ha,bqb(t), (2.14)

where we set ~ = 1 for convenience. If we compare eqs. (2.10) and (2.14), we notice

they are similar. If we set H in eq. (2.14) to be equal to −γL, we end up with just

a factor of i difference. In this definition, we set the Hamiltonian of the Schrödinger

equation to be the Laplacian of the graph. This does not have to be the case, we just

need to ensure that the operator is unitary, H = H†. For example, the adjacency

matrix of the graph could be used. If a regular graph, one in which all vertices

have the same degree, then the adjacency matrix will give the same dynamics as the

Laplacian [64]. This is due to the fact the diagonals just introduce a global phase

which is of no consequence.
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2.4. The discrete time quantum walk

....... N-N ....... 0 1 2 3 .......-2....... -3 -1

Figure 2.2: Representation of a discrete time random walk on a line. The walker
starts at the origin and moves left or right depending on the outcome of an unbiased
coin toss.

2.4 The discrete time quantum walk

There has been great interest in the field of quantum walks and their use in algo-

rithm design. We will discuss the plethora of results stemming from quantum walk

research in a later section. Firstly however, we turn to the discrete time quantum

walk, which we focus upon for the remainder of the thesis. We firstly define the

classical discrete time random walk before moving to the quantum case, defining the

discrete time quantum walk on both the infinite line and in higher dimensions.

2.4.1 Discrete time random walk

The discrete time classical random walk is probably the most well known random

walk that exists. We often think of this as a ‘drunkards’ walk. Consider a number

line from −N to N with a walker placed at the origin as shown in fig. 2.2. The walker

tosses an unbiased coin and dependent on the outcome moves either left or right by

one position. After repeating this coin toss and movement for t timesteps we will

find the walker, on average, back at the origin. In fact, if we perform the random

walk a large enough number of times we get a binomial distribution of the walkers

final position centered about the origin, fig. 2.5. We note here that the spread of

this distribution, quantified by the standard deviation, is equal to the number of

timesteps t.
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....... N-N ....... 0 1 2 3 .......-2....... -3 -1

0 1000 0 0 01 1 111110 0 1

Figure 2.3: Representation of a discrete time quantum walk on a line. The walker
starts at the origin, with an internal coin state of 0. The walker is acted upon by a
unitary operator, the Hadamard in this case, and then a conditional shift operator
at each timestep.

2.4.2 Discrete time quantum walk on the line

A discrete time quantum walk on the line is defined in direct analogy with a classical

random walk. In the quantum case, the walker is replaced by a quantum particle

carrying a two state quantum system for the coin. In order to maintain quantum

dynamics, which must be reversible, the ‘coin toss’ is effected by a unitary operator.

We denote the basis states for the quantum walk as an ordered pair of labels in a

‘ket’ |x, c〉, where x is the position and c ∈ {0, 1} is the state of the coin. We place

the walker at the origin with an internal coin state of 0 as shown in fig. 2.3. At

each timestep we act on the quantum walker with a coin operator followed by a

conditional shift operator. The simplest coin operator is the Hadamard H, defined

by its action on the basis states as

H|x, 0〉 =
1√
2
(|x, 0〉 + |x, 1〉)

H|x, 1〉 =
1√
2
(|x, 0〉 − |x, 1〉), (2.15)

and the shift operation S acts on the basis states thus

S|x, 0〉 = |x− 1, 0〉

S|x, 1〉 = |x+ 1, 1〉. (2.16)

The coin operator splits the walker into a superposition of coin states and the con-

ditional shift operator then moves the walker to the correct position based on the
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2.4. The discrete time quantum walk

coin state. The first three steps of a discrete time quantum walk starting from the

origin, in coin state 0, are shown pictorially in fig. 2.4 and mathematically as

(SH)3|0, 0〉 = (SH)2S
1√
2
(|0, 0〉 + |0, 1〉)

= (SH)2
1√
2
(| − 1, 0〉 + |1, 1〉)

= (SH)S
1

2
(| − 1, 0〉 + | − 1, 1〉 + |1, 0〉 − |1, 1〉)

= SH
1

2
(| − 2, 0〉 + |0, 1〉 + |0, 0〉 − |2, 1〉)

= S
1√
8
(| − 2, 0〉 + | − 2, 1〉 + |0, 0〉 − |0, 1〉 + |0, 0〉 + |0, 1〉

− |2, 0〉 + |2, 1〉)

=
1√
8
(| − 3, 0〉 + | − 1, 1〉 + 2| − 1, 0〉 − |1, 0〉 + |3, 1〉). (2.17)

As the walk progresses, quantum interference occurs whenever there is more than

one possible path of t steps to the position. This can be both constructive and

destructive, as shown in eq. (2.17), which causes some probabilities to be amplified

or decreased at each timestep. This leads to the different behaviour compared to

its classical counterpart: spreading at a rate proportional to t, quadratically faster

than the classical random walk. In addition, the centre part of the distribution, in

the interval [−t/
√

2, t/
√

2], is fairly uniform. This is the opposite of the classical

random walk which has an exponential drop in probability after just a few standard

deviations from the origin. These properties of the quantum walk on the line were

obtained by both Ambainis et al. [45] and Nayak and Vishwanath [71].

As the walker can now be in a superposition of positions on the line, we obtain

a probability distribution of the quantum walker after one run of the entire walk.

Obviously, this is due to the fact the coin operator is now deterministic. However,

if we were to measure the coin after the required number of timesteps, we would get

a random output as in the classical case. We show both the classical and quantum

probability distributions after 100 steps in fig. 2.5. If the walk is imperfect and some

decoherence is allowed, we can see the gradual change from the quantum case back
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....... N-N ....... 0 1 2 3 .......-2....... -3 -1

H THHH H H HHT T TTTTTH H T

....... N-N ....... 0 1 2 3 .......-2....... -3 -1

H THHH H H HHT T TTTTTH H T

....... N-N ....... 0 1 2 3 .......-2....... -3 -1

H THHH H H HHT T TTTTTH H T

....... N-N ....... 0 1 2 3 .......-2....... -3 -1

H THHH H H HHT T TTTTTH H T

Figure 2.4: Representation of the first three steps of a discrete time quantum walk
as in eq. (2.17). The walker is started in an initial state of |0, 0〉. In the figure,
red walkers represent the coin state 0, green walkers represent the coin state 1 and
walkers with a negative coefficient are shown upside down.

to classical. Kendon and Tregenna [72, 73] investigated this in detail showing that as

the decoherence in the system grows the spread of the walk gradually changes from

the quantum walk shown above back to the classical binomial distribution. In the

interim, we see a gradual change with an almost ‘top-hat’ distribution being found

which is useful for random sampling. We note, in fig. 2.5, that the distribution of the

walk is dependent on the initial state of the walker. In eq. (2.17) above, when the

walker is started in one specific position and coin state, |0, 0〉, that the distribution

is ‘skewed’ to the left. This is due to the Hadamard coin treating the different coin

states in different ways: the ‘right-moving’ coin state has a phase of -1 attached

to it. If the walker was instead started in an initial state |0, 1〉, we would see the
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Figure 2.5: Classical (crosses) and quantum (solid lines) probability distributions
for walks on a line after 100 timesteps. Only even positions are shown since odd
positions are zero. The classical walk is averaged over 50,000 iterations of the random
walk. A skewed quantum walk is shown with an initial state of |0, 0〉 along with a
symmetric quantum walk with an initial state of either

√
0.15|0, 0〉 +

√
0.85|0, 1〉 or

1/
√

2(|0, 0〉 + i|0, 1〉).

same skew in the distribution but this time to the right. This can be explained

by the fact that whichever coin state the walker is started in incurs less destructive

interference and thus skews in that directions. A symmetric distribution, also shown

in fig. 2.5, can be obtained in various ways. Firstly, by using a general initial

state of the form |ψ〉 = cos θ|0, 0〉 + sin θ|0, 1〉, Konno [74, 75] proved, analytically,

values of θ which give the symmetric distribution. This leads to the amount of

deconstructive and constructive interference becoming balanced, allowing the walk

to spread in a symmetric fashion in both directions. The initial state required

for this is
√

0.15|0, 0〉 +
√

0.85|0, 1〉. Another way of accomplishing the symmetric

distribution is to start the walk in a way that the two coin states will not interfere

with each other. This can be done using the initial state 1/
√

2(|0, 0〉 + i|0, 1〉). As

the Hadamard coin we have introduced does not give any additional complex terms

to the 0 coin state, each coin state will remain either real or complex thus not
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interfering. Finally, the complex Hadamard coin,

Hc =
1√
2







1 i

i 1






, (2.18)

can be used. By changing the coin to this more ‘balanced’ or ‘symmetric’ coin, then

it will treat each coin state independently, thus producing a symmetric distribution.

The quantum walk on the line was analysed and extended further by placing it

on a bounded line (on one or both sides). In [45, 76], this is investigated by placing

an absorbing boundary on the line. This can be viewed as a partial measurement of

the walker if it hits the boundary. The walk is measured after each step and ends

in either the state representing the walker at the absorbing boundary or the state

where the walker is at all other positions. A good example from [77], where the

boundary is placed at x = 0, is as follows. If the walker is in the state

|ψ〉 =
1√
14

(2|0, 0〉 − |1, 0〉 + 3|1, 1〉), (2.19)

then after the measurement step the walker will either end up in the state |0, 0〉

with probability 2/7 or the state 1/
√

10(−|〉 + 3|1, 1〉) with probability 5/7. In the

classical case, the probability to become absorbed, in the long time limit, is certain,

p = 1. This is due to the fact that there is always an infinitely small possibility

that the walker could be at any vertex. However, in the quantum case, if the walker

is started in the correct initial state, the probability of being absorbed is 2/π, in

the long time limit of t. This probability changes depending on the initial state

the walker is started in but is always finite. Although we do not discuss higher

dimensional structures until the next section, this behaviour also holds on these

structures [78].
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1

1

1

1
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3
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Figure 2.6: Example of a higher dimensional graph with varying degree at each
vertex. Self loops are added at these vertices to make the graph d-regular. We also
show the labelling scheme for the edges. We note that a self loop is taken to be the
equivalent of one edge at a vertex so in the figure, all vertices are of degree three.

2.4.3 Discrete time quantum walk in higher dimensions

We can see from the previous section that the quantum walk exhibits interesting

and very different behaviour to the classical walk even on the line. However, many

interesting problems in computer science are defined in higher dimensions. We

discuss here d-regular graphs so each vertex has the same number of edges. If the

graph is not d-regular, one way of making it so is to add self loops at any vertex

which has a lower degree than the maximum degree of the graph, fig. 2.6. In this

case, the self loop is equivalent to just adding one edge per vertex. Other ways

of accomplishing quantum walk dynamics on non-regular graphs are discussed in

Chapters 5 and 8. In order to define the walk on these higher dimensional graphs,

we require a new coin operator, of dimension d, in order to span the entire coin

state space of the walker [79–82]. This can be any unitary operator of the required

dimension. Clearly many different possibilities exist but we only mention the two

most common (and natural) operators here. Firstly, the Grover coin,

G(d) =













2
d . . . 2

d

...
. . .

...

2
d . . . 2

d













− Id, (2.20)

27



Chapter 2. Quantum Walks

where d is the degree of the vertex and Id is the identity operator of the same dimen-

sion. The Grover coin is symmetric but only balanced, i.e. it treats all directions in

the same way - up to a phase factor, for the cases where d = 2 and d = 4. In the

case of d = 3 and all higher dimensions, the coin treats one edge differently to the

remaining d− 1.

The second coin operator we describe here is the DFT (discrete Fourier trans-

form) coin,

DFT (d) =
1√
d



















1 1 1 . . . 1

1 w w2 . . . wd−1

...
...

...
. . .

...

1 wd−1 w2(d−1) . . . w(d−1)(d−1)



















, (2.21)

where w = exp(2πi/d) which is a d-th root of unity. The DFT coin is clearly sym-

metric and balanced, it transforms each direction in a superposition of all directions

so all are equally likely with a probability of 1/d.

In addition to the coin operator, the conditional shift operator must also be

modified. In the case of the line, it is easy to define as there are only two possible

directions the walker can move in. In higher dimensions, the walker can move in

any one of d directions. Kendon [81] treats this problem rigorously but the most

important thing is to maintain a consistent labelling approach for each of the edges.

We label the d edges from 1.....d as shown in fig. 2.6 thus creating a mapping between

a vertex / edge pair and another vertex / edge pair,

S|x, c〉 =











|v, c′〉 if (x, v) ∈ E

0 otherwise
(2.22)

where |x, c〉 is the current position and coin state of the walker and |v, c′〉 is the

related vertex / coin state (edge) pair.

The dynamics of the walk on higher dimensional structures has been studied

briefly by Mackay et al. [80] and then in more detail by Tregenna et al. [83]. They
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numerically studied the spreading of the quantum walk with varying coin operators

and initial states. In [83], the walk was initially studied on a two dimensional lattice

using two Hadamard coins, one for each pair of edges or directions, i.e. horizontal and

vertical. In this case, the dynamics of the walk moving in perpendicular directions

do not mix with each other and thus we get a distribution similar to that of the

line but in both directions. In addition, the choice of initial coin state, provided it

gives a symmetric distribution, makes no difference to the spread of the walk, which

gives a standard deviation
√

2 greater than that of the line [80]. In order to give

more interesting dynamics, the two coin operators we mentioned previously were

then studied. In the case of the two dimensional lattice, d = 4, the Grover coin

reduces to

G(4) =
1

2



















−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1



















, (2.23)

and the DFT coin reduces to

DFT (4) =
1

2



















1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i



















. (2.24)

Similar dynamics are found for both these coins on a two dimensional lattice. Tre-

genna et al. found that the initial state of the walker on the lattice had a large impact

on the spreading of the walker. Depending on the initial state, the walker can spread

anywhere from a minimum possible spread to a maximum possible spreading (as de-

fined in [83] by the second moment). However, there are subtle differences between

the dynamics of the two coin operators. In the case of the Grover coin, most of the
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Figure 2.7: Dynamics of the quantum walk on a two dimensional Cartesian lattice
using the Grover coin, eq. (2.23). LHS: Maximum spreading obtained using the
initial state in eq. (2.26). RHS: Localisation obtained using the initial state in
eq. (2.25). Note the different scales.

initial states, including the symmetric initial state,

|ψ〉sym =
1

2
(|0, L〉 + i|0, R〉 + |0,D〉 + i|0, U〉) , (2.25)

where L,R,D,U are the four directions the walker is able to move on the lattice,

give a minimal spreading with the walker localising around the origin with high

probability as seen in fig. 2.7. However, one specific state,

|ψ〉grover:max =
1

2
(|0, L〉 − |0, R〉 + |0,D〉 − |0, U〉) , (2.26)

gives a maximal spreading, again shown in fig. 2.7.

The DFT coin dynamics are the same in the sense that one specific state (different

to the Grover coin),

|ψ〉dft:max =
1

2

(

|0, L〉 +
1 − i√

2
|0, R〉 + |0,D〉 − 1 − i√

2
|0, U〉

)

, (2.27)

gives maximal spreading, but for all other (symmetric) initial states the distribution

is not localised as much as in the case of the Grover coin, see fig. 2.8. In fact, it

is spread across several of the vertices close to the origin with the choice of initial

state determining how much of the probability is within the central peak.

The hitting time of a quantum walk can be defined as the time it takes for the

walker to reach a specific vertex (with sufficiently high probability) from another. In
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Figure 2.8: Dynamics of the quantum walk on a two dimensional Cartesian lattice
using the DFT coin, eq. (2.24). Localisation dynamics obtained using the initial
state in eq. (2.25).

higher dimensions, this notion has been studied in some detail. The hitting time on

a structure is important algorithmically as it gives us an indication as to how quickly

a solution to a problem can be reached. In [82], Kempe proves that a quantum walk

can hit the opposite corner of a hypercube exponentially faster than in the classical

case. The complete graph [84] and the two dimensional Cartesian lattice [85] also

give improved results versus classical.

This unusual behaviour, for both the line and higher dimensions, compared to

the classical random walk is one of the main reasons quantum walks have attracted

so much attention in recent years. We discuss other unusual behaviour in sec. 2.6

and show how this behaviour can be used to our advantage in the form of quantum

algorithms.

2.5 Connecting the continuous and discrete time quan-

tum walks

Although the discrete and continuous time quantum walks are the direct quantum

analogues of their individual classical counterparts, it is not obvious how each version

of the quantum walk maps to the other. In the classical case, we can formulate a

discrete time random walk as a Markov chain with N states. An initial probability
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distribution, p ∈ R
N , is transformed by a N × N transition matrix, M , to an

updated distribution, p′ = Mp, at each timestep. In order to transform this to the

continuous time case, we firstly only allow the transformation M to occur with some

small probability ǫ > 0. By replacing the matrix M with ǫM + (1− ǫ)I we turn the

walk into a lazy random walk as in [86]. Thus

p′ − p = ǫ(M − I)p. (2.28)

Now, in the continuous time limit where ǫ→ 0, each discrete time step of the walk

is doing very little. Setting each time step to equal to an interval of ǫ then gives

d

dt
p(t) = (M − I)p(t). (2.29)

This Markov process is now a continuous time one in which the dynamics are gen-

erated by the matrix M − I.

However, in the quantum case the walks cannot simply be linked in the limiting

case due to the fact the discrete time quantum walk takes place on a larger state

space as it must include the additional degree of freedom provided by the coin.

The first work to attempt to link the two types of quantum walk was given by

Strauch [87] who gave a direct correspondence for the infinite line and the cubic

lattice. Strauch proved that in the continuous limit the discrete time quantum

walk actually becomes to two copies of the continuous time quantum walk which

propagate in opposite directions.

Later, using an approach based on the quantisation of classical Markov chains

introduced by Szegedy [88], Childs [86] proved a direct correspondence between the

two types on quantum walk for general graphs. This work builds on previous studies

in which it has been noted that, using the framework of Szegedy, the continuous and

discrete time quantum walks can be connected in certain circumstances. Ambainis

et al. [89] showed that the two can be connected when the continuous time quantum

walk has a positive, symmetric matrix as its generator. This was generalised to an
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Entrance Exit

Figure 2.9: The ‘glued-trees’ graph of Childs et al. [65]. It consists of two binary
trees linked randomly at the leaves.

arbitrary Hermitian matrix as long as the equivalent graph is bipartite by Reichardt

and Spalek [90]. Childs [86] then further extended this to any general graph by

constructing a ‘lazy quantum walk’ which is a discrete time process which is able to

approximate continuous time dynamics in the small time limit.

2.6 Applications of the quantum walk

The quadratic enhancement of the quantum walk on a line (and also higher dimen-

sions) caused much excitement in the quantum information community, especially

from a computer scientist’s perspective. The quantum walk has found many appli-

cations including its use in algorithm design and also as a transport model used in

many physical systems.

The possibility of using the quantum walk to develop new quantum algorithms

was quickly realised in the ‘glued-trees’ algorithm of Childs et al. [65]. Although

a fairly artificial problem, Childs et al. show an exponential separation in the run

time between the quantum and classical case. The walker is started at the root of a

binary tree and the task is to find the exit: the root of another binary tree which is

linked to the first randomly at the leaves, see fig. 2.9. In the classical case, the walker

finds it easy to reach the centre of the graph but once there cannot identify which

way is ‘forwards’ as there is a higher probability of the walker moving ‘backwards’.

As such, it takes an exponential time for the walker to reach the root of the second

binary tree. In the quantum case, the problem can be mapped to a quantum walk
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on the line and is only linear in the time it takes to reach the base of the second

tree. This is an extension of work by Childs et al. [66] in which the binary trees

are linked pair-wise at the leaves, which also gives an exponential speedup over the

classical case. In the case of the ‘glued-trees’ algorithm, the additional set of edges

is held by an oracle and thus the exponential speed up is proved with respect to

this. These algorithms provide a ‘proof of principle’ that quantum walk algorithms

can provide an exponential speedup compared to classical algorithms.

Following this, several other quantum walk algorithms were proposed. These

provide either a quadratic or polynomial speed up over the classical case. One of

the first of these was the quantum walk search algorithm introduced by Shenvi et al.

[50] which is able to match the quadratic speed up of Grover’s algorithm for searching

an unsorted dataset. As the efficiency of this algorithm is the basis of several of the

chapters of this thesis we discuss it in detail in Chapter 4.

Around the same time, Ambainis [67] gave a quantum walk algorithm for element

distinctness. Given a function f : {1, 2, . . . , N} → {1, 2, . . . , N} we have a black box

which given any input i, returns the value of f(i). We want to determine if two

inputs i, j where i 6= j returns the same value, i.e. f(i) = f(j). The number of

calls to the black box function is the measure of complexity of the algorithm. In the

classical case, the complexity scales as O(N). In the quantum case, the first quantum

algorithm based on Grover’s search was given by Buhrman et al. [91] which was able

to solve the problem in O(N3/4). The work of Ambainis [67] improves this using a

different approach involving quantum walks and brings the complexity to O(N2/3),

which is optimal [92].

The seminal work of Ambainis [67] and also the quantum walk search algorithm

[50] have both been used as subroutines in other new quantum walk algorithms.

The most notable of these being the triangle finding problem [68], matrix product

verification [93] and finding a marked subgraph [94]. These algorithms were gener-

alised as ‘subset finding’ problems by Ambainis [69]. In addition to these quantum

walk algorithms, there are several other algorithmic applications of the quantum
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L L-1 L-2 3 2 1

0

Figure 2.10: A formula evaluation tree as an undirected graph with a finite tail
attached.

walk: uniform sampling [95] and other graph theoretic properties [96, 97]. For a

good review of current advances in quantum algorithms, specifically quantum walk

algorithms, see Ambainis [69, 98] and Santha [99] and also references therein.

More recently, a new quantum walk algorithm has been discovered for the eval-

uation of Boolean functions and thus so called ‘span problems’. This work was

pioneered by Farhi et al. [100] who showed a continuous time quantum walk al-

gorithm which could evaluate a full binary AND-OR tree in O(
√
N) steps. This

was translated, and subsequently improved, in the discrete time case by Ambainis

et al. [89, 101, 102]. This allowed the evaluation of arbitrary Boolean formulae in

O(N1/2+o(1)) steps. The generalisation to span programs, which can be used for

proving lower bounds on circuit size [103], was discovered by Reichardt and Spalek

[90]. A general description of the basic idea is as follows. A formula tree is set up

as an undirected graph with a tail attached, fig. 2.10. A quantum walk is started

in a specific state across the vertices of the tail and is allowed to propagate. At the

leaves of the formula tree, the operation which is performed depends on the value

the leaf holds. If initialised in the right way, after O(N1/2+o(1)) steps of the walk

the the resultant state only changes if the formula evaluates to 1. If it evaluates to

0, the state remains almost the same so it is easy to distinguish the correct result

just by measuring the state. The generalisation to span programs is the same but

the graph is weighted, where the weights on the edges relate to the components of

the span program. For a more complete description of the full algorithm and proofs,

see the papers above and the recent review by Ambainis [104].
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One of the most active areas of research using quantum walks is that of quantum

simulation. The dynamics of a quantum system, the Hamiltonian, can be simulated

using a quantum walk. One of the main ideas is that the Hamiltonian can be

broken down into a sum of local Hamiltonians as suggested by Lloyd [38]. This was

generalised for any sparse Hamiltonian [105] and improved by Berry et al. [106].

Childs improves on the these cases by using an approach based on the quantum

walk. In [107, 108], a sparse Hamiltonian is broken down into several others whose

graphs have all non-zero entries and are all star graphs. A quantum walk is then used

to efficiently simulate each individual piece. This was extended in [86] to any non-

sparse Hamiltonians, however, Childs and Kothari [109] show there is a limitation to

which non-sparse Hamiltonians this is valid for. They show that graphs with small

arboricity, a measure of how dense the graph is, can be efficiently simulated using

the quantum walk approach.

Another application of quantum walks is as a model to understand transport

and other phenomena in physical systems. Examples of this include, but are not

restricted to, showing coherent quantum control of atoms in an optical lattice [110]

and the simulation of classical annealing processes [111]. More recently, the contin-

uous time quantum walk has also been used as a model to describe the high fidelity

transport of excitons in photosynthetic systems [112–116]. For further details, a

review of coherent transport using the continuous time quantum walk can be found

in [117]. In addition to these models, other work has involved modifying the original

walk to produce interesting results. The most notable of these include entanglement

generation using quantum walks [118], quantum walks with anyons [119], community

detection in social networks using quantum walks [120], quantum walks applied to

the graph isomorphism problem [121], inhomogenous (position dependent) quantum

walks [122–124] and multi-particle quantum walks [125–127]. Obviously these are

just a highlight of current and recent research into quantum walks as the area is

currently a hive of interest.
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2.7 Experimental implementation

The theoretical analysis of quantum walks has progressed at a much faster rate than

has been possible experimentally. Much of the control needed to manipulate single

quantum particles, such as photons, is still in development. However, many schemes

have been proposed since quantum walks were shown to be of algorithmic use in

quantum computing. Some of these schemes have been implemented to show ‘proof

of principle’ of the quantum walk on the line for small numbers of timesteps.

The first piece of work, although not directly related to quantum walks, was

presented by Bouwmeester et al. [128]. They performed an experiment using classical

optics to illustrate diffusion on a wave-mechanical version of the Galton board. The

classical Galton board is a game in which balls are rolled along a board with pins at

specific positions. The distribution of a number of balls having been rolled tends to

a Gaussian distribution, just like a classical random walk. Without realising at the

time, Bouwmeester et al. showed experimentally how classical wave-like interference

can be used to show the distribution of the quantum walk. We note here that

although the 1D quantum walk can be shown experimentally using just classical

methods, this does not mean that entanglement plays no role in quantum walks

in general. As soon as we move to higher dimensions of the quantum walk, the

quantum entanglement would manifest itself in the level of classical resources then

needed to implement it by classical means only. For a general review of entanglement

in quantum walks and resources needed to implement quantum walks experimentally

see Spreeuw [129].

The first experimental proposals with the quantum walk in mind were introduced

shortly after the quantum walk was introduced with algorithmic applications in mind

[44, 45]. The first proposal was shown by Travaglione and Milburn [130] who gave

a scheme for implementing the discrete time quantum walk on either the line or the

cycle using ion traps. They showed how one could encode the position and coin

states of the walker in the motional and electronic states of the ion respectively. By

applying various pulses to the ion trap, both the coin and shift operators can be
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performed. In order to implement the walk on a cycle, the ion is ‘walked’ around

a cycle in phase space. In this scheme, the decoherence of the internal states limits

the number of steps the scheme is able to implement.

Another scheme to implement the discrete time quantum walk on the cycle was

introduced by Sanders et al. [131] using cavity quantum electrodynamics. In this

case the coin is implemented by a two level atom traversing a microwave cavity. The

cavity starts in an initial coherent state and laser pulses implement the required

operations. Depending on the state on the atom, the cavity field undergoes phase

shifts, implementing the quantum walk in phase space. The decoherence time of the

cavity limits the number of steps possible in this scheme.

Neutral atoms trapped in optical lattices provided the implementation of the

next scheme proposed by Dür et al. [132]. They propose implementation of the

discrete time quantum walk on the line or cycle in position space. The atoms are

trapped in optical lattices and laser pulses are used to alter their internal state. The

atoms then periodically shift, left or right, based on the internal state of the atom.

At the time of the proposal they estimated that the technology at the time would

have been able to implement several hundred steps of the quantum walk.

These proposals are generally seen as the most important initial schemes. Many

others have been proposed since then including schemes using just linear optics [133],

classical interference effects [134–137], cavity quantum electrodynamics [138], Bose-

Einstein condensates trapped in optical lattices [139], ion traps [140] and quantum

accelerator modes [141]. Although new, many of these schemes just extend or im-

prove the original schemes proposed. However, more recently several new proposals

have been made which may allow higher dimensional quantum walks to be realised.

In the first of these schemes, Eckert et al. [142] uses the same idea as in [132] but

uses trapping potentials of the optical lattice as the coin as opposed to the internal

states of the atom. In order to extend this to a 2D lattice, four levels are formed by

creating a tensor product of two trapping potentials and two hyperfine levels of the

atom. In related work, Roldán and Soriano [143] also give a proposal for a higher
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dimensional quantum walk. In this scheme, optical cavities are used where the fre-

quency of the light field encodes the position state. The polarisation of the light

field gives the two orthogonal directions of the position coordinates. This scheme

uses physically different spatial paths through cavities to encode the coin state. In

other work, Zou et al. [144] show a scheme for implementing a 1D walk with a higher

dimensional coin. In this case linear optics are used to encode the position state as

the orbital angular momentum of the photon and again spatially separated paths

are used for the coin state.

The first experimental implementation of the quantum walk was shown by Du

et al. [145]. They implemented the continuous time quantum walk on the cycle of

4 vertices using a two qubit NMR quantum computer. They show the periodicity

of the quantum walk on this cycle as shown in [130] and numerically studied by

Tregenna et al. [83]. Du et al. also experimentally show that quantum walk on this

cycle on 4 vertices yields a uniform distribution at specific points.

Shortly after this initial implementation, Mandel et al. [146] experimentally

showed coherent transport of neutral atoms in optical lattices. They showed co-

herences between atoms which were delocalised over 7 lattice sites. Although the

work was not done in a quantum walk context, this in effect experimentally showing

that the shift operator of the discrete time quantum walk can be implemented. This

work is seen as a first step in the experimental implementation of the proposal of

Dür et al. [132].

Implementation of the discrete time quantum walk was first experimentally

shown by Ryan et al. [147] in a three qubit NMR quantum computer. This was

shown on a circle of 4 vertices for 8 timesteps. In addition to showing this ‘proof

of principle’ for the discrete time quantum walk, decoherence was added after each

step to show the transition back to the classical walk.

Several other of the proposals above have also been experimentally implemented.

The quantum quincunx of [131] was shown by Do et al. [148] but using linear optics

over 5 timesteps. Zhang et al. [149] implemented the proposal of [144] for 3 steps
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of the discrete time quantum walk using the orbital angular momentum of photons.

The recent proposal of Xue et al. [140] using ion traps to show the discrete time

walk was shown by Schmitz et al. [150]. The number of steps in the proposal is

unlimited but experimental limitations mean the number of timesteps is restricted

to 3. We note that the schemes detailed in [145] and [147] are experimental examples

of quantum computations, whereas the proposals above are experimental examples

of physical quantum walks.

In related work, Zähringer et al. [151] present a similar ion trap implementation

of a quantum walker in phase space. However, they are able to realise up to 23 steps

of the discrete time quantum walk. More recently, lattices of waveguides have been

used by Perets et al. [152] to experimentally show the continuous time quantum

walk with reflecting boundaries. Also using optical waveguides Peruzzo et al. [153]

have recently shown quantum walks with two walkers using two entangled photons.

Finally, we mention three recent experimental results. The first of these was

presented by Karski et al. [154], which give the first experimental realisation of the

quantum walk in position space using Cs atoms trapped in an optical lattice, in a

scheme similar to that proposed in [132]. Although quantum walks have previously

been experimentally implemented, this is the first realisation of a quantum particle

moving in position space coherently by controlled internal states, atomic spin. In

the experiment, 10 steps of the discrete time quantum walk were shown and also

reversed back to the initial state. These results show great control over the quantum

state and coherences and should allow many other properties of the quantum walk

to be explored. For example, this scheme allows the implementation of position

dependent coin operators as in the inhomogeneous quantum walk of Linden and

Sharam [122].

The second set of recent results are from Broome et al. [155] who use linear

optics to realise a discrete time quantum walk. The coin state in encoded into the

polarisation of the photon and the position of the walker is determined by spatially

seperated paths. This is similar to the proposal of Zhao et al. [133] but additionally
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allows tunable decoherence and control over operations at all points of the walk.

They show 6 steps of the quantum walk both with varying levels of decoherence and

also with absorbing boundaries. The fact this scheme allows tunable decoherence

allows the study of the quantum to classical transition along with random sampling

applications for algorithms. In addition, this scheme also allows position dependent

coin operators as in the previous experiment.

The final experiment we mention is the first scaleable implementation of the

discrete time quantum walk. Schreiber et al. [156] show a 5 step quantum walk

using a loop of optical elements essentially allowing any number of steps of the

quantum walk to be performed with a constant level of resources. They use the

polarisation of photons for the coin state and the position of the walker is translated

via the arrival time at the detectors. The coin state encoding could be changed to the

orbital angular momentum to allow the implementation of higher dimensional coin

operators. The limiting factor in this experiment is the quality of the optical elements

used. Due to the large number of timesteps that are feasible in this experiment

and the ability to apply varying coin operators to different position states, this

experiment should provide a starting point for the implementation of a ‘proof of

principle’ experiment of the quantum random walk search algorithm of Shenvi et al.

[50].
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Chapter 3

Universal quantum computation

using the discrete time quantum

walk

3.1 Introduction

A proof that continuous time quantum walks are universal for quantum computa-

tion, using unweighted graphs of low degree, has recently been presented by Childs

[49]. In this chapter, we present a version based instead on the discrete time quan-

tum walk. We show the discrete time quantum walk is able to implement the same

universal gate set, and thus both discrete and continuous time quantum walks can be

considered computational primitives. Additionally, we discuss perfect state trans-

fer on graph structures and give a set of components on which the discrete time

quantum walk provides perfect state transfer. Since completion and subsequent

publication of this work, Underwood and Feder [157] have presented another con-

struction combining the continuous time work of [49] and the discrete time case we

describe here.

In [49], Childs extends the original results of Feynman [9], which can be in-

terpreted, loosely, as showing that quantum walks are universal for quantum com-
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putation. Feynman constructed a time independent Hamiltonian which can then

be used to implement any quantum computation, the idea being to show that a

physical quantum mechanical device for information processing was reasonable. As

Childs points out, the dynamics of a time independent Hamiltonian can be imple-

mented by a quantum walk. In this case, the graph the walk traverses is weighted

and directed. In addition, in order to satisfy Hermiticity, the weights on opposite

edges of the graph must occur as complex conjugate pairs. It is more physical, and

clearer, to view Hamiltonian dynamics as a quantum walk on sparse, unweighted

and undirected graphs. Childs [49] proves that a continuous time quantum walk,

on an unweighted graph of bounded degree, is universal for quantum computation.

This extends Feynman’s work, as in his original construction, the degree of the

representative graph grows with the size of the computation.

In his work, Childs was motivated to show universality of quantum walks for two

reasons. Firstly, it shows the computational power of the quantum walk, proving

that any quantum algorithm can be recast as a quantum walk algorithm. This fact

alone shows motivation for the continued search for new quantum walk algorithms.

Secondly, Childs points out there may be applications for his construction to quan-

tum complexity theory. Feynman’s original construction has previously been used

to construct QMA- [158] and BQP-complete [159, 160] problems. It therefore seems

reasonable to assume that this new construction may give new insights into quantum

complexity.

Childs gives an explicit construction that converts a standard gate model compu-

tation into a graph, on which a continuous time quantum walk executes an algorithm

by traversing the graph. The construction requires an exponentially large graph for

the size of the input, needing 2n wires for an n qubit input. The quantum walk takes

place on this N -vertex graph, on which it is already known the walk can be simulated

efficiently by a universal quantum computer using poly(logN) gates, provided there

is a simple rule to compute the neighbours of any vertex [65]. Thus, by performing

the quantum walk on a quantum computer, the binary encoding brings the resources
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required back to the expected level. We discuss the resource requirement in more

detail in sec. 3.4.

Our construction for the universal gate set in discrete time is similar to [49] but

has maximum degree, d, of eight at any vertex as opposed to three in the continuous

case. The continuous time walk can easily be propagated in one direction with no

reflection at the vertices. The discrete time walk is not so straightforward, it can

only be propagated in one direction by using a specific coin corresponding to the σx

operation. Using this coin restricts the graph to vertices of degree two, providing

no way to construct higher degree structures. Thus, we find we must use a double-

edged wire to accomplish directional propagation. This solution has its roots in

the connection between the continuous and discrete time walks. Strauch [87] has

shown that, as we take the continuous limit of the discrete time walk on the line,

we actually get two copies of the continuous time walk propagating in opposite

directions. Childs [86] later showed a direct correspondence between the discrete

and continuous time quantum walks on arbitrary graphs. In the same work, Childs

shows how a discrete time walk can be used, at its limit of small eigenvalues, to

approximate the continuous time walk. He uses this ‘lazy’ quantum walk approach

to allow the discrete time walk to propagate in the same way as the continuous. This

same approach could be used in this case to allow the computation to be performed

on the same structures defined in [49]. However, this would require the discrete

time walk to approach the limit at which it is doing very little at each timestep.

This would then increase the overhead required to allow completely deterministic

computation.

We start by describing perfect state transfer and work previously done in the

context of spin chains. We also discuss perfect state transfer on graph structures

using the quantum walk. However, most of this has been done using the continuous

time quantum walk. We then move on to describe the universal gate set for quan-

tum computation we are able to show using the discrete time quantum walk. This

includes structures which exhibit perfect state transfer from one side of the graph
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to another. Using these structures, we show how to create larger quantum circuits,

before finally concluding by comparing our discrete time quantum walk structures

to the continuous time construction of Childs [49].

3.2 Perfect State Transfer

Quantum walks have been used as quantum transport models in the context of

spin chains for quantum communication [161–163], and more recently to investigate

high fidelity exciton transfer in photosynthetic molecules [114–116]. The glued trees

algorithm of Childs et al. [65], and the hitting time of a quantum walk on a hypercube

[82], both showing exponential algorithmic speed ups, are also examples of quantum

transport. All these examples of transfer phenomena allow an arbitrary state to

be transferred from one vertex of an undirected graph to another. In the case of

quantum communication or charge transfer, we require either perfect, or high fidelity,

transfer to occur, whereas in algorithmic problems, we are more interested in the time

to travel between the two points (as long as the probability of reaching the desired

vertex is not exponentially small). As a preliminary to our quantum computation

scheme, we discuss structures on which perfect state transfer can be achieved using

the quantum walk, an important property for both quantum communication links

and quantum computation.

Spin networks were initially investigated by Bose [161], who proposed using spin

chains for short range quantum communication between distant qubits. A network

of spins can be represented by an undirected graph, where the vertices represent

the qubits (individual spins) and the edges represent the interactions or couplings

between them. We want to be able to find a network which is able to provide perfect

state transfer from one vertex to another. For quantum communication purposes,

we ideally want some form of network which does not need dynamic control over

the individual interactions. In the work of Bose [161], a 1D, unmodulated (all the

couplings between neighbouring qubits are the same) chain of N qubits is initialised
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with a specific state at one end,

|Ψ〉 = |ψ〉|0〉⊗N−1, (3.1)

where |ψ〉 is the state we wish to transfer. Allowing the system to evolve with the

Hamiltonian in [161],

HBOSE = J
N−1
∑

n=1

(XnXn+1 + YnYn+1 + ZnZn+1), (3.2)

where X,Y,Z are the standard Pauli matrices, Bose wanted to transfer the state

perfectly to the opposite end of the spin chain to give the output state

|Ψ〉 = |0〉⊗N−1|ψ〉. (3.3)

For N = 2 and N = 3, the transfer of the state from the first qubit to the end qubit

can be achieved with perfect fidelity. Christandl et al. [163] showed later this same

perfect state transfer is not possible for N > 3 in this setting. However, Christandl

et al. [162] gave an alternative arrangement by placing the spins in a hypercubic

pattern as opposed to a 1D chain. This allows perfect state transfer for any N

spin hypercube. In addition, by modulating the strength of the couplings between

neighbouring spins, perfect state transfer is also possible for a 1D spin chain of any

number of spins [163]. For a good review on perfect state transfer using spin chains,

see Bose [164] or Kay [165].

The propagation of a state through spin systems follows the same dynamics as a

continuous time quantum walk. In addition, the properties of instantaneous mixing

and periodic cycles are closely related to perfect state transfer and have been studied

in detail for the continuous time quantum walk [166–169]. Tamon et al. proved that

this instantaneous mixing can be achieved on cycles of 2, 3 and 4 vertices only.

The continuous time quantum walk can also be shown to have perfect state transfer

properties on many other graphs including the hypercube [79]. For a recent review
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on the perfect state transfer and mixing properties of the continuous time quantum

walk see Kendon and Tamon [170].

Due to the additional degree of freedom provided by the coin in the discrete time

quantum walk, the perfect state transfer properties have been studied in much less

detail. This is partly due to the analytical analysis being much more complex, and

also as the continuous time quantum walk is generally seen as a more suitable model

for both biological and physical systems. One method to investigate the dynamics

of the discrete time quantum walk was introduced by Feldman and Hillery [171–

173]. This involves attaching semi-infinite tails to the start and end points of the

graph to be studied, thus the time to propagate from one tail to the other can then

be found. However, although this method is well suited to the task, it has not, as

yet, been used to investigate perfect state transfer on graphs. The opposite of the

same problem, i.e. no transfer occurs at all, has been studied by Krovi and Brun

[174–176] where the hitting time of the discrete time quantum walk was studied.

They characterised the cases where the hitting time of the quantum walk becomes

infinite, and therefore no mixing or transfer can occur at all. These results highlight

the importance of symmetry in the structure being walked upon for perfect state

transfer.

For the discrete time quantum walk, slightly larger cycles show exact periodic

behaviour than in the continuous time case. Travaglione and Milburn [130] showed

that a cycle of 4 vertices has a periodicity of 8 timesteps, after which the entire state

returns to the starting position. Tregenna et al. [83] showed more periodic cycles

exist, cycles of 2, 3, 4, 5, 6, 8 and 10 were shown numerically to be periodic by

varying both the bias and phase in the coin. Perfect state transfer occurs at half

the periodic cycle for even cycles, where we obtain the entire state at the opposite

point of the cycle as shown in fig. 3.1.

For our case of using the walk for computation, we require the walk to travel

perfectly in a single direction. On the structures mentioned, the quantum walk

travels around the cycle in both directions and interferes to produce perfect state
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Start
Perfect state transfer

 after 12 timesteps

Figure 3.1: Cycle of 8 vertices which gives perfect state transfer from the initial
vertex to the opposite vertex after half of the period, 12 timesteps. The entire state
returns to the initial vertex in a full period, 24 timesteps.

transfer. Using a completely biased coin (which is just a σx operation),

Hbias =







0 1

1 0






, (3.4)

we can make the state transfer perfectly around the cycle in a single direction.

However, if we then try to attach another structure to the cycle, this periodicity is

broken in both cases. The Grover coin, eq. (2.20), can be used to overcome part of

this problem at vertices with an equal number of input edges as output edges. For

any vertex of even degree, it will transfer the entire state from all the input edges to

all the output edges provided the inputs are all equal in both amplitude and phase,

as shown in eq.(3.5), where d is the degree of the vertex in question. These results

led us to the designs that work for universal computation.
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3.3 Universal Gate Set

We now show how we construct a universal gate set with the discrete time quantum

walk. Although the gate set we implement is the same as in [49], the structures used

to propagate the discrete time walk are different. The gate set used is the standard

universal set comprising the controlled-not (C-NOT) gate,

C-NOT =



















1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



















, (3.6)

the single qubit Hadamard,

H =
1√
2







1 1

1 −1






, (3.7)

and the phase shift gate (we implement the specific phase shift known as the π
8 gate),

P (
π

8
) =







1 0

0 ei
π

4






. (3.8)

These gates create a universal set that can implement any quantum computation

[177].

In order to represent quantum states, Childs defines his computational basis

states as quantum wires. The other gates required for universality are then attached

to wires and used to connect them together. The computation is represented as a

quantum walk on these wires and structures, where the computation flows from

input to output (left to right in our diagrams). Note that this encoding is not meant

to be implemented directly. The wires represent computational basis states rather

than qubits, thus the model does not represent a physical architecture. Instead,

the underlying graph structure created would be used to help ‘program’ a quantum

computer. We first show how to construct a simple wire, along which the quantum
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ShiftGrover

A B C

Figure 3.2: Grover coin and shift operation acting on a vertex of degree d = 4.
Section A shows the initial state, B shows the state after the Grover coin is applied,
and finally C is after the shift operation.

walk will propagate naturally in one direction. We use two edges per wire to ensure

no reflection occurs at a vertex. We distribute the walker across the two edges which

then recombine at the next vertex. As the split is equal, the Grover coin in effect

moves both halves to the output edges of the vertex. Figure 3.2 shows this operation

and the ‘shift’ to the next vertex in explicit steps. The Grover coin, eq. (2.20), is

used at each vertex of degree d = 4. The initial and final vertices are in effect degree

four, if we include other edges attached to either end. Figure 3.3 shows the basic

wire we use. The computation would start with the amplitude at the initial vertex

spread equally across the pair of edges in a wire. For example, the state α|0〉+β|1〉,

where |α|2 + |β|2 = 1, would be split thus,

|ψ〉initial =
1√
2

[α|0〉a + α|0〉b + β|1〉a + β|1〉b] , (3.9)

where the subscript a refers to the top line of the wire and subscript b is the bottom

line. The walk propagates left to right on the wire deterministically, in this case

reaching the incoming edges of the final vertex in four timesteps. These wires form

the basic connections in the computation.

The simplest gate to construct is the C-NOT. It is trivial to implement by just

exchanging the wires of the second qubit. The C-NOT gate is shown in fig. 3.4 and

shows how the second qubit is flipped but the first qubit is untouched.

The phase gate, eq. (3.8), requires the addition of a relative phase to one wire

or computational basis state in relation to the other. To accomplish this, but still

have only one coin operator for each vertex of the same degree, we modify the basic
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Figure 3.3: Basic wire used to propagate the quantum walk from left to right only.
At a vertex of degree d = 4, the Grover diffusion coin is used. The initial state is
split across the pair of edges in the wire, eq. (3.9).

Figure 3.4: Structure used to implement a C-NOT gate. In this case, the first qubit is
the control and the second is the target. The target qubit’s wires are interchanged
and the control qubit is left unaltered. The dotted lines represent wires passing
underneath the solid lines - there is no interaction between these wires.

wire and add a phase factor, eiφ, to it,

G
(4)
φ = eiφG(4). (3.10)

Thus, as the walk propagates along a basic wire, it now picks up a phase of eiφ each

time it passes through a vertex of degree d = 4. For the wires shown in fig. 3.3, the

walker would pick up a phase of e5iφ as it passes through the final vertex. The phase

added here is arbitrary and can be set to any value so long as it is set to the same

value for all vertices of degree d = 4. As we are looking to implement a π/8 gate,

we set it as follows: φ = −π/4. In order to add a relative phase of π/4 between the

|0〉 and |1〉 wires, we insert the structure in fig. 3.5 into the graph at the required
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Figure 3.5: Phase gate structure. The d = 2 Grover coin, eq. (3.11), is used at the
vertices of degree d = 2. The |1〉 wire will pick up a phase of eiφ relative to the
|0〉 wire. In our construction, we actually obtain the operation corresponding to a
phase of ei

π

4 as we set φ = −π/4.

point. In this structure there are also vertices of degree d = 2, at which we use the

Grover coin at its limit of degree d = 2, again the same as the σx operation,

G(2) =







0 1

1 0






. (3.11)

We add no phase to eq. (3.11) so as the walker passes through these vertices no phase

is picked up. In fig. 3.5, the walker propagates along the |1〉 wire and picks up a

phase of e−iπ in four timesteps as it only passes through four vertices of degree four.

However, the |0〉 wire picks up a phase of e−5i π

4 in the same number of timesteps as

all its vertices are of degree four. Relative to the |0〉 wire, the |1〉 wire will pick up a

phase of ei
π

4 . Therefore, using the structure described here we obtain the operation

in eq. (3.8).

The last gate in the universal set is the Hadamard gate. This requires an inter-

action between the two computational basis states. The structure we use to perform

this operation is shown in fig. 3.6. This looks complex in relation to the other gates

we have shown so we break it up to explain it more clearly. Sections A and C of the

structure are each two phase gates giving a relative phase of i to the |1〉 wire before

and after the main section of the gate (B). Section B of the structure combines the

two inputs from the |0〉 and |1〉 wires and then splits this across the outputs equally.
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A B C

Figure 3.6: Hadamard gate structure. Sections A and C each add a relative phase
of i to the |1〉 wire. Section B performs the unitary transformation of eq. (3.12) to
the incoming state. The structure adds a global phase of 3π/4 to the wires.

The structure here is similar to the basis changing gate in [49]. In order to obtain

the desired operation on this structure, we have designed a coin for vertices of degree

d = 8:

G(8) =
1

2
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









































0 0 0 0 1 i i −1

0 0 0 0 i 1 −1 i
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

. (3.12)

This operator combines the complex Hadamard operator,

Hc =
1√
2







1 i

i 1






, (3.13)

and the σx,

σx =







0 1

1 0






, (3.14)

in a tensor product form,

G(8) = (Hi ⊗Hi) ⊗ σx, (3.15)

with the top two and bottom two rows of the Hi ⊗ Hi matrix rearranged. This

rearrangement ensures the outputs come out in the same order as the input states.
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This gate adds a global phase of 3π/4. The phase gates at the start and end of the

central section give us the relative phase of −1 required for the Hadamard operation.

We note here that the choice of where to place the phases in this construction is

arbitrary. The same result can be achieved by using the degree four Grover coin,

eq. (2.23), with no phase at vertices of degree four, and the degree two Grover coin,

eq. (3.11), with a phase of π/4 at vertices of degree two. However, by placing the

phases on the Grover coin in the fashion we described previously, eqs. (3.10, 3.11),

means that the global phase added by the Hadamard gate, eq. (3.12), corresponds

to the phase added by a wire of the same length.

3.4 Constructing Quantum Circuits

Thus far, each gate we have described only acts on one or two qubits. However,

non-trivial quantum computers involve many qubits. We now describe how to link

these wires and structures together to form larger circuits. Figure 3.8 shows the

underlying graph structure of the circuit in fig. 3.7. The graph structure is obtained

by connecting together wires and structures so that the walk flows from left to right.

For this reason, we designed our wires and structures to both input and output from

vertices of degree four, thus making it simple to link them together. The initial state

of the computation is set on all or a subset of the vertices on the left hand side of

the graph, with the amplitude at each vertex split across the incoming edges. This

initial state can be thought of as the first column of vertices in the graph structure

in superposition, with each subsequent column of vertices representing a further

timestep. For example, in fig. 3.8 this initial column of vertices is the set prior to

the Hadamard structures. The walker is propagated across the graph structure, from

left to right deterministically, for the required number of timesteps. We therefore

do not require the addition of momentum filters or separators as in the continuous

time case. Our structures all propagate the walker at the same speed, meaning

output from the wires will be synchronised throughout the computation. Finally,

the walker picks up a global phase of −π/4 per vertex that is not part of a gate that
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changes the phase, so all the wires also stay synchronized in phase. Thus, we know

with certainty that, after the required number of timesteps, the walker will have a

distribution over just the output vertices on the right hand side of the graph. Once

the computation has been completed, we measure the output vertices. We will find

the walker at just one of these vertices, representing the output of the computation.

The graph structure in fig. 3.8 is clearly larger in size than its equivalent repre-

sentation in the circuit model, fig. 3.7. In fact, for a general n-qubit computation

the equivalent graph will have 2n wires, one for each combination of computational

basis states. Similarly, we require more gate structures than in the circuit model.

Single qubit structures are repeated 2n−1 times and for the C-NOT gate we need

2n−2 structures. As an example, we can see the phase gate acting on the third qubit

in fig. 3.7 is repeated four times in the underlying graph structure of fig. 3.8, one

for each combination of wires involving this qubit. Although this seems as though

we would lose any form of quantum speed up due to the exponential number of

gates required in the underlying graph, this is not the case. Consider simulating a

classical random walk on a classical computer, the N -vertex graph is represented in

log2N bits of memory with each vertex having a unique binary number as a label.

In a similar fashion, if we simulate a quantum walk on a quantum computer, the

N -vertex graph can be represented by log2N qubits. Therefore, if we encode our

graph using qubits, we can describe the 2n wires in just n qubits. By manipulation

of a single qubit we can affect all combinations of wires associated with that qubit.

As the state moves across the graph, the adjacent vertices must be established. In

complex graphs the description of the graph and its connections is often exponential

in size and an oracle must be used to store it [65]. The graphs produced here are of

bounded degree and have a regularity stemming from the repetition of gate struc-

tures on combinations of wires involving a specific qubit. Due to the labelling of the

wires, we know where to place each structure based on one bit in the label, thus we

can efficiently describe the graph. For example, consider the second C-NOT gate

in fig. 3.7, which operates on the third qubit with the second qubit as control. We
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H P

Figure 3.7: Quantum circuit on three qubits. A Hadamard operation is performed
on qubit three followed by two C-NOT gates. Finally, a phase gate is applied on
qubit three. The underlying graph of this structure is shown in fig. 3.8.

H

H

H

H

Figure 3.8: Graph to represent the quantum circuit in fig. 3.7. The Hadamard
structure, H, is the same as in fig. 3.6. The dotted lines represent wires passing
underneath the solid lines - there is no interaction between these wires.

can see from fig. 3.8 that it is easy to identify where the C-NOT structures should

be placed. The labelling of the wires shows that the middle bit determines which

combinations of wires relate to the second qubit having a value of 1. Similarly, we

can also identify which wire it should link to by the last bit in the labelling scheme,

it needs to be flipped relative to the original wire, i.e. |010〉 links to |011〉.

57



Chapter 3. Universal quantum computation using the discrete time

quantum walk

3.5 Discussion

In this chapter, we have described an alternative to the continuous time construction

in [49], using the discrete time quantum walk. This shows the discrete time quantum

walk is universal, therefore any quantum algorithm can be reformulated as a discrete

time quantum walk algorithm. It also confirms that the discrete and continuous time

walks are both computational primitives and thus computationally equivalent. This

equivalence is dependent on the number of steps in both cases to be of the same order.

Our gate constructions require twice the number of edges compared to the continuous

time case, but the same number of wires. Our phase gate requires an additional

timestep in relation to the continuous time phase gate construct. The number of

timesteps required for a computation is also the same as the continuous time case,

but with a small overhead depending on the number of phase gates required.

Another difference in the two constructions is the degree of the graphs produced.

In the continuous time case, the maximum degree of any vertex in the graph is three.

In the discrete time case, we use vertices of higher degree to ensure directional

propagation. In most of the structures this involves a doubling of the degree at

a vertex, as shown in the case of the basic wire and the C-NOT structure. The

Hadamard structure we propose here however, does not follow this doubling. It

would seem reasonable, from the equivalent degree three structure in the work by

Childs, that it may be possible to decompose our Hadamard structure into one with

degree six vertices. The doubling of degree at vertices would then correspond directly

to the continuous case. In the discontinuous time case of [157], the construction

combines the benefits of both schemes by allowing the walker to take discrete steps

of continuous evolution. This scheme, like the discrete time case we describe here,

is deterministic for all input states, but has the added benefit that the additional

coin degree of freedom is not required, thus reducing the resources needed.

Although this model is universal for quantum computation, neither this or the

continuous model of Childs [49] is designed to be implemented physically. Instead

it is meant to show the power of the quantum walk as an algorithmic tool. As any
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quantum algorithm can be defined as a quantum walk algorithm, it provides new

motivation that many new quantum walk algorithms can be found. In addition, the

construction provided here may give new insights into quantum complexity theory.
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Chapter 4

Searching

4.1 Introduction

Searching is undoubtedly one of the most basic problems in computer science. In

this context, searching is not just restricted to a physical database but could also be

searching through a state space for an entry which fulfills a specific clause such as

the constraint satisfiability problem (k-SAT). In k-SAT, we are given a set of clauses,

C1, C2.....Cm, each of which contains k boolean variables which can take values of

0 or 1. The problem is to determine if there is any assignment of these variables

such that all m logical clauses are satisfied simultaneously. Clearly as k (and m)

increases, the search space increases exponentially. Although many tricks can be

played to search data efficiently, such as sorting or using specialised data structures,

searching through such a large, unsorted dataset can be a lengthy process. In fact,

the complexity of such a task scales linearly with the size of the dataset, N , to be

searched. Intuitively, it is easy to see this must be the case as every item must

be checked in turn until the specific item is found. On average, half the items will

have to be checked before the correct one is located. This leads to the best classical

scaling which can be achieved, O(N).

One of the most important quantum algorithms discovered thus far is the search-

ing algorithm of Grover [13]. He showed that an item could be found from a set
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of N in a time quadratically faster than the classical case, O(
√
N). Grover uses a

technique known as amplitude amplification to increase the probability of finding

the desired item from an initially uniform distribution. Although in this thesis we

only consider the case of finding a single marked item from a dataset, the algorithm

introduced by Grover also applies to a search for multiple items as shown in detail by

Boyer et al. [35]. In the case where we have a set of M items, the search algorithm

is able to amplify all M to a constant value in O(
√

N/M ) steps. Obviously when

we measure the resulting state we only obtain one of the M desired items at ran-

dom. We also note that Grover’s algorithm has been shown to be both optimal and

also one of the few quantum algorithms which is provably faster than any possible

classical algorithm [34].

One application of the quantum searching algorithm could be to break certain

classical cryptographic systems, for example the commonly used Data Encryption

Standard (DES). In DES, a message is encryted using a 56-bit secret key which

two (or more) parties must agree upon prior to starting communication. If a third

(hostile) party eavesdrops and manages to intercept both matching parts of a single

message, the clear and the ciphertext, it would be possible to find the matching key

which maps one to the other. The problem classically is that the optimal method,

to isolate the correct key, would be an exhaustive search of all possible keys until

the correct one is found. This means searching through 255 keys which would take

approximately one year (if one billion keys could be checked every second). If the

same search could be done using the quantum search algorithm, the problem could

be solved with just 185 million steps [178].

Due to the quantum search algorithm being of such practical importance, much

interest has been shown in Grover’s algorithm in order to try and make it more ro-

bust and easier to implement. Several years after Grover introduced his algorithm,

Shenvi et al. [50] gave a quantum walk based search algorithm which was able to

match the quadratic speed up of Grover’s algorithm. This quantum walk search

algorithm has been studied in detail and many improvements have been made since
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its introduction. In fact, due to the many uses of searching in algorithms, the quan-

tum walk search algorithm has become a standard tool in developing new quantum

algorithms. For a good review see Santha [99].

After discussing the most efficient classical searching method, we move to the

quantum case and describe the main parts of Grover’s algorithm. Later in this

chapter we show how the quantum walk can be easily modified to turn it into

the search algorithm of Shenvi et al. [50]. Their work was originally based on the

hypercube, but was later extended to d-dimensional lattices [179]. We describe the

search algorithm, along with its scaling behaviour, on a two dimensional Cartesian

lattice, before concluding this chapter with a review of known results for the quantum

walk search algorithm on various structures.

4.2 Classical search algorithm

Consider a phone book where the entries are ordered alphabetically. If given a

name, it is easy to find the corresponding phone number as we have knowledge of

the ordering and structure of the database. If we take the reverse of this, and are

given a number and asked to find the corresponding name, the situation becomes

much more difficult and it is less clear how to solve. The obvious way is to just start

from the beginning and work through every entry until the correct one is found.

It is clear that, on average, we must check half the entries before the correct one

is located. In fact, this is actually the optimal classical strategy for searching a

large unordered set giving rise to a classical runtime of O(N). Checking each entry

sequentially is the equivalent of a magnetic tape storage system. We must work

from one end of the tape to another in order to eventually find the required item.

Although technological advances have lowered access times, e.g. hard drives, the

basic scaling of the runtime is still the same.

In this thesis, we only consider the case where the dataset is unordered and is

to be searched only once. In classical searching, if the data to be searched is to be

used on many occasions, i.e. a physical database, the data could be sorted into some
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logical order. In the case of the phone book, alphabetical ordering is the standard,

and most logical, form of ordering. By sorting the dataset in this fashion, other

searching methods or specific data structures, e.g. a binary search tree, can then be

used to search the data. These methods or structures can reduce the complexity of

the search considerably. For example, the run time for a search on a binary search

tree is O(logN) in the average case. Obviously, the initial sorting of the data will

take at least O(N) steps so this does not reduce the time to search an unordered list.

However, the dataset only needs to be sorted once so this is just a fixed overhead. If

the data is to be searched on many occasions, this overhead is often worth the cost.

For a good review of all searching and sorting methods currently used in classical

computer science, see any good textbook on data structures and algorithms, for

example Knuth [180].

4.3 Grover’s algorithm

In his seminal work, Grover [13] provided a quantum algorithm which is able to find a

specific item from an unordered dataset in a time quadratically faster, O(
√
N), than

the classical case, O(N). We firstly describe the algorithm in general terms, before

moving on to show a geometric visualisation. Grover’s algorithm uses a technique,

often referred to as amplitude amplification, to increase the amplitude of the desired

state in a system. An oracle is used which can recognise (but does not know) the

item we are searching for. As the algorithm works in superposition, many items

can be checked simultaneously. People are often confused by the role of the oracle,

asking if the oracle already knows the item we are looking for then what is the point

of the algorithm. The answer to this is that the oracle does not know which item

we are looking for. However, it can recognise the item easily once it is found. This

property is often used in problems in computer science. In the example of the phone

book, it is easy to check whether the number found is the one we are searching for,

but that does not mean we already knew its location.

The main steps of Grover’s algorithm are shown in fig. 4.1 and can be described
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(a)

(b)

(c)

Figure 4.1: Graphical representation of a step of Grovers algorithm. The dotted line
represents the average of the entire state. (a) The state is prepared in a uniform
superposition over all N items. (b) The oracle is applied which negates the compo-
nent of the state we are searching for. (c) The diffusion operated is applied which
has the effect of inverting the state about the average.

as follows:

(1) Prepare the initial state in an equal superposition of all possible states as in

fig. 4.1 (a). In the case of a search over an unsorted database of N items this is

|ψ〉 =
1√
N

N
∑

x=1

|x〉, (4.1)

(2) Apply an oracle, C, where C(x) = 1 if the state |x〉 being checked matches the

required item or C(x) = 0 otherwise. This acts as

C|x〉 →











−|x〉 C(x) = 1

|x〉 C(x) = 0

This operation is the equivalent of a rotation of π radians to the state which repre-

sents the item we are looking for as shown in fig. 4.1 (b).
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(3) Transform the state using the diffusion operator, G, which is defined as

Gi,j =











2/N if i 6= j

−1 + 2/N if i = j

The diffusion operation used here is often referred to as the inversion about average

operator. This is due to the fact that after the operator has been applied, the

amplitude in each part of the state is as much below the average of the whole state

as it was above the average previously (and vice versa). We can see this more clearly

by rewriting the diffusion operator in the following form,

G ≡ −I + 2P, (4.2)

where I is the identity matrix of the required dimension and P is

Pi,j =
1

N
, (4.3)

for i, j from 1 to N . It is easy to see that by applying P to any vector v will return

a vector where each entry is equal to the average of all the components. Applying

the diffusion operator to a vector v therefore gives

Gv = −v + 2Pv. (4.4)

The component i of the state can therefore be written as

Gvi = −vi + 2A, (4.5)

where A is the average of the components of the original vector v. Rewriting this as

Gvi = A+ (A− vi), (4.6)

gives us exactly the inversion about the average of the vector. Figure 4.1 (c) shows
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how this ‘inversion about the average’ operation increases the state we are searching

for, while the remaining states only differ slightly.

(4) Repeat steps (2) and (3)
√
N times. Each time these steps are repeated, the

required state is amplified by O(1/
√
N). As these steps are repeated

√
N times, the

amplitude, and thus the probability of the state we are looking for reaches O(1).

The resulting state is then measured and we will find the required state with a

probability of at least 1/2. Improvements have been made to the algorithm since its

introduction which allow the required item to be found with almost unit probability,

[36, 181, 182].

4.3.1 Geometric visualisation

Although we have just described the main steps of the algorithm, it is often useful

to show it in a geometric fashion to aid clarity. In this sense, the main part of the

algorithm, parts (2) and (3), can be described as a rotation in the two dimensional

plane which is spanned by the states representing the desired item and the remaining

states we are not searching for. We can define general states for both the item we

are searching for, |α〉, and for all the components which are not the item we are

searching for, |β〉, as

|α〉 ≡ |xm〉, (4.7)

and

|β〉 ≡ 1√
N − 1

∑

| x〉, (4.8)

where |xm〉 and |x〉 are the components of the state for the items we are and are not

searching for respectively. The initial state of the algorithm can then be written as

|ψ〉 =

√

1

N
|α〉 +

√

N − 1

N
|β〉. (4.9)

We can see from this expression that the state lies in the two dimensional space

which is spanned by |α〉 and |β〉. The two main parts of the algorithm, the oracle

and the diffusion operators, are just reflections in this space, thus creating a rotation
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Figure 4.2: Geometrical representation of a step of Grovers algorithm. The state
is reflected about |β〉 after application of the oracle. The diffusion operator then
performs another reflection, this time about the average of the state, which is very
close to the original |ψ〉. As a result, we see a rotation by θ towards |α〉.

overall. We show this rotation graphically in fig. 4.2. After each iteration of the

algorithm, the initial state is rotated closer to the state we are searching for. Setting

cos θ/2 =
√

(N − 1)/N , the initial state becomes

|ψ〉 = sin
θ

2
|α〉 + cos

θ

2
|β〉. (4.10)

We first apply the oracle giving

|ψ〉 = cos
θ

2
|β〉 − sin

θ

2
|α〉, (4.11)

followed by the diffusion operator, G, to obtain

|ψ〉 = sin
3θ

2
|α〉 + cos

3θ

2
|β〉. (4.12)
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On each iteration, the state is rotated by a rotation angle θ equal to
√

1/N radians.

As such, after
√
N iterations of the main part of the algorithm, the state becomes

very close the required state, in this case |α〉.

4.4 Quantum walk search algorithm

A few years after Grover [13] introduced his quantum searching algorithm, Shenvi

et al. [50] introduced a search algorithm based on the discrete time quantum walk

which was able to match the quadratic speed up of Grover. We describe here how

Shenvi et al. [50] were able to modify the quantum walk into a search algorithm. In

their work, they analysed the search algorithm on a hypercube. Here, we show how

the quantum walk search algorithm is applied to a 2D Cartesian lattice. The data

points we wish to search are layed out as the vertices of an undirected graph. The

edges then represent the specific connections between data points. At the edges of

the lattice we impose periodic boundary conditions, in effect turning the graph into

a torus. Our aim is to find one data item, a specific vertex, out of the set of data to

be searched. We start the walker in an equal superposition of all the possible sites

in the lattice, and the coin in an equal superposition of all directions,

|ψ〉 =
1√
dN

N
∑

x=1

d
∑

c=1

|x, c〉, (4.13)

where d is the degree of the vertices in the graph and N is the total number of

vertices. If we let the walker evolve in a natural fashion, using the Grover coin

eq. (2.20), we would find a flat distribution identical to the starting state at any

point in time. This is because the same operation, eq. (2.23) in the case of the

2D lattice, is being performed at every vertex and the walker cannot distinguish a

specific vertex from any other. We note here that not all initial states would be

stationary or unchanged. The initial state described here is stationary as it is an

eigenstate. We need to use a different coin operator for the marked state in order

to introduce a bias into the walk. We show later it is optimal to invert the phase of
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Figure 4.3: Probability distribution of a discrete time quantum walk search on 400
vertices arranged in a 20× 20 square with periodic boundary conditions, evolved for
0, 10, 20 and 32 timesteps. The marked vertex is at position 190.

the G(4) coin operator from eq. (2.23) giving

G(4)
m =

1

2



















1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1



















. (4.14)

Figure 4.3 shows how the distribution of the walker evolves with time for a 20 × 20

lattice, i.e. N = 400. We see that using a different coin creates a defect in the walk

and the probability coalesces on the marked state over time. As the walk progresses,

the probability at the marked state cannot keep increasing without limit. In fact, we

see in fig. 4.4 that the probability at the marked state has periodic behaviour with

the first peak occuring at roughly t = (π/2)
√
N ≃ 32, with maximum probability for

N = 400 of around 0.23. This can be increased as close to 1 as desired by standard

amplification techniques (repeating the search a few times). We see that subsequent

peaks occur at other integer multiples of this initial time, t = n(π/2)
√
N where

n = 2, 3, 4 . . . .
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Figure 4.4: Probability of the marked state over 200 timesteps on a 20 × 20 grid
with periodic boundary conditions. The marked vertex is at position 190.

The coin operator used at the marked state does not have to be the negated

Grover coin as we have used above. It can be any unitary operator which creates a

bias relative to the dynamics of the walk with the standard Grover coin, eq. (2.20).

Although it is assumed that the negated coin is the optimum, as it is the furthest coin

away from the identity operator, this has never been, as far as we know, investigated.

In order to explore how the marked state coin affects the search result, we can

introduce a phase into the marked state coin operator, eq. (4.14),

G
(4)
φ,m = eiφG(4)

m , (4.15)

where 0 ≤ φ ≤ π. The standard G(4) coin operator, eq. (2.23), corresponds to φ = 0,

and the marked coin operator used before, G
(4)
m eq. (4.14), corresponds to φ = π.

Figure 4.5 shows the effect of varying the phase, φ, on the maximum probability of

the marked state. It can easily be seen that the largest probability of finding the

marked state is when φ = π. A bias can also be introduced by a matrix of the form

G
(4)
δ =



















δ a+ ib a+ ib a+ ib

a+ ib δ a+ ib a+ ib

a+ ib a+ ib δ a+ ib

a+ ib a+ ib a+ ib δ



















, (4.16)
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Figure 4.5: Probability of marked state over 75 timesteps for N = 100 i.e., a 10×10
grid with marked state at 45, using the marked state coin in eq. (4.15) with φ = 0,
π/3, 2π/3 and π.
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Figure 4.6: Probability of marked state over 75 timesteps for N = 100 i.e., a 10×10
grid with marked state at 45, using the marked state coin in eq. (4.16) with δ = 0.5,
0.6, 0.7, 0.8, 0.9 and 1.

where 0.5 ≤ δ ≤ 1. We solve this to give expressions for a and b in terms of the

bias parameter δ in order to interpolate between the identity and the marked state

operator, G
(4)
m eq. (4.14). Taking δ = 1 makes the marked state coin into the identity

operator, while δ = 0.5 corresponds to the G
(4)
m operator. We show in fig. 4.6 how

varying the bias of this coin operator affects the maximum probability of the marked

state, showing the maximum probability is obtained at δ = 0.5. These variations

were chosen to preserve the symmetry of the coin operator, and we see they justify

our choice of the optimal marked state coin operator.

As we have now shown how the quantum walk can be turned into a search

algorithm, we are interested in how quickly the quantum walker finds the marked
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state. That is, we want to know when the probability of the walker being present

at the marked state is at a maximum. As this probability is periodic and we want

the algorithm to be efficient, the subsequent peaks are not of interest: we want to

know when the first peak occurs. Although it would be ideal to measure the walker

at the precise timing of the maximum in the first peak, this is not strictly necessary.

In fact, as can be seen in fig. 4.4, the peaks are quite broad, so even if an error

occurs in when to measure, it only means a somewhat lower probability of finding

the marked state, this is only a constant extra overhead on the amplification. For

example, if the state of the walker was measured at half the optimal number of

timesteps (t = (π/4)
√
N ≃ 16), the probability of the walker being measured in the

marked state is roughly half that of the maximum possible (p ≈ 0.1).

In later chapters, we discuss the algorithmic efficiency of the search algorithm

on various graph structures. It is important we define here what factors of efficiency

we are interested in. As we are looking to finding a specific item from a set of

many, we must consider how likely it is the walker coalesces at the marked state.

The maximum probability of the walker at the marked state, i.e. the maximum

value of the first peak, varies with the size of the dataset (for the 2D Cartesian

lattice). In this case, the theoretical value of O(1/ log2N) from Ambainis [69] is

numerically confirmed in our results in fig. 4.7 with a small prefactor of just over 2.

The second factor we are interested in is the number of timesteps it takes to reach

this maximum probability. The scaling of the time to find the marked state with

the size of the dataset, N , for the 2D Cartesian lattice is shown in fig. 4.8. We see a

scaling of O(
√
N) here, also with a prefactor of 2. In order to compare our results in

later chapters to previous work, we must consider the total algorithmic complexity

of the quantum walk search algorithm. In the case of the 2D Cartesian lattice,

the maximum probability scales as O(1/ log2N). As such, we must use amplitude

amplification techniques to increase this to a constant value. This has previously

been shown to take O(
√

logN) time steps [36]. This makes the total algorithmic

complexity O(
√
N logN) for the 2D lattice, in agreement with the recent results of
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Figure 4.7: Maximum of the first peak in the probability of being at the marked
state for different sized data sets, using the optimal marked state coin in eq. (4.14)
on a 2D lattice of size

√
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√
N , plotted against N (crosses). Also shown is the

closest fit to our data, 2.173/ log2N (dashes).
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Figure 4.8: Time step at which the first peak in the probability of being at the
marked state occurs for different sized data sets, using the optimal marked state
coin in eq. (4.14), plotted against

√
N . Also shown is the closest fit to our data,

2
√
N .

Tulsi [183] and Magniez et al. [85]. These scalings are not the same for all graph

structures. In particular, on a cubic lattice, the maximum probability scales as a

constant value O(1). As such, only a constant number of amplification steps are

needed to bring the probability to ≈ 1, thus the total algorithmic complexity is just

O(
√
N).

74



4.5. Review of recent results for the searching algorithm

4.5 Review of recent results for the searching algorithm

Since the introduction of the quantum walk by Aharonov et al. [44] and Ambainis

et al. [45], there has been a surge of interest into quantum walk algorithms in general

as already discussed, sec. 2.6. However, the quantum walk search algorithm of Shenvi

et al. [50] in particular has received significant interest as it is fundamental to a wide

range of problems in computer science.

The quantum walk search algorithm [50] is able to find a marked item in a time

quadratically faster than the classical case, which is known to be an optimal and

provable speedup [34]. In [50], the items of the dataset are layed out as the vertices

of an undirected graph, specifically a hypercube of dimension ⌈log2N⌉, on which the

quantum walk can be solved analytically [79]. The constant prefactors to the O(
√
N)

scaling on the hypercube have been determined analytically in work by Hein and

Tanner [184]. Other recent work by Potoček et al. [185] has improved the original

algorithm by adding an additional coin dimension, allowing the probability of the

marked state to approach unity after just one run of the algorithm. This brings

the running time of the quantum walk search algorithm very close to the optimal

for searching an unsorted dataset, π/4
√
N . Zalka [186] has previously shown that,

for a probability of finding the marked state to be one, this is the best that can be

achieved.

However, the hypercube studied in [50] is a highly connected but non-physical

structure. In order to make the algorithm more physical, the study of the search

algorithm on lower dimensional structures was started by Benioff [187]. He con-

sidered the additional cost of the time it would take a robot searcher to move be-

tween different spatially separated data points on d-dimensional lattices, stating that

in two spatial dimensions, D, no speedup was apparent. Subsequently, Aaronson

and Ambainis [188] introduced an algorithm based on a divide and conquer ap-

proach, contradicting this claim with a run time of O(
√
N) in dimensions D ≥ 3

and O(
√
N log3/2N) when D = 2 as shown in table 4.1.

Around the same time as this work, Childs and Goldstone [189] gave another
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Work D = 2 D = 3 D = 4 D ≥ 5

Aaronson and Ambainis

[188] (2003) O(
√
N log3/2N) O(

√
N) O(

√
N) O(

√
N)

Childs and Goldstone

[189] (CTQW 2003) O(N) O(N5/6) O(
√
N logN) O(

√
N)

Childs and Goldstone

[190] (CTQW 2004) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Ambainis et al.

[179] (DTQW 2004) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Tulsi [183] (2008) O(
√
N logN) - - -

Magniez et al. [85] (2008) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Patel and Rahaman

[191, 192] (2010) O(
√
N logN) O(

√
N) O(

√
N) O(

√
N)

Table 4.1: Summary of runtimes of quantum search algorithms in various dimen-
sions.

algorithm, this time based on the continuous time quantum walk. They showed

a runtime of O(N) for D = 2, O(N5/6) for D = 3, O(
√
N logN) for D = 4 and

O(
√
N) for D ≥ 5. This algorithm is not as efficient as the one introduced in [188],

but does represent the first quantum walk search algorithm defined in continuous

time. Shortly after this work, Ambainis et al. [179] gave a discrete time quantum

walk search algorithm, improving on the original work of Shenvi et al. [50]. Childs

and Goldstone [190] later improved their continuous time algorithm by using the

Dirac Hamiltonian and hence an additional degree of freedom which can be thought

of as adding a coin to the continuous time quantum walk. This approach was able

to match that of the discrete time quantum walk search algorithm of Ambainis et al.

[179]. These results are summarised in table 4.1. Up to this point, it remained an

important open question as to whether the full quadratic speedup could be achieved

in two spatial dimensions.

It took several years for any further improvements to be found in two spatial di-

mensions. Tulsi [183] then managed to improve the run time for D = 2 by a
√

logN

factor to O(
√
N logN) using a modified version of the algorithm with ancilla qubits.

In the previous cases, the probability of the marked state scaled logarithmically

with the size of the data set, O(1/ log2N). In his work, Tulsi is able to control

this probability using the ancilla qubits to give a constant scaling of the probabil-
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ity at the marked state, O(1), thus removing the need for the
√

logN amplitude

amplification steps. During the years prior to the work by Tulsi, several advances

were made in establishing a theory of quantum walk search algorithms. This was

pioneered by Szegedy [88] who was able to introduce a method to quantise classical

Markov chains (classical random walks on graphs) based on the previous work of

Ambainis [67]. This framework is similar to other work by Ambainis et al. [179] and

both have been used to develop algorithms which give complexity gains compared

to the basic Grover search [68, 93, 193]. Building on all these approaches, Magniez

et al. [194] developed a quantum walk search algorithm for any quantum walk based

on a reversible, ergodic (a stationary distribution can be found) classical Markov

chain. This extends previous work as the algorithm is applicable to a much larger

class of Markov chains. It also combines previous ideas into one coherent theory

of quantum walk search algorithms. Following this work, Magniez et al. [85] gave

a similar theory for the hitting times of quantum walks. They prove that, given a

reversible, ergodic classical random walk, the hitting time of the equivalent quantum

walk is quadratically faster than the classical case. In addition, they actually prove

this speedup is tight for a large class of these quantum walks where the unitary

operation is a reflection. It is well known that the hitting time of a classical ran-

dom walk on a 2D lattice is O(N logN). Therefore, the equivalent quantum walk

hitting time would be O(
√
N logN) which then matches the run time of Tulsi [183].

Magniez et al. [85] also show they can find the probability of the marked state in a

constant fashion, thus extending the result of Tulsi [183] to the larger class of quan-

tum walks which are based on reversible, ergodic Markov chains. In fact, this result

has recently been tightened further by Krovi et al. [195], showing that the classical

Markov chain, which forms the basis of the quantum walk, need only be reversible.

These results tend to indicate that it is unlikely the additional
√

logN factor in the

run time of the algorithm in two spatial dimensions can be removed. Other recent

work shows similar results, including Marquezino et al. [196] who show the mixing

time of a quantum walk on a two dimensional toroidal lattice is also O(
√
N logN).
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Additionally, a different approach to the searching problem, using the staggered lat-

tice fermion formalism, has been put forward by Patel and Rahaman [191, 192] to

give the same run time. In related work, Hein and Tanner [197] give a detailed anal-

ysis of the search algorithm on d-dimensional lattices in terms of the level dynamics

near an avoided crossing. They find the same additional
√

logN factor in the run

time of the algorithm. They also give analytical expressions for the prefactors to

the basic scaling of both the time to find the marked state and also the maximum

probability the marked state reaches. All of these results lend further weight that

the two dimensional case is the critical dimension and it is unlikely that the full

quadratic speedup is possible.

The quantum walk search algorithm has provided the basis for various other ap-

plications. It has previously been used as a subroutine in the algorithms of Ambainis

[67] and Magniez et al. [68]. Hillery et al. [94] have also shown an algorithm based on

the quantum walk search algorithm which is able to find a marked subgraph of the

complete graph. More recently, it has been identified by Hein and Tanner [198] that

the search algorithm can be used to allow wave communication across d-dimensional

lattices. They prove that by starting the walker at a marked state as opposed to a

uniform superposition, a signal can be transmitted across the lattice to a receiving

marked state, the location of which does not have to be known. In fact, they also

show that if the receiver moves position, the signal follows and communication is

still possibly. The speed of propagation of the signal is limited to the same scaling

as the quantum walk search algorithm. This provides another application of the

quantum walk search algorithm.

In the next few chapters, we investigate the factors which affect the quantum

walk search algorithm. In the next chapter, we show how the algorithm fails on the

infinite line and the choices of boundary conditions possible. We then extend this to

show other structures with non periodic boundary conditions including the two and

three dimensional lattices and certain fractal structures. In Chapter 6, we investigate

the dependence of the algorithm on the spatial dimension by interpolating between
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structures of differing dimension. Chapters 7 and 8 highlight secondary dependencies

on the connectivity and the regularity of the structure being search respectively.
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Chapter 5

Quantum walk search algorithm

on non-periodic structures

5.1 Introduction

In this chapter, we show structures on which the quantum walk search algorithm

fails or is less efficient than on d-dimensional lattices or the hypercube. We show

that just because a structure is higher dimensionally, it doesn’t necessarily mean

that the quantum walk search algorithm can perform efficiently on it. We start with

the basic 1D line and show that the algorithm fails, which can be explained via sim-

ple arguments. We show here how changing the coin and the boundary conditions

affects the search. We then study other lattices with non-periodic boundary condi-

tions: the Bethe lattice (or Cayley tree), fractal structures, specifically the Sierpinski

triangle and carpet, and finally the basic two and three dimensional lattices with

fixed boundary conditions. We note that during the completion of this work, related

results have been presented by Agliari et al. [199, 200] and also Berry and Wang

[201]. The results presented by these authors confirm, and extend, the results we

show in our work on searching on fractal structures.
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Chapter 5. Quantum walk search algorithm on non-periodic structures

5.2 Quantum walk search on the line

We now examine how the quantum walk search algorithm behaves for data arranged

on a line. Szegedy [88] previously proved that a quantum walk search approach

can only find a marked state in time O(N) with probability 1/N . We confirm

this numerically considering both a line segment, and a loop (cycle) where periodic

boundary conditions are applied at the ends. The loop is less physical (for most

tape storage, the ends are far apart from each other), but allows us to investigate

the behaviour of the algorithm without the edge effects the ends introduce. For the

line segment, we use a reflecting boundary condition. This means we have to use a

different coin at the edges, which has the effect of introducing two spurious marked

states.

Since symmetry is important in the quantum walk search algorithm in higher

dimensions, we also investigate a more symmetric version of the Hadamard operator,

H
(sym)
δ =







√
δ i

√
1 − δ

i
√

1 − δ
√
δ






. (5.1)

For δ = 0.5, this reduces to

Hc =
1√
2







1 i

i 1






. (5.2)

We vary δ from zero to one, to see how this affects the performance. The initial

state for the quantum walk algorithm on the line needs to match the symmetry of

the chosen coin operator. For the Hadamard, we use

|ψ〉 =
1√
N

N
∑

x=1

1√
2
(|x, 0〉 + i|x, 1〉), (5.3)

and for the symmetric coin operator we use

|ψ〉 =
1√
N

N
∑

x=1

1√
2
(|x, 0〉 + |x, 1〉), (5.4)
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Figure 5.1: Probability distribution of the quantum walk search of N = 101 items
arranged on a line, after 50 time steps with marked state at position 20, for a
symmetric coin and periodic boundary conditions (top left), Hadamard and periodic
(top right), symmetric and reflecting (bottom left), and Hadamard and reflecting
(bottom right).

where N is the total number of vertices.

First we contrast the symmetric coin operator, eq. (5.2) with the standard

Hadamard operator, eq. (2.15). In fig. 5.1 we see the contrast between the two pos-

sible boundary conditions (periodic and reflecting). We show each condition with

both the coin operators described previously, eqs. (2.15) and (5.2), for all dynamics

(negating the phase for the marked state operator). We find that the symmetric coin

operator gives a more smoothly varying probability distribution about the marked

state and we can see oscillations in the probability of finding the marked state.

Superficially, these results look similar to the square lattice. However, the square

lattice has a peak probability at the marked state of around 0.3 for a 10× 10 square

lattice with N = 100. On a line with N = 101, the peak in the probability is only

around 0.028, This is not significantly larger than the uniform distribution, which

has a probability of 0.01 for any site. The Hadamard coin operator varies over a

period of around seven time steps, regardless of the other parameters, and shows

slightly higher probability spreading out from the marked state in two soliton-like

waves. This supports the case for symmetry being important for quantum walk
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Figure 5.2: Probability distribution of the quantum walk search of N = 101 items
arranged on a line, after 50 time steps with marked state at position 20, for a
symmetric coin and periodic boundary conditions with the marked coin operator
given by eq. (5.1) with δ = 0.15 (top left), δ = 0.45 (top right), δ = 0.65, (bottom
left) and δ = 1 (bottom right).

searching. Reflecting boundary conditions also produce spreading soliton-like waves

from the boundaries for both symmetric and Hadamard coins.

Concentrating on the case of a symmetric coin operator and periodic boundary

conditions, we now consider what happens when δ is varied. For δ increasing from

zero to a half, the period of the oscillations increases towards infinity as δ → 0.5, the

value for which the marked coin operator becomes the same as the unmarked coin

operator and the distribution remains uniform. Increasing δ above 0.5, we find that

instead of finding the marked state, in effect it “un-finds” it with the probability

of being in the marked state decreasing below the uniform distribution. This is

due to the fact the coin is now biased in the wrong direction and so is giving away

more and more probability instead of retaining it. Figure 5.2 shows the variation

in probability distribution with δ, compare with δ = 0 from fig. 5.1 (top left). For

the symmetric quantum walk with periodic boundary conditions, evolving for longer

times with δ ≃ 0.45 eventually results in a peak in the probability of the marked

state approaching 2π/N , but only after around 5N or more time steps, see fig. 5.3.

This is obviously not useful, either in the size of the peak probability, which we

would like to scale with at least logN as it does for the search in two dimensions,
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Figure 5.3: Probability of the marked state for each time step for a line of N = 50
sites with periodic boundary conditions and δ = 0.45, run for 500 time steps.

nor with the number of time steps, which far exceeds the classical worst case of N .

The quantum walk search algorithm used for data on a line is thus completely

ineffective for the parameters we have considered: it does not find the marked state

with significant probability even when run for as long as the worst case classical time

of N steps for N items. Of course, we can easily specify a quantum version of the

classical algorithm that does find the marked state in N steps. For example, start

in the state |0, 1〉 and use the identity as the coin operator everywhere except the

marked state. This causes the walk to hop deterministically along the line. At the

marked state, use σx for the coin operator. This will flip the coin from |1〉 to |0〉 and

thus reverse the direction of the walker. If the position of the walker is measured

after N steps, the current location allows you to work out where it turned round,

and thus locate the marked state. This method uses only a single measurement. If

you allow measurements at every step, then of course you can immediately find out

if the walker has arrived at the marked state by testing the state of the coin.

A classical random walk searching algorithm on a line, with equal probability of

moving left and right, would take O(N2) to find a marked item. Using the techniques

by Magniez et al. [85] and Krovi et al. [195], a quantum analogue of this classical

walk can be defined which would give a quadratic speed up to O(N). However, as

shown by Szegedy [88], the value of this maximum probability at the marked state

would be 1/N thus rendering the algorithm ineffective.
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Chapter 5. Quantum walk search algorithm on non-periodic structures

5.3 Bethe lattice

The Bethe lattice (or Cayley tree) is a general structure which can have any fixed

degree at all of its vertices. Its connectivity is somewhat different to the previous

examples in that there are no loops in it, giving a tree-like structure with ‘branches’

stemming from a vertex indefinitely. We work with a finite sized segment based on

around a central vertex. A piece with vertices of degree three is shown in fig. 5.4. It

can be seen from this example that the vertices on the branches form ‘shells’ around

the central vertex. The number of vertices in each shell is,

Ns = d(d− 1)s−1 where s > 0, (5.5)

where Ns is the number of vertices in shell s and d is the degree of the vertices.

The coin used in the degree three case of the Bethe lattice is the Grover coin of

dimension three,

G(3) =
1

3













−1 2 2

2 −1 2

2 2 −1













, (5.6)

and marked state operator is just this same coin inverted as with the other structures,

G(3)
m =

1

3













1 −2 −2

−2 1 −2

−2 −2 1













, (5.7)

We can’t impose periodic boundary conditions on the Bethe lattice without creating

loops in the structure. Instead, at the ‘ends’ of the branches, we reflect the amplitude

back upon itself. This is accomplished using the Grover coin at its limit, d = 2, which

is the σx operation as shown in eq. (3.11).

Figure 5.5 shows how the maximum probability of the marked state varies with

both the size of the dataset and the position of the marked state, that is which shell

the marked state is present within. We find that if the marked state was present
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5.3. Bethe lattice

Figure 5.4: A segment of a Bethe lattice with fixed degree d = 3. Three shells are
shown here emanating from the central vertex.

either at the central vertex or in the first shell then the algorithm is actually almost

optimal in scaling, close to O(
√
N). The probability at this point is also high enough

to allow the marked state to be distinguished from the remaining superposition. In

fact, as the probability scales as O(1), this is the total complexity and so would be

optimal. This is an unrealistic scenario though and so the Bethe lattice would never,

in general, be efficient for the search algorithm. Although we have only shown the

degree three Bethe lattice here, we have also studied the Bethe lattice of degree four,

and it performs in a similar fashion. In contrast to the 2D Cartesian lattice, the

position of the marked state in the Bethe lattice (which shell it occurs in) strongly

affects the efficiency of the search algorithm. As the marked state moves away from

the central vertex, the probability of the marked state is significantly lower than if

the marked state is the central vertex. In fact, by the time the marked state is in

the fourth shell, the probability of the marked state does not get much higher than

the value of the initial coefficient. At this level, there is no way to distinguish the

marked state from any others. This is similar to the search on a line here where

we only see a small increase in probability at the marked state. This behaviour is

caused by the connectivity of the structure itself. As there are no cycles in the Bethe

lattice, the probability is split between the ‘branches’ of the structure and so only

a portion of the probability can converge on the marked state. This localisation of
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Figure 5.5: Maximum of the first peak in the probability of being at the marked
state for different sized data sets on a Bethe lattice of degree three, plotted against
N (solid), for varying positions of the marked state (MS). Also shown is the initial
coefficient (dashes) and 2/ log2N (crosses) for comparison.

probability in portions of the structure away from the marked state means the walker

will be unable to coalesce at the marked state with any significant probability. As

this maximum probability scales in a constant fashion with the number of vertices,

O(1), it makes no difference how long the search algorithm is run for.

The time to find the marked state also exhibits unusual characteristics. We see

in fig. 5.6 that as we move further from the central vertex, the timestep to the first

significant peak actually reduces. However, as already mentioned, the probability

at this point is so low that the marked state could never be distinguished. As the

marked state only accumulates a small portion of the probability, the time to get to

this amount would get faster, hence the decrease in time to ‘find’ the marked state.

We note that the ‘kinks’ in this graph are most likely due to finite size effects.
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Figure 5.6: Time step at which the first significant peak in the probability of being
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lattice of degree three, for varying positions of the marked state (MS). Also shown
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√
N (crosses) for comparison.

5.4 Fractal structures

We now study the search algorithm on two fractal structures, the Sierpinski triangle

and carpet. These fractals, due to their structure, have a non-integer value of spatial

dimension. This is due to the fact they have a self similarity at different scales.

Our aim here was to use fractal structures as a way to interpolate between spatial

dimensions. However, in these cases, as with the Bethe lattice, there is no way to

apply periodic boundary conditions to the edges of the structures. We investigate

if this is an appropriate way to interpolate between spatial dimensions and also if

the search algorithm is adversely affected by the reflection effects introduced by the

edges and ‘holes’ in the structures.
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5.4.1 Sierpinski triangle

The Sierpinski triangle, shown in fig. 5.7, is a self similar structure created by reduc-

ing the initial generating triangle by 1/2 and repeating the smaller structure three

times within the previous triangle. We call the initial triangle generation g = 1 and

each subsequent generation is a higher integer value. It has a spatial dimension of

D = 1.585.

Figure 5.7: Representation of the Sierpinski triangle. We show the first four gener-
ations of construction.

We spread the initial state of the walker equally across all the vertices and edges

of the structure. We only study the triangle up to generation 7, as generating

the graph to represent the fractal became computationally intractable after this.

Obviously, in this type of graph there will be vertices of varying degree. At these,

we use the Grover coin, eq. (2.20), of the correct dimension at each vertex. In the

standard quantum walk search algorithm, the position of the marked state has no

effect on the algorithm. In the case of fixed boundary conditions, this is not the case,

as already seen in the case of the Bethe lattice, as the edges introduce additional

reflection effects which hamper the ability of the walker to coalesce on the marked

state.

We firstly show how the position of the marked state effects the search algo-

rithm by considering a single generation of the fractal structure, generation 5 (123

vertices). In figs. 5.8 and 5.9, we show a representation of the Sierpinski triangle as

an undirected graph. In fig. 5.8, we show the maximum probability of the marked

state, for each different position the marked state can take, as the label on each

vertex. Figure 5.9 is the same representation, but this time showing the time to find

the marked state for each vertex. We see that the algorithm is more efficient when
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Figure 5.8: Representation of the Sierpinski triangle as an undirected graph for
generation 5. We show the maximum probability of the marked state for every
vertex.

the marked state is in certain parts of the fractal structure than in others. This is

similar in behaviour to the Bethe lattice, but the difference between sites is not as

pronounced. We show the same information as in the graphical representations in

fig. 5.10. These plots also show the basic scaling for the maximum probability of

the marked state and the time to find it for a basic lattice in two spatial dimen-

sions. We can see that when the marked state is present at almost any vertex, the

maximum probability the marked state is less than that of the basic scaling of the
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Figure 5.9: Representation of the Sierpinski triangle as an undirected graph for
generation 5. We show the time to find the maximum probability of the marked
state for every vertex.

2D lattice. This clearly shows that the algorithm is less efficient than in the basic

two dimensional case, with some vertices not able to retain much probability at

all. In these cases, there would be no way to distinguish the marked state from the

surrounding probability distribution, hence the algorithm would fail. Similarly, the

time to find the marked state is higher, in general, than the basic 2D scaling of the

algorithm, again making the algorithm less efficient. Finally, in fig. 5.11, we show

how the maximum probability of the marked state and the time to find it vary, for
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Figure 5.10: LHS: Maximum probability of the marked state for the Sierpinski
triangle of generation 5. Also shown is the scaling of the maximum probability
of the marked state for the basic 2D lattice. RHS: Time to find the maximum
probability of the marked state for the Sierpinski triangle of generation 5. Also
shown is the scaling of the time to find the marked state for the basic 2D lattice.
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Figure 5.11: LHS: Plot to show how the maximum probability of the marked state
varies with the size of the dataset for the Sierpinski triangle. RHS: Plot to show
how the time to find the maximum probability of the marked state varies with the
size of the dataset for the Sierpinski triangle.

a specific vertex (corner), with the size of the dataset (generation of the fractal).

We also show the scaling for the basic 2D lattice for both the maximum probability

and the time to find it. In the case of the maximum probability, the scaling for

the Sierpinski triangle is lower than the basic 2D lattice and is also dropping at a

rate faster than the logarithmic 2D scaling. Although hard to tell what will happen

for larger values of N , this indicates that the fractal would be unsuitable for use as

the substrate for the quantum walk search algorithm. In a similar fashion, the time

to find the marked state seems to be increasing at a rate faster than the basic 2D

lattice, again showing the algorithm fails on the fractal structure.
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5.4.2 Sierpinski carpet

The Sierpinski carpet, shown in fig. 5.12, is another fractal structure, this time with

spatial dimension D = 1.898. It is generated by splitting an initial square into

nine segments and removing the central piece. This process is then iterated per

generation of construction.

Figure 5.12: Representation of the Sierpinski carpet. We show the first four gener-
ations of construction.

The walker is started in the same state as in the case of the Sierpinski triangle,

spread across all possible vertices and edges. We show our results on the Sierpinski

carpet in the same way as the triangle. Firstly, the maximum probability and the

time to find this probability are shown in figs. 5.13 and 5.14 for a single generation

of the fractal, generation 3 (96 vertices). We see that, in general, as the marked

state is moved closer to the ‘centre’ of the structure, the maximum probability of

the marked state increases. In the same sense, the time to find this maximum

probability reduces. Both of these indicate the algorithm becomes more efficient

when the marked state is most central. This is confirmed in fig. 5.15 where we see

that for many of the vertices, the maximum probability of the marked state is higher

or very similar to the 2D lattice scaling. However, the time to find the marked state

is significantly higher than in the basic 2D case.

We finally show, in fig. 5.16, the scaling of the algorithm with the size of the

dataset. The scaling of the carpet, in contrast to the triangle, is higher than the

basic 2D lattice. However, it seems to be dropping at a rate faster than the basic

2D lattice. It is hard to tell if this is truly the case from the limited generations

we are able to simulate, but it does seem reasonable as when the lattice becomes
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Figure 5.13: Representation of the Sierpinski carpet as an undirected graph for
generation 3. We show the maximum probability of the marked state for every
vertex.

bigger, the central ‘hole’ becomes bigger, thus limiting the possible centrality of the

marked state. The time to find the marked state seems to scale in a similar way to

the 2D lattice but with just a higher prefactor. These factors indicate that, although

less efficient as the basic 2D lattice, the Sierpnski carpet may possibly be used for

the quantum walk search algorithm for relatively small N . However, as N increases

and the ‘holes’ in the structure have more effect on the walker, the algorithm will

start to fail as the probability of the marked state will become too low. However,

the Sierpinksi carpet is certainly a more efficient data structure than the Sierpinski

triangle, due to the fact it is, in general, more symmetric.
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Figure 5.14: Representation of the Sierpinski carpet as an undirected graph for
generation 3. We show the time to find the maximum probability of the marked
state for every vertex.

5.5 Non-periodic regular lattices

We now consider the case of regular lattices with fixed boundary conditions. We are

interested in the effect the edges of the structure have on the efficiency of the search

algorithm. The walk is distributed across the structure as a uniform superposition

over all the possible vertices and edges, just as in the periodic case. At the corners,

or edges, we use the Grover coin, eq. (2.20), of the correct dimension, i.e. two at

the corners and three at any edge. As with the fractal structures, the position of

the marked state also affects the algorithm in this case. We study both two and
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Figure 5.15: LHS: Maximum probability of the marked state for the Sierpinski carpet
of generation 3. Also shown is the scaling of the maximum probability of the marked
state for the basic 2D lattice. RHS: Time to find the maximum probability of the
marked state for the Sierpinski carpet of generation 3. Also shown is the scaling of
the time to find the marked state for the basic 2D lattice.
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Figure 5.16: LHS: Plot to show how the maximum probability of the marked state
varies with the size of the dataset for the Sierpinski carpet. RHS: Plot to show how
the time to find the maximum probability of the marked state varies with the size
of the dataset for the Sierpinski carpet.

three dimensional lattices with non-periodic boundary conditions to see how both

the boundary conditions and the position of the marked state affect the algorithmic

efficiency.

5.5.1 Two dimensional lattices

We see in fig. 5.17 how the maximum probability of the marked state varies depend-

ing on the location of the marked state for a fixed lattice size (10,000 vertices). We

see that, in general, the closer the marked state is to the centre of the structure, the

higher the maximum probability of the marked state. This is due to the fact that

the effects due to reflection from the edges of the structure is minimised. A similar

plot to show how the time to find the marked state is shown in fig. 5.18. This shows

that the closer the marked state is to the centre of the lattice, the quicker the walker
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Figure 5.17: Probability distribution of the quantum walk search of N = 10, 000
items arranged on as a two dimensional Cartesian lattice. We show how the max-
imum probability of the marked state varies based on the position of the marked
state.

is able to coalesce on the marked state. We note from both figures that even though

the Grover coin does not treat all directions in the same fashion, the distributions

that result are symmetric, i.e. each corner has the same maximum probability and

time step to this probability.

We now show the effect of the fixed boundary conditions as the lattice grows in

size. Figure 5.19 shows how the maximum probability of the marked state varies

with lattice size, for a corner vertex, the most central vertex and an intermediary

vertex. We see that the scaling of the algorithm when the marked state is at the

most central vertex matches that of the standard search algorithm with periodic

boundaries. However, we see when the marked state is moved towards the corners

of the lattice, the maximum probability of the marked state drops. The basic scaling

remains the same, indicating the algorithm is still viable, but has a lower prefactor

as the marked state becomes less central. We see a similar behaviour in the scaling

of the time to find the marked state. Again, when the marked state is the most

central vertex, the scaling of the algorithm matches that of lattices with periodic

boundary conditions. The prefactor to the scaling of the time to find the marked

state increases as the marked state is moved towards the corners of the structure.
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Figure 5.18: Distribution of the time to find the marked state of the quantum walk
search of N = 10, 000 items arranged as a two dimensional Cartesian lattice. We
show how the time to find the maximum probability of the marked state varies based
on the position of the marked state.
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Figure 5.19: Maximum probability of the marked state for varying positions of the
marked state on a non-periodic 2D lattice. Also shown is the scaling for a 2D
Cartesian lattice with periodic boundary conditions for comparison.
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Figure 5.20: Time step at which the first significant peak in the probability of
being at the marked state occurs for varying positions of the marked state on a
non-periodic 2D lattice. Also shown is the scaling for a 2D Cartesian lattice with
periodic boundary conditions for comparison.

We see from all of the above that the lack of periodic boundary conditions does

not cause the algorithm to fail. However, as the marked state becomes less central,

thus increasing the effects of reflection from the edges of the structure, the efficiency

of the algorithm decreases.

5.5.2 Three dimensional lattices

In the case of three dimensions, we see the same behaviour as in the two dimensional

case. Figures 5.21 and 5.22 show how the maximum probability of the marked state

and the time to find this probability vary with the position of the marked state.

Obviously it is harder to show this graphically and so we show ‘slices’ of the three

dimensional lattice. In the case of the maximum probability of the marked state,

we show these slices on top of one another, and see that as the slice becomes closer

to the centre of the lattice, the maximum probability increases.
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Figure 5.21: Probability distribution of the quantum walk search of N = 1, 000 items
arranged on as a non-periodic three dimensional cubic lattice. We show various
‘slices’ of the lattice to indicate how the maximum probability of the marked state
varies based on the position of the marked state. As the slices become more central,
the probability increases and thus the slice is shown on top of the others.

The behaviour of the time to find the marked state is similar. As the slice

approaches the centre of the structure, the time to find the marked state reduces

and so the slices are shown under one another. However, the differences between

the slices is much smaller so we only show the central slice, the edge slice and one

in between.

We see the scaling of the algorithm with the size of the lattice in figs. 5.23

and 5.24. It is clear that, just like the two dimensional case, the basic algorithmic

scaling of both the maximum probability and the time to find it is the same as in the

periodic case. When the marked state is at the most central vertex, the prefactor

to the scaling of both almost matches the standard algorithm. As the marked state

is moved towards the corners of the lattice, the prefactors for the scaling of the

maximum probability and the time to find it, increase and decrease respectively,

thus reducing the efficiency of the algorithm as a whole.
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Figure 5.22: Distribution of the time to find the marked state of the quantum walk
search of N = 1, 000 items arranged on as a non-periodic three dimensional cubic
lattice. We show various ‘slices’ of the lattice to indicate how the time to find the
maximum probability of the marked state varies based on the position of the marked
state. As the slices become more central, the time to find the marked state decreases
and thus the slice is shown below the others.
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Figure 5.23: Maximum probability of the marked state for varying positions of the
marked state on a non-periodic three dimensional cubic lattice. Also shown is the
scaling for a three dimensional cubic lattice with periodic boundary conditions for
comparison.
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Figure 5.24: Time step at which the first significant peak in the probability of being
at the marked state occurs for varying positions of the marked state on a non-periodic
three dimensional cubic lattice. Also shown is the scaling for a three dimensional
cubic lattice with periodic boundary conditions for comparison.

5.6 Discussion

In this chapter, we have discussed the quantum walk search algorithm on the line

and cycle, the Bethe lattice, the Sierpinski carpet and triangle, and finally the basic

2D and 3D lattices but with fixed boundary conditions.

In the case of the line and cycle, we show that although the walker does coalesce

on the marked state, the maximum probability of the marked state does not rise

much above the initial superposition, 1/N , thus making it almost impossible to

distinguish the marked state. Varying the boundary conditions and the symmetry

of the coin used gives a smoother probability distribution indicating that there is

also a dependence on symmetry in the algorithm.

The Bethe lattice and the two fractal structures we study, the Sierpinski triangle

and carpet, are also inefficient as data structures for the quantum walk search algo-

rithm to search upon. In these cases, due to the boundary conditions, the position

of the marked state has an effect on the efficiency of the algorithm. This highlights

that, although the quantum walk search algorithm has a strong dependence on the
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spatial dimension of the structure being walked upon, this does not necessarily mean

that a higher dimensional structure makes the algorithm efficient. In fact, in the case

of the Bethe lattice the algorithm fails completely. For non-periodic structures in

general, it seems the reflection effects we get from the edges of the structure hamper

the ability of the algorithm to coalesce on the marked state. We again note that the

symmetry of a structure has an effect on the search algorithm. This is confirmed

by the fact that the Sierpinski carpet performed more efficiently than the Sierpinski

triangle, mainly due to the fact that it is a more symmetric structure. However,

the efficiency does seem to drop off in higher generations of the Sierpinski carpet as

the central ‘hole’ becomes larger and the other ‘holes’ in the structure have more

effect on the walker. From these results, although we highlight some interesting

behaviour, it seems like using fractal structures is not a good way to interpolate

between structures of differing spatial dimension. Instead, we show two other ways

in which we can do this in chapter 6, using a tunnelling operator and also lattices

of varying height and depth.

Although these same reflection effects are present in the basic 2D and 3D lattices

with fixed boundary conditions, they have less of an effect on the efficiency of the

algorithm. This again highlights the need for symmetry in the search algorithm,

both in the coin used and also the structure being walked upon. In the case of the

basic lattices, the scaling is pretty similar to the scaling for the lattices with periodic

boundary conditions. The position of the marked state does still have an impact on

the maximum probability of the marked state and the time to find it, but seems to

still follow the periodic scaling. Therefore, although the reflection effects do have an

adverse effect on the algorithm, they are not as predominant as symmetry effects in

the structure being searched.
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Chapter 6

Effect of dimensionality on the

quantum walk search algorithm

6.1 Introduction

In this chapter, we investigate how the spatial dimension of the database arrange-

ment affects the searching algorithm. We already know, from chapter 4, that the

basic scaling of the algorithm is heavily dependent upon the spatial dimension of the

structure in question. Both the scaling of the maximum probability of the marked

state and the time to find this probability alter for structures of differing spatial

dimension. We are interested here in how this basic scaling changes when the spa-

tial dimension is altered. We do this in two ways, firstly by introducing a simple

form of tunnelling, which allows us to interpolate between structures of varying spa-

tial dimension, and secondly by using lattices of varying height (1D-2D) and depth

(2D-3D).

We introduce a simple form of tunnelling using a tunnelling coin operator in

sec. 6.2. We then numerically study how the algorithm performs, in sec. 6.3, as we

gradually change the underlying structure from a 1D line to a 3D cubic lattice. In

sec. 6.4, we then discuss how we vary the height (2D) and the depth (3D) of the

lattices, before giving our results as to how the algorithm performs on these lattices.
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We end the chapter by discussing our results for both variations.

The algorithmic efficiency of the quantum walk search algorithm using standard

two and three dimensional lattices has been well studied in previous work as sum-

marised in chapter 4. In three spatial dimensions, the algorithm scales as O(
√
N).

This comes from two parts: the scaling of the maximum probability of the marked

state and also the time to find this maximum probability. In the three dimensional

case, the maximum probability of the marked state scales in a constant fashion, O(1),

so has no effect on the total algorithmic complexity. The time to find this maximum

probability, and hence find the marked state, scales with the size of the cubic lattice

as O(
√
N). This makes the total algorithmic complexity of the quantum walk search

algorithm in three spatial dimensions O(
√
N). The two dimensional case is more

complex with a total complexity of O(
√
N logN). This is made up from a scaling

of O(1/ log2N) for the maximum probability of the marked state, and O(
√
N) for

the time to find this. As the maximum probability of the marked state scales log-

arithmically, this must be amplified to a constant value. This has previously been

shown to take
√

logN steps using amplitude amplification [36]. By combining these

additional amplification steps, we obtain the total complexity of O(
√
N logN). We

note here that in previous (analytical) results for the quantum walk search algorithm

[179], the time to find the marked state is given as O(
√
N logN), thus giving a total

algorithmic complexity of O(
√
N logN). However, our numerical results [2] seem

to suggest that the scaling of the time to find the marked state is actually O(
√
N),

giving a total complexity of O(
√
N logN), therefore matching the scaling of Tulsi

[183] and Magniez et al. [85].

6.2 Tunnelling operator

We now describe a modified coin operator we will use in the search algorithm to

gradually vary the connectivity of the structures studied. We introduce a simple

form of tunnelling to allow us to gradually vary the substrate to be walked upon

from one form to another. A simple example is changing a 2D Cartesian lattice
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1

2

53

4

6

Figure 6.1: An example of how we can change one lattice into another by adding
or removing edges. Here we change a square lattice, degree d = 4, into a triangular
lattice, degree d = 6. In this example, d = 6 and t = 2 in the tunnelling matrix we
introduce.

into a triangular lattice by introducing one diagonal link across each square of the

lattice, see fig. 6.1.

In order to achieve the quantum walk dynamics we require, we must use a dif-

ferent coin operator. The only condition on this operator is that it must be unitary.

As such, we ‘design’ a new coin operator which incorporates a single tunnelling pa-

rameter, c, which will allow us to vary the strength of specific tunnelling edges. We

define d to be the degree of the vertex in question as used previously in the Grover

coin, eq. (2.20), and t to be the number of tunnelling edges. For a d-dimensional

vertex, the first (d− t) edges in our labelling scheme are normal and the last t edges

are tunnelling. In fig. 6.1, edges 1-4 are normal, fixed edges creating a 2D lattice

and edges 5-6 are tunnelling edges which convert the lattice to a triangular one. The
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general matrix for the desired coin operator would be as follows:

Td,t =


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
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(6.1)

where the number of columns of b’s is d− t− 1 and the number of columns of f ’s is

t− 1. We want to be able to rewrite this in terms of just one tunnelling parameter,

c, which represents the coupling between the normal and tunnelling edges. As the

dynamics of the walk must be reversible, we must ensure that the coin produced is

unitary. As such,

(Td,t) (Td,t)
† = Id, (6.2)

must hold, where (Td,t)
† is the hermitian conjugate of the general matrix. Using this

unitarity condition we can write five equations which must be satisfied for unitarity

to hold,

a2 + (d− t− 1)b2 + tc2 = 1, (6.3)

2ab+ (d− t− 2)b2 + tc2 = 0, (6.4)

(d− t)c2 + e2 + (t− 1)f2 = 1, (6.5)

(d− t)c2 + 2ef + (t− 2)f2 = 0, (6.6)
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and

[a+ (d− t− 1)b+ e+ (t− 1)f ]c = 0. (6.7)

We want to solve these equations in terms of d, t and c. Taking eq. (6.4) from

eq. (6.3) we obtain an expression for a in terms of b only,

a2 − 2ab+ b2 = 1,

(a− b)2 = 1,

a = b− 1. (6.8)

We obtain a similar expression for e in terms of f by taking eq. (6.6) from eq. (6.5),

e2 − 2ef + f2 = 1,

(e− f)2 = 1,

e = f − 1. (6.9)

By substituting these new expressions back into equations (6.3) and (6.5), we obtain

two quadratic equations,

(b− 1)2 + (d− t− 1)b2 + tc2 = 1 (6.10)

and

(d− t)c2 + (f − 1)2 + (t− 1)f2 = 1. (6.11)

Taking eq. (6.10), we simplify and solve giving an expression for b in terms of just

d, t and c,

(b− 1)2 + (d− t− 1)b2 + tc2 = 1,

b2 − 2b+ 1 + (d− t− 1)b2 + tc2 = 1,

(d− t)b2 − 2b+ tc2 = 0. (6.12)
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Solving, by choosing the positive root in this case gives

b =
1 +

√

1 − (d− t)tc2

d− t
. (6.13)

Similarly, an expression for f can be obtained from eq. (6.11),

(d− t)c2 + (f − 1)2 + (t− 1)f2 = 1,

(d− t)c2 + f2 − 2f + 1 + (t− 1)f2 = 1,

tf2 − 2f + (d− t)c2 = 0. (6.14)

Solving, by choosing the negative root here gives

f =
1 −

√

1 − (d− t)tc2

t
. (6.15)

We now have expressions for a, b, e and f in terms of just d, t and c from equations

(6.8), (6.13), (6.9) and (6.15). Finally, we must check that these expressions maintain

unitarity in eq. (6.7). For c not equal to zero this becomes,

(b− 1) + (d− t− 1)b+ (f − 1) + (t− 1)f = 0,

b− 1 + bd− bt− b+ f − 1 + tf − f = 0,

(d− t)b+ tf = 2. (6.16)

It is easy to see that by the choice of roots chosen in solving for b and f that this

condition holds when we substitute in eqs. (6.13) and (6.15).

This operator allows us to vary the ‘strength’ of certain edges in the structure

we wish to walk on. It holds for any degree of vertex but the number of tunnelling

edges must be at most half the degree, i.e. t ≤ d/2. By using vertices of degree six

with two tunnelling edges, we have a basic 2D Cartesian lattice gradually becoming
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a triangular lattice as in fig. 6.1. In this case, setting c = 0 we obtain

T6,2 =
1

2
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−1 1 1 1 0 0
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
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

, (6.17)

and setting c = 2/d = 1/3 gives

T6,2 =
1

3

































−2 1 1 1 1 1

1 −2 1 1 1 1

1 1 −2 1 1 1

1 1 1 −2 1 1

1 1 1 1 −2 1

1 1 1 1 1 −2

































. (6.18)

These choices of c represent the extremes of the operator when the structure would

be either a basic 2D Cartesian lattice, eq. (6.17), or a triangular lattice, eq. (6.18).

Any other values of c where 0 ≤ c ≤ 2/d would give varying strengths of tunnelling

across the tunnelling edges.

6.3 Results using the tunnelling operator

Using the tunnelling operator introduced above, we numerically study how the al-

gorithm is effected by the change in spatial dimension. We use the operator to

interpolate between the line (1D) and a Cartesian lattice (2D) and then between a

Cartesian lattice (2D) and a cubic lattice (3D). This is done by, in the 1D-2D case,

using vertices of degree four with two tunnelling edges, with the correct connectivity,

to interpolate between a collection of 1D lines to a fully connected 2D Cartesian lat-
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tice. In the same fashion, we interpolate between a set of 2D Cartesian lattices and

a fully connected cubic lattices by using vertices of degree six with two tunnelling

edges, again with the correct connectivity.

The search algorithm we use is the same as in the original work by Shenvi et al.

[50], with a small change to the initial state. Although we must still start the walker

in a uniform superposition over all vertices, the distribution over the edges must be

altered slightly to account for the strength of the tunnelling edges. In other words,

we must distribute the state over the edges with a weighting to match the tunnelling

strength as follows

(d− t)α+ tpα =
1√
N
, (6.19)

where p is the tunnelling probability, α is the state on each edge and N is the number

of vertices. The tunnelling probability is just the tunnelling parameter, c, rescaled to

lie between 0 and 2/d. In this way, the tunnelling probability matches the proportion

of the initial state which is placed on the tunnelling edges. This initial state gives a

probability distribution, where there is no marked state, which is periodic over two

timesteps as can easily be checked. Although this is not stationary as in the case

of the basic non-tunnelling lattices, the fact that it returns to the same state after

only two timesteps means it will give rise to the same dynamics.

6.3.1 1D line - 2D lattice

We study here the quantum walk search algorithm, interpolating between a 1D

lattice or line and a 2D Cartesian lattices. If there is no possibility of tunnelling,

the structure will just be a collection of unlinked 1D lattices. When the edges are

present, the structure becomes connected, turning it into a 2D Cartesian lattice.

Here we run the algorithm on a 2D Cartesian lattice where the edges which link the

1D lattices together are tunnelling. We show the a basic unit in fig. 6.2. The solid

lines are the fixed, normal edges and the dashed lines are tunnelling edges. This

structure allows us to gradually change the strength of the edges which make the

structure two dimensional, hence interpolating between the 1D lattice and the 2D
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6.3. Results using the tunnelling operator

Figure 6.2: Basic unit of the structure we use to interpolate between the one dimen-
sional and the two dimensional Cartesian lattice. The solid lines represent the fixed,
normal edges whereas the dashed lines represent the edges we set to be tunnelling.
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Figure 6.3: Plot to show how the maximum probability of the marked state varies
with both the size of the lattice and the tunnelling strength as a one dimensional
lattice is gradually changed into a two dimensional Cartesian lattice.

Cartesian lattice.

We see in fig. 6.3 how the maximum probability of the marked state varies as

the tunnelling strength is increased and the structure changes from 1D to 2D. We

can see that as soon as the additional edges exist, effectively turning the structure

from one spatial dimension to another, the scaling of the probability changes from

the 1D scaling of 1/N to the 2D lattice scaling of 1/ log2N . As the tunnelling

probability increases, we see a change in the prefactor to the maximum probability
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Figure 6.4: Plot to show how the prefactor to the scaling of the maximum probability
of the marked state, obtained from the data in fig. 6.3, varies with the tunnelling
strength as a one dimensional line is gradually changed into a two dimensional
Cartesian lattice.

of the marked state as shown in fig. 6.4. We can see that for tunnelling probabilities

of p ≈ 0.5 and above, there seems to be a linear scaling in the prefactor. However,

below this probability we see a change to this scaling of the prefactor. This is due

to the scaling changing to the 1D 1/N scaling of the line, and the search is starting

to fail completely.

In the 1D case, we already know that the search fails as the maximum probabil-

ity never reaches a high enough level to allow it to become distinguishable from the

remaining superposition. As such, the time to find the marked state does not scale

in the a sensible fashion. In fact, it can often become artificially small due to the

fact it doesn’t take long at all to reach a probability only very slightly larger than

then initial state. As such, we only show the scaling of the time to find the marked

state for probabilities greater than p = 0.5. We firstly show, in fig. 6.5, how the time

to find the marked state varies with both the size of the dataset and the tunnelling

probability. As we would expect, as the tunnelling strength is increased, the time

to find the marked state decreases. We then show how this prefactor to the scaling

of the time to find the marked state varies with the tunnelling probability. Again,

we only show this for the higher tunnelling probabilities.

114



6.3. Results using the tunnelling operator

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

Square root of vertices

T
im

es
te

p 
to

 fi
rs

t s
ig

ni
fic

an
t p

ea
k

 

 

2D Lattice
p = 0.6
p = 0.7
p = 0.8
p = 0.9
p = 1

Figure 6.5: Plot to show how the time to find the marked state varies with both
the size of the lattice and the tunnelling strength as a one dimensional lattice is
gradually changed into a two dimensional Cartesian lattice.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Tunnelling probability

P
re

fa
ct

or
 to

 th
e 

tim
e 

to
 fi

nd
 th

e 
m

ar
ke

d 
st

at
e

Figure 6.6: Plot to show how the prefactor to the scaling of the time to find the
marked state, obtained from the data in fig. 6.5, varies with the tunnelling strength
as a one dimensional line is gradually changed into a two dimensional Cartesian
lattice.
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Figure 6.7: Basic unit of the structure we use to interpolate between the two dimen-
sional Cartesian and the three dimensional cubic lattice. The solid lines represent
the fixed, normal edges whereas the dashed lines represent the edges we set to be
tunnelling.

6.3.2 2D lattice - 3D lattice

As in the case of changing from the 1D line to the 2D lattice, we see a similar be-

haviour in the 2D to 3D case. Here we run the algorithm on a 3D cubic lattice where

the edges which link the ‘slices’ of 2D lattices together are tunnelling. We show the a

basic unit in fig. 6.7. The solid lines are the fixed, normal edges and the dashed lines

are tunnelling edges. This structure allows us to gradually change the strength of

the edges which make the structure three dimensional, hence interpolating between

the 2D Cartesian lattice and the 3D cubic lattice.

The maximum probability of the marked state, shown in fig. 6.8, changes from

the 1/ log2N scaling in the 2D case to the constant O(1) scaling as soon as the

additional edges even have a small weighting attached to them. At low tunnelling

strengths, we see the probability dropping initially before gradually recovering to-

wards a constant value for higher lattice sizes. At these higher sizes, it is easy to see

that the scaling is constant for any tunnelling strength with just varying prefactors.

Figure 6.9 shows how this prefactor to the scaling of the maximum probability of the

marked state changes as we increase the tunnelling probability. The sharp drop at

the low tunnelling probabilities is most probably due to the fact the scaling hasn’t

reached the constant value as we can only simulate up to a fixed lattice size.
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Figure 6.8: Plot to show how the maximum probability of the marked state varies
with both the size of the lattice and the tunnelling strength as a two dimensional
lattice is gradually changed into a three dimensional Cartesian lattice.
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Figure 6.9: Plot to show how the prefactor to the scaling of the maximum probability
of the marked state, obtained from the data in fig. 6.8, varies with the tunnelling
strength as a two dimensional lattice is gradually changed into a three dimensional
Cartesian lattice.
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Figure 6.10: Plot to show how the time to find the marked state varies with both
the size of the lattice and the tunnelling strength as a two dimensional lattice is
gradually changed into a three dimensional Cartesian lattice.

In addition, we note here that when the probability of tunnelling is zero, the scaling

does not match that of the basic 2D lattice. At p = 0, the structure is in effect a

collection of 2D lattices which are unlinked. The initial state is still spread across

all these individual lattices and due to the connectivity of the structure, only the

amplitude in one of the lattices (that with the marked state present) is able to coa-

lesce on the marked state. As such, the scaling is just reduced by a constant factor

as can be seen in fig. 6.8.

The time to find the marked state follows a similar behaviour. The basic scaling

of the time to find the marked state is the same in both two and three dimensions,

O(
√
N). We see in fig. 6.11 that, in general, the time to find the marked state (the

prefactor to the basic scaling) decreases as the tunnelling strength increases, thus

making the algorithm more efficient. We show a plot of how this prefactor varies

with the tunnelling strength in fig. 6.11. We do note that at the very low tunnelling

probabilities, p <≈ 0.3, the scaling of the time to find the marked state does not

follow the same behaviour. This is due to the fact that the marked state has not

yet reached a constant value, as mentioned previously. If we were able to run the

algorithm on much larger sized lattices, we should find the probability of the marked
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Figure 6.11: Plot to show how the prefactor to the scaling of the time to find the
marked state, obtained from the data in fig. 6.10, varies with the tunnelling strength
as a two dimensional lattice is gradually changed into a three dimensional Cartesian
lattice.

state stabilising and thus the time to find the marked state matching the quadratic

speedup in scaling. We show the expected trend to the scaling of the prefactors to

the time to find the marked state in fig. 6.11.

6.4 Lattices of varying height and depth

In this section, we discuss lattices of varying height and depth to give a different

avenue of investigation of the dependence on spatial dimension. We vary the height

of the lattice in the case of the 2D lattice and the depth of the lattice in the case of

the 3D lattice. For the 2D lattice, at low heights of the lattice, it can, in effect, be

considered almost like a 1D line, where we know the search cannot find the marked

state efficiently. We are interested here in how the scaling of the probability of the

marked state and the time to find it changes as the lattice height (depth) is gradually

increased, eventually becoming a fully symmetric 2D (3D) lattice.
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Figure 6.12: Plot to show how the maximum probability of the marked state varies
as a two dimensional lattice is gradually increased in height, while keeping the length
fixed, to become a two dimensional square lattice. We plot this against the equivalent
number of vertices for that lattice.

6.4.1 1D - 2D lattice

In order to interpolate between the 1D line and the 2D Cartesian lattice, we maintain

the width of the lattice and vary the height gradually. This changes the lattice from

a 1D line to eventually end at a 2D Cartesian lattice where both dimensions are the

same.

We firstly show how the probability of the marked state is affected as we main-

tain the length of the lattice but vary the height. This is shown in fig. 6.12 along

with the same probability for the fully square 2D Cartesian lattice. In this case,

we maintained the length of the 1D lattice at 150 vertices and increased the height

gradually from h = 2 through to h = w, where w is the width of the lattice and h

is the height. We see that as the lattice grows in height, i.e. becomes a square lat-

tice, the maximum probability of the marked state gradually increases to eventually

match that of the 2D lattice at roughly h = 70, half that of the lattice width.

We then ran the search algorithm on lattices of fixed height, but varying length

(with a fixed number of total vertices) to show how the maximum probability of the

120



6.4. Lattices of varying height and depth

0 0.5 1 1.5 2

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Vertices (N)

M
ax

im
um

 p
ro

ba
bi

lit
y 

of
 m

ar
ke

d 
st

at
e

 

 

2D lattice
1D lattice
l = 100
l = 80
l = 70
l = 60
l = 50
l = 40
l = 30
l = 20
l = 10
l = 5

Figure 6.13: Plot to show how the maximum probability of the marked state varies
as a two dimensional lattice is gradually increased in height to become a two dimen-
sional Cartesian lattice.

marked state and the time to find this probability varied. As we see in fig. 6.13, the

scaling of the maximum probability does not change immediately as we saw when

using the tunnelling operator. Instead, we see a gradual change from the 1/N scaling

of the 1D line to the 1/ log2N scaling of the square 2D Cartesian lattice. When the

height is small, i.e. h = 5 − 30, we see the scaling is basically the same as that of

the 1D line. This is due to the fact that as the walker is moving around the lattice

periodically, it wraps around (vertically) very quickly and so the boundary effects

cause it to see the lattice more like a line. As the height of the lattice increases,

the walker takes longer to pass around the lattice and thus these boundary effects

become less dominant. Due to numerical size restrictions, it becomes hard to tell

when the scaling becomes logarithmic, but we see at heights around 70 the behaviour

is very similar to that of the 2D lattice. We note here that the initial peaks of the

scaling for low numbers of vertices is just due to the lattice being, in effect, taller in

height than width.

Due to the search algorithm failing when the scaling is 1/N , we only show lattices

of larger height when studying the time to find the marked state. Figure 6.14 shows
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Figure 6.14: Plot to show how the time to find the marked state varies as a two
dimensional lattice is gradually increased in height to become a two dimensional
Cartesian lattice.

that the time to find the marked state seems to follow a different scaling than the full

square 2D Cartesian lattice. Even when h = 100 the scaling does not quite match

the basic 2D lattice. This is probably just a numerical artifact of how we find the

time to the first significant peak, due to the fact the scaling of the probability has

not quite reached the full logarithmic scaling yet. However, it could be following a

√
N logN scaling, but is hard to tell with numerical restrictions on the size of the

lattice we are able to study.

6.4.2 2D - 3D lattice

In order to interpolate between the 2D Cartesian lattice and the 3D cubic lattice,

we firstly maintain both the width and height of the lattice and vary the depth

gradually. This changes the lattice from a 2D Cartesian lattice to eventually end at

a 3D cubic lattice where all dimensions are the same.

We perform the same analysis as in the 1D-2D case, firstly showing how the

maximum probability of the marked state varies for a fixed width and height of

lattice (30x30), while varying the depth. Figure 6.15 shows how this probability
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Figure 6.15: Plot to show how the maximum probability of the marked state varies
as a three dimensional lattice is gradually increased in depth, while keeping the
width and height fixed, to become a three dimensional cubic lattice.

varies, along with the equivalent scaling for the fully cubic 3D lattice, showing the

scaling matches at roughly l = 15, where l is the depth of the lattice.

We then fixed the depth of the lattice and altered the width and height of the

lattice (with a fixed number of vertices) for each run of the search algorithm. Figure

6.16 shows how the maximum probability of the marked state varies for differing

depths of the lattice. We again see a gradual change in scaling from the basic 2D

logarithmic scaling to the constant scaling of the cubic lattice. This is in contrast

to the almost instantaneous change in scaling we see when interpolating using the

tunnelling operator.

The basic scaling of the time to find the marked state is unaffected by the change

in the depth of the lattice. The prefactor to this scaling though does decrease as we

increase the depth, changing from that of the basic 2D lattice to almost match that

of the cubic lattice for even lattices of modest depth. It is much easier to see how

the time to find the marked state changes than in the 1D-2D case as the algorithm

succeeds in all cases.
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Figure 6.16: Plot to show how the maximum probability of the marked state varies
as a three dimensional lattice is gradually increased in depth to become a three
dimensional cubic lattice.
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Figure 6.17: Plot to show how the time to find the marked state varies as a three
dimensional lattice is gradually increased in depth to become a three dimensional
cubic lattice.
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6.5 Discussion

In this chapter, we have shown two different ways in which we can interpolate

between structures of differing spatial dimension. Firstly, we used a tunnelling

operator to vary specific edges of a lattice enabling us to gradually change the spatial

dimension of the lattice. In this case, we found a sudden change in the scaling of

the maximum probability of the marked state as soon as there was even a very

small probability of the edges existing. This seems to indicate that the ‘strength’ of

the edges in the lattice is of little importance, with the dependence on the specific

spatial dimension taking precedence. However, we did find that the prefactor to

the scaling of this probability did vary with the strength of the tunnelling edges,

increasing as the tunnelling strength increased. These effects were more pronounced

in the change from a 2D Cartesian lattice to a 3D cubic lattice as in these cases the

algorithm always succeeds. In the case of a 1D line, the algorithm can fail as it can

only find the marked state with a probability of O(1/N), which is clearly of no use.

The basic scaling of the time to find the marked state is not affected by the change

in dimensionality, we note though that the prefactor to the scaling decreases as the

tunnelling strength is increased, hence the algorithm becomes more efficient.

The other case we considered is the case of lattices with varying height or depth,

for example, a 3D lattice with fixed width and height but of varying depth. Although

this structure is still strictly three dimensional, when the depth is very low and the

width (height) is large, the quantum walker will see the structure as almost a basic

2D Cartesian lattice. Suprisingly, in this case we see a gradual change in scaling in

the maximum probability of the marked state. At low heights or depths of the lattice,

the scaling is almost the same as the lower spatial dimensional structure gradually

changing to the higher dimensional structure scaling as the height (depth) increases

to become equal to that of the other dimensions. This highlights the importance of

full symmetry in the quantum walk search algorithm.

125



126



Chapter 7

Effects of connectivity on the

quantum walk search algorithm

7.1 Introduction

In this chapter, we investigate how important the connectivity of the database ar-

rangement is for the searching algorithm. As discussed in chapters 3 and 6, the

basic scaling of the algorithm is heavily dependent upon the spatial dimension of

the structure in question. Here, we numerically study how the connectivity, in a

specific spatial dimension, affects the prefactors to this scaling. Although it is un-

likely that the runtime of the search algorithm on a 2D Cartesian lattice can be

reduced to the optimal O(
√
N), it may be possible to reduce any constant overhead

associated with the run time. While the hypercube and 2D Cartesian lattices have

been studied in detail, little has been covered on other structures due to their con-

nectivity making them hard to analyse analytically. However, in related work, Abal

et al. [202] have shown analytically that the complexity of the search algorithm on

the hexagonal lattice is O(
√
N logN), matching the search on the Cartesian lattice

in [69] but with a differing prefactor to the scaling of the algorithm. In addition,

highly symmetric graphs such as the complete graph were studied by Reitzner et al.

[203] showing the additional connectivity does not allow the search to beat the opti-
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mal lower bound of O(
√
N). The hitting time on the complete graph has also been

studied recently by Santos and Portugal [84], proving this is also O(
√
N). We show

how the connectivity of regular structures affects the efficiency of the search algo-

rithm in terms of the prefactors to the scaling of both the maximum probability of

the marked state and also the time to find this maximum probability. This chapter

forms the basis of two pieces of published work [2, 3].

We use the tunnelling coin operator introduced in Chapter 5 which allows us to

model the search algorithm on structures where there is a probability of additional

connections existing. For example, our tunnelling operator allows us to interpolate

between running the search algorithm on a hexagonal lattice, with degree d = 3, and

the 2D Cartesian lattice, d = 4. This allows us to analyse how the search algorithm

is affected by a gradual change in the degree of the underlying substrate by changing

the tunnelling strength of the additional edges. This extends the initial studies of [2]

by considering an interpolation between lattices with fixed degree. After introducing

the structures we wish to perform the search algorithm upon, we show our results

for both two and three dimensional structures with varying connectivity before then

concluding this chapter by discussing our results.

7.2 Results

Using the tunnelling operator, described in sec. 6.2, we now present our results for

simulating the quantum walk search algorithm on both two and three dimensional

structures, gradually varying the connectivity. We show that the prefactors to the

scaling of the algorithm for both the maximum probability of the marked state and

the time to find the marked state are dependent on the connectivity of the underlying

structure.

7.2.1 Two dimensional structures

Using the tunnelling matrix we have introduced, we ran the search algorithm on

2D lattices ranging from d = 3, a hexagonal lattice, through to d = 8, a Cartesian
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Figure 7.1: The 2D lattices we interpolate between using the tunnelling matrix. We
change gradually from a hexagonal lattice, d = 3, to a 2D Cartesian lattice with
diagonals included, d = 8. We show here just the building block of each lattice. We
note that in the case of the 2D Cartesian lattice with diagonals, there is no vertex
at the central point where the edges cross.

lattice with diagonals added as shown in fig. 7.1, for varying lattices sizes from 62

(36) vertices up to 2502 (62500) vertices. As in fig. 7.1, we gradually changed the

degree of the structure we performed the search algorithm on. This was split into

intermediate steps, firstly from the 2D hexagonal lattice (d = 3) to the square lattice

(d = 4), the square lattice to the triangular lattice (d = 6), eventually ending at

the more highly connected Cartesian lattice with diagonals (d = 8). We spread the

walker in the same fashion as eq. (6.19) to ensure we distribute the state evenly

based on the tunnelling strength of the edges.

We show in fig. 7.2 how the time to find the marked state varies with both the

size of the lattice and the connectivity. We see that as the connectivity increases,

the time to find the marked state decreases, hence the efficiency of the algorithm

increases. As the time to find the marked state scales as O(
√
N), we fit to each of

the data sets in fig. 7.2 to obtain the prefactor to the scaling of the time to find the

marked state. Figure 7.3 shows how this prefactor to the scaling changes with the

degree of the underlying structure being searched.

In fig. 7.4, we show how the maximum probability of the marked state varies with

both the size of the dataset and the connectivity of the structure. We see that, in

general, as the connectivity of the structure being searched increases, the maximum

probability of the marked state also increases. A larger prefactor to this scaling

means fewer repeats of the algorithm are required to bring the success probability

close to unity. Figure 7.5 shows how this prefactor to the scaling of O(1/ log2N)

varies with the degree of the structure being searched.
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Figure 7.2: Scaling of the time to find the marked state with the size of the lattice
with varying connectivity in two dimensions. It is clear that as the connectivity of
the structure increases, the time to find the marked state decreases. Note that this
is a zoomed in plot showing only larger lattices sizes, data for

√
N < 200 has been

omitted to improve clarity.
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Figure 7.3: Plot to show how the prefactor to the scaling, obtained from the data
shown in fig. 7.2, of the time to find the marked state of O(

√
N) changes with the

degree of the two dimensional structure being searched.
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Figure 7.4: Scaling of the maximum probability of the marked state with the size of
the lattice with varying connectivity in two dimensions. In general, as the connec-
tivity of the structure increases, the maximum probability of the marked state also
increases.
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Figure 7.5: Plot to show how the prefactor to the scaling, obtained from the data
in fig. 7.4, of the maximum probability of the marked state of O(1/ log2N) changes
with the degree of the two dimensional structure being searched.
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Figure 7.6: Plot to show how the spreading of the quantum walk, characterised by
eq. (7.1), changes with the degree of the two dimensional structure being searched.

The ‘dips’ and revivals in the scaling seem counter intuitive, but appear to arise

from the dynamics of the walk on these structures where the symmetry is partially

broken (low tunnelling strength). In order to confirm this, we briefly examined the

basic dynamics of the quantum walk while varying the tunnelling strength. We

started the walker at a specific vertex in the graph, as opposed to an equal super-

position, and allowed it to propagate outwards in order to determine its dynamics.

We define the spread of the walker as

〈r〉 =
N

∑

i=1

pisi, (7.1)

where pi is the probability of the walker being at vertex i and si is the shortest

path distance from the position of the initial state to vertex i. Using this metric for

the rate of spreading, we explored how this was affected by the tunnelling strength.

Figure 7.6 shows this spreading on a 2D Cartesian lattice gradually being turned

into a triangular lattice as in fig. 6.1. We found at low tunnelling strengths, where

the symmetry breaking is most obvious, the spread, 〈r〉, dropped. As the tunnelling

strength was raised, the quantum walk was able to recover and 〈r〉 increased back to
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Figure 7.7: The 3D lattices we interpolate between using the tunnelling matrix. We
change gradually from a 3D hexagonal lattice, d = 5, through to a cubic lattice with
diagonals added on the faces, d = 14. We show here just the building block of each
lattice. We note here that vertices are only present at the eight corners of the cubic
structures, there are no vertices present where the edges cross.

the value of the original lattice, before increasing further as the tunnelling strength

reached its maximum value, i.e. the new lattice. Although this is not an exhaustive

study of the quantum walk dynamics when we include tunnelling edges, this be-

haviour does match the results we find for the search algorithm. While the variation

of 〈r〉 does not match the scaling of the probability of the marked state directly, the

basic quantum walk dynamics do not have any reflection effects from the edges of

the structure. Due to the periodic boundary conditions imposed in the searching

algorithm, we find slightly different behaviour which relate to the extra interference

effects. We found similar results for all the lattices studied in both two and three

dimensions.

7.2.2 Three dimensional structures

We now consider three dimensional lattices, using the tunnelling matrix to study

structures ranging from d = 5, a 3D hexagonal lattice, through to d = 14, a cubic

lattice with additional diagonals added as shown in fig. 7.7. We ran the search

algorithm for varying lattices sizes from 33 (27) vertices up to 403 (64000) vertices.

As in the two dimensional case, we did not just change the lattice from d = 5 to

d = 14 in one go. We split this into intermediary steps, fig. 7.7, changing firstly

from the 3D hexagonal lattice (d = 5) to the cubic lattice (d = 6), the cubic lattice

to one with diagonals added to one face (d = 10), eventually ending with a cubic

lattice with diagonals added on two faces (d = 14). We split the initial state across

the vertices and edges in the same way as in the two dimensional case.
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Figure 7.8: Scaling of the time to find the marked state with the size of the lattice
with varying connectivity in three dimensions. It is clear that as the connectivity
of the structure increases, the time to find the marked state decreases. Note that
this is a zoomed in plot showing large lattices sizes, data for

√
N < 200 has been

omitted to improve clarity.

We show in fig. 7.8 how the time to find the marked state varies with both the

size of the lattice and the connectivity. It is clear that as the connectivity increases,

the time to find the marked state decreases, hence the efficiency of the algorithm

increases. As the time to find the marked state scales as O(
√
N), we fit to each of

these to obtain the prefactor to the scaling of the time to find the marked state.

Figure 7.9 shows how this prefactor to the scaling changes with the degree of the

underlying structure being searched.

In the three dimensional case, the maximum probability of the marked state

scales in a constant fashion, O(1). As such, this scaling does not affect the complex-

ity of the algorithm as in the two dimensional case. However, we do note that this

constant value of probability does affect how many times we must run the algorithm

to ensure we have the correct result. We show in fig. 7.10 that, in general, as the

connectivity of the structure being searched increases, the maximum probability of

the marked state also increases.
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Figure 7.9: Plot to show how the prefactor to the scaling, obtained from the data
shown in fig. 7.8, of the time to find the marked state of O(

√
N) changes with the

degree of the three dimensional structure being searched.
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Figure 7.10: Scaling of the maximum probability of the marked state with the
size of the lattice with varying connectivity in three dimensions. In general, as the
connectivity of the structure increases, the maximum probability of the marked state
also increases.
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Figure 7.11: Plot to show how the prefactor obtained from the data in fig. 7.10, of
the maximum probability of the marked state changes with the degree of the three
dimensional structure being searched.

The closer we can get this prefactor to unity, the lower the number of times we

must run the algorithm. Figure 7.11 shows how this prefactor to the probability of

finding the marked state varies with the degree of the structure being searched. We

find the same ‘dips’ and recurrences in the scaling as in the two dimensional case

which can be explained in the same way as previously.

7.3 Discussion

We have investigated numerically how the quantum walk search algorithm intro-

duced by Shenvi et al. [50] is affected by varying connectivity in regular lattices.

We use our simple model of tunnelling to allow us to interpolate between structures

such as the square lattice (d = 4) and the triangular lattice (d = 6). With this

model, we are able to identify how the prefactors to the scaling of both the max-

imum probability of the marked state and the time to find the marked state vary

with the connectivity of the structure.

The basic scaling of the time to find the marked state, O(
√
N), is not affected by

the increase in connectivity but we find the prefactor to this scaling reduces as the

connectivity of the structure being searched increases. This is due to the additional
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paths the walker can take to coalesce on the marked state, thus increasing the

efficiency of the algorithm in both two and three dimensions.

The maximum probability of the marked state is also affected by the connectivity

of the underlying structure. We find that additional connectivity does not affect

the basic scaling of O(1/ log2N) in the two dimensional case. Only moving to

three spatial dimensions allows the walker to find the marked state with a constant

probability, O(1). However, we do note that in both two and three dimensions the

prefactors to this scaling, in general, increase as the connectivity of the structure

increases. Again, this increases the efficiency of the algorithm as it may not have to

be repeated so many times. We also find that the probability of the marked state

does not increases uniformly with the additional connectivity. We see the prefactor in

the scaling drop and then recover itself before increasing as the tunnelling strength

increases. This is due to the dynamics of the quantum walk on a structure with

some broken symmetry, i.e. low tunnelling strength between vertices. We briefly

investigated the dynamics of the walk by starting the walker in a single location

and monitoring how quickly it spread outwards with varying tunnelling strengths.

This confirmed our results for the search algorithm as we found that the spread of

the quantum walk also dropped for lower tunnelling strengths before recovering and

eventually increasing at higher tunnelling probabilities. However, this work on the

spreading of the walk compared to tunnelling strength is by no means exhaustive

and it would be interesting to look more deeply into this in the future.
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Chapter 8

Quantum walk searching on

percolation lattices

8.1 Introduction

In the previous chapters, we have only considered perfect, regular lattices with

no defects. In this chapter, we consider a simple form of noise (disorder) and are

interested in how this effects the efficiency of the search algorithm. Previous work by

Keating et al. [204] has highlighted the effect of Anderson localisation in continuous

time quantum walks and also Krovi and Brun [174–176] have shown how defects

and a lack of symmetry in continuous time quantum walks can have an impact on

the spreading of the walk. Both these factors suggest that the search algorithm

will fail as soon as any level of disorder is introduced into the lattice. However,

in contrast to these results, the study of the transport properties of discrete time

quantum walks on 1D and 2D percolation lattices has recently been presented by

Leung et al. [205]. They show that the spreading of a discrete time quantum walk,

on a 2D percolation lattice, follows a fractional scaling, i.e. 〈r〉 ∝ Tα where 〈r〉

is the spread of the quantum walk and T is the number of timesteps. This seems

to be in contradiction to the previous work in the continuous time context. In

addition, Abal et al. [206] have investigated how the quantum walk search algorithm
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performs in the presence of decoherence, specifially phase errors in the coin operator.

As previously mentioned, we assume that we have a quantum computer with error

correction available, and as such are not interested in these errors. Instead, we are

interested in any disorder that could be present in an imperfect data structure. We

aim to establish how much, if any, disorder the search algorithm can tolerate or if it

fails completely. In order to do this, we use percolation lattices to allow us to vary

the level of disorder in the lattice.

8.2 Percolation lattices

A percolation lattice is a lattice, for example a 2D Cartesian lattice, which has

vertices (site percolation) or edges (bond percolation) randomly missing. The prob-

ability, p, of a vertex or edge existing determines the amount of disorder present in

the lattice. As the probability increases there reaches a point, pc, where the struc-

ture changes from a set of smaller, unconnected pieces into one larger piece which

is almost all connected. At probabilities p ≥ pc, there will, in general, be a path

from one side of the lattice to the other. We note here that this is only the case

for structures with dimension two or more. It clear that any one dimensional lattice

must be fully connected in order for a path to exist from one side of the lattice to

the other, i.e. pc = 1. Figure 8.1 shows an example of a 2D bond percolation lattice

with varying probability of an edge existing. A path from one side of the lattice

can clearly be seen for probabilities greater than or equal to the critical percolation

probability, pc = 0.5. This percolation threshold is only for bond percolation on a 2D

square lattice. Although site and bond percolation lattices exhibit similar behaviour,

the critical percolation probability differs, for site percolation pc = 0.5928..... Other

lattices have varying critical probabilities depending on their structure, with many

efficient numerical methods developed to calculate them [207, 208]. In this chapter,

we are only interested in two and three dimensional lattices, and we summarise the

critical percolation probabilities of these in table 8.1. It is fairly obvious that at this

critical percolation threshold, the properties of the lattice change significantly. For
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p = 0.25 p = 0.5

p = 1.0p = 0.75

Figure 8.1: An example of a 2D bond percolation lattice with varying levels of
disorder determined by the probability of an edge existing. The critical percolation
probability, pc = 0.5, for bond percolation clearly shows a path from one side of the
lattice to the other.

Table 8.1: Summary of critical percolation probabilities for two and three dimen-
sional lattices

Lattice Bond Site

2D 0.5 0.5928.....
3D 0.2488.... 0.3116.....

lattices with a percolation probability below the percolation threshold, it is clear

that many of the sites in the lattice will be unreachable, whereas above the thresh-

old the opposite is true (though perhaps through a less direct route than in a fully

connected lattice). Due to their transport properties, percolation lattices are widely

used to model various phenomena including forest fires, disease spread and the size

and movement of oil deposits. For a good introduction to both the theory and use

of percolation lattices, see for example Stauffer and Aharony [209].

8.3 Search algorithm on percolation lattices

We are using the percolation lattices as a description for the database arrangement

that we wish to run the quantum walk search algorithm upon. As the disorder
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introduced by using percolation lattices is random, we ran the search algorithm

on many different percolation lattices (5000), and averaged over the results. It is

obvious that at low probabilities of vertices (or edges) existing, that there may be

sections of the graph that the quantum walk is unable to reach. In fact, at very low

probabilities, it is likely that the marked state will be in a small, unconnected region

of the lattice where it will never be ‘found’. In these cases, this means the marked

state will only ever be able to attain a small portion of the total probability. We

set the condition on the algorithm that the probability of the marked state must

reach at least twice the value of the initial superposition in order for it to succeed.

Similarly, the time to find this maximum probability is artificially smaller than it

should be if the entire lattice was connected. This is due to the walker only having

to coalesce on the marked state over a small piece of the lattice. In order to combat

this, we set the time to find the marked state as zero if the algorithm failed. If

it succeeded, we took the reciprocal of the time to find the marked state. After

averaging over many different percolation lattices, we again took the reciprocal of

this averaged time in order to give a clearer view on how the algorithm scaled with

time. We also set the probability of the marked state to be zero if the algorithm

failed.

In order to run the quantum walk search algorithm on percolation lattices, we

have to deal with the fact that the lattice is not d-regular. In this setting, we cannot

just add self loops to make the lattice regular as in [77] as we want to know exactly

how the disorder affects the algorithm. Instead, we take the Grover coin for the

degree of the vertex in question and ‘pad’ it out with the identity operator for the

edges that are missing. For example if we have a vertex with just edge 3 missing,

the operator would be

Gperc
1,2,4 =



















−1
3

2
3 0 2

3

2
3 −1

3 0 2
3

0 0 1 0

2
3

2
3 0 −1

3



















, (8.1)
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where Gperc
1,2,4 represents the Grover coin with edges 1, 2 and 4 present. In the case of

a two dimensional percolation lattice, there are 16 combinations of edges that can

be present / missing. For a three dimensional percolation lattice, this increases to

64 combinations. In order to deal with this, we maintain the labelling of the edges

as previously and assign a binary number to each edge, depending on whether an

edge is present or not. The example above, eq. (8.1), would therefore be 1101. This

creates the 2d combinations we require. There is then a fixed mapping between each

binary number and the correct coin for each vertex.

In addition to the coin operator changing, we must also modify the initial state

to account for the missing vertices or edges. This could be done in several ways. We

try to stick as closely to the initial state of the basic quantum walk search algorithm

by just splitting the state into an equal superposition over all the possible edges

present.

8.4 Results

We present our results for the quantum walk search algorithm on both two and

three dimensional percolation lattices. Due to the computational time required for

averaging over many lattices, we only consider site percolated lattices in this work,

though we expect a qualitatively similar behaviour in lattices with edge percolation.

8.4.1 Two dimensional percolation lattices

We now show our initial results for the quantum walk search algorithm on two di-

mensional site percolation lattices. We firstly show, fig. 8.2, how the maximum

probability of the marked state varies with both the size of the dataset and the

percolation probability. We see, as we would think intuitively, that as the perco-

lation probability drops and the structure becomes less connected, the maximum

probability of the marked state decreases. We note that the scaling of the maximum

probability initially maintains the logarithmic scaling of the basic 2D lattice before

eventually reverting to the scaling of the line, 1/N , at lower percolation probabili-
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Figure 8.2: Plot to show how the maximum probability of the marked state varies
with the size of the dataset and percolation probability in two dimensions.

ties. In the case of site percolation, this change in scaling seems to occur at roughly

probabilities below p ≈ 0.65, not significantly higher than the critical percolation

threshold. This is expected as at the critical threshold, the structure has in general

a single path from one side to the other, effectively a 1D lattice. Our numerical

results match this behaviour, with the scaling of the probability of the marked state

matching that of the line at this point. At percolation probabilities higher than the

critical threshold, we see a change in the prefactor to the scaling of the maximum

probability of the marked state. We show this prefactor to the logarithmic scaling

in fig. 8.3. It is easy to see that as soon as the percolation probability passes the

critical threshold, pc = 0.5928...., the scaling increases in a linear fashion. We also

note here, after investigation on a finer scale, that there is a gradual change in this

prefactor scaling around the critical percolation threshold.

The time to find the marked state follows a similar behaviour, gradually chang-

ing from the quadratic scaling of the 2D lattice to a classical linear scaling. We

show the time to find the marked state for site percolation in fig. 8.4. We see that

when p = 0.6, the scaling of the time to find the marked state is very similar to the

classical run time, O(N).
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Figure 8.3: Plot to show how the prefactor to the scaling of the maximum probability
of the marked state varies with the size of the dataset and the percolation probability
for site percolation in two dimensions.
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Figure 8.4: Plot to show how the time to find the marked state varies with the
size of the dataset and the percolation probability for site percolated lattices in two
dimensions.

145



Chapter 8. Quantum walk searching on percolation lattices

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Percolation probability

P
re

fa
ct

or
 to

 th
e 

sc
al

in
g 

of
 th

e 
tim

e 
to

 
fin

d 
th

e 
fir

st
 s

ig
ni

fic
an

t p
ea

k

Figure 8.5: Plot to show how the prefactor to the scaling of the time to find the
maximum probability of the marked state varies with the size of the dataset and the
percolation probability for site percolation in two dimensions.

The kinks in this scaling (and the other percolation probabilities) are just from

averaging over many percolation lattices. Given more time, a higher number could

be run and thus a smoother scaling obtained. It can be seen that the time to find

the marked state seems to retain the quadratic quantum speed up, even in the pres-

ence of a non-trivial level of disorder. As in the work of Leung et al. [205], it seems

as though the scaling of the time to find the marked state may follow a fractional

scaling from quadratic back to linear as,

T ∝ Nα, (8.2)

where T is the time to find the marked state and N is the size of the dataset. We

follow the analysis in [205] to establish how the scaling of the time to find the marked

state varies with the percolation probability. We show, in fig. 8.5, how the value of

the coefficient α varies as the level of disorder is increased. We can see the quadratic

speedup is maintained, α ≈ 0.5, for percolation probabilities of roughly p > 0.65.

Below this probability, the quantum speed up disappears gradually to end at the

classical run time when p = pc. This is for the same reason as in the scaling of the
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Figure 8.6: Plot to show how the maximum probability of the marked state varies
with the percolation probability in three dimensions.

maximum probability of the marked state, at the critical threshold the structure is

effectively a line. Below the critical threshold, the algorithm fails (the marked state

is probably in a disconnected region). We note here that the coefficient rises and

falls slightly for percolation probabilities higher than pc. This is most probably due

to the fact that percolation lattices are random in nature, and we only average over

a specific number. If we averaged over more, then we would see a more constant

scaling of the coefficient at α = 0.5, i.e. a full quadratic speed up.

8.4.2 Three dimensional percolation lattices

We now turn our attention to three dimensional site percolation lattices. We follow

the same analysis as in the two dimensional case. We firstly show, fig. 8.6, how

the maximum probability of the marked state varies as the percolation probability

is decreased. We see, as in the two dimensional case, that the basic scaling of

the maximum probability matches that of the three dimensional lattice until the

percolation probability drops to roughly the critical percolation threshold, pc =

0.3116.... We show in fig. 8.7, how the prefactor to this scaling of the maximum

probability varies with the percolation probability. In the same way as the two
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Figure 8.7: Plot to show how the prefactor to the scaling of the maximum probability
of the marked state varies with the size of the dataset and the percolation probability
for site percolation in three dimensions.

dimensional case, we see an almost linear scaling the prefactor once the percolation

probability has passed the critical threshold. The scaling here doesn’t seem to be as

close as in the two dimensional case. This is probably because in the case of three

dimensional percolation lattices, there are many more combinations of lattice which

can be created. Averaging over more of these lattices would most probably give a

smoother fit.

The time to find the marked state, in the three dimensional case, follows the

same behaviour as in the two dimensional percolation lattices. We show in fig. 8.8,

how the time to find the marked state varies with the percolation probability. We

see, fig. 8.9, as in the two dimensional case, that the scaling coefficient, α, gradually

changes from the quadratic speed up to the classical run time. Again, we note that

the quadratic speed up is maintained for a non-trivial amount of disorder before

gradually changing to the classical run time at the point p = pc. We do note, as in

the two dimensional case, that the coefficient falls slightly for percolation probabil-

ities higher than pc. This can be explained in the same way as the two dimensional

percolation lattices, and averaging over more lattices should give a constant value

of the coefficient α.
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Figure 8.8: Plot to show how the time to find the marked state varies with the size
of the dataset and the percolation probability for site percolation lattices in three
dimensions.
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Figure 8.9: Plot to show how the prefactor to the scaling of the time to find the
maximum probability of the marked state varies with the size of the dataset and the
percolation probability for site percolation in three dimensions.
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8.5 Discussion

In this chapter we have studied both two and three dimensional percolation lattices

as a way to model disorder in the quantum walk search algorithm. We are interested

in how the algorithm performs with increasing disorder. We use percolation lattices

as a random substrate for the database arrangement we wish to search.

We find, in both the two and three dimensional cases, that as the level of dis-

order increases, the maximum probability of the marked state decreases. Whilst

the percolation probability is higher than the critical percolation threshold the basic

scaling of the maximum probability of the marked state matches that of the basic

lattice (in that spatial dimension). Once the percolation probability drop to the

critical threshold, this scaling changes to that of the line, 1/N . This is expected as

at this point the structure is effectively a line. We also note the prefactor to the

scaling of the maximum probability of the marked state increases linearly once the

percolation probability is greater than the critical threshold.

The time to find the marked state follows a similar behaviour. We find that as

the disorder increases, the time to find the marked state also increases. Surprisingly

though, we note that the quadratic speed up is maintained for a non-trivial level of

disorder, before gradually reverting to the classical run time, O(N), as the disorder

reaches the critical percolation threshold. This seems to match the results of [205],

which show a fractional scaling for the spreading of the quantum walk from a maxi-

mal quantum spreading to a classical spreading at and below the critical threshold.

However, this is in contrast to the work of Keating et al. [204] and Krovi and Brun

[174–176] who highlight the effect of localisation on the quantum walk when defects

are introduced into the substrate.

Both these factors indicate that the quantum walk search algorithm seems to be

more robust to the effects of disorder and symmetry than the basic spreading of the

quantum walk. This could be due to the fact that the initial state of the walker

is spread across the whole lattice. We have seen that the algorithm becomes less

efficient as the disorder increases, but at percolation probabilities greater than the

150



8.5. Discussion

critical threshold, the algorithm still seems to be viable, although more amplification

of the result may be required.
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Chapter 9

Generation of topologically

useful entangled states

9.1 Introduction

One of the hardest challenges in experimental quantum information processing is to

create and maintain entanglement at varying points throughout the computation.

In this chapter, we describe an abstract experimental proposal for the generation

of cluster states, a universal resource for cluster state quantum computation. We

introduce our basic scheme and the states we are able to prepare in Sec. 9.2. We

extend the scheme in Sec. 9.3 before ending the chapter in sec. 9.4 by discussing its

benefits and applications.

Cluster state quantum computation, [14], is a different paradigm in quantum

computation than the circuit model. It is also known as measurement based quantum

computation (MBQC). In MBQC, a general graph state is produced and then each

site is entangled with its neighbour(s) by a controlled phase operation (C-Phase),

153



Chapter 9. Generation of topologically useful entangled states

eq. (9.1), entangling the two together as

C − PHASE =



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



















. (9.1)

In the case of two qubits they are firstly prepared in the |+〉 state,

|ψ〉 =
1√
2
(|01〉 + |11〉) ⊗

1√
2
(|02〉 + |12〉),

|ψ〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉). (9.2)

The C-Phase entangling operation is then applied between the two qubits to leave

the resultant entangled state,

C − PHASE|ψ〉 =
1

2
(|00〉 + |01〉 + |10〉 − |11〉). (9.3)

Single qubit rotations and measurements are used to progress the computation.

These measurements are based on the previous results which are fed forward. As all

the entanglement is generated when the graph state is produced, no entanglement

needs to be generated during the computation, which experimentally is challenging.

A cluster state is just a specific graph state, a square lattice. When first introduced

it was hoped that this lack of ad-hoc entanglement would mean the experimental

implementation would be much easier. However, this has not been the case, although

work by Rudolf et al. has shown it to be feasible, [210]. Since its conception, many

other schemes for cluster state preparation have also been introduced, [211–214].

Recently, there has been a stimulus in work on cluster state generation using

photons, [215–218], and also topological error correction in cluster states, [28–30,

219, 220]. The photonic module, [215], is essentially a ‘plug and play’ cluster state

generator. It can deterministically create cluster states and also uses the mobility
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of the photons to enable any output to be connected to any input. In addition to

generating cluster states, another focus of the work is on topological error correction.

Raussendorf and Goyal [30] introduced the concept of using multiple qubits to encode

one logical qubit in an attempt to make it fault tolerant. This is in contrast to the

traditional cluster state in which the qubits are not protected from loss channels or

errors in the system.

Due to the recent work on topological error correction and the idea of MBQC,

the motivation for this work was to develop a scheme to produce a universal resource

for MBQC. We also wanted a way to prepare these states which could be scaled up

easily. We numerically modelled states we could theoretically prepare. We found

we could create many interesting topologies with various possible applications. The

recent work by Elham Keshafi et al. [221] on ancilla driven quantum computing

has unusual ‘twisted graph states’ as a resource which our scheme could produce.

The unit cell for topological error correction, [29], can also be created (with some Z

measurements to remove qubits).

9.2 Basic Scheme

We now present our scheme for the generation of graph states which would be useful

in quantum information processing. The scheme we describe is abstract and we do

not initially define an architecture in which this could be physically realised. We

show some of the useful states we can produce (by numerical simulation) and then

discuss the drawbacks of this scheme.

9.2.1 Scheme

Consider a small grid of sites as in Figure 9.1. We imagine vertices of a graph

moving across this grid horizontally and vertically by one site in the grid for each

arbitrary timestep. If two of these vertices meet at a site we say a link or edge is

formed between them. This edge represents the C-Phase entanglement generated

between the two vertices which represent qubits. The vertices enter the grid in
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the direction of the arrows as a stream of atoms, one entering for each arbitrary

timestep. We extend this further and say that each of these sites could be active or

inactive, forming an edge only when the site is active. An active site is considered to

perform the C-Phase operation between the two vertices (qubits). Therefore instead

of creating edges between static vertices, we build our graph states by moving the

vertices through a set of ‘edge joining’ interaction regions, which can be switched

on or off. This could be a grid of collisional cavities through which atomic beams

are passed and entangled together as proposed by Blythe and Varcoe, [222].

Figure 9.1: Structure we use to create our graph states. We imagine vertices moving
in the direction of the arrows advancing by one site in the grid for each timestep.
A dark site indicates it is active and so an edge is formed when two vertices pass in
the same timestep.

As we have introduced the concept of the vertices moving with each timestep, we

must also address the notion of when (in time) a vertex enters the grid. We do this

by assigning a generation to each timestep. Using the grid in fig. 9.1 the vertices

entering the first row of the grid will be labelled as h1g4 − h1g3 − h1g2 − h1g1. This

implies that generation 1 passes into the grid first and therefore after four timesteps

would be at the site in the top right hand corner of the grid. Using this labelling,

it is easy to keep track of which generations of vertices are interacting together.

We show how the vertices interact with the active sites and different generations in

fig. 9.2. The mix of generations forming edges is obviously highly dependent on the

size of the grid and also which sites are active. This dependency and our ability

to change these factors allows various different structures to be created. Some of

the structures produced by numerical simulation are shown next along with the grid

pattern of active sites required to produce them.
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Figure 9.2: First four timesteps of a 4x4 grid. The vertices enter in the direction of
the arrows. The black circles indicate active collision sites wheras white indicates
the site is switched off.

Due to the vertices moving across the grid as a stream, we find that we get a

number of the same structures created. The actual number produced depends on

which sites are active and the number of timesteps taken. This scales as t−(
√
N−1)

where t is the number of timesteps and N is the number of sites in the grid. However,

some of these structures are incomplete. These come about from the vertices that

have only partially traversed the grid when the number of timesteps are completed.

These multiple and incomplete structures are shown in fig. 9.3. In the work by

Blythe and Varcoe, [222], the sequence of atoms is pulsed at specific times to allow

the creation of one structure as opposed to a continuous stream here.

9.2.2 States produced

We show several different cluster states we have produced by numerical simulation

in order to show the variety of topologies our scheme can produce. All show the

structure produced and the grid of active sites required to produce it. The number

of timesteps was 10 for all of the examples. We can see the creation of a cluster

state for universal quantum computing in figs. 9.4, 9.5 and 9.6. In fig. 9.7 we see

additional links from a central structure. These could be used as ancilla qubits for

algorithmic or error correction purposes. Finally in figs. 9.8 and 9.9 we see the initial

unit cell of both cubic and and hexagonal lattices. If all sites are active we obtain the
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Figure 9.3: Multiple structures produced after 10 timesteps. The incomplete struc-
tures can easily be seen. Left - Full set of structures produced from the grid in
fig. 9.5. Right - Full set of structures produced from the grid in fig. 9.9.

most highly connected state possible in this scheme. This is a cube with its corners

connected diagonally as shown in fig. 9.10. This is in essence a superposition of

all other structures that could be produced. Other more exotic structures can be

created using a different combination of active sites.

h 1 g 1

v 1 g 1

h 2 g 2

v 2 g 2

h 3 g 3

v3g3

h 4 g 4

v 4 g 5

Figure 9.4: Grid of active sites and structure produced. The structure produced is
a 1D lattice.

9.2.3 Drawbacks

In the examples we have shown it is clear that each structure created can only have

a maximum of eight vertices due to the size of the grid. Obviously the grid is not

static in size, it can be be a square of any dimension N ,
√
N ×

√
N . We find that
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Figure 9.5: Grid of active sites and structure produced. The structure produced is
the formation of a 2D lattice but not all the bonds have been formed.
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Figure 9.6: Grid of active sites and structure produced. The structure produced is
a 2D lattice of depth two.
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Figure 9.7: Grid of active sites and structure produced. The structure produced is
a square lattice with an additional link on each vertex.

as the grid increases in size, the number of vertices in each structure also increases.

The number of vertices present in any structure created can only be a maximum of

2
√
N . Similarly, the maximum number of edges a vertex can form is

√
N , depending

on how many active sites a vertex passes through. This restricts both the size and
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Figure 9.8: Grid of active sites and structure produced. The structure produced is
a cube.
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Figure 9.9: Grid of active sites and structure produced. The structure produced is
a single cell of a hexagonal lattice.

Figure 9.10: Structure produced when all sites are active. This is the most highly
connected structure that can be produced from this model.
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the topology of the structures we are able to create. However, as the grid increases

in size we do not have to stick to a specific pattern across the entire grid. Another

option is to repeat an existing one on the diagonal. For example, if we have an 8 x 8

grid we could have any one of the patterns from figs. 9.4 to 9.9 repeated twice on the

diagonal. This will create additional structures of the same form which could then

be linked to form larger structures. This can be achieved by activating the adjacent

skew diagonal elements between the repeated pattern. This is shown in figs. 9.11

and 9.12 and it is clear that any of the previous structures described could be linked

in this way. The only thing that would limit the number of structures we could link

together would be the size of the grid that could be constructed. However, as the

grid is expanded in this way there are many inactive sites meaning it will probably

not scale particulary well in a physically realisable device.
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v 4 g 4

v 5 g 5
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h 8 g 8
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Figure 9.11: Grid of active sites and structure formed for the pattern in fig. 9.5
repeated and ‘linked’ together. If the number of timesteps was increased then more
of the structure would link together at each timestep. The grid has two patterns
which would create a 1D lattice, the skew diagonals link the two to form the two
depth 2D lattice.

9.3 Extended Scheme

We now modify our scheme to allow the creation of larger structures using the

same initial grid. We show some of the useful states we can produce (by numerical
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Figure 9.12: Grid of active sites and structure formed for the pattern in fig. 9.7
repeated and ‘linked’ together. The grid has two patterns which would create cubes,
the skew diagonals link the two to form a ‘chain’ of cubes.

simulation).

9.3.1 Scheme

In order to solve some of the drawbacks in the initial scheme, we amend it slightly

allowing the construction of much larger structures. In the extended scheme, we

allow the vertices (qubits) to enter from either side of the grid in any pattern. This

is shown in fig. 9.13 which shows the grid ‘filling’ up for the first few timesteps. Due

to the change in where and when the vertices meet, we find the structures created

are in effect ‘infinite’ in length, the only limiting factor is the number of timesteps

the system is run for (assuming we can keep the system coherent for this time). This

would allow any number of computational steps to be performed on the qubits. If

we stick to creating just a 2D lattice (cluster state) then the size of the grid increases

linearly with the depth of the cluster produced. This is clearly shown next where

we show some of the examples of states produced, again by numerical simulation.

The size of the grid compared to the structure produced is now much smaller than

the original scheme.

Allowing the vertices to enter the grid in this fashion means that only four copies

of the same structure are obtained. As is shown by the examples, the structures are

much more similar in comparison to the original scheme. As only four structures are

produced for any grid pattern it means that the connections are formed much faster.

This ensures much of the structure is always complete and it is just the start and

end which has less connections. This is shown in fig. 9.14 and is due to two factors.
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Figure 9.13: First four timesteps of a 4x4 grid as it ’fills up’. The vertices enter in
the direction of the arrows. The black circles indicate active collision sites wheras
white indicates the site is switched off.

The first is due to the grid filling up at the start of the generation of the cluster

which can be solved by starting the computation
√
N steps later. The second is at

the end of the structure which is incomplete as some of the vertices have not passed

through the entire grid when we reach the number of required timesteps. This can

be solved by ensuring the number of timesteps is an additional
√
N than required for

the computation. Therefore, overall we have a constant overhead of 2
√
N timesteps

to add to any computation.

Our initial motivation was to generate a scaleable scheme for cluster state gen-

eration. We also found that we could easily create much more interesting structures

as in the original scheme. If certain sites are activated we find the structure can loop

and join itself again creating 3D structures and ‘rings’. Other options are to repeat

the basic pattern of the grid down the diagonal and then link them together. This

could be used to form a ‘ring of rings’ for example. One interesting thing about

copying the pattern in this sense is that we can create a ‘ring’ of any number of

other structures. These individual structures can also have any number of vertices

linked together.
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Figure 9.14: An example of the four structures created. The structures show the
incomplete parts at the start and end.

In order to show that we produce four individual structures, we describe the

first four timesteps using a simple 2x2 grid. This will produce four 1D chains of

entangled atoms as shown in fig. 9.16. We note here that as the atoms only pass

through a specific number of collisional zones, the timing is known and they pass

each other in orthogonal directions there is no problem in distinguishing the atoms

in the chain. Figure 9.15 shows in detail the first four timesteps of generating the

1D cluster states.

164



9.3. Extended Scheme

t = 1

t = 2

t = 3

t = 4

A

B

C

D

A1 B1 C1 D1

A1

B2

A1

B2

C3

A1

B2

C3

D4

B1

C2

B1

C2

D3

B1

C2

D3

A4 B4

A3

D2

C1

A3

D2

C1

D2

C1 D1

A2

D1

A2

B3

D1

A2

B3

C4

Figure 9.15: Diagrammatic representation of the first four timesteps of the genera-
tion of 1D cluster states.

9.3.2 States produced

We show several different structures we have produced by numerical simulation in

order to show the variety of topologies our extended scheme can produce. All show

the structure produced and the grid of active sites required to produce it.

We can see the creation of a cluster state for universal quantum computing in

figs. 9.16, 9.17 and 9.18 and can clearly see the linear scaling of the grid with cluster

depth. Figures 9.19 and 9.20 show how activating specific sites allows depth four

or eight clusters to loop around to form a cube or octagon respectively. The 3D

structures shown in figs. 9.19 and 9.20 can be repeated in a larger grid and then

linked together in a similar way. This then achieves a ‘ring of rings’ topology where

the number of vertices in either ring is just dependent on the size of the initial grid.
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Figure 9.16: Grid of active sites and structure produced. 1D cluster with no re-
stricted length.

Figure 9.17: Grid of active sites and structure produced. 2D cluster of depth two
with no restricted length.

Figure 9.18: Grid of active sites and structure produced. 2D cluster of depth four
with no restricted length.

Figure 9.19: Grid of active sites and structure produced. 2D cluster of depth four
looped round to form a cube of no restricted length.

166



9.4. Discussion

Figure 9.20: Grid of active sites and structure produced. 2D cluster of depth 8
looped round to form an octagon of no restricted length.

9.4 Discussion

We have presented a scheme to allow the creation of graph states. Our scheme could

be applied to various architectures, however we do note its relevance to the cavity

QED scheme previously mentioned, [222]. In this way we envisage the vertices as

atoms and the edges of the graph as entanglement between these atoms. This archi-

tecture would seem to lend itself to quantum information processing applications.

The basic cluster state produced by the extended scheme is a universal resource

for measurement based quantum computing. The scaling here is better than many

other schemes that have been proposed. We only need to double the size of the

grid to get a structure of double the depth (double the qubits in the cluster state).

It is clear that doing this will create many inactive collision sites and as such is

wasteful. However, if experimentally implemented these inactive sites need not be

implemented, instead just creating the active zones and controlling the timing of the

atoms is sufficient. Obviously, maintaining the timing and coherence of the qubits

during the computation would still represent a significant challenge. As the com-

putation can be run for an arbitrary time, the length of the structure is in effect

‘infinite’ as long as the system remains coherent. The unit cell for topological error

correction can also be created (with some Z measurements to remove qubits).

In the scheme, we have assumed that when two vertices pass each other at an

active site a full link or edge is always formed. This is an ideal case and we intend
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to amend our numerical simulations to include a probability of an edge forming. We

would imagine there to be some critical probability similar to percolation theory

where the structures are formed / not formed. This could mean the structures could

be used in percolation problems when studying stuctures with broken or missing

links. We notice that as there are multiple copies of the same structure it is unlikely

that the same bonds will form in each one if there is chance of an error. As such

we may be able to use some form of ‘majority rules’ or entanglement distillation

scheme, [223], to ensure we have a complete structure. This would however remove

many of the additional structures that are in effect created for ‘free’.

The additional structures could easily be used to our advantage. This could be

one of two options - multiple copies running either the same computation or differ-

ent parts of a program. If we ran the same program on all the copies this would

give a higher probability of success if there was a possibility of error as discussed

above. It would also mean a probabilistic algorithm would have to be run less times

as we would be in effect running it four times in one run. The other option would

be to use each structure as a ‘thread’ in a multithreaded quantum computer. Ac-

tivating specific sites in the grid at certain times would then allow the connection

of the structures temporarily to allow communication between threads. This would

be much more complex than the previous option but could also give benefits such

as speed for example. The main problem with the multithreading idea would be

communication between threads. This would be in the timing of the links between

structures to pass information from one structure to another. It would also require

longer coherence times as the states may need to be ‘stored’ temporarily if com-

munication is blocked with another structure to avoid a read-write error between

threads in the same way as classical multithreading.

We intend to extend this work to provide a more physical setting in which we can

discuss errors and implementation more thoroughly. The scheme we present here

can not produce every structure as the vertices (qubits) cannot be directed from

output to input as in [215]. We will address this in a specific architecture. Another
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possibility of the scheme is useful applications of the more exotic structures shown

in the extended scheme. This would most likely be in the area of topological error

correction mentioned briefly above. The unit cell can be created which is the basis

of the error correcting schemes introduced by Raussendorf and Harrington in [29].

An extension of error correction in this scheme would be to use multiple qubits in

order to encode one logical qubit. This redundancy allows for fault tolerance but

how many qubits we could use would obviously depend on how many qubits could

physically be realisable.
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Chapter 10

Conclusions

In this chapter, we conclude the thesis with a summary of our results. We discuss

the main results of each section of the thesis: Universal quantum computation,

Quantum walk search algorithm and also the cluster state generation scheme. We

also give details of further work which could be carried out.

10.1 Universal computation using the discrete time quan-

tum walk

In Chapter 3, we gave a scheme showing the discrete time quantum walk is univer-

sal for quantum computation. We give an explicit graph construction which maps

a standard circuit model computation, to a graph on which a discrete time quan-

tum walk traverses (from left to right), thus performing the computation. We also

discussed the difference in resources, in the size of the graph and gates required, com-

pared to the circuit model. The scheme we present is an extension of work done by

Childs [49], who showed the same results for the continuous time quantum walk. The

structures we show for our universal gate set are similar in construction to the work

of Childs, but require a higher degree at each vertex. This is due to the additional

degree of freedom provided by the coin in the discrete time case. We note here that

since this work was completed and published, Underwood and Feder [157] showed
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universal computation using a ‘discontinuous’ time quantum walk, which combines

both the results we show here, and the ones of Childs [49]. This construction takes

discrete steps of continuous evolution, utilising the advantages of both schemes. In

this discontinuous time construction, the walker takes advantage of perfect state

transfer to perform a deterministic computation for all states, as opposed to the

continuous time case, but is able to do this without the addition of the coin degree

of freedom, required in our discrete time construction. All these constructions show

the power of the quantum walk, and that any quantum algorithm can be recast as

a quantum walk algorithm.

Further work in this area would involve trying to decompose our gate structures

to reduce the degree at each vertex. This would then reduce the overhead required in

the computation. In addition, this work has opened up new avenues of exploration

for perfect state transfer. As pointed out in [170], the Grover coin transfer introduced

in this work can be used to create arbitrary graphs which allow perfect state transfer.

This could have implications for the possible development of routing algorithms for

quantum networks or new quantum algorithms where the problem can be cast as a

large graph structure, i.e. k-SAT.

10.2 Efficiency of the quantum walk search algorithm

Chapters 5-8 deal with the main part of this thesis, investigating factors which

affect the efficiency of the quantum walk search algorithm. All the work done here

shows that there are many factors which affect the efficiency of the quantum walk

search algorithm. Past research has mainly focused on the spatial dimension of the

structure being searched. This was also our initial motivation and although there is

clearly a strong dependence on this, there are also secondary dependencies on both

the connectivity of the structure, the boundary conditions and also any disorder

(symmetry breaking) present.

We started in Chapter 5 by discussing the algorithm on the 1D line where we

know, by simple argument, there can be no quantum speed up. We discussed the
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factors which can affect the algorithm on the line, before extending to other lattices

which have fixed boundary conditions, including fractal structures. The work here

highlights the importance of symmetry in the quantum walk search algorithm, in

both the coin operator and the structure to be used to represent the dataset.

This work could be extended in two ways. Firstly, the work on fractal structures

could be extended to include those fractals which have a spatial dimension between

2 and 3. Although the fractal structures studied are not viable as a database ar-

rangement for the search algorithm, other higher dimesional ones may be. It would

also be of interest to complete a more thorough study of the dynamics of the discrete

time walk on fractal structures in general. Secondly, in the case of the search on

non-periodic structures, specifically the two and three dimensional lattices, we take

both boundaries to be non-periodic. It would be interesting to see if the efficiency

of the algorithm varied if just one of the boundaries was fixed and the other was

allowed to be periodic.

Chapter 6 investigates the effect of the spatial dimension on the algorithm. We

investigated this dependence in two ways. We firstly introduced a simple form of

tunnelling to allow us to interpolate between structures of differing spatial dimension.

For example, using this tunnelling operator we are able to gradually change a 2D

Cartesian lattice to a 3D cubic lattice. Secondly, we studied lattices of differing

dimensions. In the 3D case, we maintain the width and height of the lattice and

vary the depth of the lattice. This allows us to change between a 2D square Cartesian

lattice to a 3D cubic lattice gradually, in a different way to the tunnelling operator.

We find, using the tunnelling operator, that the search algorithm is highly dependent

on the spatial dimension, changing in scaling as soon as additional edges are present,

no matter the strength of these edges. In contrast to this, as we vary the dimensions

of the lattice, we see a gradual change from the scaling of one spatial dimension to

another. This shows that although the spatial dimension of the structure in question

is of high importance, the symmetry also plays an important factor.

In Chapter 7, we use the same tunnelling operator introduced in Chapter 6 to
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study the effect of connectivity on the algorithm. We maintain the spatial dimension

of the structure being walked upon, but gradually change the connectivity. We find

that as the connectivity of the structure increases, the maximum probability of

the marked state also increases. This is due to the additional paths the walker is

able to take to coalesce on the marked state. In the same way, the time to find

the marked state decreases, thus increasing the efficiency of the algorithm. This

increased efficiency would then lead to less amplification of the result, i.e. less

repeated runs of the algorithm. This may be useful when experimentally running

the algorithm, as there may be physical restraints on the topology of the database

arrangement, or a cost associated with each connection.

Further work here would involve extending the study of the basic quantum walk

on structures with varying connectivity / spatial dimension using the tunnelling

matrices. We only touched on the basic dynamics here, continuing this to other

structures could allow the investigation of mixing and hitting times on lattices with

varying connectivity. In addition, there are numerous other ways we could increase

(or decrease) the connectivity to investigate how the quantum walk search algorithm

behaves. For example, in the case of the three dimensional lattices, the degree of

each vertex of the underlying structure could be increased to 22 by allowing diagonal

connections across the initial cubic structure.

Finally in Chapter 8, we study how disorder (symmetry) affects the algorithm

by studying it on percolation lattices. By varying the probability of a vertex (or

edge) existing, we can easily vary the underlying database arrangement, changing

the level of disorder present. We find that the search algorithm is able to tolerate

small amounts of disorder, maintaining the quadratic speed up, before gradually

losing any speed up to match the classical run time. In fact, it is at the critical per-

colation threshold that the algorithm returns to the classical run time before failing

completely for percolation probabilities below this level. At the critical percolation

threshold, there is in general, a single path from one side of the structure to the

other, thus the structure is effectively a 1D lattice where we already know that no
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quantum speed up is possible.

Further work here would likely involve running the simulations of the search

algorithm on larger percolation lattices to establish a large N scaling. Also, averag-

ing over many more percolation lattices would also give a better idea of the scaling

behaviour in a smoother fashion. In addition, we would also like to compare the

efficiency of the algorithm on both site and edge percolated lattices. This should be

qualitatively similar as it has already been shown that the spreading of the quantum

walk of the two types of percolated lattice is similar, as shown in [205].

From the work in this thesis, it is clear that the factors which affect the quantum

walk search algorithm are complex and hard to isolate. There are several way, in

addition to those just mentioned, to extend the work we have shown here. Firstly,

the study of the search algorithm on other families of graphs could shed light on the

interdependency of the factors which affect the efficiency of the algorithm. These

could include planar or general graphs of which we have completed some initial

studies. General graphs can often be considered as small world networks, which

then opens up a variety of possibilities in the realm of complex or social networks

as preliminary studied in [120].

Additional work could involve trying to establish if there is a modified approach

of the search algorithm which could match the full quadratic speed up in two spatial

dimensions. This seems unlikely as previously mentioned, but no proof has been

shown that such an algorithm cannot exist. Some recent attempts have enabled the

run time in two dimensions to be lowered to the current fastest of
√
N logN , but

currently it seems a radical new approach may be needed to improve upon it (if it

can be at all).

Another avenue of research could be the addition of multiple marked states to

the algorithm. In both Grover’s algorithm and the initial quantum walk search

algorithm, the addition of multiple marked states, M , just changes the scaling thus,

O(
√
N/M) for the case of D > 2. Therefore, one of the answers we are searching

for can be found in a time quicker than just one state by a factor of M . It would be

175



Chapter 10. Conclusions

interesting to consider whether this same scaling holds in all the structures we have

studied. It could be that in some of the non-periodic structures this is not the case.

Finally, recent work into viable quantum memories casts problems in a quantum

walk setting where the spreading needs to be minimised [224]. This is in effect the

opposite problem to that which we have considered. In the search algorithm, we

are trying to ensure the walker is able to spread and search through a structure

as efficiently as possible. Using knowledge of these same factors, it may be pos-

sible to establish an underlying graph (and dual) which is able to minimise these

same dynamics, thus allowing a topological quantum memory to exist for longer

timescales.

10.3 Generation of topologically entangled states

In Chapter 9, we introduced an experimental proposal to create cluster states, a

universal resource for quantum computation. This scheme is abstract and could be

applied to various architectures, though we note the relevance to the cavity QED

scheme of Varcoe and Blythe [222]. Streams of atoms would pass through cavities

(or electric field zones) which mediate a C-Phase interaction. This entangles any

atoms which pass through the cavity at the same point in time. The scaling of the

cluster state fairs better in this scheme than other proposals. In our scheme, we see

a linear increase in the depth of the cluster state: When we double the size of the

grid, we get a doubling of the depth of the cluster state produced. The scheme can

be used to create other useful entangled states including the unit cell for topological

error correction. It can also be used to create ‘structures within structures’ which

could provide uses in fault tolerant quantum computation.

There is much further work which could be accomplished in this area. Firstly,

we assume ideal conditions in all parts of the scheme. The timing of the streams of

atoms must be exact in order for the atoms to become maximally entangled in the

cavities. Investigation of the effect these errors have on the scheme and the cluster

state it produces would be of use if the scheme was to be experimentally realised. If
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atoms in the stream were missing or the timing of the streams became unsynchro-

nised, this may destroy the entire cluster state that is produced. However, it may be

possible to use some kind of distillation scheme to produce a full cluster from several

incomplete structures. There may be some critical level of atoms present / ‘on-time’

to allow a viable cluster to be produced, similar to the percolation threshold in per-

colation lattices. In addition to errors, investigation of the possibility of using the

additional structures produced to create some kind of multithreaded quantum pro-

cessor would also be interesting. The main drawback here would be the propagation

of errors through the scheme and communication / storage of information between

the ‘threads’.
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Appendix A

Example of source code

Basic source code for a simulation of the quantum walk search algorithm on a 2D

Cartesian lattice.

clear all

d = 4; %%%degree of graph

la = 1;

latticewidth = 10;

p=1;

marked = zeros(ceil(sqrt(latticewidth*latticewidth) * pi),latticewidth

-4);

maximumprob = zeros(latticewidth-4,1);

for l = 5:5:latticewidth

save(’data/loop.txt’,’l’,’-ascii’,’-append’);

check = 0;

checka = 0;

timesteps = 30;

trans = zeros(d,d);

for a = 1:1:d

for b = 1:1:d

if a==b

trans(a,b) = -1 + 2/d;

else

trans(a,b) = 2/d;

end
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end

end

vertices = l^2;

rootv = sqrt(vertices);

numberrows = vertices/rootv;

shift = zeros(vertices,d);

operator = zeros(vertices,d);

timesteps = ceil(sqrt(vertices) * pi);

markedstate = 20;

markedtrans = -trans;

unmarkedtrans=trans;

coeff = 1/sqrt(vertices*d);

coefflist(la) = coeff;

for a = 1:1:vertices

for b = 1:1:d

shift(a,b) = coeff;

end

end

prob = zeros(vertices,ceil(timesteps));

probmarked = zeros(ceil(timesteps),1);

for a = 1:1:vertices

for b = 1:1:d

prob(a) = prob(a) + abs(shift(a,b))^2;

end

end

for t = 2:1:timesteps

for a = 1:1:vertices

for b = 1:1:d

if shift(a,b) ~=0

if a == markedstate

trans = markedtrans;

else

trans = unmarkedtrans;

end

c = zeros(d,1);

c(b,1) = shift(a,b);
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c = trans*c;

for e = 1:1:d

operator(a,e) = operator(a,e) + c(e);

end

end

end

end

check = 0;

for a = 1:1:vertices

for b = 1:1:d

check = check + abs(operator(a,b))^2;

end

end

shift = zeros(vertices,d);

for a = 1:1:vertices

for b = 1:1:d

if operator(a,b)~=0

if a<=rootv

%bottom row

if a==1

%bottom left

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b

+2) + operator(a,b);

elseif b == 2

shift(a+1,b+2) = shift(a+1,b+2) +

operator(a,b);

elseif b == 3

shift(a+vertices-rootv,b-2) = shift(a+

vertices-rootv,b-2) + operator(a,b

);

elseif b == 4

shift(a+rootv-1,b-2) = shift(a+rootv

-1,b-2) + operator(a,b);

end

elseif a==rootv
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%bottom right

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b

+2) + operator(a,b);

elseif b == 2

shift(a-rootv+1,b+2) = shift(a-rootv

+1,b+2) + operator(a,b);

elseif b == 3

shift(a+vertices-rootv,b-2) = shift(a+

vertices-rootv,b-2) + operator(a,b

);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) +

operator(a,b);

end

else

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b

+2) + operator(a,b);

elseif b == 2

shift(a+1,b+2) = shift(a+1,b+2) +

operator(a,b);

elseif b == 3

shift(a+vertices-rootv,b-2) = shift(a+

vertices-rootv,b-2) + operator(a,b

);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) +

operator(a,b);

end

end

elseif a>vertices-rootv

%top row

if a==(vertices-rootv)+1

%top left

if b == 1
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shift(a-vertices+rootv,b+2) = shift(a-

vertices+rootv,b+2) + operator(a,b

);

elseif b == 2

shift(a+1,b+2) = shift(a+1,b+2) +

operator(a,b);

elseif b == 3

shift(a-rootv,b-2) = shift(a-rootv,b

-2) + operator(a,b);

elseif b == 4

shift(a+rootv-1,b-2) = shift(a+rootv

-1,b-2) + operator(a,b);

end

elseif a==vertices

%top right

if b == 1

shift(a-vertices+rootv,b+2) = shift(a-

vertices+rootv,b+2) + operator(a,b

);

elseif b == 2

shift(a-rootv+1,b+2) = shift(a-rootv

+1,b+2) + operator(a,b);

elseif b == 3

shift(a-rootv,b-2) = shift(a-rootv,b

-2) + operator(a,b);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) +

operator(a,b);

end

else

if b == 1

shift(a-vertices+rootv,b+2) = shift(a-

vertices+rootv,b+2) + operator(a,b

);

elseif b == 2
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Appendix A. Example of source code

shift(a+1,b+2) = shift(a+1,b+2) +

operator(a,b);

elseif b == 3

shift(a-rootv,b-2) = shift(a-rootv,b

-2) + operator(a,b);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) +

operator(a,b);

end

end

elseif mod(a,rootv)==0 && a~=rootv && a~= vertices

%rhs

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b+2) +

operator(a,b);

elseif b == 2

shift(a-rootv+1,b+2) = shift(a-rootv+1,b

+2) + operator(a,b);

elseif b == 3

shift(a-rootv,b-2) = shift(a-rootv,b-2) +

operator(a,b);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) + operator

(a,b);

end

elseif mod(a-1,rootv)==0 && a~=1 && a~=(vertices-

rootv+1)

%lhs

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b+2) +

operator(a,b);

elseif b == 2

shift(a+1,b+2) = shift(a+1,b+2) + operator

(a,b);

elseif b == 3
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shift(a-rootv,b-2) = shift(a-rootv,b-2) +

operator(a,b);

elseif b == 4

shift(a+rootv-1,b-2) = shift(a+rootv-1,b

-2) + operator(a,b);

end

else

if b == 1

shift(a+rootv,b+2) = shift(a+rootv,b+2) +

operator(a,b);

elseif b == 2

shift(a+1,b+2) = shift(a+1,b+2) + operator

(a,b);

elseif b == 3

shift(a-rootv,b-2) = shift(a-rootv,b-2) +

operator(a,b);

elseif b == 4

shift(a-1,b-2) = shift(a-1,b-2) + operator

(a,b);

end

end

end

end

end

checka = 0;

for a = 1:1:vertices

for b = 1:1:d

checka = checka + abs(shift(a,b))^2;

end

end

operator = zeros(vertices,d);

for a = 1:1:vertices

for b = 1:1:d

prob(a,t) = prob(a,t) + abs(shift(a,b))^2;

end

end
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Appendix A. Example of source code

probmarked(:) = prob(markedstate,:);

for ms = 1:1:length(probmarked)

marked(ms,la) = probmarked(ms);

end

if prob(markedstate,t)>maximumprob(la,1)

maximumprob(la,1) = prob(markedstate,t);

maximumtime(la,1) = t;

end

end

maxprob(la) = max(prob(markedstate,:));

maxproba(la) = max(probmarked);

pmax = max(marked(:,la));

pa = find(marked(:,la)>=(pmax*0.5));

centre = ceil((pa(1) + pa(length(pa)))/2);

maxpr(la) = marked(pa(1),la);

maxti(la) = pa(1);

save([’data/mprob’ int2str(l) ’.txt’],’probmarked’,’-ascii’,’-

append’);

[j,k] = max(prob(markedstate,:));

maxtime(la) = k;

[m,n] = max(probmarked);

maxtimea(la) = n;

probabove = find(probmarked>=(max(prob(markedstate,:))*0.75));

for ab = 1:1:length(probabove)

probabovearray(la,ab) = probabove(ab);

probsabovearray(la,ab) = probmarked(probabove(ab));

end

for k = 1:1:length(probmarked)

probm(k,l) = probmarked(k);

end

axes(la) = vertices;

la = la+1;

end

for a = 1:1:length(5:5:latticewidth)

maxt(a) = probabovearray(a,length(probabovearray(a)));

mint(a) = probabovearray(a,1);
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w = maxt(a) - mint(a);

if w==0

widtht(a) = 1;

else

widtht(a) = w;

end

centret(a) = mint(a) + widtht(a)/2;

minp(a) = probsabovearray(a,1);

maxp(a) = max(probsabovearray(a,:));

centrep(a) = probsabovearray(ceil(widtht(a)/2));

end

save([’/Users/neillovett/Desktop/QRW/twodmaxprob’ int2str(latticewidth

) ’.txt’],’maxprob’,’-ascii’,’-append’)

save([’/Users/neillovett/Desktop/QRW/twodcentret’ int2str(latticewidth

) ’.txt’],’centret’,’-ascii’,’-append’)

save([’/Users/neillovett/Desktop/QRW/twodaxes’ int2str(latticewidth)

’.txt’],’axes’,’-ascii’,’-append’)
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