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Abstract  

 

Manufacture, use, storage and improper disposal of the explosive 2,4,6-

trinitrotoluene (TNT) have led to widespread, global contamination of soil and 

groundwater. TNT is highly toxic and recalcitrant to degradation resulting in 

environmental build-up with far reaching ecological and health implications. It is 

therefore a priority to remove contaminating TNT from the environment. 

Phytoremediation is a promising solution; suitable plants possess some natural 

ability to transform TNT, high biomass, deep root systems, requirement for 

minimal nutrient input and ability to reduce contamination spread by wind or 

water erosion; making them an attractive remediation system. Key genes 

involved in the detoxification of TNT by plants have been recently identified by 

expression studies and the encoded enzymes characterised. This has lead to the 

thorough investigation of the enzymes in the pathway of TNT detoxification; 

Phase I transformation includes oxophytodienoate reductases, with uridine 

diphosphate (UDP) glycosyltransferases (UGTs) playing a role in the Phase II 

conjugation step. The expression studies identified additional enzymes also likely 

to be involved in these phases including glutathione transferases (GSTs). GSTs 

are known to detoxify compounds by conjugation to glutathione (GSH), and like 

UGTs are Phase II detoxification enzymes.  

This thesis presents an investigation into whether plant GSTs play a role in the 

detoxification of TNT.  

In vitro analysis of recombinant GSTs was performed to elucidate the activity of 

GSTs towards TNT. Seven GSTs were cloned, expressed and purified from 

Escherichia coli. TNT assays performed with pure enzyme indicated that at least 

two of the GSTs were able to transform TNT. Analysis of the reaction product by 

mass spectrometry showed that TNT was conjugated to glutathione through 

substitution of a nitro-group, a highly desirable reaction as the removal of a nitro 

group from TNT is likely to increase the likelihood of subsequent mineralisation of 

the pollutant. This is the first identification of enzymes capable of this 

transformation. 
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The two GSTs which exhibited activity towards TNT were overexpressed in 

Arabidopsis to clarify if the conjugating activity observed in vitro was able to 

confer increased tolerance to TNT to the transformed plants. Transgenic lines 

showed no enhanced growth compared to wild type plants on TNT amended 

media, root lengths appeared slightly shorter while TNT uptake and biomass 

were reduced. The role of GSTs in the detoxification of TNT remains unresolved 

however it is likely that GSTs do not play an integral role in TNT detoxification in 

plants. Nonetheless, the two GSTs characterised in the project are the first 

examples of plant enzymes which are able to catalyse the removal of nitro groups 

from TNT. Engineering these GSTs to improve their ability to transform TNT 

could offer an opportunity for effective environmental remediation.  
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Chapter 1: Introduction  

1.1 Explosives 

The first explosive compound was discovered by Chinese alchemists around 800 

AD. In their search for an elixir they made an explosive combination of charcoal, 

sulphur and saltpetre (potassium nitrate), producing gunpowder (Ponting 2006). 

However, its explosive power could not be increased and it was very sensitive; 

any spark in production or storage would have catastrophic consequences. 

Despite this, it was not until 1847 when Ascanio Sobrero found a suitable 

alternative when he discovered nitroglycerine. This led the way for many more 

explosives to be created. From 1870 nitrocellulose became standard in military 

warheads and in 1863 2,4,6-trinitrotoluene (TNT) was first discovered by Joseph 

Wilbrand (Ponting 2006). TNT was more stable and easier to manufacture than 

previous explosives and was therefore heavily employed in combination with 

other explosives during World War I, when it became, and has since remained, 

the most common explosive for military use (Lewis et al. 2004). Between the two 

World Wars many more explosive compounds were developed including; 

hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal demolition explosive, RDX), 

pentaerythritol tetranitrate (PETN) and octahydro-1,3,5,7-tetranitro-1,3,5,7-

tetrazocine (HMX) (Figure 1.1), which all came into wide use during World War II. 

The rise in petroleum production also increased availability of toluene for TNT 

manufacture. By 1945 global TNT production reached 150,000 tonnes per month 

(Snellinx et al. 2002). To date, formulations of TNT, RDX and, to a limited 

degree, HMX remain the most effective, safe, stable and economical explosives, 

and are therefore the explosives of choice for military applications (Rosenblatt 

1980). 

An explosive is a compound with rapid reaction rates, which create a high 

pressure shock wave resulting from a conversion of a substance into gaseous 

products with much greater volume and heat. For example, TNT detonation 

creates five gas molecules from each solid TNT molecule; within a sealed vessel 

this rapid expansion generates intense energy and high pressure causing the 

explosion (Kury et al. 1999). 
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Explosives can be classified as primary and secondary and these differ in their 

stability. Primary explosives are more sensitive and can be detonated by heat, 

friction or mechanical shock. Secondary explosives require a higher energy input 

and often a primary explosive is used for their detonation, this increased stability 

makes them commonly used for military applications. There are three main 

groups of secondary explosives, based on their structures. These include; nitrate 

esters (PETN, GTN), nitramines (RDX, HMX) and nitroaromatics (TNT, DNT) 

(Figure 1.1). 

 

1.1.1 Nitroaromatics 
Nitroaromatics are stable compounds, which contain an aromatic ring and one or 

more nitro groups. TNT is a nitroaromatic explosive with three nitro groups; 

produced by sequential nitration of toluene, producing mono-, then di- and finally 

tri-nitrotoluene (Figure 1.1) (Lewis et al. 2004). Waste produced during TNT 

manufacture contains the by-products 2,6-dinitrotoluene and 2,4-dinitrotoluene 

(2,6-DNT and 2,4-DNT).  

The aromatic carbon ring of TNT is planar with equal angles of 120 ° (Carper  et 

al. 1982). The π electrons of the ring are drawn away by the resonance of 

electron withdrawing nitro groups resulting in an electron deficient, highly stable 

ring structure (Qasim et al. 2007). The nitro groups also contribute a strong 

oxidising power, which makes TNT highly toxic to living organisms. This toxicity, 

combined with its widespread use and recalcitrance to degradation make TNT a 

priority target for remediation.   



Figure 1.1: Major classes of secondary explosives
nitroaromatics. 
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Examples of nitrate esters, nitramines and 
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1.2 TNT Pollution 

The huge scales of production, use and demilitarisation of TNT over the past 100 

years have contributed to its status as a major global environmental contaminant 

of soil and ground water (Honeycutt et al. 1996; Jarvis et al. 1998).  

During the manufacture of TNT large amounts of water are required for 

purification; the aqueous wastes (red and pink water) are heavily contaminated 

with TNT, its precursors and its metabolites. A single manufacturing plant is 

capable of releasing 500,000 gallons of heavily contaminated red water each day 

and shell loading plants use large volumes of water to rinse out residual 

explosives (Yinon 1990). The release of this waste into rivers or its storage in 

unlined trenches has resulted in both soil and ground water contamination 

(Rodgers et al. 2001). The practices of open detonation and burning on military 

training sites have also caused significant pollution: Explosive fall-out from 

incomplete detonation of munitions causes repeated exposure of artillery ranges. 

In one case this pollution is so severe that a Massachusetts training range has 

heavily restricted live ammunition use, owing to its responsibility in causing the 

contamination of drinking water source for 700,000 residents of Cape Cod (EPA 

2005). Large quantities of wastewater are also produced during 

decommissioning where munitions casings are ‘rinsed’ with high power water 

jets. Prior to this, explosives awaiting disposal are stored, often improperly, 

allowing leaching of TNT into the surrounding environment (Rodgers et al. 2001). 

Between the US and Europe estimates for the cost of explosives remediation 

span 250 billion and 1 trillion US dollars, with reports of 1.2 million tonnes of TNT 

contaminated soil and 10 billion gallons of ground water in the US alone (Funk et 

al. 1993). The US Department of Defense has identified nearly 1000 sites 

contaminated with TNT, 87 % of which exceeded permissible levels of TNT is 

groundwater (Rodgers et al. 2001). Reported concentrations in soil range from 

10 – 87, 000 mg/kg and in waste water can reach 300 µM (Talmage et al. 1999). 

Other countries with heavily contaminated sites include Argentina, Australia, 

Canada, Germany, Spain and the United Kingdom (references in Lewis 2004). 

TNT has a high capacity to bind to the humic content of soil. The electron 

deficiency of the aromatic ring allows the compound to form complexes with clay 

in the soil reducing the mobility of TNT (Li et al. 2004; Qasim et al. 2005). This 
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low environmental migration has caused local build-up of TNT, resulting in points 

of discharge containing very high levels of the contaminant. Soil composition and 

maturity both play a role in the phytotoxicity of TNT; bioavailability of the 

explosive is reduced in highly organic or clay-containing soils, while the age of 

the soil is also important (Thompson et al. 1998). Hysteresis, or irreversible 

binding of TNT occurs gradually in soils over time indicating that younger soils 

may increase the toxicity of TNT due to increased bioavailability (Comfort et al. 

1995).  

 

1.3 Toxicity of TNT  

1.3.1 Toxicity to Humans and Animals 
Explosives are toxic and their presence in soil, groundwater and air can have 

potentially serious effects for human health and the environment. The first 

documented case relating to the toxicity of TNT was in 1917 when a worker at a 

large US TNT factory died of acute toxic jaundice, 17,000 further poisoning cases 

including 475 deaths occurred in the US and 96 deaths in the UK within the first 8 

months of World War I (Yinon 1990). Following this, many fewer poisoning cases 

occurred due to a better understanding of the toxicity of explosives combined 

with improved prevention, diagnosis and treatment of poisoning. TNT causes 

jaundice, aplastic anaemia, liver atrophy and hepatitis in humans (Rosenblatt 

1980). Other symptoms of TNT toxicity include; dermatitis, gastritis, cyanosis, 

reduced sperm count, dizziness, fatigue and nausea (Yinon 1990). As a Class C 

carcinogen, cell mutagenesis studies have implicated a link between TNT and 

cancer. Mutagenesis has occurred in three of four Ames assays, where the 

mutagenic potential of a compound is studied with in vitro tests; TNT and its 

reductive transformation product hydroxyl aminodinitrotoluene were both found to 

be carcinogenic (Whong et al. 1984). In mammalian cell lines both Chinese 

hamster ovary cells and mouse lymphoma cells experienced DNA-frameshift 

mutation as a result of 20 - 150 µM TNT treatment (Honeycutt et al. 1996), 

however Chinese hamster lung cells were exhibited effects of cytotoxicity but no 

mutagenicity with 25 - 500 µM TNT (Lachance et al. 1999). Erratic results from 

mutagenic tests have been proposed to indicate that TNT and its metabolites do 

not pose a serious genotoxic threat (Honeycutt et al. 1996). 
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1.3.2 Phytotoxicity of TNT 
TNT is phytotoxic causing exposed plants to exhibit stunted roots, inhibition of 

lateral root growth and chlorosis (Pavlostathis et al. 1998). Germination and 

transpiration rates are affected (Hannink et al. 2001; Kim et al. 2004) and grass 

seedlings exposed to TNT also have reduced root hairs when grown on TNT 

(Peterson et al. 1998). The effect of TNT on plants is highly dependent on TNT 

dose, plant species and growth media.  

Chlorosis is observed in cultures of Myriophyllum spicatum at TNT 

concentrations above 5.9 µM, with a lethal dose of 23 µM, however doses of 50 

µM are insufficient to adversely affect Allium cepa (onion) (Pavlostathis et al. 

1998; Kim et al. 2004). Hybrid poplars present toxicity symptoms with 22 µM 

when grown hydroponically including chlorosis, leaf loss and decreased 

transpiration, with complete inhibition of growth occurring over 440 µM 

(Thompson et al. 1998). However, Chrysopogon zizanioide (vetiver grass) can 

withstand 180 µM TNT before any morphological effects of TNT phytotoxicity can 

be observed (Makris et al. 2007). Arabidopsis and tobacco also exhibit chlorosis 

when grown in hydroponic media amended with TNT (Hannink et al. 2001; Rylott 

et al. 2006). 

Reduced germination of cress and turnip occurs at 50 mg/kg soil, while oat can 

tolerate up to 1600 mg/kg (Gong et al. 1999). For some species, low doses of 

TNT ~25 mg/kg soil have even been found to stimulate seedling growth (Gong et 

al. 1999). Phaseolus vulgaris (bush bean) can grow on high TNT concentrations 

up to 500 mg/kg soil while Festuca arundinacea (tall fescue) suffers reduced root 

growth on just 1.9 mg/kg (Peterson et al. 1998; Scheidemann et al. 1998). Direct 

comparisons between different studies are limited by experimental variations of 

plant biomass and developmental stage, growth conditions, growth media and 

mode of TNT application. Despite this, it is clearly evident that TNT exhibits 

phytotoxic effects on all plant species tested but it is likely that some plants are 

more tolerant than others. 

The mechanism of toxicity to plants is unclear. The reactivity of the nitro groups 

and the putative toxicity of reductive transformation products may contribute. 

Aminodinitrotoluenes (ADNTs) are known products of plant transformation of 

TNT, these and TNT are structural homologues of the dinitroaniline herbicides for 



Chapter 1: Introduction 

7 

example; nitralin and butralin which disrupt cell division by binding to 

microtubules and preventing the formation of mitotic spindles, causing swelling of 

root tips without elongation (Anthony et al. 1999). TNT may also act in a similar 

manner to nitrobenzene which causes alterations in the nuclear membrane and 

leads to leaf ultrastructure damage (Farlane et al. 1990).  

 

1.4 Current Strategies of Remediation  

1.4.1 Incineration 
Incineration was, for a long time, the only treatment process effective at TNT 

remediation and is still the mostly widely accepted method. It offers high levels of 

destruction and removal however the costs are high. Economically it is very 

expensive, with the requirement for construction of facilities and it is generally 

unviable for soil with low TNT concentrations. Soil must be excavated and 

transported to an incinerator, posing both high costs and safety hazards, and soil 

containing high concentrations of TNT (>12 %) is liable to detonate either by 

initiation by flame or by shock (EPA 2005). Estimations from 1992 calculated that 

incineration costs were 800-1000 US dollars per ton, depending on the size of 

the operation (Funk et al. 1993). Environmentally it is also damaging, owing to 

the high energy input required and the production of harmful airborne 

particulates, carbon monoxide and nitrous oxides (Yinon 1990; Rodgers et al. 

2001; Lewis et al. 2004). Following incineration the soil is sterile, the physical 

structure of the soil has been destroyed and it has little application for cultivation 

or agriculture. 

 

1.4.2 Composting 
Composting was the first biological treatment technology to be approved for use 

on US military sites (EPA 2005). There are two main composting strategies in 

use for explosives remediation; static pile and windrow composting. 

In both cases contaminated soil is mixed with organic material including 

woodchips and straw to increase microbial growth, bulking material to improve 

aeration and moisture. Aeration is required for both systems, static piles have 
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costly internal ventilation systems while windrow piles require regular turning. 

The moisture added can be contaminated TNT waste water which conveniently 

combines treatment of the two explosive wastes. Windrow composting costs 

approximately 200-800 US dollars per ton, which is much cheaper than 

incineration when used for low volumes of soil (Lewis et al. 2004). TNT toxicity is 

reduced due to it being bound to organic matter, however the possible release of 

bioavailable metabolites needs to be investigated further (Honeycutt et al. 1996). 

In addition to this, composting requires large land area and is slow. 

 

1.4.3 Bioslurry 
Bioslurry is performed by submerging soil in a bioreactor, where the addition of 

nutrients and optimised environmental conditions support microbial remediation. 

The results are similar to those of composting although this method provides a 

faster alternative. The costs involved are from soil excavation, sieving, reactor 

construction and maintenance, which are similar to those for composting, with 

small scale trials costing 200-600 US dollars per ton. 

 

1.4.4 Phytoremediation 
Owing to the sheer scale of pollution in the US alone; economic and 

environmental pressures are pushing for alternatives to current remediation 

technologies for the removal of both organic and inorganic pollutants. This has 

sparked significant interest in phytoremediation, where the ability of plants to 

uptake, concentrate or metabolise xenobiotics can be harnessed for low-cost 

environmental clean-up.  

Plants can be used to perform a variety of different processes including 

phytoextraction, phytovolatilisation, phytostabilisation, phytostimulation and 

phytodetoxification (Pilon-Smits 2005). Generally plants for phytoremediation are 

required to be tolerant to pollution, fast growing, high biomass, high uptake and 

competitive.  

The concept of phytoextraction, where a compound is accumulated with no 

degradation, was first discovered following the identification of the ability of 

certain plants to overcome the toxicity of heavy metals and accumulate them in 
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aerial tissues. Hyperaccumulators of nickel, zinc and copper can contain 10 to 

500 times more metal that standard crop plants can tolerate. Although, in 

practicality hyperaccumulators are slow growing with low biomass and currently 

only the nickel hyperaccumulator Alyssum bertolinii is used commercially (Li et 

al. 2003). For phytoextraction high levels of translocation and accumulation in 

aerial tissue are important. Harvested xenobiotic-containing plants can be 

harvested and then either disposed by incineration or landfill, used for non-food 

purposes including cardboard production, or collected and concentrated, as for 

valuable metals in a process called phytomining.  

Phytovolatilisation uses the plant’s transpiration stream to release native or 

modified xenobiotics as gases into the atmosphere. The most successful 

example of this is for the element selenium, an agricultural toxin at widely varied 

concentrations depending on plant species; plants grown in selenium rich soil 

produce volatile dimethylselenide and dimethyldiselenide (Banuelos et al. 2005). 

Oryza sativa, Brassica oleracea, Brassica juncea, and Brassica oleracea c.v 

Linne have been shown to be especially efficient at this transformation. A 

phytovolatilising system has been developed for mercury remediation, 

Arabidopsis plants uptake mercury as Hg (II) from the soil and reduce it to Hg (0), 

which is released as a gas (Meagher et al. 2005). However, risks are associated 

with phytovolatilisation as it may result in release of highly toxic compounds into 

the air. 

Phytostabilisation may imply the use of plants to maintain organic structure, 

reducing run-off and leaching of pollutants but it can also denote their use to 

reduce bioavailability by metabolism or incorporation into the structural biomass 

of plants (Pilon-Smits 2005). Poplar trees are a popular choice for 

phytostabilisation, owing to their deep root systems reducing downward flow and 

groundwater contamination, their fast transpiration stream is desirable for 

volatilisation and degradation. 

Additionally plants can stimulate rhizosphere degradation by release of exudates 

and enzymes, which may themselves be active, or may improve activity of soil 

bacteria (Burken et al. 1996). This is called phytostimulation or rhizodegradation. 

Grasses such as Festuca and Lolium have dense roots, which allow good 

contact for phytostimulation of rhizosphere bacteria (Aprill et al. 1990).  
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Phytodegradation, harnessing the metabolic pathways of plants to degrade 

xenobiotics cannot be used for the remediation of inorganic compounds, which 

are undegradable. It can however be hugely successful for the remediation of 

organic compounds. Degradation is usually due to plant metabolism but may also 

be a result of plant endophytic bacterial (Barac et al. 2004). The main enzymes 

involved in phytodetoxification are; dehalogenases, mono and di-oxygenases, 

laccases, phosphatases and nitroreductases (Pilon-Smits 2005). If the 

degradation products are to be stored within the plants they are often conjugated 

by malonyl-, glucosyl- or glutathione- transferases and transported out of the 

cytosol (Coleman et al. 2007). The expression of foreign genes or the 

overexpression of native genes may also improve the ability of plants to detoxify 

specific compounds. The pathways of xenobiotic degradation in plants are 

outlined in Section 1.5. Plants with large dense roots and high levels of 

degradation enzymes are favoured for phytodegradation, for example grasses 

such as; Festuca and Lolium.  

Phytoremediation is relatively inexpensive, with estimates that it is up to ten 

times cheaper than engineering-based strategies (Pilon-Smits 2005); it is usually 

performed in situ, reducing the hazards associated with transporting toxic waste. 

It is an attractive solution, economically, environmentally and aesthetically. In the 

US it is a fast growing market now comprising ~150 million US dollars, 

approximately 0.5 % of the remediation market. However it does have limitations. 

Phytoremediation sites need to have suitable climate for plant growth and 

transpiration; appropriate soil properties to allow xenobiotic uptake including pH, 

clay content and organic matter, in addition levels of the xenobiotic must not 

exceed phytotoxicity limits and the pollutant must be bioavailable to facilitate 

uptake. The contamination needs to be accessible by plant roots; however, deep 

reserves of contaminated water can be pumped to the surface for 

phytotreatment. Pollution may also be unevenly spread across a site; in the case 

of TNT on training ranges the contamination can be highly concentrated in small 

clusters within a site, posing accessibility and toxicity issues. Plants are also 

relatively slow remediators, often taking years to improve a site. Despite this, 

phytoremediation and non-biological remediation systems can be used in 

conjunction with one another, combining the benefits associated with each 

system (Pilon-Smits 2005) (EPA 2003).  
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1.5 Metabolism of Xenobiotics by Plants 

As plants grow in our environment they are continuously exposed to toxic 

chemicals and therefore rely on detoxification pathways to secure their survival. 

These xenobiotics may be allelochemicals; toxins synthesised by other plants in 

competition situations, secondary metabolites or compounds produced by the 

plant itself as a result of general metabolic processes or in response to 

environmental stress (UV, temperature, animal predation, or microbial attack). 

Plants are also deliberately exposed to synthetic xenobiotics in the form of 

herbicides and pesticides or as a result of industrial pollution contaminating soil 

and groundwater (Coleman et al. 1997). Plants therefore employ various 

methods to respond to these xenobiotic compounds, and understanding this is 

valuable for agriculture, ecology and human health.  

 

1.5.1 Four stages of Xenobiotic Detoxification by P lants 
Plant metabolism of xenobiotics is similar to that observed in the livers of 

animals. The liver performs three main detoxification steps, activation, 

conjugation and excretion. Plants do not have an effective excretion pathway; 

instead xenobiotics are stored once detoxified. Due to the similarities of the 

enzymes and steps of plant metabolism to those of animals, the phrase ‘Green 

Liver’ has been applied to the plant detoxification. The steps or phases are 

outlined below and shown in Figure 1.2.  

Phase I- Activation: Enzymes, for example cytochrome P450 or other 

monooxygenases, add functional groups including hydroxyl (-OH), sulfhydryl (–

SH) or amino (–NH2) to substrates. P450 enzymes play a major role in this 

Phase of detoxification, performing hydroxylation, sulfoxidation and N- or C-

dealkylation. Reductive transformations as less common but have been observed 

by nitroreductase activity of oxophytodienoate reductases (OPRs) with TNT, 

sequentially producing hydroxylaminodinitrotoluene (HADNT) and 

aminodinitrotoluene (ADNT) (Section 1.6.3.2), diaminonitrotoluenes have also 

been identified (Burken et al. 2000, Beynon et al. 2009). The products of these 

reactions are often less hydrophobic than the original xenobiotic but primarily 

these steps create ‘reactive sites’ which in some cases increase toxicity but allow 
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further transformation by the enzymes involved in Phase II (Sandermann 1994; 

Coleman et al. 1997). 

Phase II- Conjugation: Functional groups already present on the xenobiotic or 

from Phase I are used as sites for covalent conjugation to an endogenous 

hydrophilic molecule. Xenobiotic substrates include the electrophilic herbicides 

as well as organic pollutants and some toxic secondary metabolites. The 

enzymes involved include malonyltransferases, glucosyltransferases and 

glutathione transferases, which catalyse conjugation producing a water-soluble 

conjugate of malonate, glucose or glutathione with reduced toxicity (Coleman et 

al. 1997). Malonate can be conjugated to hydroxyl and amino groups, glucose 

can bind to hydroxyl, sulfhydryl, amino and carboxyl and glutathione can bind to 

hydroxyl and sulfhydryl groups, often with the removal of a halogen or nitro 

group. As a result, the hydrophilic product is less mobile within the plant, with 

exposure time and accumulation within cells of the toxic xenobiotic is reduced 

(Sandermann 1992; Coleman et al. 1997). 

Phase III- Compartmentation/Elimination: Any conjugates which remain in the 

cytosol have the potential to inhibit Phase II enzymes or be un-conjugated by 

cytosolic enzymes, restoring toxicity (Coleman et al. 1997). Therefore, 

conjugates are transported from the cytosol by ATP-dependent (GS-X) 

membrane pumps for sequestration or storage in the apoplast or vacuole, or cell 

wall incorporation (Marrs 1996; Coleman et al. 1997).  

Phase IV- Transformation: In this step a conjugate may be metabolised, in the 

case of a glutathione conjugate; to a cysteine-conjugate by enzymatic removal of 

glutamate and glycine from GSH (Bartholomew et al. 2002; Ohkama-Ohtsu et al. 

2007). 



Chapter 1: Introduction 

 13

 

 

Figure 1.2: Phases of Xenobiotic Metabolism in Plan ts.  Adapted from Van Aken, 2008.
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1.6 Biotransformation of TNT 

While TNT is a relatively recent, anthropogenic compound various organisms are 

able to transform TNT, including; bacteria, fungi and plants animals.  

1.6.1 Bacterial Transformation of TNT 
Both aerobic and anaerobic transformations of TNT have been observed in 

bacteria.  

1.6.1.1 Aerobic Bacterial Transformation of TNT 

Due to the difficulty of oxidative reactions, even when performed in the presence 

of oxygen, TNT metabolism is almost exclusively reductive. The most common 

pathway is nitro group reduction (Figure 1.3); bacteria reduce one or two of the 

nitro groups via a nitroso dinitrotoluene intermediate (NODNT) to hydroxylamino 

or amino groups producing hydroxylaminodinitrotoluene (HADNT) and 

aminodinitrotoluene (ADNT) (Koder et al. 1998). In vitro experiments show these 

ADNTs usually undergo no further metabolism and hence accumulate in the 

culture media. The reduction of two nitro groups produces diaminonitrotoluene 

(DANT) (McCormick et al. 1976; Esteve-Nunez et al. 2001). Dimerisation of these 

compounds creates undesirable azo products; these dead-end structures have 

increased toxicity relative to TNT (Figure 1.3, F) (Honeycutt et al. 1996). 

Enzymes capable of reductive transformation of TNT have been isolated and 

characterised. These include; nitroreductases from Enterobacter cloacae (nfsI) 

and Escherichia coli (NfsA and B) and pentaerythritol tetranitrate reductase 

(PETNr) from E. cloacae (Bryant et al. 1991; French et al. 1999). PETNr was first 

identified by its ability to reductively liberate nitrite from PETN producing of 

pentaerythritol trinitrate and pentaerythritol dinitrate (Binks et al. 1996). It 

performs the same transformation with TNT but interestingly, it is also capable of 

catalysing hydride addition to the aromatic ring of TNT producing hydride and 

dihydride Meisenheimer products (Figure 1.4) (Symons et al. 2006). A 

condensation reaction occurs between the Meisenheimer dihydride complex and 

HADNT, from the nitro group reduction of TNT (Figure 1.3, B), to form stable 

secondary diarylamines and results in nitrite liberation (Figure 1.4) (van Dillewijn 

et al. 2008; Wittich et al. 2009). This reaction has also been observed for few 

other bacteria including species of Pseudomonas, Mycobacterium and 

Rhodococcus (Wittich et al. 2008).   



Figure 1.3: Aerobic transformation of TNT in bacteria and plant s.
identified in bacteria and in plants A
(A) 2-nitroso-4,6-dinitrotoluene (2
2-aminodinitrotoluene (2-ADNT) and (D) 2,4
and B can occur forming F; azoxytetranitrotoluenes. Product (E) triaminonitrotoluene (TAT) is a 
reductive product of (D) 2,4
conditions. Figure adapted from Lorenz, 2007. 
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identified in bacteria and in plants A-C and F. Sequential reduction of via the putative intermediate 

dinitrotoluene (2-NODNT) and (B) 2-hydroxylaminodinitrotoluene (2
ADNT) and (D) 2,4-diamino-nitrotoluene (2,4-DANT). Polymerisation of A 

and B can occur forming F; azoxytetranitrotoluenes. Product (E) triaminonitrotoluene (TAT) is a 
reductive product of (D) 2,4-diamino-nitrotoluene (2,4-DANT), only produced under anaerobic 
conditions. Figure adapted from Lorenz, 2007.  
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Figure 1.4: Hydride addition to the aromatic ring o f TNT sequentially yields hydride and 
dihydride Meisenheimer complexes. The dihydride Meisenheimer complex forms a diarylamine with 
hydroxylaminodinitrotoluene from the nitro group reduction pathway with concominant nitrite 
release. Adapted from Rylott et al. (2011). 
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1.6.1.2 Anaerobic Transformation of TNT in Bacteria  

Anaerobic transformation of TNT is more efficient than aerobic due to the low 

redox potential allowing for rapid reduction of substrates, additionally no toxic 

azo-oxy nitrotoluenes are produced (Figure 1.3). Despite this, few anaerobic 

bacteria have been found that express this ability. Methanogens (Boopathy et al. 

1994) and fermentative bacteria such as Clostridia species are capable of 

producing triaminotoluene (TAT) (Figure 1.3F) (Ederer et al. 1997; Rosser et al. 

2001). The production of TAT requires an electropotential below -200 mV and is 

therefore only possible in anaerobic environments. Sulfate reducing bacteria for 

example Desulfovibrio can use TNT as a sole nitrogen source, with the 

accumulation of toluene (Boopathy et al. 1994). It is assumed that this denitration 

reaction proceeds by a TAT intermediate, with reductive elimination of the amino 

groups; however no TAT has been detected in the culture media (Esteve-Nunez 

et al. 2001; Rosser et al. 2001). Esteve-Nunez and Ramos (1998) isolated a 

Pseudomonas strain also able to use TNT as a sole nitrogen source, 1 % 

mineralisation was observed with 45 % of the 14C radiolabel from TNT found to 

be biomass associated. This suggests that anaerobic bacteria are capable of 

significant transformation of TNT, but current understanding of the mechanisms is 

limited.  

 

1.6.2 Fungi  
The transformation pathways of fungi are of significant interest due to their ability 

to completely mineralise TNT (Fernando et al. 1990). The best characterised 

example of this is wood white rot fungi Phanerochaete chrysosporium, however 

other white rot fungi are also capable of performing mineralisation, with >20 % 

efficiency (Fernando et al. 1990). Mineralisation requires lignolytic conditions and 

initial activity is likely to proceed by as for bacteria with sequential nitroreduction 

to HADNT, ADNT and polymerisation products azotetranitrotoluene. 

Saccharomyces species reduce TNT to HADNTs and ADNTs while Candida 

strains can transform TNT to HADNTs and H-TNT (Zaripov et al. 2002). 

Subsequent transformation varies depending on fungal species, environmental 

conditions and time. In many cases no further transformation occurs (Hawari et 

al. 2000). The mineralisation of TNT by P. chrysosporium is observed by 

recovery of 18 % of 14C from labelled TNT as CO2 after 90 days culture 
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(Fernando et al. 1990). The fungus Irpex lacteus does not reduce TNT initially but 

first denitrates it, producing DNT and H-TNT. This transformation produces >30% 

mineralisation due to the oxidation of denitrated metabolites (Kim et al. 2003; 

Smets et al. 2007). It is likely that efficient mineralisation by fungi is the result of 

activity by multiple enzymes including lignin and manganese peroxidases (Stahl 

et al. 1995). The mineralisation of HADNTs and ADNTs observed in Phlebia 

radiaa and P. chrysosporium likely results from activity of manganese 

peroxidases (Van Aken et al. 2004). The practical applicability of fungi as 

remediation solutions for TNT is hindered by TNT toxicity, low biomass of the 

organisms and the requirement for nutrient feeding (Spiker et al. 1992; Stahl et 

al. 1995).  

1.6.3 Plant Metabolism of Nitroaromatics   

1.6.3.1 Uptake and Translocation 

Uptake and translocation of nitroaromatics is dependent on plant species, soil 

properties, climatic conditions and TNT bioavailability. Uptake is known to 

depend on solubility of the substrate in water, determined by the log 1-n-

octanol/water partition coefficient (Kow) (Sens et al. 1998). Log Kow values of 3.5 

or higher indicate low solubility and compounds bind to the root and soil surfaces, 

between 1 - 3.5 efficient uptake is observed, below this hydrophilic compounds 

are unable to pass through membranes. TNT has a log Kow of 1.6 and is therefore 

readily absorbed. In liquid culture and soil studies, Glycine max (soya bean) 

Triticum aestivum (wheat), Zea mays (maize), Spinacia oleracea (spinach), 

Populus sp. (poplar) and Arabidopsis have all demonstrated significant levels of 

TNT uptake. The aquatic plants Myriophyllum aquaticum and M. spicaticum and 

tissue cultures of Catharanthus roseus uptake TNT rapidly, with 93 to 99 % 

recovery. Once taken up, radiolabelling studies show that much of the TNT 

remains in the roots. After 48 h Panicum virgatum transported just 2.5 % TNT to 

its foliage (Brentner et al. 2010), similarly studies of T. Aestivum, P. Vulgaris, A. 

cepa  and poplar show less than 5 % of TNT is localised in aerial tissues (Sens et 

al. 1998; Sens et al. 1999; Kim et al. 2004). For Z. mays, G. Max, and O. Sativa 

more than 75 % of accumulated TNT and its metabolites are retained in the root 

(Thompson et al. 1998; Nepovim et al. 2005; Vila et al. 2005; Yoon et al. 2006).  
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1.6.3.2 Phase I: Nitroreduction 

As for bacteria and fungi, TNT in plants is reduced to HADNTs and ADNTs via a 

nitroso intermediate (Figure 1.5). HADNTs are likely to be the major product; 

however their instability results in low detection levels. ADNTs are stable, but 

have been shown to only account for 15 % of initial TNT concentrations in C. 

roseus roots after 50 h (Wayment et al. 1999). Further evidence that HADNTs are 

the dominant product is that conjugates of HADNTs are more commonly detected 

than those of ADNTs (Vila et al. 2005; Subramanian et al. 2006; Gandia-Herrero 

et al. 2008). Nitroreductases, which perform this transformation of TNT are often 

upregulated in plants following TNT treatment (Ekman et al. 2003; Gandia-

Herrero et al. 2008). Oxophytodienoate reductases (OPRs) have also been found 

to be upregulated; these enzymes are homologues of the bacterial Old Yellow 

Enzyme (OYE) family which are known to have nitroreductase activity with TNT 

(Symons et al. 2006; Beynon et al. 2009). Characterisation of the OPRs 

implicates them as having a role in TNT detoxification in plants. Arabidopsis 

overexpressing OPR1, 2 and 3 show faster uptake of TNT and increased 

production of ADNTs compared to unmodified plants. In vitro assays also show 

high rates of HADNT production, though HADNT stability limits their detection in 

plants (Beynon et al. 2009). 

1.6.3.3 Phase I: Oxidation 

TNT is a poor substrate for oxidation due to its electron deficient aromatic ring. 

One study using M. aquaticum suggests that oxidative transformation of the 

methyl group occurs, in addition to hydroxylation (Bhadra et al. 1999). It is 

however not clear whether these products solely result from plant processes as 

microbial or synergistic activities may have occurred in this system; the plants 

were not grown in a gnotobiotic environment. Endophytic bacteria have been 

shown to play a role in the TNT transformation observed in plants (Barac et al. 

2004).  

1.6.3.4 Phase II: Conjugation 

Six-carbon conjugates of TNT and its Phase I metabolites have been identified in 

P. vulgaris, M. aquaticum and C. roseus (Hughes et al. 1997; Sens et al. 1998; 

Bhadra et al. 1999). SAGE and microarray analysis of TNT treated Arabidopsis 

and poplar show high upregulation of UDP-glycosyltransferases (UGTs) and 

GSTs compared to untreated plants (Ekman et al. 2003; Mezzari et al. 2005; 
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Gandia-Herrero et al. 2008). In vitro studies of UGTs yielded glycosyl conjugate 

production with ADNT and both C- and O- glycosides of HADNT (Figure 1.5). 

Characterisation of Arabidopsis plants overexpressing UGTs has shown 

increased production of 2- and 4-HADNT glucose conjugates, ADNT conjugates 

and increased levels of TNT uptake (Gandia-Herrero et al. 2008). This suggests 

that UGTs play a role in the Phase II metabolism of TNT by plants. Gene 

expression data have also implicated a role for glutathione transferases (GSTs) 

in TNT detoxification. However to date, no glutathione conjugates of TNT or TNT 

metabolites have been identified in plants.  

1.6.3.5 Phase III Transport of Conjugates 

Once conjugated, TNT might exit the cytoplasm through specific transporters 

such as ABC transporters (Mentewab et al. 2005). Various transporters have 

been found to be upregulated in plants by TNT including the Arabidopsis 

glutathione conjugate transporters (AtMRP1 and 2) (Lorenz 2007), P-glycoprotein 

transporters and phloem specific transporters (Landa et al. 2010). All of these 

may be involved in carrying TNT conjugates out of the cytosol.  

1.6.3.6 Phase IV: Sequestration 

Analysis of plant degradation pathways shows a possibility that the TNT ring 

structure can be broken and incorporated into new plant material, for example the 

cell wall. Cell wall modification enzymes are upregulated in response to TNT 

including; expansins, Touch4 and xyloglucan endotransglucosylase (Brazier-

Hicks et al. 2007; Landa et al. 2010). These genes may be induced due to their 

role in associating TNT conjugates into the cell wall. This theory is strengthened 

by the repeated identification of TNT metabolites in cell wall fractions (Sens et al. 

1998; Sens et al. 1999; Nepovim et al. 2005; Vila et al. 2005; Zhao et al. 2006).
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Figure 1.5: Metabolic pathway of TNT in plants.  Reduction of TNT by nitroreductases and OPRs 
produces HADNT and ADNT which are then conjugated to sugars by UDP-glycosyltransferases. O- 
and C- linked HADNT conjugates have been isolated from extracts of TNT treated Arabidopsis. 
Figure taken from Beynon, 2008.  
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1.7 Phytoremediation of TNT 

 

Plants which have a potential for phytoremediation of TNT have been assessed; 

Datura innoxia and Lycopersicon grow well at 750 mg TNT/kg soil however at 

1000mg/kg symptoms of phytotoxicity are observed. Despite this the plants can 

accumulate up to 30 times more TNT than the initial soil concentration with a 90-

95 % removal rate after two weeks (Lucero et al. 1999). Reports of high uptake 

and transformation rates have also been published for maize, P. vulgaris, T. 

aestivum and M. Aquaticum (Sens et al. 1998; Bhadra et al. 1999; Sens et al. 

1999). Despite this, the levels of accumulation and the rate of detoxification are 

not significant enough for efficient phytoremediation. For this reason genetic 

modifications of plants have been used to enhance the degradation abilities of 

plants. The shorter generation time of bacteria has allowed them to evolve 

effective degradation systems for recently developed xenobiotics. The 

combination of these genes with the benefits of phytoremediation has yielded 

successful results. Enzymes capable of reducing the nitro groups of TNT to 

produce HADNT have been isolated from bacteria including; PETNr (French et al. 

1999) and nfsI (Hannink et al. 2001), nfsA and pnrA. When cloned into tobacco, 

both PETNr and nfsI conferred increased TNT uptake and higher levels of 

reductive metabolites, HADNT and ADNT (French et al. 1999; Hannink et al. 

2001). Arabidopsis expressing nfsA had eight fold more uptake of TNT and 

twenty-times more nitroreductase activity (Kurumata et al. 2005). Of most interest 

is the transgenic poplar as these plants are well suited to phytoremediation, 

uptake and tolerance limits of TNT were greatly improved in these plants (van 

Dillewijn et al. 2008). 

HADNTs and ADNTs are not dead-end products, they undergo further 

metabolism and investigation into this has identified a role for Phase II 

conjugating enzymes; UDP-glycosyltransferases (UGTs). Gandia-Herrero (2008) 

showed that overexpression of UGTs in Arabidopsis improves uptake and 

tolerance to TNT. Isolation of O- and C- glycosides of HADNTs confirmed the role 

of conjugation in TNT detoxification.   
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1.8 Glutathione Transferases 

 

The glutathione transferases (GSTs) are an ancient superfamily found 

ubiquitously in aerobic organisms, from bacteria to humans (Frova 2003). They 

were first identified in the 1960s because of their importance for human 

metabolism and drug detoxification (Dixon et al. 2002b). The first plant GST was 

identified in 1970, due to its ability to provide herbicide resistance in maize (Dixon 

et al. 2002b). These Phase II enzymes catalyse the conjugation of glutathione 

(GSH) (γ-Glu-Cys-Gly) to an electrophilic, often hydrophobic and toxic substrate 

(R-X). This produces a non- or less-toxic peptide R-SG and H-X (Frova 2003). 

The reaction is thought to occur via a nucleophilic aromatic substitution reaction 

with a rate-determining step involving a Meisenheimer complex (delocalised 

carbanion) as a transient state (Van Der Aar et al. 1996; Patskovsky et al. 2006; 

Bowman et al. 2007). It is also emerging that plant GSTs also perform pivotal 

non-enzymatic functions involved in normal plant development and stress 

responses (Moons 2005). 

Generally, GSTs are dimeric proteins, with two active ~26 kDa subunits, which 

may be identical (homodimers) or different (heterodimers). Heterodimers can only 

form with sub-units of the same class, as the linking mechanisms between dimers 

appear to be specific to each class (Dixon et al. 2002b). This results in a 

hydrophobic ~50 kDa protein with two independent catalytic sites. There are few 

exceptions, which are active in monomeric forms, which will be discussed later. 

Though it is clear that prior to the introduction of xenobiotics, GSTs were 

maintained through evolution and therefore must play a crucial alternative role, 

the natural substrates of GSTs are not well characterised. They have been found 

to conjugate stress-induced metabolites, including 4-hydroxynonenal, a cytotoxic 

alkenal (Cummins et al. 1997). Plant specific GSTs can also conjugate 

phytotoxins produced by other plants, pathogens or herbivores, for example 

wheat and maize can detoxify isothiocyanates, produced by Brassica species 

(Cummins et al. 1997; Dixon et al. 1998; Frova 2003).  
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1.8.1 Classification  
The abundance and variety of GSTs across the kingdoms has led to the 

requirement of a standardised classification system. Mammalian GSTs were the 

first to be investigated in detail and eight classes have been devised: Alpha, 

Kappa, Mu, Omega, Pi, Sigma, Theta and Zeta (Dixon et al. 1998; Frova 2003). 

Plants GSTs were first divided into three groups based on sequence identity, all 

of which were thought to be closely linked to the mammalian Theta class (Droog 

et al. 1995). Soon after, the appreciation of the divergence within this class led to 

the creation of separate plant classes (Edwards et al. 2000). Plants GSTs have 

now been divided into eight GST-like classes; Phi and Tau, Theta and Zeta, 

Lambda, dehydroascorbate reductase (DHAR) tetrachlorohydroquinone 

dehalogenase- like (TCHQD) and membrane associated proteins in eicosanoid 

and glutathione metabolism (MAPEG) (Dixon et al. 2010).  

 

1.8.2 Evolution of GSTs 
 

Theta class GSTs are present in all aerobic bacteria and eukaryotes (Figure 1.6). 

It is therefore believed that they were present before eukaryotes and prokaryotes 

diverged and all other classes have originated from these. It is thought that GSTs 

arose originally in response to oxidative stress, from a thioredoxin-like ancestor, 

as they share structure and sequence similarities with these, and other protein 

families involved in the stress response (Armstrong 1998; Sheehan et al. 2001). 

The high number of classes, in addition to the high diversity within and among 

them, is believed to have originated though multiple gene duplications followed 

by exon shuffling of an ancestral GST (Figure 1.6) (Marrs 1996; Sheehan et al. 

2001). Theta and Zeta GSTs are widely present in all eukaryotes, but there are 

few representative members in each organism, suggesting little duplication or 

loss of duplicated copies (Frova 2003). The plant specific GSTs, Phi and Tau on 

the other hand are well represented in all plant species, to varying degrees, 

suggesting extensive duplication and divergence (Figure 1.6) (Dixon et al. 

2002a). The clustering of genes demonstrated later is common for these classes 

and indicates recent gene multiplication events (Frova 2003).  
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The differences of divergence within GST classes likely relates to varied selective 

pressures on the genes. Theta and Zeta classes have important roles in cell 

metabolism, so divergence is limited by the need to maintain cellular function. Phi 

and Tau respond to xenobiotic toxins, removing the threat by conjugating them to 

GSH. This rapidly changing environment allows for divergence presenting strong 

selective pressure to quickly adapt resistance to a wide range of compounds 

(Frova 2003). 
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Figure 1.6: Phylogenetic tree of GSTs , illustrating the diversity of the different classes of GSTs 
and their evolutionary relationships. GSTs from Arabidopsis are shown in green. GSTs from other 
organisms are identified by black branches. The coloured dots indicate which GST classes can be 
found in which organisms Estimated evolutionary distances correspond to branch length. Figure 
adapted from Dixon et al. 2002.  
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1.8.3 Structural Features 
Sequence identity within classes averages at >40 %, but can be as much as     

98 % or as little as 17 % (Soranzo et al. 2004). Between plant classes, mean 

sequence identities are <20 % (Frova 2006), despite this, structures of the 

proteins show significant levels of  conservation. The crystal structures of more 

than ten GSTs from the main mammal, plant and bacterial GST classes have 

been resolved, these all display dimeric structures with a two-fold symmetry and 

share a common tertiary organisation. Structural conservation is highest in the 

glutathione-binding site (G-site), which is adjacent to the hydrophobic-substrate 

binding site (H-site) (Dixon et al. 2002b). The G-site only serves to bind to GSH 

and closely related homologues, hence is conserved. The H-site on the other 

hand has broad specificity, binding to a diverse range of substrates and hence in 

these regions, sequence and structure identity between GSTs is low (Marrs 

1996). The G- and H- sites form the two active components of the catalytic site, 

present in each sub-unit.  

Figure 1.7 shows that each sub-unit is composed of two domains, amino- and 

carboxy-terminal, in green and blue respectively. The amino-terminal domain 

includes the G-site (yellow shading), with both alpha-helices and beta sheets, 

constituting one-third of the protein and is the most conserved region.  The 

carboxy-terminal domain contains the H-site (blue shading) has only alpha-

helices and is more variable in sequence and structure. Between the two 

domains is a 5-10 residue linker region (Figure 1.7, shown in red) (Dixon et al. 

2002b).  

The high conservation of the amino acids comprising the G-site indicates their 

importance for correct binding and orientation of glutathione. Within the G-site 

Glu66 and Ser67 form stabilising hydrogen-(H) bonds with the γ-glutamyl moiety 

of glutathione (Thom et al. 2002; Zeng et al. 2005). Two H-bonds are also formed 

between the cysteinyl group of GSH and the G-site, with Pro57 and Ile56; 

mutagenesis studies have shown Pro57 to be crucial for recognition and binding 

of GSH, while Ile56 is essential for protein folding. Lys40 also forms an H-bond 

with the glycyl of GSH. The thiolate anion of glutathione is stabilised through H-

bonding to Ser13, essential for catalytic activity (Labrou et al. 2001).  
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Figure 1.7: GST structure and substrate binding.  GST monomer, in green is the amino-terminal, 
which contains the G-site, where glutathione binds (yellow). The carboxy-terminal is in blue and 
blue highlighting shows the H-site where the hydrophobic substrate binds. The amino- terminal is 
structurally conserved whilst the carboxy- terminal is diverse to allow the enzymes to conjugate a 
wide variety of molecules. The linker region between the two domains is in red. Figure adapted 
from Dixon, D.P. et al. 2002b. 

 

GST catalysis relies upon the formation of the reaction thiolate anion of GSH 

(GS-) which has a lower pKa than GSH, similar to physiological pH. Formation of 

the GS- requires H-bonding with an adjacent hydroxyl group. For mammalian 

GSTs this is with tyrosine and for plants is a serine (Zeng et al. 2005; Bowman et 

al. 2007). The presence of cysteine residues in this position of Lambda GSTs and 

DHARs prevents GS- stabilisation but instead allows the formation of mixed 

disulphides with GSH, accounting for their involvement in redox reactions but lack 

of conjugating activity (Sandermann 2004).  

Heterodimeric GSTs have only been found with sub-units from the same class. 

This is likely due to specificities of the interface between the two sub-units; many 

of the strictly conserved residues lie on the dimer interface (Dixon et al. 2002b). 
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Two main types of interface have been recognised; ball and socket-type as seen 

with Alpha, Mu, Pi and Phi and hydrophilic-type for Theta, Sigma, Beta and Tau 

(Armstrong 1997). Each sub-unit is catalytically independent; therefore each 

could act as a monomer. It is not fully understood what is the significance of 

dimerisation, or in fact what functional roles heterodimers are. Erhardt and Dirr 

(1995) showed that the tertiary structure of a porcine Pi class GST was more 

stable as a dimer. This may be true for all GSTs but it is not yet known.  

 

1.8.4 GST Function 
The main function of GSTs is to inactivate toxic hydrophobic compounds which 

readily enter the cell and need to be eliminated. A schematic of the GST 

detoxification pathway is shown in Figure 1.8. Substrates of GSTs may first need 

to be functionalised by Phase I enzymes, including cytochrome P450s. GST 

catalyse the nucleophilic substitution or less often, addition, reaction of the 

substrate to the sulfyl group of glutathione. This reduces hydrophobicity and 

‘tags’ the compound for transport. ATP-dependent pumps on the vacuolar 

membrane recognise and carry conjugates into the vacuole, The glutathione 

pump, or GS-X pump of plants is biochemically identical to that of mammals. It is 

comprised of three main units, a G-domain for glutathione recognition, a C-

domain which binds the electrophilic moiety and a P-domain which is the site of 

phosphorylation (Landa et al. 2010). Within Arabidopsis these pumps are 

AtMRP1 and 2 (Lu et al. 1997; Lu et al. 1998). Once inside the vacuole, 

conjugates are targeted by transpeptidases which sequentially remove glutamate 

(GGT3) and glycine from the glutathione moiety, producing a cysteine-conjugate 

(Martin et al. 2007; Ohkama-Ohtsu et al. 2007) which is resistant to reverse- 

transport out of the vacuole. Further activity may involve a malonyl transferase 

which catalyses the formation of a malonyl-cysteine conjugate, the most 

abundant end-product in plants. It has been proposed that the next steps of 

detoxification involve sequestration or release. Conjugates have been found to 

be associated with pectin, lignin and hemicellulose in the cell wall or roots, cell 

shedding may therefore play a role in eventual the extracellular release of these 

xenobiotics (Sandermann 1994; Marrs 1996; Coleman et al. 1997).  
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Figure 1.8:  A detoxification process which involves glutathione  transferases  (GSTs). Xenobiotics enter the cell as they are lipophilic and in Phase I, the toxic 
compound undergoes activation, providing functional groups, which are required for Phase II. GSTs then conjugate the activated xenobiotic to glutathione (GSH), the 
product is then transported into the vacuole (or apoplast) through ATP-dependent membrane transporters. In the vacuole the conjugates can be degraded into Cysteine-
conjugates (by enzymatic removal of Glutamate and Glycine) and may then be converted to malonylcysteine derivatives which are resistant to further metabolism or 
transport (Coleman et al. 1997; Bartholomew et al. 2002; Ohkama-Ohtsu et al. 2007). Conjugates may also be sequestered into the cell wall, bound to pectin, lignin or 
hemicelluloses (Marrs 1996; Coleman et al. 1997). Figure adapted from Yoon et al. 2006. 
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1.9 Aims 

This project aims to expand current knowledge of the detoxification mechanisms 

of TNT employed by plants. Specifically, to elucidate the role of the detoxification 

enzymes; GSTs. GSTs have been selected for investigation as a microarray 

performed with TNT treated Arabidopsis tissue showed upregulation of GSTs, 

however it was unknown whether plants upregulated GSTs for conjugation of 

TNT. This project will use two approaches to tackle this question.  

 

1.9.1 In vitro  Studies 
To understand if GSTs exhibit conjugation activity with TNT they will be 

recombinantly expressed in E. coli, purified and assayed with TNT. Further 

investigation of activity will reveal the identity of the product and mechanism of 

the reaction. This understanding will give an insight into a putative novel 

transformation reaction for TNT.  

 

1.9.2 In vivo  Characterisation 
Plants are complex systems and while an in vitro reaction may occur, within the 

plant complex processes can be prohibitive. To determine whether GSTs play a 

role in detoxification in planta, the GSTs which show activity towards TNT will be 

assessed. To determine the TNT phytoremediation potential for GSTs 

homozygous 35SGST Arabidopsis plants will be produced and studies will be 

performed comparing them to WT lines. This will include morphological, uptake 

and metabolite analysis of the plants.  
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Chapter 2: General Materials and Methods  

 

2.1 Consumables and Reagents 

 

Consumables and reagents used for this work were obtained from the following 

suppliers unless otherwise stated: Bioline Ltd (London, UK), Fisher Scientific UK 

Ltd. (Loughborough, UK), Invitrogen (Paisley, UK), Melford Laboratories Ltd. 

(Ipswich, UK), New England Biolabs (NEB) (Herts), Novagen (Merck Chemicals, 

Nottingham, UK), Oxoid Ltd. (Hampshire, UK), Promega (Southampton, UK), 

Qiagen (West Sussex, UK), Scotts (Ipswich, UK), Sigma-Aldrich Co. (Poole, UK), 

Starlab Ltd. (Milton Keynes, UK), Sterilin (Essex, UK), Stratagene (Agilent 

Technologies, Berks, UK) and VWR (Leicester, UK).  

 

Primers were synthesised by Sigma-Genosys Ltd. (Haverhill, UK). DNA and 

protein gel markers were supplied by NEB UK and Promega, DNA Polymerases 

were purchased from NEB UK and Invitrogen UK, DNA restriction 

endonuclesases were bought from NEB UK and Promega and TNT was kindly 

donated by the Defence Science and Technology Laboratory (DSTL, Fort 

Halstead, UK). Water was purified with Elga Purelab Ultra water polisher (Elga 

Labwater, High Wycombe, UK). 
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2.2 Plasmids, Bacteria and Growth Conditions 

 

2.2.1 Plasmids 
The plasmids used for DNA manipulation and enzyme expression are shown in 

Table 2.1.  

Table 2.1: Plasmids used for DNA cloning and enzyme  expression  

Plasmid  Selectable 
resistance 

Antibiotic 
concentration µg/mL  

Source  

pET-YSBLIC3C Kanamycin 30 Bonsor et al. 2006 

pCR®2.1 TOPO Kanamycin 30 Invitrogen (Paisley, UK) 

pART7 Carbenicillin 100 Gleave 1992 

pART27 Spectinomycin 100 Gleave 1992 

 

 

2.2.2 Bacterial Methods 
The bacterial strains used in this work are described in Table 2.2. 

Table 2.2: Description of the bacteria used for clo ning and expression of GSTs 

Bacteria  Strain  Antibiotic  Purpose  Source  

Escherichia 
coli 

DH5α None Cloning, 
preparation of DNA 
for sequencing 

Invitrogen 
(Paisley, 
UK) 

Escherichia 
coli 

BL21  

(DE3) 

None General purpose 
expression host 

Novagen, UK 

Agrobacteria 
tumefaciens 

GV3101 Gentamycin 

(50 µg/mL) 

Transformation of 
Arabidopsis 

Bruce Group 
Stocks 
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2.2.2.1 Preparation of Chemically Competent Escherichia coli  

Five millilitre overnight cultures of E. coli were used to inoculate 100 mL Luria-

Bertani media (LB) comprising 10 g/L tryptone, 10 g/L NaCl and 5 g/L yeast 

extract. Cultures were grown to an OD600 of 0.4-0.6 and centrifuged for 5 min at 

5000 x g in a Swinging Bucket Rotor Centrifuge (Jouan CR312, SelectScience 

Ltd. Bath, UK). Pellets were resuspended in 10 mL of ice cold, sterile 80 mM 

MgCl2/20 mM CaCl2 solution and left on ice for 30 min. Cells were then 

centrifuged for 5 min at 5000 x g and resuspended in 1 mL ice cold, sterile 100 

mM CaCl2. Ten per cent v/v sterile glycerol (final concentration) was added and 

the cells were left on ice for a further 30 min. Fifty microlitre aliquots were snap- 

frozen in liquid nitrogen and stored at -80 ºC. 

 

2.2.2.2 Transformation of Chemically Competent E. coli  

Aliquots of 50 µL cells were defrosted at 37 °C, 1 µL plasmid DNA was added 

and flicked to mix. The mixture was left on ice for 30 min, heat shocked for 90 s 

at 42 °C and returned to ice for a further 2 min. F ive hundred microlitres of sterile 

LB was added and for recovery the cells were incubated at 37 °C, 250 rpm for 1 

h. The transformed cells were plated onto LB agar (LB with 15 g/L agar; LA) with 

appropriate antibiotics for selection (Table 2.1). Plates were incubated overnight 

at 37 °C or until colonies were visible. 

 

2.2.2.3 Transformation of Chemically Competent Agrobacterium 
tumefaciens 

Competent A. tumefaciens were provided by Dr E. Rylott. Fifty microlitre aliquots 

were defrosted at 37 °C, 1 µL plasmid DNA was added and tubes were heat-

shocked for 5 min at 37 °C. One millilitre of LB wa s added to the mixture and 

incubated at 28 °C for 4 h at 100 rpm. Tubes were c entrifuged at 4,000 rpm in a 

micro-centrifuge and supernatant was discarded. The cell pellet was 

resuspended in 100 µL LB and spread onto LA plates containing antibiotics 

selecting for both A. tumefaciens and the transformed plasmid (Table 2.1). Plates 

were incubated at 28 °C for 2-3 days. 
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2.2.3 Growth Conditions 
Conditions of bacterial growth for protein expression are described in section 

2.4.1. 

 

2.2.3.1 Growth in Liquid Media 

E. coli cultures were grown in sterile LB and appropriate antibiotic concentrations 

for plasmid selection. A. tumefaciens cultures were incubated in LB at 28 °C with 

180 rpm shaking with required antibiotics (Table 2.1) 

2.2.3.2 Growth on Solid Media 

For the isolation of individual colonies, bacteria were grown on solid media (LA): 

LB containing 15 g/L agar. This was amended with the appropriate antibiotics for 

plasmid selection when required. E. coli colonies were grown overnight at 37 °C 

while A. tumefaciens colonies were grown at 28 °C for 2 to 3 days. 

2.3 DNA Manipulation  

 

2.3.1 Agarose Gel Electrophoresis 
DNA fragments were separated by size using electrophoresis through an agarose 

gel. Gels were prepared with 1% agarose and 150 µg/L ethidium bromide in 1x 

Tris-acetate-EDTA buffer (40 mM Tris-HCl, 18 mM glacial acetic acid and 1mM 

ethylenediaminetetraacetic acid (EDTA)). DNA was diluted 5:1 in loading dye 

(0.15 % w/v bromophenol blue, 0.5% w/v sodium dodecyl sulphate (SDS), 0.15 

mM EDTA and 60 % w/v glycerol. Promega 1 kb DNA ladder was used as a 

molecular weight marker, with 0.5 µg per well. DNA separation was achieved with 

a current of 80-120 V and UV light was used to visualise ethidium bromide 

stained DNA. 

 

2.3.2 DNA Purification 

2.3.2.1 Plasmid Purification 

E. coli cultures were grown overnight at 37°C, 250 rpm in 5 mL LB containing the 

appropriate antibiotics. The cultures were harvested by centrifugation for 10 min 
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at 5000 x g in a Swinging Bucket Rotor Centrifuge (Jouan CR312, SelectScience 

Ltd. Bath, UK). The plasmids were extracted and purified using the QIAprep Spin 

Miniprep kit (Qiagen, Crawley, UK) as instructed by the manufacturer. DNA 

concentration of the plasmid preparation was determined using the Nanodrop 

(Thermo Fisher Scientific, USA). 

 

2.3.2.2 DNA Fragment Purification 

The Wizard SV Gel and PCR Clean-Up System (Promega) were used, as 

directed by the manufacturer’s instructions, to purify DNA fragments resulting 

from PCR and restriction digest. Fragments produced by restriction digests were 

run on agarose gels, bands of the correct size were excised before using the 

Clean-Up System. PCR products did not require gel separation.  

 

2.3.3 Sequencing 
DNA sequencing was performed by the Genomics Lab, Technology Facility, 

University of York (York, UK). Sequencing from pCR2.1 TOPO used forward and 

reverse M13 primers (Table 2.3). For pETYSBLIC3C sequencing T7 and T7term 

primers were used (Table 2.3). Sequence analysis was performed with software 

packages including; Sequence Scanner (Applied Biosystems, USA), Clustalx 

2.0.9 and BioEdit7 (Hall 1999; Larkin et al. 2007). 

Table 2.3: Sequencing primers for Arabidopsis GSTs 

Primer name Sequence 
M13 forward GTA AAA CGA CGG CCA GTG 
M13 reverse GGA AAC AGC TAT GAC CAT G 
T7 TTA TAC GAC TCA CTA TAG GG 
T7term TAT GCT AGT TAT TGC TCA GCG GT 
 

2.3.4 PCR 
Primers were synthesised by Sigma-Genosys and diluted in sterile dH2O to make 

a master stock solution of 100 mM. This stock solution was further diluted to 20 

mM to create a working stock. PCR amplifications were performed in 25 and 50 

µL volumes. PCR reactions were performed in a Thermo Electron Corporation 

Px2 Thermal Cycler (Basingstoke, UK).  
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2.3.4.1 PCR for Cloning into E. coli  

For recombinant expression of glutathione transferases (GSTs) in E. coli, PCR 

was performed using KOD Hot Start proofreading DNA polymerase (Merck, UK). 

Fifty ng/µL cDNA was used for each 50 µL reaction containing 5 µL 10x KOD 

buffer, 200 µM dNTPs, 0.4 µM forward and reverse LIC primers, 1 mM MgSO4 

and 1 unit of KOD Hot Start polymerase. Initial denaturing conditions were 95 °C 

for 2 min, followed by 30 cycles of 95 °C for 30 s,  45°C for 30 sand 72 °C for 20 

s. The final extension conditions were 72 °C for 3 min followed by a hold 

temperature of 4 °C.  

 

2.3.4.2 PCR for Cloning into Arabidopsis 

Phusion High-Fidelity DNA polymerase (NEB) was used for amplifying gst genes 

for work in Arabidopsis. All gst genes in this study were amplified from 

Arabidopsis DNA isolated from plants exposed to TNT (see 2.5.4.2 and 2.5.4.3).  

0.5 µL cDNA was used for each 25 µL reaction containing 5 µL of 5x HF buffer, 

200 µM dNTPs, 0.4 µM forward and reverse primers and 0.5 units of Phusion 

High-Fidelity DNA polymerase. PCR followed a programme of; 98 °C for 30 s, 30 

cycles of 98 °C for 10 s, 55 or 60 °C for 30 s and 72 °C for 30 s, followed by 72 

°C for 5 min and samples were then held at 4 °C unt il use. 

 

2.3.4.3 Diagnostic PCR  

PCR to identify the presence of a gene in transformed bacteria was performed on 

single bacterial colonies. This was performed with Taq DNA polymerase in 25 µL 

reactions with 1x Thermo Pol buffer, 200 µM dNTPs, 0.4 µM forward and reverse 

primers, 0.5 units Taq. Colonies were dipped into this reaction then spread onto a 

stock plate. The PCR reactions were heated to 94 °C  for 3 min, 30 cycles of 94 

°C for 30 s, 55 °C for 30 s and 72 °C for 1 min, a final extension of 10 min at 72 

°C was followed by a 4 °C hold temperature. Analysi s was performed by agarose 

gel electrophoresis. 
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2.3.5 Restriction Endonuclease Digestion 
Restriction endonuclease digestions contained 2 µg plasmid DNA or 200 ng PCR 

product in 20 or 10 µL reactions respectively, other components included 2 

µg/mL bovine serum albumin (BSA), 10 or 5 units of the desired restriction 

endonuclease and corresponding buffer as specified by NEB.  

 

2.4 Protein Expression and Purification 

 

2.4.1 Protein Expression 

Autoinduction (AI) protein expression media comprised; ZY broth 10 g/L tryptone 

and 5 g/L yeast extract with the addition of the solutions detailed in Table 2.4. 

The components of the AI stock solutions are shown in Table 2.5. For expression 

E. coli BL21(DE3) transformed with plasmids containing the gene of interest were 

grown on LBA overnight at 37 °C to produce individu al colonies. Starter cultures 

were grown from the colonies in LB and cells were grown at 37 °C, 250 rpm. Per 

1 L autoinduction expression culture, 1 mL starter culture was added and 

incubated at 30 °C with 120 rpm shaking for 12 h fo llowed by 48 h at 20 °C with 

180 rpm shaking. Cells were pelleted by centrifugation at 5,000 x g for 10 min. 

 

Table 2.4: Volumes of autoinduction solutions per 1  L culture. 

Component  Volume (mL/L)  

MgSO4 (1 M) 1 

1000 x metals 1 

50 x 5052 solution 20 

20 x NPS solution 50 

ZY solution 928 
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Table 2.5: Quantities of ingredients for stock auto induction solutions 

AI solution  Ingredients  Quantity  

1000 x metals (100 mL) 

0.1 M FeCl3.6H20 (in 0.1 M HCl) 

1.0 M CaCl2 

1.0 M MnCl2.4H20 

1.0 M ZnSO4.7H20 

0.2 M CoCl2.6H20 

0.1 M CuCl2.2H20 

0.2 M NiCl2.6H20 

0.1 M Na2MoO4.5H2O 

0.1 M Na2SeO3.5H2O 

0.1 M H3BO3 

50 mL 

2 mL 

1 mL 

1 mL 

1 mL 

2 mL 

1 mL 

2 mL 

2 mL 

2 mL 

50 x 5052 solution  

100 mL 

Glycerol 

Glucose 

α-Lactose 

25.0 g 

2.5 g 

10.0 g 

20 x NPS solution  

100 mL 

Na2SO4 

NH4Cl 

KH2PO4 

Na2HPO4 

3.6 g 

13.4 g 

17.0 g 

17.7 g 

ZY solution 1L 

 

Tryptone 

Yeast extract 

10.0 g 

5.0 g 

 

2.4.2 Cell Lysis by Sonication 
Cell pellets were resuspended to 0.5 g/ mL in PBS. Sonication was performed on 

ice Sonication was performed with an S-4000 Sonicator (Misonix) at 70 % 

amplitude for 4 min duration, with cycles of 3 s interrupted with 7 s cooling at 0 

°C. Cell lysates were centrifuged at 17,500 x g, 4 °C for 30 min to remove the cell 

debris. Supernatants were clarified by passage through 0.45 µM syringe filters 

before being applied to the purification media. 

 

2.4.3 Protein Purification 
GSTs were purified with either HIS-Select Nickel Affinity Gel (Sigma-Aldrich USA) 

and Glutathione (GSH) Sepharose 4B (GE Healthcare, Little Chalfont, UK). For 

His-purification the wash buffer was 50 mM sodium phosphate pH 8, 0.3 M NaCl 

and elution was performed with 50 mM sodium phosphate pH 8, 0.3 M NaCl with 
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250 mM imidazole. Glutathione-purification used phosphate buffered saline 

(PBS) pH 7.4 (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM 

KH2PO4) for wash steps and 50 mM Tris-HCL, 10 mM reduced glutathione, pH 

8.0 for elution. Centrifugation of His beads was performed at 5000 x g, while GSH 

beads were spun at 500 x g. For both methods 0.5 mL affinity resin was used per 

1 L initial culture volume. Resin was washed three times in ten bed volumes of 

wash buffer before the clarified cell supernatant was added. After 20- 30 min 

incubation the supernatant was removed and the resin was washed three times 

in ten bed volumes of wash buffer. One bed volume of elution buffer was added 

and incubated for 10 min at room temperature, the supernatant was collected. 

The elution step was repeated for a total of three elutions.  

 

2.4.4 Protein Visualisation by SDS-PAGE 
A Mini-Protean system was used to separate proteins. Samples were solubilised 

in a 4 X SDS-PAGE loading buffer containing 2 mL water, 1.6 mL 10% SDS, 1 

mL 0.5 M Tris-HCl, 1 mL glycerol, 0.4 mL β-mercaptoethanol and 20 mg 

bromophenol blue. A denaturing step was performed at 100 °C for 5 min. Gels 

comprised a 12 % w/v acrylamide separating gel and a 4 % acrylamide stacking 

gel. Samples were run through the stacking gel at 100 V and the separating gel 

at 200 V. Fifteen microlitres broad range protein marker were run on each gel for 

molecular weight determination.  
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2.5 Plant Methods 

 

2.5.1 Seed Sterilisation 
Seeds were dry sterilised by chlorine gas in an airtight container containing 

aliquots of seed and a beaker with 3 mL concentrated hydrochloric acid and 100 

mL Chloros bleach. After 3 h the seeds were aired in a flow hood for 10 min to 

remove chlorine gas. 

2.5.2 Stratification  
Arabidopsis thaliana (ecotype Columbia 0) seeds to be grown in soil or on agar 

plates (see Section 2.5.3.2) were imbibed in the dark for 3 nights at 4 °C in sterile 

water. Seeds for soil growth were not sterilised unless germinated on plates. 

For liquid culture; sterile Arabidopsis seeds were imbibed in the dark for 3 nights 

at 4 °C on ½ MS agar plates (0.215 % Murashige and Skoog Basal Salt mixture 

(MS), Sigma) with 20 mM sucrose (½ MSS). 

 

2.5.3 Growth Conditions 

2.5.3.1 Plant Growth in Soil 

To bulk up seed stocks, gain tissue for nucleic acid extraction and for generation 

turnover, plants were grown in soil under non-sterile conditions in a greenhouse. 

For growth of Arabidopsis prior to floral dipping imbibed seeds were distributed 

evenly on top 3 inch pots, filled with F2 compost and covered in muslin. The 

plants were then propagated in the green house, and weeded to 12 plants per 

pot. The plants were left to flower, when floral dipping was performed (see 

Section 2.5.4.1). 

2.5.3.2 Plant Growth on Solid Media  

For selection of transformed lines imbibed seed were scattered onto ½ MSS agar 

plates supplemented with 30 µg/mL kanamycin. Resistant seedlings were 

transplanted to soil for seed bulking.  
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2.5.3.3 Hydroponic Conditions 

For Real Time-PCR (RT-PCR) experiments ten sterile imbibed seeds were 

transferred to sterile 500 mL flasks each with 100 mL ½ MSS. After 13 days 

under constant light conditions (~15 µmol.m-2.s-1) and gentle shaking, 60 µM TNT 

or the equivalent volume of dimethyl formamide (DMF) was added (negative 

control). The cultures were incubated under the same conditions for a further 6 h 

when the media was removed and plants washed with pure water. Plants were 

then frozen at -80 °C until RNA extraction procedur e. 

 

For liquid culture assays to determine TNT uptake 8 imbibed seeds were 

transferred to sterile 100 mL flasks with 10 mL ml ½ MS and sucrose. After 13 

days under constant light conditions (~15 µmol.m-2.s-1) at 120 rpm shaking, 

media was replaced with ½ MS with 200 µM TNT or ½ MS with 200 µL dimethyl 

sulfoxide (DMSO).  

 

2.5.4 Manipulation of Arabidopsis 

2.5.4.1 Plant Transformation 

Agrobacterium tumefaciens GV3101 were transformed with pART27-GST 

constructs, grown on LA plates with gentamycin and spectinomycin, at 28 °C 

over 3 nights, transferred to 10 mL LB with antibiotics and grown overnight at 28 

°C, 130 rpm. Colony PCR was then performed to confi rm presence of GST insert 

prior to inoculation of 1 L LA with antibiotics, for each construct. These cultures 

were centrifuged at 4,000 rpm in a Sorvall centrifuge using SLR-6000 rotor. 

Pellets were resuspended in 5 % sucrose and 0.05 % Silwet solution. The flowers 

of 12 pots per construct were dipped into this A. tumefaciens solution and shaken 

for 30 s. Plants were returned to the greenhouse and transformants were 

selected on kanamycin plates (Section 2.5.3.2). 
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2.5.4.2 RNA Extraction 

Plant tissue from Arabidopsis grown on soil or in liquid culture was harvested. 

RNA was extracted using RNeasy Plant Mini Kit (Qiagen), following the 

manufacturer’s protocol. Concentration of RNA was then measured on the 

Nanodrop (NanoDrop Technologies, USA) and samples were frozen at -80 °C 

until use. 

 

2.5.4.3 Reverse Transcription from RNA 

All steps used Invitrogen reagents, unless otherwise stated. RNAse-free water 

was added to 10 µg plant RNA, to make a volume of 24 µL. One microlitre oligo 

dT primer was added and the mixture was incubated for 2 min at 95 ° C, then put 

on ice. Eight microlitres of 5x First strand buffer, 2 µL 2.5 mM dNTPs (Bioline), 2 

µL of 0.1 M DTT, 2 µL RNAse out and 2 µL Superscript II were added to the 24 

µL RNA dilution and incubated for 2 h at 42 °C. All samples were stored at -80 

°C.  
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Chapter 3: The Cloning, Expression, Purification 
and Characterisation of Glutathione Transferases  
from Arabidopsis  

3.1 Background 

3.1.1 Glutathione Conjugation 
Glutathione (GSH) conjugation is a major detoxification mechanism in plants. The 

substitution or addition reaction joining an electrophilic and often hydrophobic 

substrate (R-X) to glutathione, a γ-Glu-Cys-Gly tripeptide, increases its solubility 

enabling subsequent compartmentation and sequestration (Figure 3.1). The 

reaction is catalysed by glutathione transferases (GSTs), an ancient superfamily 

of enzymes present in all animals, plants fungi and aerobic bacteria investigated 

so far (Frova 2003). 
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Figure 3.1: The nucleophilic substitution reaction between glutathione (GSH) and an 
electrophilic substrate, producing a hydrophilic conjugate with reduced toxicity. The reaction is 
catalysed by glutathione transferases (GSTs). 

Glutathione conjugates of numerous xenobiotics in plants have been identified, 

most notably herbicides. GST activity with herbicides was first observed in the 

1970s with the metabolism of atrazine by GSTs in maize (ZmGSTs) (Frear et al. 

1970). Subsequently many other GSTs responsible for metabolism of herbicides 
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and other xenobiotics have been discovered in crops and weeds. The main 

classes of herbicides are shown in Figure 3.2. Domesticated crop species 

express much higher levels of GSTs than competing weed species, accounting 

for herbicide selectivity. In some crops GSTs can make up to 2 % total protein in 

cells (Scalla et al. 2002; Lederer et al. 2005). 

For the economic reasons associated with herbicide activities there has been 

much interest in plant GSTs especially those from Zea mays (maize, Zm) as well 

as other crop species, rice, soybean and wheat. Considerable amounts of 

research have also been performed with the model plant Arabidopsis thaliana 

(Arabidopsis, At), which has 58 GSTs (Dixon et al. 2010).  

 

3.1.2 GST Classification 
There are eight classes of GSTs or GST-like proteins in plants separated by 

sequence similarities and immunological cross-reactivity. These classes were 

named in line with the mammalian GST nomenclature, using Greek letters. The 

plant classes are Tau (GSTU), Phi (GSTF), theta (GSTT) and zeta (GSTZ). The 

more distantly related GST-like enzymes are called lambda (GSTL), 

dehydroascorbate reductase (DHAR), tetrachlorohydroquinone dehalogenase- 

like (TCHQD) and membrane associated proteins in eicosanoid and glutathione 

metabolism (MAPEG). Most of these classes contain only 1 to 3 proteins each 

however of the 58 Arabidopsis GSTs; Phi and Tau contain the majority with 13 

and 28 genes respectively (Figure 3.3) (Droog 1997; Edwards et al. 2000). These 

two classes are primarily responsible for herbicide detoxification: GSTFs are 

highly active against chloroacetanilide, chloro-s-triazine and thiocarbamate 

compounds; and GSTUs detoxify diphenyl ether and aryloxyphenoxypropionate 

herbicides (Figure 3.2) (Jepson et al. 1994; Thom et al. 2002; Frova 2003; 

Öztetik 2008). 
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Figure 3.2: Example herbicides the four main classe s to which GSTs have conjugating 
activities.  

 

GST nomenclature in plants uses an abbreviation of the first letter of genus and 

species as i.e. Zm for Zea mays or At for Arabidopsis thaliana, then GST, 

followed by the corresponding class letter (U, F, T, L, Z) and finally the GST gene 

number. In Arabidopsis these gene numbers roughly represent gene order on the 

chromosomes however for plants with unsequenced genomes; GSTs are 

numbered by order of identification. The most widely studied GST in Arabidopsis 

is identified as AtGSTU19 and a homodimer of this GST is called AtGSTU19-19. 

While there is at least one GST on each Arabidopsis chromosome (Figure 3.3), 

strikingly there is a high incidence of clustering; many of the GSTs are arranged 

as repeating units with the majority located on Chromosomes I and II. An 

example of clustering is seen on Ch II where GSTs U1-7 lie adjacent to one 

another, an indication that the high number of GSTs arose by a series of recent 

gene duplication events (Armstrong 1997; Edwards et al. 2000; McGonigle et al. 

2000). 
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Figure 3.3:  Chromosome map of Arabidopsis GSTs . All of the upregulated GSTs selected for 
study (*) are members of Tau class. Arabidopsis has 58 GSTs or GST-like proteins, 28 of which are 
Tau, making this by far the most dominant class, followed by the other plants specific class, Phi, 
with 13 members (Edwards et al. 2005). Figure from www.arabidopsis.org. GST class 
nomenclature: U= Tau, F= Phi, L= Lambda, Z= Zeta, T= Theta, D= DHAR (dehydroascorbate 
reductase), involved in ascorbate recycling (Dixon 2002a) and T= TCHQD 
(tetrachlorohydroquinone dehalogenase-like), a relative of the GSTs with unknown function. 
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3.1.3 Induction of GST Expression 
EST analysis of Arabidopsis has indicated that 85 % of the GST genes are 

expressed (Dixon et al. 2002). Within the EST libraries it is evident that the GST 

classes are not expressed equally; maize contains 54 % Phi, 41 % Tau and 4 % 

Zeta GSTs while of the expressed GSTs in soya bean 92 % are Tau, 6 % are Phi 

and 2 % are Zeta (McGonigle et al. 2000). This does not correlate with the class 

abundance of these species. It has also been observed that some GSTs are 

tissue specific or are only expressed in response to specific stresses. Sari- Gorla 

et al. (1993) found that maize pollen contains a single GST, while the scutellum 

expresses five different GSTs. This tissue specific expression can be overridden 

by stress treatments, inducing GST expression more widely throughout the plant 

(Dixon et al. 2002).  

At least 34 of the 58 Arabidopsis GSTs or GST-like proteins are expressed in the 

proteome, although specific expression levels were not accurately determined 

(Dixon et al. 2010). Many GSTs have only been identified by their high 

expression profiles following a wide variety of stress treatments. These include; 

heavy metals, temperature, dehydration, plant hormones, pathogen attack, 

glutathione and hydrogen peroxide (Marrs 1996; Droog 1997; Öztetik 2008; 

Sappl et al. 2009).  

Chemicals called safeners or antidotes can be used to protect monocotyledonous 

crops from damage caused by herbicides which can be damaging to the grass 

crops. Pre-treatment with the non-toxic safeners differentially induces expression 

of detoxifying enzymes including GSTs in monocot crop species and to a lesser 

extent in dicot weeds (Hatzios 1983; DeRidder et al. 2002). The application of 

specific safeners therefore enhances tolerance of the crops to particular 

herbicides by accelerating the rate of their detoxification by GSH conjugation 

(Hatzios 1983; Kriton 1984; Dean et al. 1990; Cummins et al. 1997). 
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3.1.4 Non Glutathione -Conjugating Roles 

Aside from the relatively well characterised herbicide-conjugating activities of 

GSTs, they play pivotal roles in plant development and stress response (Mueller 

et al. 2000). It is even likely that their conjugating ability is not their primary 

function, as there is a striking lack of evidence for glutathionylated endogenous 

compounds (Dixon 2010). Across the classes of plant GSTs a range of 

alternative functions have been proposed. The known catalytic roles include; 

GSH-dependent peroxidase reactions (GPOX), GSH-dependent isomerisation, 

GSH-dependent thioltransferase activity and dehydroascorbate reductase 

reactions by dehydroascorbate reductases (DHAR). The non-catalytic roles 

include ligandin or carrier protein functions which facilitate the distribution of 

phytohormones or anthrocyanins (Bartling et al. 1993; Marrs et al. 1995). Non-

conjugating activities may be derived from their thioredoxin-like ancestry (Mueller 

et al. 2000; Sheehan et al. 2001).  

3.1.5 Experimental Background 
In our laboratory a microarray of cDNA from 14 day-old Arabidopsis seedlings 

treated with 60 µM TNT for 6 h to provide a library of genes which may play a 

role in the detoxification of TNT (Gandia-Herrero et al. 2008). Many genes were 

upregulated in response to TNT including a wide range of Phase I and II 

detoxification enzymes one of which was the Phase II GST family. This project is 

therefore interested in discovering the role GSTs may play in the detoxification of 

TNT. Figure 3.4 shows the GSTs which were upregulated two fold or more in the 

microarray. Arabidopsis has 13 Phi class GSTs, two of which, GSTF3 and 

GSTF8 are seen to be upregulated, 2.84 and 2.5 fold respectively. The Phi class 

is a plant specific class, like Tau and the two classes are the best studied as they 

exhibit broad ranging conjugation activity towards xenobiotics, primarily 

herbicides (Edwards et al. 2005). Twelve of a total 28 Arabidopsis Tau class 

GSTs are upregulated more than two fold in response to TNT treatment. The red 

line is drawn at eight fold upregulation and the seven GSTs on or above that line 

have been selected for further investigation (Figure 3.4).  



Chapter 3: The Cloning, Expression, Purification and Characterisation of 
Glutathione Transferases from Arabidopsis 

 50 

Arabidopsis GST

U1 U2 U3 U4 U7 U8 U9 U11 U12 U22 U24 U25 F3 F8

F
ol

d 
up

re
gu

la
tio

n

0

10

20

30

40

50

 

Figure 3.4: Microarray data showing Arabidopsis GST s upregulated more than 2 fold 
following TNT treatment. All data has P values <0.05. Those on or above the line were selected 
for study. Data kindly provided by Dr Astrid Lorenz, 2007.  

 

Of the upregulated GSTs, there is a good representation from the major clusters 

of the Tau genes, from U1-U7 all but U5 and U6 are upregulated, U8 and U9 are 

also clustered together as are U11 and U12, and U24 and U25 (Figure 3.3). The 

upregulation of closely related GSTs may be due to functional overlap of genes 

arising from a recent gene duplication or the fact that microarray targets for 

Arabidopsis genes have been shown to not differentiate between certain Tau 

GSTs including GSTU3 and U4 (Dixon et al. 2010). 

Chlorodinitrobenzene (CDNB) is regularly used as a generic substrate and 

standard activity assay for the GST superfamily (Habig et al. 1974; Bowman et al. 

2007; Dixon et al. 2010). It is a xenobiotic benzene derivative used mainly for the 

production of azo-dyes though it is also an intermediate product in the 

preparation of explosives including picric acid. Its ability to act as a broad 

substrate for GSTs was first described in 1974 (Habig et al. 1974). CDNB is not a 

universal substrate as GSTs exhibit a high variation in levels of conjugating 
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activity against this substrate, with many GSTs showing no activity at all (Dixon et 

al. 2009).  

The nucleophilic aromatic substitution between GSH and CDNB reaction 

produces 1-(S-glutathionyl)-2,4-dinitrobenzene, where the chlorine of CDNB is 

removed and the sulphyl group of GSH binds to the aromatic ring instead (Figure 

3.5). The reaction is proposed to begin with the ionisation of GSH to yield GS- 

which attacks the C1 of CDNB, conjugation then proceeds via π–complex 

intermediates and rate limiting Meisenheimer complex intermediates (Van Der 

Aar et al. 1996; Bowman et al. 2007). The non-enzymatic conjugation of CDNB 

and GSH is also likely to follow the same mechanism, though at a slower rate.  

Many of the known substrates for GSTUs are nitrobenzene derivatives e.g. 

CDNB, dichloronitrobenzene (DCNB) or aromatic compounds with nitro- groups, 

for example the herbicide fluorodifen. These substrates have structural 

similarities to TNT, however in these cases no nitro group removal is observed 

and the enzyme prefers to substitute GSH elsewhere on the molecule 

(Pflugmacher et al. 2000). There is however some evidence of TNT conjugation 

with GSH; commercially available equine liver GST extract can catalyse the 

production of 2-S-glutathionyl-4,6-dinitrotoluene, a conjugate of TNT and GSH, a 

substitution reaction with nitro-group removal (Brentner et al. 2008). 

Previous research has proposed that GSTs play a role in the detoxification of 

TNT by plants. Ekman et al. (2003) found GST transcripts to be upregulated 

following TNT treatment, although long term treatment (Mentewab et al. 2005) 

does not significantly upregulate GST mRNAs. It is possible that this difference 

arises due to GST upregulation induced as a generalised stress response 

resulting from TNT treatment rather than transformation activity of GSTs with 

TNT. However, the conjugation of TNT to GSH observed in vitro by equine liver 

GST does suggest that some detoxification may be performed by GSTs (Brentner 

et al. 2008). 
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Figure 3.5: Conjugation of Glutathione (GSH) to 1-c hloro-2,4-dinitrobenzene  (CDNB) 
producing 1-(S-glutathionyl) 2,4-dinitrobenzene (GS-DNB). The reaction proceeds via π- and 
Meisenheimer complexes (not shown). 

 

GSTs are active as dimers, forming homo-dimers or hetero-dimers with closely 

related GSTs, usually within the same class (Dixon et al. 2002b). This, coupled 

with the high similarities between related GSTs arising from recent gene 

duplication makes it hard to study individual enzymes from plant extracts. 

Specific enzymes are therefore preferentially expressed in recombinant E. coli for 

characterisation. Purification of many GSTFs and GSTUs can usually be 

achieved by affinity chromatography with glutathione agarose, due to their GSH 

binding sites (Edwards et al. 2005). 

This chapter investigates whether the GSTs found previously to be upregulated 

by exposure to TNT exhibit any conjugative activity to this compound. The GSTs 

are cloned, expressed, purified and assayed with CDNB and TNT. 
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3.2 Methods 

 

3.2.1 RNA Extraction, cDNA Production  
WT Col0 Arabidopsis thaliana seeds were sterilised as described in Section 2.5.1 

and imbibed on ½ MSSA plates for three nights in the dark at 4 °C. After 18 h in 

80 µmol.m-2.s-1 light, ten seedlings were transferred from the plate to 250 mL 

flasks containing 100 mL ½ MSS. Flasks were incubated at 20 °C for 13 days 

with 120 rpm shaking, under low light conditions (~15 µmol.m-2.s-1) to minimise 

stress. After 14 days half the flasks were dosed with 60 µM TNT diluted in the 

solvent N,N-dimethylformamide (DMF) or with the same volume of DMF only. 

After 6 hours plants were rinsed in dH2O and snap frozen at -80 °C until RNA 

extraction which was performed with the Qiagen kit as detailed in Section 2.5.4.2. 

The cDNA was reverse transcribed from the RNA as described in Methods 

(2.5.4.3). 

 

3.2.2 RT-PCR of GSTs from TNT treated Arabidopsis  
Primers for each GST were designed based on published GST sequences using 

Primer Express v3.0 (Table 3.1) (Applied Biosystems). Once cDNA 

concentrations had been determined, primer efficiency tests were performed to 

ensure the designed primers were suitable. Real-time (RT) PCR reactions were 

performed in 96 well plates with 1, 10 or 100 ng cDNA. 5 µL DNA dilutions were 

added to 12.5 µL Power SYBR Green Mix (Applied Biosystems), 0.4 µM of 

forward and reverse primer and made up to 25 µL with nuclease free water. 

Plates were then centrifuged for 2 min at 5000 x g before being placed in a 7000 

sequence detection system RT-PCR machine (Applied Biosystems). Cycle 

conditions were 2 min at 50 °C, 10 min at 95 °C, 40  cycles of 15 s at 95 °C and 

then 1 min at 60 °C.  
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Table 3.1: Primers used for RT-PCR amplification of  AtGSTUs 

Primer name Sequence 

RTU1F CGTGCCATACGAATACTTGGAA 

RTU1R TTCTTGTGAAGCGGGTTTAGC 

RTU3F ACCAAACATGGACAAACAATCCT 

RTU3R CGACAAATTTGGCCCAGAA 

RTU4F AAGCCCTTTTACTCGTAGAGTTGAGA 

RTU4R TTTGTAGACAAGAACCGGAACCTT 

RTU7F TCCGGTTCTTGTTCATAATGGTA 

RTU7R TCATCGACGAATTTAGACCAGAAT 

RTU22F TCGAAGCATCAGAGAAACTAGCTAAC 

RTU22R CCTCTTAGCCGAAGCCATCA 

RTU24F TCCCTCCGATCCTTACAAGAGA 

RTU24R TCGCCGTAACATTCACCTTTT 

RTU25F TGTCAAATTCGATTACAGAGAACAAG 

RTU25R GGTATTTTCTTATGAACCGGATTCA 

 

 

3.2.3 Ligation Independent Cloning System  
The ligation independent cloning (LIC) system was adopted for rapid, semi-

automated cloning of the GSTs (Bonsor et al. 2006). Complementary long 

overhangs on the insert and plasmid allow for simple annealing prior to 

transformation into Escherichia coli.  

The long overhangs are produced by the addition of a single dNTP and a DNA 

polymerase which removes nucleotides from a single strand up to a specific 

nucleotide. The pET-YSBLIC 3C has been designed as a LIC vector. It is based 

on pET-28a with a cleavable N-terminal hexahistidine tag (Figure 3.6). Gst inserts 

were derived by PCR from Arabidopsis cDNA. 
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LIC 

f1 ori

KanR

pBR322 ori

LacI pET-YSBLIC 3C
5400 bp

 

Figure 3.6: LIC vector containing gene of interest . This modified pET-28a (+) plasmid has a 
cloning site comprising; a T7 promoter (T7P), Lac operator (LacO), ribosome binding site (RBS), a 
6x His-tag (His) which can be cleaved at the HRV 3C protease site (3C). The plasmid also contains 
two origins of replication (f1 and pBR322), a kanamycin resistance gene and a repressor gene 
(LacI) for IPTG induction. 

 

3.2.3.1 Vector Preparation  
The pET-YSBLIC3C plasmid was transformed into Escherichia coli DH5α and 

grown in LB at 37 °C, 250 rpm overnight with 30 µg/ µL kanamycin. Plasmid DNA 

was extracted using a miniprep kit according to the manufacturer’s instructions 

(Qiagen), see Chapter 2.3.2.1. The vector was then linearised with the restriction 

endonuclease BseRI (NEB). The digest reaction contained; 5 µg vector DNA, 5 

µL BseRI, 10 µl 10x NEB buffer 2 and water to 100 µL, and was incubated at 37 

°C for 2 h. Digested plasmid was separated from und igested plasmid by gel 

electrophoresis. The linearised vector was then extracted from the gel using the 

Wizard extraction kit (Promega) as detailed in Chapter 2.3.2.2 and quantified on 

a nanodrop (Thermo Fisher Scientific, USA). 
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3.2.3.2 PCR Amplification  
Oligonucleotide primers for the seven selected glutathione transferase genes 

were designed specifically for Ligation Independent Cloning (LIC) with the pET-

YSBLIC3C vector (http://bioltfws1.york.ac.uk/cgi-bin/primers.cgi) (Table 3.2). 

cDNA template from Section 3.2.1 was used for PCR amplification with the LIC 

primers to produce inserts for each gst gene. 50 ng/µl cDNA was used for each 

50 µl reaction containing 5 µl 10x KOD buffer, 200 µM dNTPs and 0.4 µM 

forward and reverse LIC primers, 1mM MgSO4 and 1 U of KOD Hot Start 

polymerase (Novagen). PCR was performed with a Px2 Thermal Cycler (Thermo 

Scientific). Initial denaturing conditions were 95 °C for 2 min, followed by 30 

cycles of; melting at 95 °C for 30 s, annealing at 45°C for 30 s and elongation at 

72 °C for 20 s. The final extension conditions were  72 °C for 180 s, followed by a 

hold step at 4 °C until use or storage at -20 °C. 

Table 3.2: Primers used for PCR amplification of gsts  for recombinant expression in E. coli . 
Red text indicates the sequence for LIC specific overhangs. 

Primer name Sequence  

GSTU1LIC F CCAGGGACCAGCAATGGCGGAGAAAGAAGAGAGTGTGAAG 

GSTU1LIC R GAGGAGAAGGCGCGTTAGGCAGACTTAATTGTCTCTGCAATTTTGGT 

GSTU3LIC F CCAGGGACCAGCAATGGCCGAGAAAGAAGAGGGTGTGAA 

GSTU3LIC R GAGGAGAAGGCGCGTTAGACCGCTTTGATTCGTCCTACAATTTTCAT 

GSTU4LIC F CCAGGGACCAGCAATGGCGGAGAAAGAAGAGGATGTGAAG 

GSTU4LIC R GAGGAGAAGGCGCGTTAGGCTGATTTGATTCTTTCTACAACTTTCTTC 

GSTU7LIC F CCAGGGACCAGCAATGGCGGAGAGATCAAATTCAGAGGAAG 

GSTU7LIC R GAGGAGAAGGCGCGTTATCAAGCAGATTTGATATTGAGTTTCTCCATACG 

GSTU12LIC F CCAGGGACCAGCAATGGCTCAAAATGGTTCGAATACTACTGTG 

GSTU12LIC R GAGGAGAAGGCGCGTTACTAAACACTGAATTTCTTTTTGGCAAACTCGAT 

GSTU22LIC F CCAGGGACCAGCAATGGCGGATGAAGTGATACTTTTGGATTTTTG 

GSTU22LIC R GAGGAGAAGGCGCGTTAGACACAGTATATCTTCCTAATCTTATAGGC 

GSTU24LIC F CCAGGGACCAGCAATGGCAGATGAGGTGATTCTTCTGGATTTC 

GSTU24LIC R GAGGAGAAGGCGCGTTACTCCAACCCAAGTTTCTTCCTACGTTC 

GSTU25LIC F CCAGGGACCAGCAATGGCAGACGAGGTGATTCTTCTTGATTTC 

GSTU25LIC R GAGGAGAAGGCGCGTTACTATTCGATTTCGATCCCAAGTTTTTTCCTTAG 
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3.2.3.3 T4 Polymerase Treatment  
Digested vector and PCR products were treated with T4 polymerase and 

complimentary bases (A and T) to produce sticky ends and remove the 

requirement for ligation.  

Vector T4 polymerase reactions were performed in a 40 µL volume containing; 

0.5 pmol vector DNA, 4 µL 10x T4 pol buffer, 6.25 mM dTTP, 12.5 mM DTT and 

2.5 units T4 DNA polymerase (Merck). T4 polymerase reactions with the insert 

contained 0.2 pmol PCR product, 2 µL 10x buffer, 2.5 mM dATP, 5 mM DTT and 

1 unit T4 DNA polymerase (Merck). Both reactions were incubated at 22 °C for 

30 min and then inactivated by heating at 75 °C for  20 min. The vector reaction 

was then purified with the Wizard extraction kit (Promega) and its DNA 

concentration quantified on a nanodrop (Thermo Fisher Scientific, USA). 

3.2.3.4 Annealing and Transformation  
The LIC annealing was performed by the addition of 2 µL insert to 1 µL vector 

DNA, incubation for 10 min at room temperature, addition of 1 µL 25mM EDTA 

and further incubation for 10 min at room temperature. The product was then 

transformed into E. coli expression hosts as described in Chapter 2 and positive 

clones were identified by colony PCR and agarose gel electrophoresis (Section 

2.3.4.3 and 2.3.1).  

 

3.2.4 Expression of LIC-GSTs in Escherichia coli  BL21-DE3  
The optimum conditions for expression of the LIC-GST constructs were; E. coli 

BL21-DE3 freshly transformed with pET-YSBLIC3C vector containing the gst 

insert. Cultures were grown in 500 mL flasks containing 200 mL ZY media, 

autoinduction additives (see Section 2.4.1) and 30 µg/mL kanamycin, at 37 °C 

with 180 rpm shaking until an optical density of 0.8 – 1.0 at 600 nm was reached. 

Cultures were then transferred to a 20 °C incubator  with 180 rpm shaking and 

expression time varied from 24 h to 72 h. Cultures were harvested by 

centrifugation at 8500 x g in a Sorvall Evolution RC centrifuge. The pellets were 

weighed and resuspended to 0.5 g/mL in cold PBS, pH 7.4. Cells were then lysed 

by sonication prior to purification. Sonication was performed as described in 

Section 2.4.2. Cell lysates were centrifuged at 17,500 x g, 4 °C for 30 min to 
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remove the cell debris. Supernatants were passed through 0.45 µM syringe filters 

before being applied to the purification media. 

 

3.2.5 Purification of GSTs by Affinity Chromatograp hy  
Purification by both GSH and nickel affinity chromatography was performed as 

described in Section 2.4.3. SDS-PAGE was performed to assess the purity and 

yields of the purified enzymes. The purified protein concentration was determined 

with Pierce Coomassie Dye Binding Reagent, with 1 mL reagent and 1-10 µL 

purified protein. The increase in absorbance at 595 nm was measured with 

reference BSA standards of known protein levels to calculate the purified protein 

concentration, see Figure 3.7.  
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Figure 3.7: Concentration curve of bovine serum alb umin standards  and Pierce Coomassie 
Dye Binding Reagent. Change in absorbance was measured at 595 nm.  

 

3.2.6 GST Activity Assays 
To establish assay conditions and determine activity, each GST was assessed 

for activity with CDNB using adaptations of published protocols (Habig et al. 

1974). Conditions were then repeated with TNT as a substrate, with the addition 

of higher enzyme concentrations and over a longer time course. TNT assays 

were analysed by both HPLC and Griess assay. 
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3.2.6.1 CDNB Assay  
Supernatant or pure protein was added to reaction mix which contained; 1 mM 

CDNB, 100 mM phosphate buffer pH 6.5, 5 mM GSH. Total reaction volume was 

1 mL, The reaction was initiated by the addition of CDNB. Increase in absorption 

due to conjugate production was followed over 1 min by UV-spectrophotometry at 

340 nm. Protein concentrations were determined in triplicate by Bradford Assay, 

with BSA standards (Section 3.2.5). 

3.2.6.2 TNT Assay 

The TNT assays were performed in 100 mM phosphate buffer pH 6.5, 5 mM 

GSH, 200 µM TNT and 100 µg pure protein. Samples were taken over a time 

course and analysed by HPLC or Griess, see below.  

The samples analysed by HPLC had been stopped by the addition of 1% TCA. A 

Waters Alliance 2695 separations module and a Waters 2996 Photodiode Array 

was used to follow TNT transformation. Fifty microlitres of each sample were 

loaded onto a Sunfire C18 5 µm column (Waters, Wexford, Ireland) and run at 1 

mL/ min with the solvent conditions outlined in Table 3.3 where; Buffer A is 

methanol and buffer B is 2 mM ammonium acetate in 5 % methanol. 

For the Griess reactions, to measure nitrite release from TNT conjugation to 

GSH, 180 µl of TNT assay samples were transferred to 96-well plates. 50 µL of 

10 mg/mL sulphanilamide (acidified in 0.68 M HCl) were added and mixed by 

pipetting. Following at 10 min incubation at room temperature 20 µL of 5 mg/mL 

N-(1-naphthyl)-ethylenediaminedihydrochloride was added. The assay was 

incubated for 10 min at room temperature before change in absorbance at 595 

nm was determined, using a Sunrise plate reader (Tecan, Austria). A standard 

nitrite curve was also produced to quantify results.  

Mass spectrometry of the TNT assay samples from Equine GST, GSTU24 and 

GSTU25 was performed using a Q-STAR Pulsar i LC-MS system (Applied 

Biosystems) with a Phenomenex Columbus column (5 µm C18 150 x 3.2 mm) 

and run with HPLC method B (Table 3.3). 
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Table 3.3: HPLC run conditions. Method A is optimised for the Sunfire column, and method B for 
the Phenomenex Columbus column. Buffer A is methanol and buffer B is 2 mM ammonium acetate 
in 5 % methanol 

Method A: 

Time (min) Buffer A Buffer B 

0 60 40 

3 60 40 

4 20 80 

7 60 40 

15 60 40 

 

Method B: 

Time (min) Buffer A Buffer B 

0 20 80 

4 20 80 

7 60 40 

12 60 40 

15 20 80 

25 20 80 
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3.3 Results 

 

3.3.1 GST Gene Structure and Amino Acid Alignment  
The seven GST DNA sequences selected from the microarray data (Lorenz 

2007) were obtained from Arabidopsis information resource website 

(www.tair.org). All the GSTs have complete gene lengths between 950 – 1100 

bp, with a single intron reducing cDNA lengths to 650-680 bp (Figure 3.8). Their 

calculated amino acid lengths range from 218 – 227 and have predicted pI values 

between 4.9 and 6.9. They all belong to the Tau class (GSTU), a plant specific 

class and the largest in Arabidopsis. Many members of the GSTUs have well 

characterised detoxifying activities (Moons 2005). Although no crystal structure 

has been elucidated for an Arabidopsis Tau class GST the structures of 

TaGSTU4 (bread wheat, Triticum tauschii), GmGSTU4 (soya bean, Glycine max) 

and a Zea mays (maize) Tau Gst have been determined, and structural 

comparisons have been inferred for other GSTs from these (Neuefeind et al. 

1997; Thom et al. 2002; Zeng et al. 2005; Axarli et al. 2009).  
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Figure 3.8: Gene structure of seven Tau GSTs . All GSTs have a single intron with two ~300-350 
bp coding regions either side.  

 

The protein sequences of the seven selected GSTUs were aligned using Clustalx 

2.0.9 and BioEdit7 (Figure 3.9) (Hall 1999; Larkin et al. 2007).There are 35 amino 

acids conserved amongst all these GSTs, four of which are known to be involved 

in glutathione binding (Thom et al. 2002). The amino terminal domain is the site 

of glutathione binding (G-site), while the carboxy-terminal domain binds the 

hydrophobic substrate (H-site). Much of the sequence conservation is maintained 

at the G-site, which only binds to GSH or other very similar compounds including 

gamma-glutamyl linked peptides. Important residues at the amino terminal are 

Ser13, Lys40, Glu66 and Ser67, which are critical G-site residues for glutathione 

binding, boxed in blue in Figure 3.9 (Thom et al. 2002; Zeng et al. 2005). 

The H-site lies adjacent to the G-site in the active site cleft; its open nature and 

hydrophobicity allow it to accept a wide range of ligands and substrates. Across 

the GSTs the H-sites demonstrate much higher sequence diversity than the G-

sites, allowing conjugation of GSH to a diverse range of hydrophobic substrates 

(Figure 3.9) (Edwards et al. 2000; Dixon et al. 2002b). The residues thought to be 

important for substrate binding are boxed in green. 
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Linker

 

Figure 3.9: Sequence alignment of seven Tau GSTs  with major structural features demonstrated 
by arrows. Red arrows are beta-sheets and yellow arrows are alpha-helices, the 5-10 residue linker 
region between the two domains is also marked. The blue boxes highlight residues involved in GSH 
binding (G-site), the green boxes indicate the residues involved in substrate binding (H-site). 
Produced using Clustalx 2.0.9 and BioEdit7, adapted from Thom et al., 2002. 
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3.3.2 Expression of GSTs in planta  
To confirm the microarray data, real-time PCR was carried out with plant material 

grown under the same conditions using cDNA from 14-day old Arabidopsis 

seedlings grown hydroponically, treated with 60 µM TNT or DMF-only for 6 h. 

The transcription levels observed by RT-PCR generally mimicked those from 

microarray, but with much more accuracy due to the higher sensitivity and wider 

linear dynamic range achieved by RT-PCR (Figure 3.10).  
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Figure 3.10: Comparison of microarray and RT-PCR  results from cDNA of 14-day old 
Arabidopsis treated with 60 µM TNT for 6 h. Microarray data (black bars) was taken from Lorenz, 
2007, All values are significant with P values < 0.05. RT-PCR (grey bars) was performed as a 
comparison between TNT and DMF only with actin primers used to calibrate to an endogenous 
control gene. Errors are ± Standard Error of the mean.  
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Table 3.4: Expression levels of GSTs in different t issues of Arabidopsis plants   ± SD. Expression levels are absolute values from microarray data of 22,000 genes 
from Arabidopsis as represented on the ATH1 GeneChip from Affymetrix. Arbitrary cut offs of 10 or less for low expression are shown in blue and for 250 or higher for 
high expression are show in in red. Data taken from the Arabidopsis eFP browser (www.http://bar.utoronto.ca/efp). 

  GSTU1 GSTU3 GSTU4 GSTU7 GSTU22 GSTU24 GSTU25 

Dry Seed 22.49 ± 2.73 7.77  ± 0.23 416.49  ± 45.0 382.84  ± 41.7 6.82  ± 0.18 2.15  ± 8.02 0.31  ± 0.13 

Imbibed Seed 22.67  ± 12.28 3.53  ± 3.15 33.73  ± 1.52 210.29  ± 73.08 14.46  ± 10.05 94.02  ± 14.89 19.36  ± 11.45 

Cotyledons 3.73  ± 1.77 3.05  ± 3.43 8.61  ± 1.45 70.73  ± 7.46 9.56  ± 3.21 9.29  ± 2.72 2.16  ± 1.49 

Hypocotl 33.56  ± 1.24 2.35  ± 2.08 8.56 ± 1.45 234.8 ± 12.48 16.36  ± 1.51 27.13  ± 1.63 8.41  ± 0.41 

Root (young) 84.18  ± 5.84 4.6  ± 1.76 8.35 ± 1.3 208.81 ± 1.72 116.25  ± 5.35 119.88  ± 16.7 77.95  ± 14.41 

Vegetative rosette 10.53  ± 2.77 1.65  ± 1.41 11.51  ± 2.7 65.81 ± 6.94 9.95  ± 2.34 11.28  ± 2.64 7.96  ± 7.16 

Root (mature) 131.36  ± 12.68 5.33  ± 2.77 10.3  ± 1.06 218.45  ± 10.82 105.51  ± 5.37 131.71  ± 9.93 58.2  ± 3.23 

Carpel 3.18  ± 1.19 26.1  ± 6.65 17.75  ± 3.79 147.33  ± 19.11 7.1  ± 3.32 16.94  ± 1.46 2.53  ± 1.45 

Petal 8.71  ± 1.67 76.34  ± 3.31 126.08  ± 13.71 179.06 ± 15.39 7.88 ± 2.4 51.91 ± 4.43 2.65 ± 2.51 

Stamen 16.65  ± 4.73 273.2  ± 14.67 341.5 ± 28.61 691.33  ± 12.36 11.8  ± 3.82 70.46  ± 10.02 6.3  ± 4.35 

Sepal 135.65  ± 6.36 256.31  ± 14.04 413.76 ± 28.47 505.68 ± 22.56 13.81 ± 4.49 410.86 ± 34.22 87.25 ± 14.33 

Mature pollen 3.0  ± 1.75 7.66  ± 7.8 5.38 ± 3.31 13.15 ± 8.73 19.28 ± 1.49 14.76 ± 5.38 6.8 ± 1.78 
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Expression levels of the GSTs studied in this work under non-stress conditions, 

are shown in Table 3.1. It is clear that the GSTs are variably expressed 

throughout the different tissues of Arabidopsis. Interestingly, GSTU25, which is 

expressed most highly of these GSTs in response to TNT, shows the lowest 

levels of expression in these tissues under non-stress conditions. U22 also 

expresses at relatively low levels while U4 and U7 show high levels of 

expression, especially in dry seed, stamen and sepal. It is therefore possible that 

the expression levels of GSTs in TNT treated plants contains more similar levels 

of GSTU7 as GSTU25 because the microarray data of these plants was 

normalised, to show upregulation of the GSTs, not total expression values. 

 

3.3.3 Creation of GST Expression Constructs 
To create recombinant enzymes, the genes of seven GSTs most upregulated in 

response to TNT were cloned into the LIC vector system described in Section 

3.2.3.  

Inserts containing the GSTs were amplified from Arabidopsis cDNA by PCR as 

described previously. The products are shown in Figure 3.11 A. The products 

were then inserted into the pETYSBLIC3C plasmid by an annealing step. To 

verify the correct insertion of each GST gene into the vector, colony PCR and 

restriction digests were performed after transformation into cloning host E. coli 

DH5α (Figure 3.11 B and C). The sizes of the PCR products observed on the gel 

correspond with the lengths of each gst. To confirm correct insertion and lack of 

mutations, genes were sequenced and aligned with those from the Arabidopsis 

information resource website (www.tair.org). The double restriction digests 

produced a band the same size as the inserts for each gene (~700 bp) and one 

the same size as the empty vector (5369 bp) while the single digests linearised 

the vector (not shown). The empty vector control is smaller due to lack of insert 

and double digest does not liberate a gst.  
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Figure 3.11:  Cloning of seven Arabidopsis Tau GSTs . A:  The amplification of GSTs 1, 3, 4, 7, 
22, 24 and 25 from Arabidopsis cDNA, to be annealed into the pETYSBLIC 3C vector. B:  Colony 
PCR of LIC-GSTs. E. coli DH5α were transformed with each GST-YSBLIC construct; selected 
colonies clearly show they contain the respective GST gene. Negative controls were performed and 
no bands were present, data not shown. C: Restriction digest of LIC-GST constructs. Uncut 
plasmids (U) and double digests with XbaI and EcoRI (D) are shown for each gst-LIC construct 
including an empty vector control.  
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3.3.4 Optimisation of GST Expression and Purificati on  
The expression of GSTs in E. coli was optimised by varying certain conditions 

including; expression host, time and temperature of induction, and induction 

method. Two methods of expression induction were compared, autoinduction 

media (Section 2.4.1) or IPTG addition. A comparison of the two methods is 

shown for GSTU24 in Figures 3.12 and 3.13. Both induction methods 

successfully stimulated expression and the resultant protein was similarly soluble 

and active, however autoinduction media was favoured for subsequent studies as 

the cell density of cultures grown in this media is much higher, hence more 

protein is produced in total (Studier 2005).  

All seven GSTs were successfully cloned, expressed and at least a fraction of the 

expressed protein was soluble (Figure 3.14). SDS-PAGE gels show GSTU1 and 

U4 express little soluble GST, but the other GST construct appear to express 

more soluble protein with U3 and U25 expressing the most protein of the right 

molecular weight (~25 kDa). Purification was initially performed with GSH 

sepharose as previous literature states that the majority of Tau GSTs can be 

purified by this method (Dixon et al. 2002b). However, only GSTU24 and 25 

effectively bound to the beads and were purified, with lesser yields of GSTU7 and 

U22 (data not shown). Successful purification for all GSTs was only achieved 

with a nickel affinity column, via the His-Tag of the LIC-vector (Figure 3.14). An 

SDS-PAGE of the purification profile of GSTU25 is shown as a representation of 

purification of all the GSTs (Figure 3.15). Three wash steps appear adequate to 

yield pure protein. Where expression levels are especially high, as seen for 

GSTU25 the purification appears to be less effective, with contaminating bands 

visible in the first elution fraction (Figure 3.15). For this reason further 

purifications of GSTU25 were performed on a packed GSH column, and the first 

elution fraction was discarded.  

The GSTs U1 and U4 yielded very little soluble protein despite ample expression 

levels as determined by SDS-PAGE. This low solubility may have hindered 

purification, allowing contaminants to bind the column. This would explain the 

impurities observed in the pure protein shown by SDS-PAGE (Figure 3.14). 

Explanations for this low solubility could be mis-folding or inclusion bodies, as 

previous work with GSTs has identified the expression of poplar GSTs in E. coli 

as inclusion bodies (Lan et al. 2009).  
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Figure 3.12: SDS-PAGE comparison of expression by I PTG induction (I) and autoinduction 
(AI) methods.  SDS-PAGE of soluble fraction of E. coli BL21 expression GSTU24 Cell pellets were 
normalised for weight prior to sonication. GSTU25 has a molecular weight of ~25kDa and its 
expression is therefore observed within the red box. M denotes a molecular weight marker. 
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Figure 3.13:  Activity of GSTU24 with CDNB, comparison of autoind uction and IPTG.  Assays 
were performed with 50 µL of crude lysate from the two different expression conditions; IPTG or 
auto- induction produced. No difference in activity with CDNB can be seen. Samples contained the 
same cell pellet weight prior to sonication and centrifugation. 
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 Figure 3.14 : Expression profile
Lanes show; cells grown in LB (
protein. Expected GST size is ~26 kDa and the large bands at this weight in the induced samples 
demonstrate that all GSTs expres
do not produce any additional
molecular weight marker. 

Figure 3.15:  Purification of GSTU25
unbound fraction (U), wash steps (W), 
weight marker. 

 

M 

Chapter 3: The Cloning, Expression, Purification and Characterisation of 
Glutathione Transferases from Arabidopsis 

: Expression profile  and purification of all GSTs  including empty vector control. 
Lanes show; cells grown in LB (0), induced cell culture (I), lysed cell supernatant (L)

. Expected GST size is ~26 kDa and the large bands at this weight in the induced samples 
demonstrate that all GSTs express well and the GSTs are soluble. The empty vector control cells 
do not produce any additional observable bands at ~25 kDa following induction. 

 

Purification of GSTU25 . A purification profile by SDS-PAGE showing cell lysate (L) 
unbound fraction (U), wash steps (W), elutions (E) and purified protein. M den
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3.3.5 Activity of GSTs with CDNB 
Activity of the recombinant GSTs towards CDNB was tested 

spectrophotometrically both in lysed cell supernatant (Figure 3.16) and with 

purified protein (Figure 3.17). The GSTs showed variability in activity towards 

CDNB, both lysed cell and purified protein. This is in accord with the findings of 

Dixon 2009, where activities of GSTs range from 1.8 – 1240 nkat.mg-1. Five of 

the seven GSTs exhibited some level of activity with GSTU25 proving to be the 

most active in both cases. GSTs U1 and U4 were the only two enzymes not to 

exhibit significantly more activity the empty vector (E.V) control, this may be due 

to their low solubility levels; however previous work has shown that these two 

GSTs have very low activities with CDNB (U1 =17.8 and U4 =10.4 nkat.mg-1), so 

perhaps the activity is simply too low to observe under these assay conditions 

(Dixon et al. 2009). This suggests that CDNB is not suitable as a universal 

substrate for assessment of activity; however, its structural similarities to TNT 

may make it a good indicator of activity towards this explosive. Assays of activity 

with purified enzyme and TNT were performed to determine this. 
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Figure 3.16:  Rate of conjugation of CDNB by 200 µg crude cell lysate  for each of the cloned 
GSTs and an empty vector control. Lysates were normalised for whole protein concentration by 
Bradford assay. Asterisks show significant differences to EV control where P values > 0.05 as 
determined by Student’s t-Test. 
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Figure 3.17:  Rate of conjugation of CDNB by 10 µg purified enzyme , for each of the cloned 
GSTs and equivalent volume of purified empty vector lysate (E.V) for the negative control. Protein 
concentration was determined by Bradford assay. Asterisks show significant differences to EV 
control where P values > 0.05 as determined by Student’s t-Test. 
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3.3.6 Activity of GSTs with TNT 
A preliminary assay was performed with EqGST and TNT to determine a suitable 

HPLC method (Figure 3.18). The assay conditions employed were a variation on 

those used for CDNB, replacing CDNB with TNT, over 18 h rather than the five 

day incubation employed by Brentner et al. 2008. The TNT concentration used 

was 200 µM, as used previously for pure enzyme assays with TNT derivatives 

(Lorenz 2007). Numerous HPLC methods were trialled with both isocratic and 

gradient flows of many solvent compositions to gain sufficient separation of the 

product and substrate peaks, within an acceptable timeframe. The optimised 

method is described in Table 3.3 A. Figure 3.18 shows a chromatogram of the 

separation of peaks as well as the absorption spectra for the substrate and 

product. The same traces are observed for, GSTU24, U25 and equine GST. The 

product and TNT spectra differ indicating different extinction coefficients of the 

compounds therefore calculations made from TNT standards for TNT assay 

peaks cannot be performed on product peaks. To stop reactions 1 % TCA was 

used as the TCA peak eluted between 2-4 min and was shown not to interfere 

with peaks of interest at 6.5 and 11.6 min. 

HPLC results were generated by UV/Vis absorption detection and peaks 

generated on the traces are assumed to be proportional to concentration (Figure 

3.18). However, to determine the concentration of TNT a standard curve was 

performed. A range of known concentrations of TNT were run on the HPLC in 

triplicate for each HPLC assay, using the same run conditions. A standard curve 

of peak areas was then used to calculate the TNT concentrations in assay 

samples (Figure 3.19). Unfortunately no standards were commercially available 

for the product so concentration values could not be determined. 
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Product

TNT

 

Figure 3.18: HPLC trace of TNT assay with GST. A: C hromatogram at 230 nm of the reaction 
between GSH and TNT  as catalysed by GSTs (GSTU24, U25 and Equine GST). Assay conditions 
were 200 µM TNT, 5 mM GSH and 10U/ 100 µg enzyme in 100 mM phosphate buffer pH 6.5. 
Samples were incubated at 20 °C for 18 h; reactions were stopped with 1% TCA. The HPLC 
method is described in section 3.2.. The product has a retention time of 6.5 min while TNT has a 
retention time of 11.67 min. 3.18 B: Absorption Spectra of product. 3.18 C: Abso rption spectra 
of TNT. 
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Figure 3.19: TNT standard curve:  Trend line equation y = 38736x can be used in TNT assay 
results from the HPLC to calculate TNT concentration from peak area. A new standard curve was 
produced for every HPLC run. 

Investigations to determine if these plant GSTs are able to conjugate GSH to 

TNT were performed using both HPLC and Griess assays. HPLC analysis 

measuring TNT removal from assay samples provides a quantitative 

determination of any activity with TNT (Fig. 3.20). As previous reports with equine 

GST indicate that TNT conjugates to GSH by nitrite removal (Brentner et al. 

2008) the Griess assay was employed. The Griess assay is a colorimetric assay, 

where free nitrite binds to sulphanilamide, which in the presence of N-(1-

naphthyl) ethylenediamine produces an azo product with pink colouration (λmax = 

540 nm). This indicates whether activity with TNT releases free nitrite.  

Figure 3.20 shows the TNT concentrations in assays for each of the GSTs over 

18 h. Depletion in TNT concentration indicates conjugation to GSH as the boiled 

enzyme control shows no TNT removal. This TNT removal is evident for at least 

three of the AtGSTs (U22, U24 and U25) demonstrating detectable levels of 

activity against TNT.  
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Figure 3.20: TNT assay of purified GSTs  with 100 µg / mL protein and 10U for Equine GST. 
Assay conditions were 200 µM TNT, 5 mM GSH and 100 ug / mL protein in 100 mM phosphate 
buffer pH 6.5. Samples were incubated at 20 °C for 24 h reactions were stopped with 1% TCA. The 
HPLC method is described in Section 3.2.6 
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The Griess assays (Figure 3.21) show pink coloration for GSTs U24, U25 and 

equine. A standard curve for nitrite was produced to quantify these results and 

this showed that GSTU25 yields 40 µM nitrite which equates to 20 % of the 200 

µM starting TNT concentration. Equine GST released ~30 µM nitrite and 

GSTU24 released ~10 µM after a 24 h reaction.  

Interestingly, analysis of TNT assays by both HPLC and Griess shows that 

GSTU24 and GSTU25, the enzymes with the highest CDNB activity and most 

upregulated in Arabidopsis in response to TNT are also active against TNT. 

These positive results from the Griess assay and the presence of the product 

observed by HPLC analysis suggest that conjugation reaction between TNT and 

GSH, via nitrite removal, observed by Brentner et al. 2008 for equine liver extract 

may also be performed by these Arabidopsis GSTs. 

 

3.3.7 Identification of the TNT Conjugation Product  
Mass spectrometry (MS) was performed on TNT enzyme assays of GSTU24, 

U25 and Equine GST; Figure 3.22A shows the LC traces of GSTU25, 

representative for each sample. Equine, GSTU25 and GSTU24 assays all 

contained a TNT peak at ~11.4 min with a [M-H]- of 225.98 and a product peak 

with a retention time of 8.98 min and a [M-H]- of 486.04. Further fragmentation of 

the product by MS/MS analysis was performed; the conjugate (486) fragments 

into compounds with sizes representative of; GSH(272) and TNT (213). The 

masses of the two compounds correlate to a conjugation via the sulphur group of 

glutathione with the removal of a nitro group of TNT (Figure 3.23). Interestingly a 

further (dominant) product was identified from the GSTU24 assay only, eluting at 

5.64 min with a total [M-H]- of 517. This fragmented to 272 (glutathione) and 

further peaks (179, 209, 254 and 306), but none of these, when combined with 

the 272 from GSH, add up to the 517 of the complete product. No further 

investigation was performed on this product as it is likely to be a conjugated 

contaminant rather than an additional product as the assay contained only pure 

enzyme and substrates. 
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Figure 3.22: Mass Spectrometry of GST assay with TNT.
GSTU25. Peaks were also evident for
MS). Peak at 11.4 min (TNT) has a m/z ratio of 225.96, Peak at 9.0 min (Conjugate) has a peak of 
486.04 3.22 C: MS/MS spectrum GSTU25 product peak (
486.04 further fragments to 212.97 and 272.06
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Mass Spectrometry of GST assay with TNT.  A: Total ion chromatogram (TIC) 
Peaks were also evident for Equine and U24.  3.22 B Mass spectrum of 

(TNT) has a m/z ratio of 225.96, Peak at 9.0 min (Conjugate) has a peak of 
MS/MS spectrum GSTU25 product peak (-TOF product) at 9.0 min. Product of 

486.04 further fragments to 212.97 and 272.06. 
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Figure 3.23: Structure of GST, TNT and their conjug ation product . TNT is bound with the 
sulphyl group from glutathione releasing a nitro group, producing a glutathionyl-dinitrotoluene.  
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3.4 Conclusions 

To elucidate the mechanisms behind TNT transformation in plants, the 

detoxification enzymes found to be upregulated in Arabidopsis were investigated. 

Microarray data identified seven Tau class GSTs to be upregulated greater than 

eight fold following TNT treatment. Microarrays are valuable for identification of 

transcript expression changes from an entire genome however their accuracy is 

low so verification of GST upregulation by RT-PCR was performed. The SYBR 

green dye used for RT-PCR has reliable detection limits from as little as two 

copies of the target, is more sensitive and specific than microarray. It therefore 

produces a more precise representation of transcript expression levels for 

individual genes than a microarray. The results for the RT-PCR followed the 

microarray results showing that all seven GSTs were indeed upregulated but with 

~ 40 to 300 fold upregulation compared to 8 to 46 fold as seen from the 

microarray.  

In contrast to the results from the microarray data, GSTU24 appears to be the 

most upregulated by TNT when measured by RT-PCR analysis, not GSTU25, 

however this is in accordance with the results observed by SAGE analysis, where 

this was the only GST shown to be upregulated following TNT treatment (Ekman 

et al. 2003). 

The ATP-binding cassettes associated with transporting glutathione conjugates 

out of the cytosol, into the vacuole are AtMRP1 and AtMRP2. The transcripts for 

these transporters are also upregulated in the microarray data, 2 and 4.8 fold 

respectively (Lorenz 2007), suggesting that Arabidopsis may conjugate TNT to 

GSH and transport the resultant hydrophilic molecule into the vacuole. 

This upregulation suggests that the GSTs may be active against TNT by 

catalysing the conjugation of TNT to GSH. However the induction and regulation 

of GSTs is complex and GSTs perform a variety of roles besides conjugation. 

Plant GST promoters contain ocs elements and other motifs which are activated 

by a variety of electrophilic agents including both active hormones, auxin, salicylic 

acid and inactive hormone analogues, as well as other oxidative stress causing 

agents like heavy metals and hydrogen peroxide (Ulmasov et al. 1995; Frova 

2003). It is therefore possible that the upregulation of these seven GSTs is 

caused by a general stress response resulting from the other stresses induced by 
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TNT treatment, not a specific detoxification response (Zhang et al. 1994; Chen et 

al. 1999). The GSTs are commonly upregulated in response to a variety of 

stresses (Section 3.1.3), many of which induce a predictable, coordinate GST 

response although no increase in conjugation products are seen, suggesting 

another role for GSTs (DeRidder et al. 2002; Wagner et al. 2002; Sappl et al. 

2009). Also, many GSTs appear to exhibit close co-regulation in microarray data, 

for example GSTs U3 and U4; but this may also be due to the inability of 

microarray probes to distinguish between these two genes, or perhaps that they 

share promoter sequence (Dixon et al. 2010). This suggests that upregulation of 

GSTs in response to TNT stress is not due to a role in TNT detoxification but 

instead is the result of a stress responsiveness pattern. However, the observed 

activity of the upregulated GSTs with TNT does infer that there may be some in 

vivo conjugating activity toward the explosive, and not just a coordinated stress 

response. This will be investigated in the remaining chapters of this thesis.  

To investigate the roles that these enzymes might play in the response of plants 

to TNT, the GSTs were successfully cloned, expressed and purified.  

Purification difficulties were observed when using GSH sepharose for all the 

recombinant GSTs except GSTU24 and U25. It has been observed that binding 

affinities to GSH vary depending on the electrophilic co-substrate used (Axarli 

2008). For example, the Km
GSH for ZmGSTF1 varies between 3.6 µM and 937 µM 

for cumene hydroperoxide and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide (MTT) respectively (Axarli et al. 2008). It has been proposed 

that this results from intra-subunit modulation between the G-site and the H-site 

(Labrou et al. 2001). Subsequently, it is therefore possible that the binding 

affinities for these tau GSTs are not sufficient for GSH affinity purification in the 

absence of an electrophilic co-substrate. These difficulties were not observed 

when purification was achieved with a nickel affinity column, via the His-Tag of 

the LIC-vector. 

Previous characterisation of the Arabidopsis Tau GSTs has shown GSTU1, U3, 

U4, U7 and U22 to have very little CDNB activity while GSTU24 and U25 are 

highly active (Dixon et al. 2009).  

Many GSTs have little or no activity with CDNB which shows it is not a universal 

assay for catalytic activity, but in addition it is also possible that not all GSTs 
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exhibit any conjugation ability, let alone with CDNB but instead act as ligandins, 

or GSH-dependent peroxidases (GPOX). The lack of activity observed for GSTs 

U1 and U4 does not therefore prove inactivity as they may still be active against a 

different substrate. Previous work with the GSTs used in this study has shown 

that only GSTU24 and U25 show significant GPOX activity (determined by 

activity with cumene hydroperoxide) and these are also the most active CDNB 

conjugating enzymes (Dixon et al. 2009). Glutathionylation by GSTs is their best 

studied activity, however little evidence suggests this to be a major role of GSTs 

with endogenous substrates. Perhaps this is due to instability or rapid metabolism 

of conjugates by the corresponding processing pathway. It is likely that some 

natural conjugation occurs, otherwise the pressure to maintain this co-regulation 

would be lost. However there are other characterised roles of GSTs; non 

conjugative as well as non-enzymatic for example transport and stabilisation of 

flavonoid pigments. They likely play important roles in the metabolism of 

endogenous compounds for example fatty acid derivatives and porphyrinogens, 

though further characterisation of putative natural substrates is required (Dixon et 

al. 2008; Dixon et al. 2009). 

Purified enzymes were assayed for activity with TNT; samples were analysed by 

Griess and HPLC. The GSTs which are most active with CDNB (GSTU25 and 

U24) are similarly the most active with TNT. This could either be an indication of 

overall activity of the enzymes, or it could be a reflection of the structural 

similarities of the two xenobiotics. Characterisation of CDNB conjugation has 

shown that a glutathionyl-dinitrobenzene conjugate is produced by removal of the 

chloride ion (Van Der Aar et al. 1996; Bowman et al. 2007). Although TNT lacks 

any chloride atoms, active site residues may still play a similar role for the two 

substrates. Previous work has also found Equine GSTs to have activity towards 

TNT (Brentner et al. 2008), conjugating it to GSH via the removal of a nitro- group 

producing glutathionyl-dinitrotoluene. There is an absence of colour for GSTU22 

which had also caused a decrease in TNT concentrations when measured by 

HPLC. This could be due to its activity with TNT by other means than nitro-group 

removal. However it is more likely that the Griess assay is less sensitive as the 

product spectra observed on the HPLC traces for GSTU22 was identical to U24 

and U25, which do cause nitrite liberation.  
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Mass spectrometry of the conjugates produced by GSTU24 and U25 show the 

conjugation of GSH and TNT via liberation of nitrite, as also observed by 

Brentner et al. 2008 with equine GST. U25 was the more active of those tested, 

releasing more than four times as much nitrite and GSTU24. Therefore U25 was 

selected for more detailed biochemical characterisation, presented in subsequent 

chapters within this thesis. The in vitro conjugation activity of GSTs U24 and U25 

suggests that they have an in vivo role in the transformation of TNT, this will also 

be investigated. 
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Chapter 4: The Biochemical Characterisation of 
AtGSTU25 

 

4.1 Introduction 

 

Hundreds of plant GSTs have been characterised due to their importance in 

herbicide detoxification or to elucidate their endogenous roles. This includes 

whole families of GSTs from Arabidopsis (Dixon et al. 2009) and poplar (Lan et 

al. 2009) and many individuals from maize, rice and wheat. Studies have used 

mixed GSTs purified directly from a crude plant extract using GSH columns; 

however, this approach has only proven effective for a limited number of GSTs, 

mostly within the Tau and Phi classes. Because of the limitations, this method 

has only been used to give an idea of the broad activity present in the GST family 

rather than that of individual enzymes. To characterise individual GST enzymes, 

the genes have been cloned, expressed in bacterial systems and purified using 

affinity tags or GSH binding (Thom et al. 2002; Dixon et al. 2009; Lan et al. 2009)  

The activities of purified GSTs towards a range of substrates have been tested. 

These include herbicides and endogenous substrates such as porphyrinogens 

and oxylipins, in addition to chlorodinitrobenzene (CDNB) and 

benzylisothiocyanate (BITC), a natural plant compound with antibiotic properties 

(Brusewitz et al. 1977), which are considered to be a generic substrates, as many 

GSTs have been found to have activity towards them (Figure 4.1). For 

Arabidopsis, 41 of the total 54 GSTs have now been purified, recombinantly 

expressed and assayed for activity (Dixon et al. 2009). However, while many of 

the GSTs have activity towards the generic substrate CDNB and/ or BITC, others 

have no known substrates including AtGSTU11 and AtGSTF5 and 14 (Dixon et 

al. 2009). It has been proposed that some GSTs have no conjugating activities at 

all but instead may be involved in intracellular signalling, responses to cytokinin 

and auxin hormones and transport of secondary metabolites (Lan et al. 2009; 

Dixon et al. 2010). This is discussed in more detail in Chapter 5.  
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Figure 4.1: Structures of known GSTU25 substrates
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conjugated (see Fig 3.
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changes in spectral characteristics, analysis by HPLC is often preferred. 
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Figure 4.1: Structures of known GSTU25 substrates : chlorodinitrobenzene (CDNB), 
benzylisothiocyanate (BITC), 2,4,6-trinitrotoluene (TNT) and cumene hydroperoxide (Cumene

The conditions for assaying GSTs are mostly variations of those first determined 

by Habig et. al (1974) to measure the conjugation of CDNB and GSH by crude rat 

liver GST extracts. The spectrophotometric assay contains 100 mM potassium 

phosphate pH 6.5, 1 mM CDNB, 5 mM GSH (in excess) at 25 

and monitors the increase in absorbance at 340 nm as CDNB is 

conjugated (see Fig 3.5). Activity assays of other substrates are often based on 

the same method, though as many conjugation reactions do not cause large 

hanges in spectral characteristics, analysis by HPLC is often preferred. 

Generally no cofactors or reducing factors are necessary for activity, though the 

addition of BSA as a carrier protein may aid activity in reactions with low levels of 

ll plant GSTs characterised with CDNB have pH optima between 

8.5 and are assayed between 25 °C and 37 ° C, with protein inactivation at 

temperatures over 55 °C (Scalla  et al. 2002; Edwards et al. 2005; Nutricat

2007) .  
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Members of the GST family exhibit a wide range of substrate specificities, not 

only within the distinct classes, a reflection of the low sequence identity in the 

hydrophobic binding site but single enzymes can be catalytically active towards a 

variety of structurally dissimilar substrates. The H-site is a large hydrophobic cleft 

with numerous putative binding residues, lying adjacent to the glutathione binding 

site (see Figure 1.8) (Thom et al. 2002). The most studied Arabidopsis GST, 

AtGSTU19 (previously known as AtGST8), is a good example of a GST with a 

wide substrate range. It is active against both commonly used GST generic 

substrates CDNB, BITC and has high activity towards a range of herbicides 

including chloroacetanilides and diphenyl ethers in addition to binding many fatty 

acids, oxophytodienoic acid and 2-S-glutathionylchlorogenic acid (DeRidder et al. 

2006; Dixon et al. 2009).  

 

Recently, GSTU25 has been identified as having high glutathione peroxidase 

(GPOX) activity towards the synthetic substrate cumene hydroperoxide (Figure 

4.1), however it has surprisingly little activity with the putative in planta 

substrates; fatty acid hydroperoxides (Dixon et al. 2009). GSTU25 has the ability 

to bind short chain length fatty acids adducts, and when expressed in E. coli 

hydroxylated fatty acids bind specifically to the enzyme, while the closely related 

GSTU28 only accepts non-hydroxylated fatty acids (Dixon et al. 2009). When the 

Arabidopsis GSTs are expressed in tobacco, U25 and U28 both accept a wide 

range of fatty acid derivates including oxophytodienoic acid (OPDA), which is 

thought to be conjugated through Michael addition to the α,β- unsaturated 

carbonyl group (Dixon et al. 2009). This is an example of the substrate diversity 

of closely related GSTs. Additionally; GSTU25 may conjugate endogenous 

substrates to GSH, or act as a carrier for spontaneously formed conjugates 

which, once de-glutathionylated, may regain activity. BITC is a compound 

commonly used as a generic substrate, although unlike CDNB, BITC is mainly 

specific to the Tau class GSTs (Figure 4.1). Despite this, the Tau GST; GSTU25 

has low activity with BITC, only 62 nkat.mg-1, compared to 124 nkat.mg-1 of 

GSTU24 (which has 78 % protein identity with GSTU25), though this low activity 

is not unusual within the phylogenetic clade to which GSTU25 belongs (Dixon et 

al. 2009). 
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In Chapter 3 the activity of GSTU25 with TNT, producing a conjugate with the 

removal of a nitro-group, was shown. As GSTs are well known to have roles in 

detoxification through conjugation and other means (Marrs 1996), then the 

conjugation of TNT to GSH could be an important pathway in the detoxification of 

TNT by plants. In this Chapter the activity of AtGSTU25 with TNT has been 

further characterised. Optimal assay conditions including; substrate 

concentration, pH, temperature and time have been identified. Substrate 

specificity was assessed with compounds related to TNT, including explosives 

and TNT transformation products. Kinetic values of the reaction for both CDNB 

and TNT are also presented.  
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4.2 Methods 

 

4.2.1 Cloning, Expression and Purification 
Cloning and protein expression were performed as described in Chapter 3. Pure 

protein was produced by affinity chromatography through a 5 mL glutathione 

(GSH) sepharose column; GSTrap 4B (GE Healthcare, Little Chalfont, UK). The 

column was equilibrated with five column volumes of PBS pH 7.4. Filtered lysate 

(see Section 2.4.2) was applied at a flow rate of 0.5 mL/ min. Five column 

volumes of PBS was used to wash the column before elution with one column 

volume of 50 mM Tris-HCl with 10 mM GSH pH 8.0. The first 1 mL of eluate was 

discarded due to impurities and low yield. Protein concentration was measured 

by Bradford assay and purity determined by SDS-PAGE analysis (Section 2.4.4). 

Aliquots of pooled eluate were frozen at -80 °C unt il use. 

 

4.2.2 TNT Enzyme Assay 
Assays with TNT contained GST, TNT, GSH and buffer, as determined by 

optimisation assays. Reaction times were three to 24 h at 30 °C with 100 mM 

potassium phosphate buffer pH 6.5, 200 µM TNT, 5 mM GSH and enzyme was 

added to start the reaction. Reactions were stopped with 10% (v/v) TCA (240 mg 

/ mL) and stored at -80 °C until analysis. Samples were centrifuged at 16 000 x g 

for 10 min after defrosting to remove precipitate prior to HPLC analysis. HPLC 

analyses were performed on a Waters Alliance 2695 separations module and a 

Waters 2996 Photodiode Array, with a C18 Techsphere ODS 80 A 5 µ column 

(250 mm x 4.6 mm) (Chromacol). Data analysis was performed with Empower 

Pro Analysis software. Fifty microlitres of sample was injected onto the column 

and run conditions are outlined in Table 4.1 
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Table 4.1: HPLC run conditions,  Buffer A is methanol and Buffer B is 2 mM ammonium acetate 
with 5 % methanol. Sample and column chamber were set at 25 °C.  

Time (min) Buffer A (%) Buffer B (%) 

0 20 80 

4 20 80 

7 60 40 

12 60 40 

15 20 80 

25 20 80 

 

4.2.3 ADNT RDX, PETN, DNT 
The TNT, hexahydrotrinitrotriazine (RDX), and pentaerythritoltetranitrate (PETN) 

were supplied by the Defence Science and Technology Laboratory (DSTL, Fort 

Halstead, UK). Dinitrotoluene (DNT) was purchased from Sigma Aldrich (Poole, 

UK). Stock solutions were prepared to a 1 M concentration in dimethylsulphoxide 

(DMSO). RDX and DNT were assayed at 180 µM, the solubility limit of RDX at 20 

°C. PETN was assayed at 6.6 µM as it is highly insoluble. Aminodinitrotoluenes 

(ADNTs) were obtained from Accustandard (New Haven, US), as a 1 mg/ml 

stock, 40 µM ADNT were used for reactions. Assays were performed in triplicate 

and contained appropriate substrate, 1 mg/mL enzyme and 5 mM GSH in 

potassium phosphate pH 6.5. A positive TNT control was also run in parallel. 

Experiments were carried out at 30 °C over 24 h and  stopped with TCA. Samples 

were analysed at various intervals and reactions were stopped with 10 % (v/v) 

TCA (240 mg / mL) and centrifuged at 16 000 x g for 10 min prior to loading on 

the HPLC and run according to the conditions outlined in Table 4.2, with a C18 

Techsphere ODS 80 A 5 µ column (250 mm x 4.6 mm) (Chromacol) for PETN 

and a Sunfire C18 5 µm column (Waters, Wexford, Ireland) for all other 

substrates. For PETN an isocratic run of 50 % Methanol and 50 % water for 25 

min was used. TNT, RDX, DNT PETN and ADNT peaks were analysed at a 

wavelength of 230 nm (Figure 4.2). 
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Table 4.2:  HPLC run conditions , Buffer A is methanol and Buffer B is 2 mM ammonium acetate 
with 5 % methanol. Sample and column chamber were set at 25 °C.  

 

Time (min) Buffer A Buffer B 

0 60 40 

3 60 40 

4 20 80 

7 60 40 

15 60 40 
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Figure 4.2: HPLC traces of the substrates assayed f or GST activity .  
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4.2.4 CDNB Activity Assay 
A spectrophotometric assay was performed with GSTU25 and CDNB as 

described in Chapter 3.2.6.1. A range of CDNB concentrations was used, from 25 

to 1000 µM, the rates of CDNB conjugate production were measured in triplicate 

over 1 min and Michaelis-Menten kinetic parameters were calculated.  

A non-linear regression was applied to the rate plotted against CDNB 

concentration, using the equation;  

� �
��

� � �
 

where a =Vmax and b = Km.  

 

4.2.5 Kinetic Analysis with TNT 
The TNT solubility in DMSO was measured by adding various concentrations (25 

to 1000 µM) of TNT to solutions of 1, 5 and 10 % DMSO. These were then 

analysed by HPLC analysis for apparent TNT concentration. Effects of DMSO on 

enzyme activity were analysed by measuring conjugate production in a standard 

TNT assay with the addition of 0 to 20 % DMSO. Kinetic experiments were 

performed with 0 to 1000 µM TNT, 5 mM GSH, 2.27 mg / mL enzyme in 100 mM 

potassium phosphate buffer pH 6.5, with samples removed every 5 min over a 

27.5 min time course. Aliquots were stopped with 1 % TCA (v/v) and analysed by 

HPLC. To calculate kinetic values the rate of the points over 25 min were plotted 

and a non linear regression was applied by sigma plot; 

� �
��

� � �
 

where a =Vmax and b = Km.  
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4.3 Results 

In Chapter 3 it was shown that GSTU25 exhibits the highest activity against TNT 

when compared to all the other GSTs upregulated in Arabidopsis plants after 6 h 

TNT exposure. It is also one of only two Arabidopsis GSTs found to release nitrite 

from TNT. For these reasons it was selected for further characterisation. Due to 

the lack of previous analysis of recombinant GSTs with TNT, optimisation of 

assay conditions was undertaken and kinetic parameters were established. 

 

4.3.1 Establishing Assay Conditions: GST Concentrat ion 
To assess a suitable quantity of enzyme for use in assays a time course was 

performed over 24 h with various concentrations of enzyme (determined by 

Bradford assay, see Chapter 3.2.5). Concentration of the product could not be 

determined due to lack of commercially available standards and it was not 

possible to purify significant quantities to establish the extinction coefficient. A 

non-enzymatic conjugation reaction with GSH and TNT was attempted at pH 9 

and pH 10 to produce conjugate standards; however, this was unsuccessful and 

no decrease in TNT was observed by HPLC analysis of these samples. This may 

have been due to rapid oxidation of GSH in the system. Conjugate 

concentrations are therefore represented by HPLC peak area measurements. All 

enzyme concentrations tested produced conjugate at reliably detectable levels. 

Equine GST was assayed at 11.5 U /mL. Figure 4.3 shows the decrease in TNT 

concentration appears to be inversely related to the increase in product. Over 24 

h only half the TNT had been transformed, therefore subsequent assays, which 

were run over shorter time courses, sometimes contain higher concentrations of 

enzyme. There is also a striking levelling off of activity between 6 h and 24 h, 

likely due to oxidation of GSH as TNT concentration remains high, another 

reason could be product inhibition. Further assays were run over a shorter time 

course to minimise the consequences of this. 
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Figure 4.3: Effect of enzyme concentration  on GST activity towards TNT :TNT depletion and 
conjugate production. A 24 h time course assay with 200 µM TNT, 5 mM GSH and 50 – 800 µg 
GSTU25 in 100 mM phosphate buffer pH 6.5. 4.3 A: TNT concentration and 4.3 B: Conjugate 
peak area.  
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4.3.2 Establishing Assay Conditions: TNT Concentrat ion 
To ensure that TNT and product levels were detectable and that their respective 

decline and production is linear, a TNT concentration assay was performed. The 

enzyme was incubated in potassium phosphate buffer pH 6.5 with 10 to 200 µM 

TNT, 5 mM GSH for 120 min. Samples were removed at 0, 15, 30, 60, 120 and 

180 min and stopped with 1 % TCA (v/v) to precipitate the protein. TNT has an 

aqueous solubility limit of 512 µM at 20 °C therefore to ensure all the TNT was 

solubilised; the highest TNT concentration used was just 200 µM. As anticipated, 

Figure 4.4 shows the reaction rates were fastest with the highest concentrations 

used; 100 and 200 µM TNT. Subsequent assays with TNT were performed with 

200 µM TNT, to maximise conjugate production. 
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Figure 4.4:  Effect of TNT concentration  on GST activity towards TNT :TNT depletion and 
conjugate production. A 3 h time course assay with variable concentrations of, 5 mM GSH and 800 
µg GSTU25 in 100 mM potassium phosphate buffer pH 6.5. A: shows TNT concentration and B: 
conjugate peak area. 
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4.3.3 Effect of pH on GST Activity 
To determine the optimum pH for the reaction of GST with TNT, three different 

buffers were used spanning a range in pH from 5.5 to 8.5. The amount of TNT 

conjugate produced by 800 µg/mL GSTU25 in 400 µL after 3 h was determined 

by HPLC analysis (Figure 4.5). TNT depletion was also measured but as pH 

increases the observed TNT concentration decreases, likely due to alkaline 

hydrolysis of TNT (Emmrich 1999). Figure 4.5 shows the optimum pH for activity 

as observed by maximal GS-DNT production is pH 6.5. At pH 5.5, conjugate 

production by GSTU25 with TNT is reduced four-fold and at pH 8.5, a five-fold 

reduction was observed, though in both cases some enzymatic activity remained. 

No significant differences were observed between the two buffers (potassium 

phosphate and MOPS) at the optimum pH and further experiments were 

performed with potassium phosphate buffer, as its buffering range spans the 

optimum, where MOPS is at the limits of its capacity. The error bars are also 

smaller for potassium phosphate than for MOPS, this again may be due to the 

buffering range, but corroborates the decision to select potassium phosphate.  
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Figure 4.5: Effect of pH on GST activity towards TN T. HPLC analysis of assays performed with 
GSTU25, 200 µM TNT, 5 mM GSH and various buffers. The reactions were incubated at 30 °C 
over 3 h. All experiments were performed in triplicate, points are the mean and error bars represent 
±1 standard deviation from the mean. 4.5 A: TNT concentration and 4.5 B: Conjugate peak area. 
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4.3.4 Effect of Temperature on GST Activity and Sta bility 
It is established that enzyme activity increases with temperature, however so 

does enzyme denaturation. The optimum temperature for assaying an enzyme is 

deemed the highest temperature at which the enzyme remains stable over the 

length of the reaction. To discover at which temperature the reaction proceeds 

fastest without denaturation, GSTU25 was incubated at temperatures ranging 

from 4 °C to 42 °C in potassium phosphate buffer pH  6.5 with 200 µM TNT, 5 mM 

GSH for 120 min. Samples were removed at 15, 30, 60 and 120 min and stopped 

with 1 % TCA (v/v). Figure 4.6 shows the highest activity was observed at 37 °C, 

the lowest activity was at 4 °C. The rate at 42 °C was almost half that of 37 °C, 

likely due to denaturation. The thermal stability of the enzyme was therefore 

measured (Figure 4.7) by incubating GSTU25 at the various temperatures for 1 h 

prior to addition of substrates and assaying over 3 h at 30°C. HPLC analysis of 

the TNT concentration was used to determine remaining activity. It is assumed 

that this decrease in activity is due to denaturation as at the higher temperatures, 

42 °C and 55 °C precipitate was visible prior to ad dition of assay components to 

the enzyme. Temperature is also known to affect rates of GSH oxidation; 

however a large excess of GSH (5 mM) was used such that over the time course 

of the reaction enough GSH should remain in excess and assayed at 30 °C even 

for stability assay (Habig et al. 1974). The first GST assay method with CDNB 

used 5 mM GSH and other researchers now use between 1 to 10 mM GSH 

(Habig et al. 1974; Edwards et al. 2005; Dixon et al. 2008), all of which contain 

GSH in excess. A temperature of 30 °C was selected as the optimal temperature 

for further assays as GSTU25 has the highest activity at this temperature (Figure 

4.6) without any loss of stability over the time course tested (Figure 4.7). 
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Figure 4.6: Effect of temperature on GST activity t owards TNT . HPLC analysis of assays 
performed with GSTU25, 200 µM TNT, 5 mM GSH and potassium phosphate pH 6.5. The reactions 
were incubated at various temperatures from 4 – 42 °C over 3 h. All experiments were performed in 
triplicate, points are the mean and error bars represent ±1 standard deviation from the mean. A: 
TNT concentration and B: conjugate peak area. 
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Figure 4.7: Temperature stability of GSTU25.  Purified GSTU25 was preincubated for 1 h in buffer 
at various temperatures from 4 – 55 °C. Solutions w ere cooled/ warmed to 30 °C before GSH and 
TNT were added to begin the reaction. After 3 h the samples were stopped with 1 % TCA before 
HPLC analysis. All experiments were performed in triplicate, points show the means and error bars 
represent ± standard deviation.  

 

4.3.5 Time Course of GSTU25 and TNT 
 

A time course reaction of GSTU25 with TNT was performed to identify the linear 

phase of the reaction under the optimised conditions (Figure 4.8). The decrease 

in TNT and the production of conjugate inversely correlate with one another, 

indicating that this is a simple 1st order reaction. For the first 30 min the reaction 

is linear, and starts to tail off by 6 h (360 min), by which time more than 60 % of 

the TNT is transformed, with conjugate production following the same curve. The 

levelling off could be due to enzyme instability or more likely, the rapid oxidation 

of GSH. Oxidised glutathione (GSSG) cannot act as a substrate for GSTs so the 

excess of GSH added at the beginning of the reaction could become limiting to 

the reaction. For this reason it was decided that experiments to determine the 

enzyme kinetics with TNT would be performed over 25 min, to ensure initial rate 

measurements (Section 4.5.5).  
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Figure 4.8 Time course of GSTU25 with TNT and GSH.  Optimised conditions have been 
employed to produce a time course, phosphate buffer pH 6.5, 200 µM TNT, 5 mM GSH and 2mg/ml 
enzyme with 30 °C incubation. All experiments were performed in triplicate and error bars represent 
± 1 standard deviation of the mean.  
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4.3.6 Other Substrates 
In the environment, TNT pollution is often found with other organic pollutants, 

particularly hexahydrotrinitrotriazine (RDX) and dinitrotoluene (DNT). It is 

therefore of interest to test activity of GSTU25 with these substrates, as activity 

may reduce the requirement for alternative solutions to the other explosives. 

Activity towards another explosive, PETN, was also assessed, as were the 

reductive transformation products of TNT; ADNTs, which have been found in 

plants following TNT treatment (Figure 1.5) (Gandia-Herrero et al. 2008). 

Samples were analysed by HPLC and substrate consumption compared to boiled 

enzyme negative controls. No detectable activity was observed for these 

substrates (Figures 4.9 and 4.10).  
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Figure 4.9: Time course of GSTU25 with alternative substrates . A: TNT, B: DNT, C: RDX. All 
experiments were performed in triplicate under the conditions optimised for TNT activity; 1 µg 
enzyme with 5 mM GSH, in phosphate buffer pH 6.5, samples were incubated at 30 °C over 24 h. 
Aliquots were removed and stopped with TCA over the time course. Reactions were analysed by 
HPLC.   
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Figure 4.10: Activity of GSTU25 with ADNTs : 2-ADNT and 4-ADNT were tested as substrates for 
GSTU25. All experiments were performed in triplicate with 200 µM TNT or 40 µM ADNT, under the 
conditions optimised for TNT activity; 1 µg enzyme/ boiled enzyme with 5 mM GSH, in 100 mM 
phosphate buffer pH 6.5. Samples were incubated at 30 °C over 24 h. Aliquots were removed at 1 
h, 4 h, 8h and 24 h and stopped with 1 %TCA. Reactions were analysed by HPLC. 

 

 

4.3.7 Activity of GSTU25 with CDNB 
A previously reported activity value for of GSTU25 and CDNB is 1240 nkat.mg-1 

(Dixon et al. 2009). Assays of GSTU25 with CDNB give an average activity of 

1560 nkat.mg-1. Kinetic analysis of this reaction performed with 0 to 1000 µM of 

CDNB gives a Km of 30.55 µM CDNB and a Vmax of 28.06 µM.sec-1. The 

Michaelis-Menten plot used to calculate these values, by non-linear regression is 

shown in Figure 4.11. 
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Figure 4.11: Michaelis-Menten plot of GSTU25 with C DNB. Rates were calculated from triplicate 
experiments with various CDNB concentrations, measured by 1 min spectrophotometric assays at 
340 nm. 1 mL reactions contained 5 mM GSH, 0 – 1000 µM CDNB and 9.6 µg of GSTU25 in 
potassium phosphate buffer pH 6.5.   
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4.3.8 Kinetics of GSTU25 with TNT 
To increase the concentrations of TNT in reactions for kinetic analysis, stock 

solutions of TNT were made by dissolving TNT in DMSO, a common solvent for 

stock solutions as it has high dissolving abilities, low chemical reactivity and low 

vapour pressure. To determine the concentration of DMSO required for 

increasing solubility to 1 mM, various TNT concentrations were dissolved in 0, 5 

and 10 % DMSO (Figure 4.12). These samples were analysed by HPLC to 

determine which concentrations give an accurate representation of TNT 

concentration. Although both 10 and 5 % DMSO concentrations solubilise TNT to 

1 mM, 5 % was selected as high DMSO concentrations (> 10 %) have 

documented effects on analytical instruments (Tjernberg et al. 2006).  

 

DMSO has varied effects on proteins and enzyme activity, at high concentrations 

has been found to have stabilising or denaturing effects on different proteins. In 

activity assays it can behave as an inhibitor or can increase activity (Perlman et 

al. 1968). Even at low concentrations it has been shown to lead to protein 

aggregation or degradation and alter binding properties (Tjernberg et al. 2006). It 

was therefore decided that if the addition of DMSO was necessary for increasing 

TNT solubility, its effects on GSTU25 should be assessed. Figure 4.13 shows 

that no effect on TNT conjugate formation by GSTU25 was seen, even up to 20 

% DMSO.  
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Figure 4.12: Effect of DMSO concentration on TNT so lubility.  Various concentrations of TNT 
were dissolved in 1, 5 and 10 % DMSO before HPLC analysis.  
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Figure 4.13: Effect of DMSO on GSTU25 activity.  Activity assays were performed with five 
different DMSO concentration in experiments containing 1 mg GSTU25 with 200 µM TNT, 5 mM 
GSH in 100 mM potassium phosphate buffer pH 6.5. Experiments were performed in triplicate with 
error bars representing standard deviations.   
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A saturation curve was performed to measure Km and Vmax of GSTU25 with TNT. 

Assays were performed under the optimised conditions, 5 % DMSO, 5 mM GSH 

and 2.86 mg GSTU25 in 100 mM phosphate buffer pH 6.5 with various TNT 

concentrations of 25 to 1000 µM. Assays were performed over 27.5 min to 

ensure measurement of the linear reaction phase, samples were taken every 5 

min, stopped with 1 % TCA (v/v) and frozen at -80 °C until run on the HPLC. 

Figure 4.14 shows the time course reactions at each TNT concentration, with 

values for both TNT depletion and conjugate production.   

 

Using the gradients of the lines from Figure 4.14, the reaction rates were 

calculated for TNT depletion, these were then plotted against TNT concentration 

to produce a Michaelis-Menten plot (Figure 4.15). The kinetic parameters Vmax 

and Km were calculated from experimental steady state reactions by non linear 

regression analysis using SigmaPlot. For TNT, a linear relationship between rate 

and concentration was observed even up to 1000 µM TNT and the Vmax was not 

reached so values were extrapolated. Clearly for TNT the linearity causes 

problems of accuracy of extrapolation but the values calculated for TNT depletion 

are Km 8219 ± 232.4 µM and Vmax 210.2 ± 5.4 µM min-1. For the conjugate 

production a Michaelis-Menten plot was also produced and the rate does 

demonstrate some levelling off at higher substrate concentrations, however 

again, a Vmax was not reached. Due to the lack of standards for product 

concentration no kinetic values could be determined.  



Chapter 4: The Biochemical Characterisation of AtGSTU25 

 111 

 Time (min)

0 5 10 15 20 25 30

µM
 T

N
T

0

200

400

600

800

1000
25 µM TNT
50 µM TNT
100 µM TNT
150  µM TNT 
200  µM TNT
400  µM TNT 
600  µM TNT
800  µM TNT
1000  µM TNT

 

Time (min)

0 5 10 15 20 25

C
on

ju
ga

te
 p

ea
k 

ar
ea

 (
µV

*s
)

0.0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6

1000 µM TNT
800  µM TNT
600  µM TNT
400  µM TNT
200  µM TNT
150  µM TNT
100  µM TNT
50  µM TNT
25  µM TNT

 

Figure 4.14: TNT depletion and conjugate production  over 27.5 min . Assays contained 0 – 
1000 µM TNT, 5 % DMSO, 5 mM GSH and 2.86 mg GSTU25 in 100 mM phosphate buffer pH 6.5. 
Experiments were performed in triplicate with error bars indicating standard deviation. Lines show 
regression of points for each initial TNT concentration, used to calculate the reaction rates. 
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Figure 4.15: Michaelis-Menten plots  showing: A:  Rate of TNT depletion at different initial TNT 
concentrations and B: Rate of conjugate production in the same samples as A. Experiments were 
performed with 0 – 1000 µM TNT, 5 mM GSH, 2.27 mg / mL enzyme in potassium phosphate buffer 
pH 6.5, with samples removed every 5 min over a 25 min time course. Aliquots were stopped with 1 
% TCA (v/v) and analysed by HPLC. 
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4.4 Conclusions 

 

As established in Chapter 3 purified recombinant Arabidopsis GSTs U24 and U25 

are active against TNT; conjugating it to glutathione by removal of a nitro group. 

This activity is of special interest as it could facilitate mineralisation of TNT in the 

environment; GSTU24 and 25 are the first plant enzymes identified which can 

perform nitrite removal from TNT. It was therefore crucial to investigate this 

reaction further. This Chapter presented a biochemical characterisation of the 

conjugation of TNT to GSH by GSTU25 as this enzyme demonstrated higher 

activity than GSTU24.  

 

Previous characterisations of plant GSTs have revealed a broad range in pH 

optima for GST activity. Analysis of AtGSTU25 with TNT in this Chapter yields an 

optimum activity at pH 6.5, this appears to be at the lower end of the superfamily, 

which has average optima of pH 9 for OsGSTF5, pH 8.3 for barley GSTs (both 

with CDNB) and pH 7.5- 8 for metolachlor and a ZmGST (Habig et al. 1974; Irzyk 

et al. 1993; Kunieda et al. 2005; Nutricati et al. 2006; Cho et al. 2007; Dixon et al. 

2009). Another interesting observation in the literature is the use of various pH 

conditions for the same enzyme depending on substrate stability, for example; pH 

7.5 for CDNB assays and pH 6.5 for OPDA assays with AtGSTUs, pH 6.8 for 

chloro-s-triazine and chloroacetanilide herbicides and pH 8.5 for the 

diphenylethers, aryloxyphenoxyprioionates and sulfonylureas as recommended 

for all Tau or Phi GSTs (Edwards et al. 2005; Dixon et al. 2009). Investigation into 

the catalytic mechanism of GSTs has also shown that for activation of glutathione 

to a thiolate anion, which can attack the electrophilic substrate, the optimum pH is 

6.2 (Labrou et al. 2001). It is therefore important to note that the pH optimum 

depends on enzyme biochemistry, glutathione anion production and to a large 

degree by the stability of the electrophilic substrate (Habig et al. 1974).  

 

Temperature affects not only reaction rate but also protein inactivation and 

glutathione oxidation. To reduce oxidation, glutathione was added after the 

enzyme pre-incubation for temperature inhibition studies, to ensure that 
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glutathione availability was not limited in the assay. Previous plant GST 

temperature optima have documented fastest rates of activity at 40 °C (Park  et 

al. 2005; Cho et al. 2007) however, the stability of these enzymes also drops off 

at temperatures over 30 °C. These studies also meas ured temperature inhibition 

in the presence of DTT and EDTA to prevent glutathione oxidation (Park et al. 

2005; Cho et al. 2007). The published inactivation rates align with those in this 

work suggesting that GSH oxidation does not appear to be the major cause of 

reduced activity at higher temperatures and that DTT and EDTA addition are 

unnecessary. Agreeing with the results found here, the majority of GST 

conjugating assays are performed at 25 or 30 °C, to  reduce enzyme denaturation 

which is likely to be the main cause of the reduced activity observed at higher 

temperatures (Edwards et al. 2005; Nutricati et al. 2006; Farkas et al. 2007; 

Dixon et al. 2009).  
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Figure 4.16: Compounds tested for substrate activit y with GSTU25.  

 

 

 

 

Figure 4.17: Reaction mechanism for CDNB conjugatio n proceeds via a Meisenheimer 
complex of CDNB and GSH . Glutathione is deprotonated within the active site of GSTs, it is then 
able to attack the C1 of CDNB through nucleophilic addition. This results in an unstable 
Meisenheimer intermediate which readily eliminates chloride to produce the stable glutathionyl-
dinitrobenzene conjugate. Taken from Bowman et al. 2007. 
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Various substrates shown in Figure 4.16 have been tested to determine the 

specificity of GSTU25. Activity was only observed for TNT and CDNB. The 

conjugation of GSH to electrophiles occurs through anion addition, GSTs 

catalyse the removal of a proton from GSH to generate the thiolate anion; GS- 

(Armstrong 1991). All active GSTs contain an essential active site serine, which 

in GSTU25 is Ser13, this amino acid enhances the nucleophilicity of the bound 

thiolate anion through hydrogen bond donation from the hydroxyl group of Ser13 

(Labrou et al. 2001). The GS- anion is much more reactive than GSH and attacks 

the ring carbon of the electronegative leaving group by nucleophilic addition, 

producing a Meisenheimer complex (Figure 4.17) (Bowman et al. 2007). In the 

case of CDNB, the conjugation of the thiolate anion occurs at carbon1, where the 

chloride is bound. This Meisenheimer complex is very unstable and the 

dissociation of the chloride is highly favourable, yielding glutathionyl-

dinitrobenzene conjugates (Figure 4.17). The presence of more-electronegative 

leaving groups, for example NO2, F and COOH, is likely to facilitate 

Meisenheimer-intermediate formation, but prevent its degradation; therefore in 

the case of 1,3,5-trinitrobenzene (TNB), which has three highly electronegative 

nitro groups, the stable Meisenheimer complex is a reversible dead end product 

(Graminski et al. 1989; Armstrong 1991). The nitro groups of CDNB are not the 

leaving groups as they have resonance-induced stability which the chloride ion 

does not and the less electronegative chloride ion increases the reactivity of the 

Meisenheimer complex allowing conjugate production instead of the dead end 

product observed for TNB. In the case of TNT, which is structurally very similar to 

TNB, it is proposed that the methyl group, which has a slight inductive effect, 

provides electrons to the aromatic ring, making the neighbouring nitro groups 

more labile, allowing for degradation of the Meisenheimer complex and nitrite 

release. The inductive effect of the methyl- group is local, exerting its electron 

donating effects only over a short distance, therefore it is possible that for TNT 

only 2- and 6- nitro groups are putative leaving groups as the 4- nitro group will 

remain too electron withdrawing to allow conjugation, although no experimental 

evidence is available to confirm this.  
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Figure 4.16 shows the structure of 2-amino-4,6-dinitrotoluene (2-ADNT), which 

with 4-amino-2,6-dinitrotoluene (4-ADNT), is the product of reductive attack on a 

nitro-group of TNT. The amino group is electron donating, which prevents the 

nucleophilic addition of the thiolate anion to the aromatic ring and therefore 

glutathione conjugation is unfavourable. The compound 2,4- DNT has one less 

nitro-group than TNT and therefore the aromatic ring has reduced stability 

provided by electron resonance in addition to reduced hydrophobicity compared 

to TNT (Johnson et al. 2001). The cyclic hexanitramine RDX contains carbon and 

nitrogen atoms in alternating positions (Figure 4.17). Three nitro groups are 

bound to the three ring nitrogen atoms. RDX lacks the resonance stability of the 

π system as is in non-planar and non-aromatic. Therefore the RDX nitro groups 

do not act as an electron withdrawing sink and are therefore unlikely to be sites of 

thiolate anion addition. 

 

It is well known that for nucleophilic attack by the thiolate anion of glutathione, the 

lipophilic substrate requires an electrophilic centre (Keen et al. 1976). Based on 

these results it can therefore be concluded that of the substrates tested with 

GSTU25, only CDNB and TNT have the required electrophilic centre to facilitate 

GS- binding through nucleophilic attack. This suggests that specificity of the 

enzymes depends strictly on the hydrophobicity of the substrate. The electron 

resonance by electron withdrawing groups may also be required for activity. This 

may also explain the relatively low activity of GSTU25 with benzyl isothiocyanate 

(BITC) (Figure 4.1) which is a natural plant compound with antibiotic properties 

(Brusewitz et al. 1977). It possesses single benzene ring with an isothiocyanate 

functional group - C-N=C=S, conjugation occurs through an addition reaction, 

following nucleophilic attack of the carbon, a different mechanism to that 

employed for TNT and CDNB.  

 

Optimisation of reaction conditions is essential before kinetic analysis is 

performed, however conditions must also be optimized to minimize non-

enzymatic conjugation. For CDNB kinetic analysis, a non-enzymatic control was 

assayed and the rate was deducted from the enzymatic rate. In the case of TNT, 

boiled enzyme controls were assayed for all optimisation experiments but no non-
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enzymatic rate was detected, therefore the kinetic data gathered with the 

optimised conditions is expected to be through enzymatic activity only.  

 

Kinetic values for GSTU25 have been calculated for both CDNB and TNT. For 

CDNB the Km is 30.55 µM CDNB and Vmax is 1683.6 µM min-1. For TNT, results 

were extrapolated as the Vmax was not reached, the derived values are; Km 8219 

± 232.4 µM and Vmax 210.2 ± 5.4 µM min-1. It is evident that GSTU25 is much 

more active towards CDNB than TNT, this indicates that either the H-site, or 

hydrophobic substrate binding site has better specificity towards CDNB than TNT 

or that the thiolate anion (GS-) has better reactivity with CDNB. It is likely that the 

latter is true as the non-enzymatic rate of CDNB glutathionylation is high, 

suggesting a high affinity for nucleophilic attack of the C1 carbon of CDNB. It may 

also be true that the H-site is better suited to accept CDNB as a ligand than TNT, 

active site mutagenesis of GSTU25 could determine this.  

 

The disparities between the two Michaelis-Menten plots for conjugate production 

and TNT depletion may suggest the presence of a diconjugate, although mass 

spectrometry in Chapter 3 did not identify and additional peaks which indicated 

glutathione conjugation. A literature search yielded no instance of a diconjugate 

to GSH, however cases of a di-glutathione conjugate have been observed 

(Takahashi et al. 1987). But, in this case the diconjugate of 1,4-napthoquinone 

was produced non-enzymatically, it is therefore possible that the production of a 

diconjugate by GSTs is unfavourable due to steric effects. Glutathione 

conjugation occurs through thiol binding to the substrate, each glutathione only 

has a single thiol group so the conjugation of two substrates to a single 

glutathione must proceed through another conjugation mechanism. In addition to 

this if the diconjugate was a glutathione diconjugate then the rate of TNT 

depletion should decrease at the higher concentrations as diconjugate production 

would not affect the TNT pool as it would use the conjugate pool as a substrate 

source. Further explanations for the levelling off of conjugate production could be; 

product insolubility, or non-enzymatic breakdown of the conjugate, however the 

conjugate is likely to be soluble and stable as glutathione conjugation is known to 

reduce hydrophobicity and glutamyl- transferases are required for conjugate 



Chapter 4: The Biochemical Characterisation of AtGSTU25 

 119 

breakdown (Marrs 1996; Dixon et al. 1998). Although no stability characterisation 

of the conjugate itself has yet been performed. To fully understand the 

biochemistry, the kinetics should be repeated and mass spectrometry performed 

to identify the presence of a diconjugate or fragments, which may indicate 

conjugate breakdown.  

 

This in vitro characterisation has optimised the conditions for TNT conjugation 

and determined the kinetic values of the reaction. Given this reaction is achieved 

in vitro it is likely that this pathway also occurs in planta, the upregulation of 

conjugate transporters in Arabidopsis following TNT treatment supports this 

hypothesis. To further investigate if GSTs do have a role in TNT detoxification in 

planta it was necessary to perform analysis of plants with altered levels of GST to 

determine if any effects are observed in the presence of TNT compared to wild 

type plants. Results of this are shown in Chapter 5.  
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Chapter 5: Characterising the in vivo  role of 
Glutathione Transferases in Trinitrotoluene 
Transformation  

 

5.1 Introduction 

 

Plants have developed numerous detoxification pathways allowing them to cope 

with environmental pressures. The glutathione transferases (GSTs) are well-

known Phase II conjugation enzymes and, as discussed previously in this thesis, 

their upregulation in Arabidopsis in response to 2,4,6-trinitrotoluene (TNT) 

treatment makes them candidates for TNT detoxification. Chapters 3 and 4 

showed that two Arabidopsis GSTs have activity against TNT when assayed in 

vitro, indicating an involvement in TNT turnover in plants. This chapter 

investigated the role GSTs play in plant TNT detoxification, by characterising 

GST-overexpressing plants for altered responses to TNT treatment.  

 

5.1.1 In vivo  Detoxification of TNT 
Phase I detoxification of TNT has been shown to be reductive transformation of 

one or more of the nitro groups, via a nitroso intermediate, resulting initially in an 

unstable hydroxylaminodinitrotoluene (HADNT) which is further reduced to 

aminodinitrotoluene (ADNT) (Figure 5.1). In Arabidopsis transformation is likely 

performed by the oxophytodienoate reductases (OPRs) and nitroreductases, 

some of which are upregulated in the roots in response to TNT (Biesgen et al. 

1999; Ekman et al. 2003; Beynon et al. 2009). The OPRs are a small gene family 

which show homology to members of the Old Yellow Enzyme (OYE) family of 

flavoenzymes, including pentaerythritol tetranitrate reductase (PETNr) from 

Enterobacter cloacae which has been characterised to perform nitroreduction of 

TNT, to produce hydroxylaminodinitrotoluene (HADNT) and aminodinitrotoluene 

(ADNT) (Figure 5.1), in addition to aromatic ring reduction to produce hydride and 

dihydride Meisenheimer products (French et al. 1999). To investigate if the 
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sequence homology of the OPRs to PETNr confers activity homology the role of 

OPRs in Arabidopsis was investigated (Beynon et al. 2009). In vitro analysis of 

the three main OPRs in plants, OPR1, OPR2 and OPR3 showed that all can 

transform TNT to HADNT and ADNT, with OPR1 also exhibiting aromatic ring 

reduction of TNT. Overexpression of OPR1 in Arabidopsis increased TNT uptake 

from liquid media and yielded higher levels of transformation products than 

unmodified plants while knockdown lines of OPR1 and OPR2 took up less TNT 

and produced lower levels of transformation products than unmodified plants 

(Beynon et al. 2009). This strongly suggests a role of OPRs in the Phase I 

transformation of TNT in plants.  

 

Phase II detoxification, conjugation, of TNT in plants is known to occur as six-

carbon conjugates of ADNTs, likely glycosyl-conjugates, have been identified in 

plant extracts following TNT treatment. Transferases (conjugating enzymes) have 

also been found to be upregulated in plants in response to TNT treatment 

(Ekman et al. 2003; Mezzari et al. 2005; Gandia-Herrero et al. 2008). In 

microarray studies of 6 h TNT treated Arabidopsis, seven uridine diphosphate 

(UDP) glycosyltransferases (UGTs) were found to be upregulated 14 fold or 

higher (Lorenz 2007). The UGTs are a large family of Phase II detoxification 

enzymes, with 107 putative members in Arabidopsis. To determine if they are 

active in TNT detoxification in plants, the upregulated UGTs have been 

investigated. In vitro analysis of the UGTs showed that six of the seven had 

conjugating activity towards both isomers of HADNT and ADNT, with preferences 

for HADNTs and the 4-isomers of HADNTs and ADNTs over 2-HDNT and 2-

ADNT (Gandia-Herrero et al. 2008). Arabidopsis lines overexpressing the 

enzymes with highest activity towards 2-HADNT and 4-HADNT produced 28 to 

41 % more conjugates than untransformed plants; however they showed no 

enhanced removal of TNT. Extraction of metabolites from these plants also 

identified that 4-HADNT conjugates are produced by either an O- or C-glucosidic 

bond (Figure 5.1) (Lorenz 2007; Gandia-Herrero et al. 2008). This indicates that 

UGTs upregulated in plants in response to TNT do have a role in the Phase II 

detoxification pathway of TNT.  
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Figure 5.1: Metabolism of TNT in Arabidopsis  with Phase I transformation shown to occur by 
oxophytodienoate reductases (OPRs) and Phase II conjugation of TNT to sugar molecules by 
uridine diphosphate (UDP) glycosyltransferases (UGTs).  
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5.1.2 GPOX Activity of GSTs 
Glutathione peroxidases (GPOXs) reduce organic hydroperoxides of fatty acids 

and nucleic acids by using GSH as an electron donor. This produces 

monohydroxyl alcohols, which have lower cytotoxicity, reducing oxidative injury 

and the oxidation of GSH to GSSG triggers signals for further stress responses 

(Marrs 1996; Dixon et al. 1998; Cummins et al. 1999).  

OHOR 2GSH OHR SGGS+ + OH2+
 

The GSTs were first identified due to their conjugation activities, later, GSTs with 

peroxidase activity (GPOX-GSTs) were identified (Bartling et al. 1993) and shown 

to play an important role in protecting cells from oxidative damage, a vital 

component of the oxidative stress tolerance of plants. This function of GSTs 

could also account for the upregulation of GSTs in response to stresses which 

produce active oxygen species (AOS) including; pathogen attack, wounding, 

auxins, ethylene, heat-shock, hydrogen peroxide and heavy metals (Marrs 1996). 

GSTs with GPOX activities have been widely identified in plants including both 

crop and weed species (Edwards 1996; Benekos et al. 2010; Dixon et al. 2010).  

 

5.1.3 Overexpression of GSTs in Plants 
Overexpression of GSTs to improving stress tolerance has been widely studied, 

especially for resistance to herbicides. There are numerous examples of genetic 

modifications of GSTs including their expression in another species, as well as 

the overexpression of a native enzyme, both of these approaches can increase 

the tolerance of plants to stress factors.  

Transgenic plants containing a GST from another species has resulted in transfer 

of resistance to numerous stresses. This has been observed for GSTs taken from 

Suaeda salsa to Arabidopsis, conferring increased salt tolerance (Qi et al. 2010); 

expression of soya bean GST, GmGSTU4 in tobacco conferred enhanced GST 

conjugating activity towards the herbicides fluorodifen and alachlor, as well as 

GPOX towards cumene hydroperoxide (Benekos et al. 2010). Another soya bean 

GST, GmGSTU21, was also expressed in tobacco, providing resistance to 

diphenyl ether herbicides (Skipsey et al. 2005). ZmGSTF2 has been cloned into 
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both wheat and tobacco hosts, conferring increased tolerance to 

chloroacetanilide and thiocarbamate herbicides (Skipsey et al. 1997; Milligan et 

al. 2001). Karavangeli et al. (2005) increased tobacco resistance to alachlor by 

the incorporation of another GST from maize (Karavangeli et al. 2005). 

Interestingly this GST had no detectable peroxidase activity. When a cotton GST 

was expressed in tobacco plants, the transformed plants were more resistant to 

oxidative damage arising from treatment with the herbicide Paraquat (Yu et al. 

2003). No conjugation to this herbicide was observed, and it was concluded that 

the GST activity in this case towards products arising from the oxidative stress, 

putatively by conjugation to membrane lipid peroxidases or products of oxidative 

DNA damage (Pickett et al. 1989; Dudler et al. 1991; Bartling et al. 1993; Yu et 

al. 2003). 

There are also many examples of overexpression of a native GST conferring 

increased tolerance to stresses: OsGSTL1, a rice GST, when constitutively 

overexpressed using the 35S promoter gave enhanced tolerance to chlorsulfron 

and glyphosphate, these 35SOsGSTL1 plants also performed better under other 

stress conditions, displaying lower superoxide levels than wild type plants (Hu et 

al. 2009). Tobacco lines overexpressing a Tau GST with high GPOX activity were 

more tolerant to abiotic stresses than unmodified plants. When these lines were 

treated with a variety of stress conditions, including chilling and salt treatment, 

they exhibited a reduced oxidative stress response compared to wild type plants 

and contained higher levels of monodehydroascorbate reductase (MDAR) activity 

and the glutathione pool was more oxidised (Roxas et al. 1997; Roxas et al. 

2000). 

All of the examples of GST expression or overexpression in plants have shown 

improved resistance against stress treatments. In some of these cases it is not 

the herbicide to which GSH is conjugated, but products of the resulting oxidative 

stress responses (Yu et al. 2003). The GPOX activity of GSTs is also likely to 

have an important role in minimising the oxidative damage following stress 

treatment. This confirms a role for GSTs in countering the oxidative stress 

response in addition to direct detoxification of xenobiotics. 
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5.1.4 GST Knockdown in Plants 
To gain functional information for a specific enzyme it is common to perform a 

knock-down study where the expression of the protein of interest is reduced. 

RNAi of GSTs has previously been performed in Arabidopsis for phi class GSTs 

(Sappl et al. 2009). RNAi co-reduced the expression of ATGSTF6, F7, F9, and 

F10, however a high degree of functional redundancy in GSTs was identified. A 

larger decrease in protein levels would be required to determine whether there is 

an effect on oxidative stress tolerance. A SALK T-DNA insertion line exists for 

AtGSTU24, one of the genes selected for study, however previous 

characterisation of this plant line with TNT showed no altered tolerance to TNT by 

root length studies (Yoon et al. 2007). The high functional redundancy in GSTs 

could therefore require a multiple knockdown of not just the seven GSTs selected 

for study, but perhaps also many of the remaining 21 Arabidopsis Tau GSTs. For 

these reasons no knock-down studies were performed in this investigation.  

 

5.1.5 Safeners 
Safeners are chemicals which, when applied with specific herbicides to certain 

plant species, enhance tolerance of monocot crop species to the herbicide 

without impairing its efficacy towards target weeds. The mode of action of 

safeners is not fully understood, though it is likely that they act in a variety of 

ways including; competing with herbicides for binding sites of receptor proteins, 

enhancing synthesis of detoxification enzymes and reducing the susceptibility to 

herbicide inhibition by induction of less sensitive isoenzymes (Davies et al. 1999). 

Much research has been performed on the effect of safeners on the detoxification 

route by GSTs. Many herbicides are known to be conjugated to GSH and the 

addition of safeners enhances the rate of this conjugation step thus improving 

tolerance to the herbicide. For example dichloroacetamide safeners increase the 

levels of conjugation of the herbicides metolachlor, metazachlor and acetolachor 

(Fuerst et al. 1991; Rowe et al. 1991; Fuerst et al. 1992; Ekler et al. 1993). 

Fenchlorim and fenchlorazole ethyl increase conjugation of acetochlor and 

fenoxaprop-ethyl respectively (Ekler et al. 1993; Tal et al. 1993). Another route of 

detoxification could be by increasing the levels of reduced glutathione, by 

upregulating glutathione reductase which converts oxidised glutathione (GSSG) 

to the active, reduced form, GSH (Farago et al. 1994). The safeners dichlormid, 
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benoxacor, flurazole and fenchlorim increase GSH levels in maize, sorghum and 

tobacco (Gronwald et al. 1987; Cottingham et al. 1991; Kunkel et al. 1991). In the 

plant stress response GSH functions as a free radical scavenger, protecting cells 

from oxidative damage. Oxidative stress induces the production of GSH which 

oxidises to GSSG, this reaction can be catalysed by GSTs with GPOX activity 

and therefore GSTs could provide a dual protective mechanism.  

 

Safeners have also been shown to induce GSTs in dicots including pea and 

Arabidopsis (Edwards 1996; DeRidder et al. 2002). The indication that these 

plants can perceive and respond to safeners, yet remain sensitive to herbicides 

suggests that an additional factor is involved in the selection between monocots 

and dicots. DeRidder et al. (2002) found that the localisation of GST expression 

following safeners treatment is important. In Arabidopsis the levels of GST in 

appropriate tissues was too low to confer herbicide tolerance. The same was 

observed for pea, where GST expression was mainly root localised following 

safener treatment (Edwards 1996).  

 

5.1.6 Experimental Outline 
In this chapter, Arabidopsis GSTs have been overexpressed to determine if 

GSTs can improve the tolerance to and transformation of TNT in plants as was 

observed for the UGTs (Gandia-Herrero et al. 2008). Arabidopsis lines 

overexpressing GSTs U24 and U25 under the control of the CaMV 35S promoter 

were created and independent, homozygous lines with T3 segregation ratios 

indicative of single T-DNA insertion sites have been characterised. Preliminary 

experiments were performed to identify altered tolerance to TNT compared to 

untransformed wild type (WT) plants. Expression levels were determined by real-

time (RT) PCR and protein activity assays before further analysis of TNT 

tolerance of selected independent lines. 
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5.2 Methods   

Arabidopsis over-expressing GSTs U1, U3, U4, U7, U22, and U25 were 

produced and analysed for altered resistance to TNT treatment. T2 35SGSTU24 

lines were donated by Dr E. Rylott.  

5.2.1 Cloning 
The pART7 and 27 binary vector system (Gleave 1992) was employed for CaMV-

35S constitutive expression of GST U1, U3, U4, U7, U22, U24 and 25. Primer 

design was facilitated using Primer3 design (Table 5.1) 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). Arabidopsis cDNA from 

TNT treated plants was used as a template from which the gsts were amplified by 

PCR was performed with Phusion High-Fidelity DNA polymerase (NEB), as 

described in Section 2.3.4.2. Primers are listed in Table 5.1 and PCR programme 

is shown in Table 5.2. 

 

Table 5.1:  Primers for amplification of gsts  from Arabidopsis thaliana cDNA  were designed 
with Primer3 design: http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi. GSTU24 primers 
were designed by Dr Liz Rylott.  

Primer Restriction site Sequence 

35S GSTU1F EcoR I GAA TTC ATG GCG GAG AAA GAA GAG AG 

35S GSTU1R BamH I GGA TCC TTA GGC AGA CTT AAT TGT C 

35S GSTU3F EcoR I GAA TTC ATG GCC GAG AAA GAA GAG G 

35S GSTU3R BamH I GGA TCC TTA GAC CGC TTT GAT TC 

35S GSTU4F EcoR I GAA TTC ATG GCG GAG AAA GAA GAG G 

35S GSTU4R BamH I GGA TCC TTA GGC TGA TTT GAT TC 

35S GSTU7F EcoR I GAA TTC ATG GCG GAG AGA TCA A 

35S GSTU7R BamH I GGA TCC TCA AGC AGA TTT GAT ATT G 

35S GSTU22F EcoR I GAA TTC ATG GCG GAT GAA GTG  

35S GSTU22R BamH I GGA TCC TTA GAC ACA GTA TAT CTT CC 

35S GSTU25F EcoR I GAA TTC ATG GCA GAC GAG GTGA 

35S GSTU25R BamH I GGA TCC CTA TTC GAT TTC GAT CC 

35S GSTU24F Kpn I GGT ACC ATG GCA GAT GAG GTG ATT CTT 

35S GSTU24R Xba I TCT AGA TTA CTC CAA CCC AAG TTT GTT 
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Table 5.2: PCR cycle conditions for the amplificati on of gsts  from Arabidopsis cDNA and 
colony  PCR for verification of subsequent cloning steps. 

Step Temperature Time  

Initial denaturing 98 °C 30 s  

Denaturing 98 °C 10 s  

30 cycles Annealing 60 °C 30 s 

Extension 72 °C 30 s 

Final Extension 72 °C 5 min  

 

TOPO cloning protocol was employed to clone the of PCR products of the gsts 

into the pCR2.1-TOPO vector. GST inserts were excised from TOPO with the 

restriction sites shown in Table 5.1. They were cloned into pART 7 which houses 

a cassette containing a CaMV-35S promoter, multiple cloning site and ocs 

terminator, flanked by NotI restriction sites. This cassette containing the gene 

was cut from pART 7 with NotI and ligated into pART 27. This secondary vector 

houses T-DNA borders which surround the incoming the cassette, which allow 

transformation into Arabidopsis, in combination with the Ti plasmid from 

Agrobacterium tumefaciens. Constructs were confirmed by colony PCR and 

restriction digests (Sections 2.3.4.2 and 2.3.5).  

 

5.2.2 Arabidopsis Transformation 

Flowering Arabidopsis plants were transformed by floral dipping with A. 

tumefaciens GV3101 expressing the pART27GST plasmids (Section 2.5.4.1). 

T1 seed was collected from dipped plants and were grown on kanamycin plates. 

Resistant seedlings were collected and transferred to soil where the plants were 

allowed to self fertilise. T2 seed with segregation ratios indicative of T-DNA 

insertion at a single locus were selected by their 3:1 kanamycin resistant: 

sensitive segregation. One hundred percent kanamycin resistant T3 seeds of 

35SGSTU24 and 35SGSTU25 were propagated in soil to produce T4 seed which 

was used for analysis.  
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5.2.3 Analysis of Expression Levels 

5.2.3.1 Western Blot of 35SGSTU Plant Tissue 

SDS PAGE gels were prepared and loaded as described in Section 2.4.4. 

Following electrophoresis, gels were equilibrated in chilled Towbin buffer for 15 

min. Filter paper and nitrocellulose membrane were cut to the size of the gel and 

soaked in Towbin buffer. Three pieces of filter paper were placed on the anode of 

the transfer unit (Bio-Rad, UK) a single sheet of nitrocellulose membrane was put 

on top of the filter paper. The gel was laid on the pile and three more soaked 

sheets of filter paper were placed on top. The cathode was then applied and a 10 

V current was applied for 40 min. The membrane was rinsed in buffer A (PBS) 

and blocked in PBS with 3 % BSA and 2 % milk powder (Marvel) for 60 min. The 

blot was then incubated with primary antibody at various concentrations for 60 

min at room temperature or at 4 °C overnight. The b lot was then washed for 5 

min twice in buffer B (PBS with 0.1 % tween 20), then twice in buffer C (PBS with 

0.1 % tween 20, 1 M NaCl) and briefly rinsed in buffer B followed by buffer A. A 

five min incubation with 10 mM Tris pH 9.6 was performed prior to development 

with a NBT and BCIP tablet (Sigma). Development was stopped with two 5 min 

washes in buffer B followed by rinse steps in buffer A followed by water. 

 

5.2.3.2 RT-PCR of 35SGSTU Arabidopsis Lines 

The cDNA was extracted from leaf tissue of Arabidopsis plants grown on soil for 

six weeks, with three lines for each GST and five replicates of each line. RNA 

was extracted and reverse transcribed to cDNA prior to analysis of GST 

expression levels by RT-PCR as described previously (Chapter 3.2.2). The 

primers used are shown in Table 5.3.  

Table 5.3: RT-PCR primers for GSTU24, GSTU25 and GS TU22 

RT-PCR Primer Sequence 

RT GSTU25F TGTCAAATTCGATTACAGAGAACAAG 

RT GSTU25R GGTATTTTCTTATGAACCGGATTCA 

RT GSTU24F TCCCTCCGATCCTTACAAGAGA 

RT GSTU24R TCGCCGTAACATTCACCTTTT 

RT GSTU22F TCGAAGCATCAGAGAAACTAGCTAAC 

RT GSTU22R CCTCTTAGCCGAAGCCATCA 
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5.2.3.3 Protein Extraction from Plants 

Leaf tissue from Arabidopsis grown in soil for 6 weeks was harvested and ground 

to a powder under liquid nitrogen. At 4 °C, 400 µL extraction buffer (0.1 M Tris-

HCl pH 8, 2 mM EDTA, 1mM DTT and 50 g/kg PVPP) were added to 200 µg of 

frozen plant tissue, samples were then passed through a 0.45 µM filter and 

centrifuged at 10,000 x g for 30 min. Protein concentration of the supernatant 

was then assessed by Bradford assay (Chapter 3.2.5) and GST activity was 

determined by spectrophotometric CDNB assays measured over 1 min at 340 nm 

with 0.2 mg/mL protein, 1 mM CDNB, 5 mM GSH in potassium phosphate buffer 

pH 6.5.  

 

5.2.4 Analysis of Growth on TNT 

5.2.4.1 Root Length Studies 

Root lengths were measured on 9 cm petri-dishes containing 30 mL ½ MSSA 

amended with 0, 2 and 7 µM TNT. Sterile, stratified seeds (Section 2.5.1 and 

2.5.2) were placed in a single row across the plates, which were then placed 

vertically under 80 µmol.m-2.s-1 light, with 16 h light, 8 h dark cycles at 20 °C. 

Root lengths of the seedlings were measured after 7 days. 

5.2.4.2 Liquid Culture Assays 

Eight, sterile stratified seedlings (Section 2.5.1 and 2.5.2) were transferred to 100 

mL flasks containing 20 mL ½ MSS. Flasks were incubated at 20 °C for 14 days 

with 120 rpm shaking, under low light conditions (~15 µmol.m-2.s-1) to minimise 

stress. After 14 days media was replaced 20 mL ½ MSS containing 200 µM TNT 

diluted in the solvent N,N-dimethylformamide (DMSO). Samples of the media 

were removed for HPLC analysis over 9 days. 

5.2.4.3 Mass Spectrometry Analysis of TNT-Transform ation Products 

Eight Arabidopsis seedlings were grown in 20 mL ½ MSS for 14 days and treated 

with 200 µM TNT in DMSO for 7 days. After incubation 300 µL of the media was 

removed and stored at -80 C until analysis. Plant tissue was washed in distilled 

water then weighed and freeze dried overnight. The dried plant tissue was 

ground to a powder by shaking vertically with a ball bearing inside the 

polypropylene tube. Methanol extraction of the plant compounds was performed 

three times per sample with 3 mL methanol over 24 h under vertical shaking. 



Chapter 5: Characterising the in vivo role of Glutathione Transferases in 
Trinitrotoluene Transformation 

 131 

Methanol was collected, centrifuged to remove debris and evaporated to dryness 

in a fume hood. Residues were re-dissolved in methanol according to the initial 

plant fresh weight. Media and plant extract were then analysed by LC-MS (see 

Section 3.2.6.2). 
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5.3 Results 

To identify the role of GSTs in Arabidopsis in the detoxification of TNT, 35S-

overexpression lines were produced. No knockdown lines were produced as 

previous attempts to study the effects of Arabidopsis GSTs, even with multiple 

knockout lines has shown that the functional overlap of GSTs is too high to 

observe any effects of GST knockdown (Sappl et al. 2009).  

Homozygous lines constitutively overexpressing GSTs were created for GSTU24 

and U25 (35SGSTU24 and 35SGSTU25) and following preliminary experiments 

with TNT, their various levels of expression were assessed, by both RT-PCR and 

CDNB assay. Further characterisation with TNT was then performed to elucidate 

the roles of GSTs in TNT detoxification. 

 

5.3.1 Cloning and Transformation of 35 SGSTU Lines 
 

All gst genes were amplified by PCR from Arabidopsis cDNA (Figure 5.2A). 

TOPO cloning was successful and fragments of the correct lengths were cut from 

pCRTOPO2.1 (Figure 5.2B) and ligated first into the pART7 plasmid, excised with 

the restriction endonuclease NotI (Figure 5.2C) and then ligated into pART27 

(Figure 5.3A). All constructs were transformed into electrocompetent 

Agrobacterium tumefaciens (Figure 5.3B) and floral dip transformation of 

Arabidopsis Col0 plants was performed with positive clones of A. tumefaciens. 

Cloning of GSTU24 is not shown as this was performed by Dr E Rylott. 

Heterozygous T2 lines of Arabidopsis were created for all GSTs, however 

following this the in vitro analysis of the GSTs had identified the proteins 

GSTsU24 and U25 as active towards TNT and therefore subsequent generations 

were only produced for lines of these two gsts. 
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genes.  

Figure 5.3:  Diagnostic colony PCR
Agrobacterium tumefaciens
~700 bp indicates insertion of the 
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: TOPO cloning of gsts.  A:  PCR amplification of gsts from Arabidopsis cDNA using 
mers. Subsequent sequencing confirmed correct genes sequences. 

I double digest of pCRTOPO 2.1 containing gsts. The larger bands in each lane correspond 
with that of pCRTOPO 2.1. The smaller fragments of approximately 700 bp are the excised

Diagnostic colony PCR  of A: E. coli DH5 α with pART27 plasmid containing 
Agrobacterium tumefaciens GV3101 with pART27 plasmid containing gst. Presence of a band of 
~700 bp indicates insertion of the gst in the plasmid. Scales are approximate.   
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from Arabidopsis cDNA using 
mers. Subsequent sequencing confirmed correct genes sequences. B:  EcoRI and 

The larger bands in each lane correspond 
with that of pCRTOPO 2.1. The smaller fragments of approximately 700 bp are the excised gst 
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5.3.2 Preliminary Analysis of GST Overexpression Li nes 

5.3.2.1 Root Growth of 35S-GST Lines on TNT 

Preliminary screening of homozygous T4 seed overexpressing GSTU24 and U25 

was performed with the aim of identifying, relatively quickly, key lines with altered 

tolerance to TNT prior to subsequent gene and protein expression analysis. Root 

length has previously been shown to be a good indicator of TNT tolerance (Yoon 

et al. 2007; Gandia-Herrero et al. 2008; Beynon et al. 2009; Rao et al. 2009). 

Wild type lines have severely stunted roots when grown on concentrations of 2 

µM TNT and higher. Root lengths of all independent lines grown on ½ MSSA 

amended with TNT were measured after seven days. Seven µM TNT was 

primarily assessed as this has been shown to significantly arrest root growth of 

WT (Lorenz 2007; Gandia-Herrero et al. 2008). Seeds for ten and nine 

independent lines of 35SGSTU24 and U25 respectively were germinated and 

grown on ½ MSSA plates with 7 µM TNT, as well as on control plates with no 

TNT. Root lengths were measured after nine days. Figure 5.4A shows the results 

for 35SGSTU24 lines and 5.4B shows the root lengths of 35SGSTU25 lines. 

When grown on the negative control plates without TNT six of the ten 

35SGSTU24 lines had root lengths significantly longer than WT, as determined 

by a Dunnett’s test where significant values are P< 0.05. Figure 5.5 shows the 

plant lines root length relative to WT and on the negative control plates with no 

TNT (½ MSSA only), there is a clear trend for enhanced root growth of the 

transgenic plants compared to WT, especially for 35SGSTU24 lines (Figure 5.5A 

and B). The seedlings grown on TNT amended media suffered severe root length 

stunting and no effects of TNT on root branching were observed. In comparison 

to WT seedlings, only two 35SGSTU24 lines shows any significant difference, 

line 4.2 had shorter roots while line 12.3 had longer roots. For 35SGSTU25 lines 

only one line showed a significant difference to WT without TNT, line E had roots 

which were significantly longer. But when plotted relative to WT root lengths 

(Figure 5.5B), there is a general trend for 35SGSTU25 lines when grown on 7 µM 

TNT to be shorter than WT, this was not observed for 35SGSTU24 (Figure 5.5A).  
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Figure 5.4: Effect of 7 µM TNT on root growth of Arabidopsis 35SGSTU lines  A: 35SGSTU24, 
B: 35SGSTU25 and WT lines. Seedlings were grown vertically on ½ MSSA plates amended with 7 
µM TNT. Root lengths were measured after 9 days, dark bars show root length on ½ MSSA with 
TNT and light bars shown root length on or ½ MSSA only. Results are the means of 20 seedlings ± 
standard error of the mean (SE). A one-way ANOVA followed by a Dunnett’s test was performed to 
compare the results for each of the transgenic lines against the all the WT root lengths; mean 
differences are significant at the 0.05 level. 
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Figure 5.5: Root lengths of 35SGSTU lines on 7 µM TNT relative to WT . A: 35SGSTU24, B: 
35SGSTU25 and WT lines. Seedlings were grown vertically on ½ MSSA plates amended with 7 µM 
TNT. Root lengths were measured after 9 days, dark bars show root length on ½ MSSA with TNT 
and light bars shown root length on or ½ MSSA only. Results are the means of 20 seedlings ± 
standard error of the mean (SE). 
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The addition of 7 µM TNT to the media resulted in severe root stunting. It is 

possible that any minor morphological differences indicating tolerance to TNT 

would be masked by the high toxicity of TNT at this concentration. The 

experiment was therefore repeated with a lower concentration of TNT; 2 µM was 

selected as previous analysis has shown this to significantly affect WT root length 

(Beynon et al. 2009) and have a lower toxic effect on the plant. When the 

35SGSTU24 lines were grown without TNT for seven days one line; 6.4 had root 

lengths significantly longer than WT (Figure 5.6). This is in contrast to the 

previous experiment where six of the ten 35SGSTU24 lines had longer roots than 

WT in the absence of TNT and 6.4 was not among them. Figure 5.7 shows that 

the general trend for longer roots on ½ MSSA only is clear, for both 35SGSTU24 

and 35SGSTU25 lines. The addition of 2 µM TNT caused no significant 

differences between WT roots and those of the 35SGSTU24 lines. For 

35SGSTU25 lines, no lines showed longer roots than WT when grown without 

TNT, whereas the previous experiment showed the roots of line E to be 

significantly longer (Figures 5.4 and 5.6). In the presence of 2 µM TNT lines G, L 

and Q showed significant differences to WT, line Q is longer and the other two 

are shorter. General trends were again observed when the root lengths were 

plotted relative to WT (Figure 5.7), many of the lines appear shorter than WT 

when grown on TNT and this is more evident for 35SGSTU25 lines.  
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Figure 5.6: Effect of 2 µM TNT on root growth of Arabidopsis 35SGSTU lines.  A: 35SGSTU24, 
B: 35SGSTU25 and WT lines. Seedlings were grown vertically on ½ MSSA plates amended with 2 
µM TNT. Root lengths were measured after 7 days, dark bars show root length on ½ MSSA with 
TNT and light bars shown root length on or ½ MSSA only. Results are the means of 20 seedlings ± 
standard error of the mean (SE). A one-way ANOVA followed by a Dunnett’s test were performed to 
compare the results for each of the transgenic lines against the all the wild type root lengths; mean 
differences are significant at the 0.05 level.  
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Figure 5.7: Root lengths of 35SGSTU lines on 2 µM TNT relative to WT . A: 35SGSTU24, B: 
35SGSTU25 and WT lines. Seedlings were grown vertically on ½ MSSA plates amended with 2 µM 
TNT. Root lengths were measured after 7 days, dark bars show root length on ½ MSSA with TNT 
and light bars shown root length on or ½ MSSA only. Results are the means of 20 seedlings ± 
standard error of the mean (SE). 
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5.3.2.2 Preliminary Liquid Culture Studies of 35S-G ST Lines 

It has been observed that silencing of bacterial nitroreductase overexpressed in 

NAtI lines of tobacco occurs over four generations. This silencing causes a 

dramatic reduction in the enhanced root length phenotype observed, however 

TNT uptake remains significantly higher than WT even in the ‘silenced’ lines. This 

suggests that TNT uptake is a more sensitive indicator of TNT tolerance than root 

length. For this reason it was decided that before any lines were selected for 

analysis of expression and further characterisation a preliminary liquid culture 

assay was performed for all T4 homozygous 35SGSTU lines to identify key lines 

for subsequent expression analysis. Axenic liquid culture experiments are 

commonly used to study uptake of compounds by plants and is a commonly used 

method for studying TNT detoxification (Gandia-Herrero et al. 2008; Beynon et al. 

2009). Seedlings were grown in liquid media for 14 days before they were dosed 

with TNT. Samples of the media taken over a period of seven days were 

analysed for TNT concentration to determine uptake by the plants. It is also 

possible to measure further morphological and physiological effects of TNT 

treatment by this experimental system, including biomass and chlorosis. 

Preliminary screening was performed on T4 homozygous independent lines. Nine 

independent lines of 35SGSTU25 were tested and ten independent lines of 

35SGSTU24. Wild type plants and flasks containing no plant material (NPC) were 

employed as controls. 

 

Figure 5.8 shows the TNT concentration of the media in which the seedlings were 

grown over 96 h. For 35SGSTU24, the lines removed between 68 and 94 % 

however WT lines removed TNT at a faster rate than all the GST overexpression 

lines with only 97.4 % ± 1.6 % of the initial TNT concentration remaining after 96 

h (Figure 5.8A). The 35SGSTU25 lines also consistently removed less TNT than 

WT with between 79 to 95 % TNT removal by the lines. Further analysis of these 

data is shown in Figure 5.9 where the values from 48 h have been statistically 

analysed by a one-way ANOVA followed by a Dunnett’s test and plotted in a bar 

chart. For 35SGSTU24 lines there is a general trend of slower TNT removal than 

WT. However, only line 8.2 shows any significant difference to the WT control. 

35SGSTU25 lines have removed more TNT from the media than 35SGSTU24 

lines and when compared to WT four lines show a significant difference in TNT 
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uptake; F, G, M and Q. Lines G and Q were previously identified by the root 

length experiments as G showed longer roots than WT and Q had shorter roots 

when grown on plates containing TNT.  

Three lines for each construct were selected for further characterisation. These 

are 35SGSTU24 lines 6.4, 7.5 and 8.2 and 35SGSTU25 lines F, M and Q. These 

lines are shown in Figure 5.9, indicated by their lighter fill colours. They were 

selected because they represent a range of phenotypes within the lines over the 

different experiments.   
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Figure 5.8:  TNT removal from liquid culture by WT, 35SGSTU24 and 35SGSTU25 lines . Eight 
T4 homozygous seedlings for each independent line were grown in 20 mL ½ MSS for 13 days 
before the media was replaced with; ½ MS containing 20 mM sucrose and 200 µM TNT (in DMSO). 
Aliquots of the media were then removed at 0 h, 4 h, 24 h, 48 h and 96 h and analysed for TNT 
concentration by HPLC. Results for 35SGSTU24 lines are shown in green in the top panel, while 
35SGSTU25 lines are shown in blue underneath. Red denotes the wild type (WT) and grey is the 
no plant control (NPC). Results are the means of three biological replicates ± one standard 
deviation of the mean (SD).  
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Figure 5.9: TNT concentrations of media from liquid  culture of 35SGSTU lines at 48 h  
following TNT dosing. Lines selected for further analysis are indicated by lighter fill colour. A one-
way ANOVA followed by a Dunnett’s test was performed to compare the results for each of the 
transgenic lines against the all the wild type values; mean differences are significant at the 0.05 
level.  
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5.3.3 Characterisation of Arabidopsis 35S GST Lines  

5.3.3.1 Analysis of Overexpression Levels 

Expression of GSTs was assessed by RT-PCR and western blot analysis to 

identify transcript levels and protein levels of the 35SGSTU lines.  

To assess the transcript expression levels RT-PCR was performed on cDNA 

transcribed from RNA extracted from three lines of each gene (35SGSTU24 6.4, 

7.5 and 8.2 and 35SGSTU25 F, M and Q) and a wild type (WT) line (Figure 5.10). 

The RT-PCR was performed using the same primers (GSTU22, GSTU24 and 

GSTU25) and methods as described in Section 3.2.1 and 3.2.2. 

 

To determine levels of expressed protein western blots were performed with two 

different antibodies, A ZmGSTU1-2 antibody supplied by Dr D. Dixon (University 

of Durham, UK) and an AtGSTU19 antibody from Prof. P. Goldsburgh (Purdue 

University, USA). These were used at a range of concentrations to determine 

optimal conditions however very little signal was seen for the pure enzyme 

positive control and none was observed for any of the plant lines.  

To measure the levels of transcript produced by the 35SGSTU lines, an RT-PCR 

experiment was performed. The six selected lines were grown in soil for six 

weeks then RNA was extracted from leaf tissue. TNT has been shown to 

accumulate in root tissue (Brentner et al. 2010) however the 35S promoter 

produces constitutive expression throughout the plant. This allows the simpler 

and cleaner extraction of RNA from leaves to be employed. Transcript levels of 

the respective gsts were assessed for each line, also those of the alternate GST, 

i.e. 35SGSTU24 lines were tested for levels of gstu24 and gstu25. Although the 

primers used for cloning and those used for RT-PCR have been shown to clearly 

differentiate between the two closely related genes, it is possible that some co-

regulation may occur. For this reason, both sets of lines were also measured for 

expression of gstu22. GSTU22 is also induced by TNT (see Chapter 3) and of 

those upregulated by the treatment; it is the most similar to GSTU24 and 

GSTU25, with 64 % and 68 % identity to them, respectively.  
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Figure 5.10 shows the transcript levels of each gene, normalised by the internal 

standard actin, then compared to WT plants. Graph 5.10A shows the levels of 

GSTU22 transcript expressed by the 35SGSTU lines. While 35SGSTU24 lines 

show very little variation to WT, two of the 35SGSTU25 lines; F and M show a 

two-fold upregulation of this gene. The levels of GSTU24 transcript are shown in 

Figure 5.10B: The three 35SGSTU24 lines all show high amount of 

overexpression, ranging from the 350 fold increase seen for 8.2 to 1000 fold 

increase of line 7.5. Line 6.4 has 750 times more transcript of U24 than WT. The 

35SGSTU25 lines show no altered expression of GSTU24 compared to WT. 

GSTU25 transcript levels are shown in Figure 5.10C. 35SGSTU24 lines do not 

have increased levels of GSTU25, except for line 8.2 which has a 3.4 fold 

increase of this related gene. The 35SGSTU25 lines all overexpress GSTU25, 

but line M is only producing four times the amount of transcript of WT. The other 

two lines, F and Q and expressing 1500 and 2400 fold more transcripts for 

GSTU25 than WT plants. 

 

It is unlikely that these transcript levels directly correspond to the amount of 

protein produced, so to quantify the levels of protein expression antibodies were 

acquired from Dr David Dixon (University of Durham, UK) and Prof. Peter 

Goldsborough (Purdue University, USA) for a western blot. These antibodies 

were raised against ZmGSTU1-2 and AtGSTU19 respectively and were expected 

to work with the Tau GSTs used in this study. A range of concentrations of the 

antibodies were used to optimise conditions, however very little signal was 

produced by the positive control of pure protein at high concentrations and no 

signal was observed for the 35SGSTU lines. Due to time constraints it was not 

possible to raise an antibody specific for GSTU24 or GSTU25 so a CDNB assay 

for GST activity was performed instead.  

 

Extracts of GST-overexpressing plants have previously been shown to have 

increased activity than WT in spectrophotometric CDNB assays (Takesawa et al. 

2002). A protein extraction from leaf tissue of each of the 35SGSTU lines was 

analysed for activity towards CDNB. Figure 5.11 shows the results of this assay, 

the bars represent the amount of conjugate produced by samples of equal total 
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protein concentration. Interestingly, 35SGSTU25 line M, which had the lowest 

GST expression, just four fold increase, but CDNB assays show has less activity 

than WT. Aside from this there is a general trend of increased activity towards 

CDNB compared to WT, though only 35SGSTU25 line F has a statistically 

significant increase, with three times more conjugate being produced by this line 

than for WT. This line (F) is also the line expressing the most GST transcript, with 

a 2400 fold increase.  



Chapter 5: Characterising the in vivo role of Glutathione Transferases in 
Trinitrotoluene Transformation 

 147 

 

Figure 5.10: RT-PCR of 35SGSTU24 and 35SGSTU25 plants with GSTU22, U24 and U25 
primers . A: transcript levels of GSTU22, a related GST. B: Transcript levels of GSTU24. C: 
Transcript levels of GSTU25.  
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Figure 5.11: CDNB assay of protein extracts from 35SGSTU lines . Assays contained 10 µg 
protein, 1 mM GSH and 1 mM CDNB in 100 mM potassium phosphate pH 6.5. Change in 
absorbance at 340 nm was measured over 1 min. Significant difference compared to WT is shown 
by an asterisk and determined by Dunnett’s test P<0.05. Results are the means of three technical 
replicates and error bars represent standard deviation.  
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5.3.3.2 Effect of TNT in Hydroponic Studies of 35S GST Lines 

A liquid culture study was performed for the six selected 35SGSTU lines, with 

wild type (WT) and no plant controls (NPCs). Eight seedlings were grown in liquid 

culture for 14 days, before media was replaced with ½ MS amended with 200 µM 

TNT. The removal of TNT was measured over 168 h. Ten flasks were set up for 

each line, although for some lines up to three flasks were lost to contamination. 

WT and NPC controls were also analysed. Figure 5.12 shows that the lines follow 

the same trend as observed in preliminary experiments (Figure 5.8). All 

35SGSTU lines are capable of TNT uptake from the liquid culture media, 

however in all cases this appears to occur at a slower rate than for WT plants. 

35SGSTU25 lines have removed all TNT by 96 h, where as it takes the 

35SGSTU24 lines up to 168 h to completely deplete the TNT. This disparity 

between the lines of the two different GSTs was also observed in the preliminary 

experiment. The data from the 48 h time point were plotted and statistical 

analyses by Dunnett’s test were performed (Figure 5.13). A clear trend of 

decreased TNT depletion is observed for the 35SGSTU lines compared to WT. 

All of the 35SGSTU24 lines have removed significantly less TNT by 48 h, with 

line 6.4 having removed only 66 % of the starting TNT concentration, and 7.5 and 

8.2 showing 73 and 77 % uptake. In comparison WT has taken up 92 %. TNT 

concentrations of the media of 35SGSTU25 lines look higher than for WT with 

mean uptakes of 78 %, 85 % and 81 %, though these values are not significant 

compared to WT.  
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Figure 5.12:  TNT removal from liquid culture by WT, 35SGSTU24 and 35SGSTU25 lines . Eight 
T4 homozygous seedlings for each independent line were grown in 20 mL ½ MSS for 13 days 
before the media was replaced with; ½ MS containing 20 mM sucrose and 200 µM TNT (in DMSO). 
Aliquots of the media were then removed at 0 h, 4 h, 24 h, 48 h and 96 h and analysed for TNT 
concentration by HPLC. Results for 35SGSTU24 lines are shown in green, the top panel, while 
35SGSTU25 lines are shown in blue underneath. Red denotes the wild type (WT) and no plant 
control (NPC). Results are the means of seven biological replicates ± one standard deviation of the 
mean (SD).  

 

Time (hours)

T
N

T
 in

 m
ed

ia
 (

µM
)

0

50

100

150

200

250

NPC 
WT 
35SGSTU24 6/4 
35SGSTU24 7/5 
35SGSTU24 8/2 

Time (hours)

0 20 40 60 80 100 120 140 160 180

T
N

T
 in

 m
ed

ia
 (

µM
)

0

50

100

150

200

250

NPC 
35SGSTU25 F 
35SGSTU25 M 
35SGSTU25 Q 
WT 

A 

B 



Chapter 5: Characterising the in vivo role of Glutathione Transferases in 
Trinitrotoluene Transformation 

 151 

 

NPC WT 6.4 7.5 8.2 F M Q

T
N

T
 in

 m
ed

ia
 (

µM
)

0

50

100

150

200

250

300

35SGSTU24 35SGSTU25

*
*

*

 

Figure 5.13: TNT depletion by 35SGSTU lines at T= 48 h.  Significant difference compared to WT 
is shown by an asterisk and determined by Dunnett’s test, P<0.05. Results are the means of seven 
technical replicates and error bars represent standard error (SE) of the mean.  
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5.3.3.3 Morphology of 35SGSTU Lines in Liquid Culture 

When grown in liquid culture some differences were apparent between the 

35SGST lines and WT. Without TNT treatment all the lines are comparable to 

WT, with no clear chlorosis or changes in biomass. However, in the presence of 

TNT many of the 35SGSTU lines, most notably 35SGSTU24 lines 6.4 and 8.2 

and 35SGSTU25 lines F and Q appear to be smaller than WT (Figure 5.14). This 

correlates with the diminished uptake of TNT. 

 

To investigate the observed difference in biomass, at 168h of the liquid culture 

experiment, the 35SGSTU24 lines were harvested and their fresh weights were 

compared to WT. Figure 5.15 shows the fresh weights of seven plants per line, all 

of the 35SGSTU24 lines have significantly less biomass than WT following TNT 

treatment over 168 h. Line 6.4 has a mean weight of 0.38 g, less than one third of 

the 1.17 g mean of the WT lines. The other two lines 7.5 and 8.2 have means of 

0.6 g and 0.42 g respectively.  
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Figure 5.15: Fresh weight of 35SGSTU24 lines following 168 h TNT treatment . Eight T4 
homozygous seedlings for each independent line were grown in 20 mL ½ MSS for 13 days before 
the media was replaced with; ½ MSS containing 200 µM TNT (in DMSO) or DMSO only. Results 
are the means of seven biological replicates ± one standard error of the mean (SE). Significant 
difference compared to WT is shown by an asterisk and determined by Dunnett’s t-test, P<0.05. 
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5.3.3.4 Identification of Conjugates  

Mass spectrometry was performed on the liquid culture samples shown in Figure 

5.16 (t= 168 h), to identify any conjugates which may be in the media. The 

standard was an enzyme assay, which showed products at 7 min of 468 which 

fragmented to 212 and 247 (See Section 3.3.9). None of the samples showed 

this peak. This does not verify the lack of conjugate, but could be due to 

sequestration of the conjugate, limiting its release into the media (Ekman et al. 

2003; Yoon et al. 2006). To investigate if a sequestered conjugated could be 

identified; methanol extraction of plant tissue was performed following a liquid 

culture assay. Mass spectrometry of these samples revealed no conjugate. 

5.3.3.5 Toxicity of Conjugates 

Growth curves of recombinant E. coli BL21-DE3 expressing GSTU24 and 

GSTU24 were produced to determine the toxicity of the s-glutathionyl 

dinitrotoluene product of the reaction between GSTs and TNT (Figure 5.16). 

Expression of the GSTs was induced by 1 mM IPTG. Bacterial cultures were 

grown overnight before dilution in LB to an OD600 of 0.1. The cultures were added 

to 96 well plates with the IPTG and TNT, with various controls. The OD600 was 

measured at 30 min intervals over 6 h. The LB only control cultures grew the 

fastest, with the empty vector (EV) control performing better than either GST 

culture. This could be because of leaky expression of the protein causing an 

increase in metabolic load to the recombinant cells. The presence of TNT only 

shows the GST cultures respond much better than the EV, again likely due to the 

leaky expression of GSTs, and resulting detoxification of TNT by conjugation. 

The EV cultures have reduced capability to detoxify TNT compared to the GST 

lines and are therefore more susceptible to its toxicity. The difference in growth of 

the GST cultures with and without TNT is small indicating that the detoxification 

by conjugation is not detrimental to E. coli growth and the conjugate produced is 

unlikely to be toxic. The addition of 1 mM IPTG severely limits the growth of all 

cultures; this was not unexpected as IPTG is toxic to bacteria, especially at such 

high concentrations (Baneyx 1999). This combined with the increased metabolic 

load arising from protein production causes the GST cultures to grow more slowly 

than EV.  
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Figure 5.16: Growth curve of E. coli  expressing GSTU24 and GSTU25 over 6 h.  Cultures were 
grown at 37 °C for 6 h with shaking. Additives IPTG  and TNT were added at t=0; IPTG to induce 
expression and TNT as a substrate for the enzymes expressed. A: E. coli expressing GSTU24 and 
an empty vector control. B:  E. coli expressing GSTU25 and an empty vector control. Culture OD600 

was determined using a plate reader at 30 min intervals.   
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5.4 Conclusions 

 

Experiments were performed to determine the roles GSTs play in TNT 

detoxification. GSTs are hypothesized to have a role in TNT detoxification as 

microarray studies of TNT treated Arabidopsis have shown upregulation of GSTs 

and purified enzymes are shown to conjugate TNT to glutathione in vitro. GST 

overexpression lines were produced to identify altered tolerance compared to 

wild type lines; to determine if they are potential targets for phytoremediation of 

TNT. 

 

5.4.1 Overexpression of GSTs 
All the GSTs were successfully cloned into Arabidopsis, however only 

35SGSTU24 and 35SGSTU25 overexpression lines were analysed further as in 

vitro characterisation indicated these GSTs had activity towards TNT. Ten, 

independent homozygous lines were produced for GSTU24 and nine were 

produced for GSTU25. Lines with reduced expression were not produced as 

previous attempts to study GSTs in this way have shown that high functional 

similarities exist. Both RNAi studies and SALK T-DNA insertion lines indicate that 

knockdown of individual GSTs or closely related groups is not sufficient to yield 

observable differences to stress tolerance, including TNT treatment (Yoon et al. 

2007; Sappl et al. 2009). RT-PCR was performed to measure transcript levels of 

the GSTs in the overexpressor lines. Low increases of transcript of a closely 

related GST, GSTU22 which is also upregulated in response to TNT. One to two 

fold increases of this GST were found in all GST lines tested, for both 

35SGSTU24 and 35SGSTU25 lines. Such low values indicate that co-

upregulation of GSTs is not occurring to a significant degree in the 35S-lines. For 

35SGSTU24 lines, all over expressed U24 transcript between 350 and 1000 fold 

more than WT. In all lines this is substantially more than the 250 fold increase in 

transcript for this gst following TNT treatment of WT seedlings. Two of the 

35SGSTU25 lines, F and Q are also producing 8 and 12 fold more transcript than 

WT does following TNT treatment, with 1500 and 2500 fold increases in transcript 

levels compared to untreated WT plants respectively. However, one of the 

GSTU25 lines, M, is only producing 4 fold more transcript than WT, which is 50 
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fold less than when WT plants are TNT treated. With the exception of this line, 

these expression levels indicate that, as long as protein levels are also higher, 

any effect GSTs might have on TNT uptake or transformation should be 

increased in these plants. In the case of 35SGSTU25 lines, F and Q should 

perform better than the low overexpressor M, just as they should against WT. 

However, there are examples of other stress related detoxification genes being 

upregulated with no increase in protein levels, however further knowledge of 

these post-transcriptional modifications is lacking, and has never previously been 

observed for 35SGST lines (Xu et al. 1994; Moons 2005). The western blots 

performed to quantify protein levels of the GSTs in the overexpressor lines were 

unsuccessful, likely due to inactive antibody. The use of a positive control for the 

antibodies would have confirmed this, i.e. a plant line overexpressing the same 

GST that the antibody was raised against.  

A CDNB assay was performed on protein extracts of the plant tissue, to 

determine if the overexpressing lines were more active towards CDNB as a result 

of increased GST levels. Only line F was significantly more active than WT, with 

three times more conjugate produced than WT, although a general trend of 

increased conjugation by the different lines was apparent. This increase could be 

due to the fact that the majority of CDNB activity in plant extracts is known to 

result from the activity of AtGSTF8 and AtGSTU19, so even large increases in 

the levels of GSTU24 and GSTU25 could have a minimal overall effect on the 

CDNB activity (Dixon et al. 2009; Dixon et al. 2010). It is also possible that the 

GSTs are post-translationally modified. There are only two reports of plant GSTs 

being phosphorylated or glycosylated but in neither case does this reduce activity 

of the enzymes (Gronwald et al. 1998; Zhang et al. 2004); it is thought to assist 

protein folding, protect from proteases and increase solubility. 

 

5.4.3 The Effect of GSTU24 and GSTU25 on TNT Tolera nce 
Preliminary root length studies compared these lines to WT when grown on 

media containing TNT. Both 2 and 7 µM TNT yielded slight differences compared 

to WT lines and when grown without TNT many of the 35SGSTU24 and 

35SGSTU25 lines were longer than WT, yet in the presence of TNT they were 

generally shorter then WT, especially 35SGSTU25 lines. Hydroponic studies of 

all the 35SGSTU lines showed that all the lines had lower TNT uptake levels than 
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WT, with 35SGSTU24s performing worse than 35SGSTU25s. Moreover, the 

biomass of 35SGSTU24 lines was significantly less than WT following seven 

days TNT treatment. Together these results indicate that the tolerance of the 35S 

overexpressing lines is reduced compared to WT when grown on solid and liquid 

media. It must be noted that these general trends are subtle, this was also 

observed for overexpressing lines of OPRs and UGTs when tested on TNT. 

These transgenic lines clearly showed improved tolerance to TNT, however only 

slight differences were observed compared to untransformed lines, when tested 

under specific conditions optimised to visualise the variations (Gandia-Herrero et 

al. 2008; Beynon et al. 2009).  

 

Glutathione conjugates are formed in the cytosol and transported into the vacuole 

(Coleman et al. 1997) and may be subsequently sequestered in the cell wall 

(Fricker et al. 2000) this restricts their release into the media and might explain 

why no conjugates were observed in media samples. In the vacuole, glutathione 

conjugates are degraded, first to γ-glutamylcysteinyl-S-conjugate, then to a 

cysteine-conjugate by vacuolar carboxypeptidases, final transformation by a 

malonyltransfrease may occur, producing a malonylcysteine conjugate, all of 

which will have different masses than those searched for by mass spectrometry 

(Marrs 1996; Wolf et al. 1996). However, it is possible that TNT-conjugates are 

not transported to the vacuole, due to inhibition of the ABC-transporters (Mezzari 

et al. 2005). Microarray data does show increased expression of AtMRP1 and 2 

which are the transporters involved in conjugate vacuolar transport, suggesting 

that they could be involved in transporting TNT conjugates into the vacuole (Lu et 

al. 1997; Lu et al. 1997; Lu et al. 1998; Lorenz 2007).  

 

5.4.4 Hypotheses of the Role GSTs Play in TNT 
Detoxification 

5.4.4.1 GSTs Have a Role in Detoxification and Conj ugate TNT 

The most studied function of GSTs is their conjugation activity between 

hydrophobic compounds and glutathione. This mechanism is used by plants to 

detoxify xenobiotics, notably herbicides and safeners, including many with nitro-

containing phenol groups, similar to TNT. Upregulation of GSTs in crop plants 
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and Arabidopsis have been observed following treatment by numerous herbicides 

and subsequent in vitro characterisation of these enzymes has shown high 

conjugating activity. Furthermore, overexpression of GSTs known to be active 

towards herbicides often resulted in an increase in tolerance of plants to these 

herbicides (Karavangeli et al. 2005; Hu et al. 2009; Benekos et al. 2010). It is 

therefore possible that the upregulation of GSTs observed following TNT 

treatment is an indication of their conjugation activity towards it. Moreover, in vitro 

studies with the most upregulated GSTs have shown that conjugates are 

produced (Chapter 3). In light of this evidence it is hypothesised that GSTs have 

a role in TNT transformation in planta, producing a GSH-conjugate with reduced 

toxicity (Rylott et al. 2009). The overexpression of these GSTs would then be 

expected to improve the tolerance of plants to TNT, however, results in this 

chapter suggest otherwise. Root lengths of overexpressing lines were not 

significantly different to WT when grown on either 7 or 2 µM TNT, in liquid culture 

experiments TNT uptake was reduced compared to WT and biomass was also 

reduced. While maintaining the conjugation hypothesis, a possible explanation for 

these results could be from increased toxicity of the conjugate. This is unlikely as 

glutathione conjugates identified thus far have increased solubility, elevated 

transport ability and decreased toxicity. Additionally the E. coli growth curve 

presented here indicated that conjugation by these GSTs does not inhibit cell 

growth. Despite this result in bacteria, it is possible that TNT affected conjugate 

transport into the vacuole in planta. Following exposure of Arabidopsis to TNT, a 

fluorescent conjugate of monochlorobimane has been shown to accumulate in 

the cytosol, suggesting dysfunctional vacuolar ABC-transporters blocking the 

Phase III and IV stages of the GST detoxification pathway (Sandermann 1994; 

Marrs 1996; Mezzari et al. 2005). This effect was also observed for plants treated 

with NaN3 which inhibits ATP synthesis and conjugates remained in the cytosol 

(Mezzari et al. 2005).  

Arabidopsis is a dicot, GST conjugation activity has been found to occur primarily 

in monocot species, providing the selectivity of herbicides, it is therefore possible 

that, despite the activity of the GSTs with TNT, within plant cells there are further 

unfavourable conditions limiting this detoxification pathway, one such factor could 

be glutathione levels. Arabidopsis is a monocot with relatively low levels of 

reduced glutathione, which are postulated to be responsible for the plants 

susceptibility to herbicides (DeRidder et al. 2002; Mezzari et al. 2005). However 
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the levels have been shown to be adequate for conjugation of xenobiotics and 

additionally TNT has been shown to induce glutathione reductase, which 

increases the pool of reduced GSH (DeRidder et al. 2002; Ekman et al. 2003; 

Mezzari et al. 2005). Consequently, it is possible that conjugation of TNT to GSH 

occurs, however in vivo results from overexpressing lines indicate that this is not 

a primary detoxification route as no improved tolerance to TNT was observed. 

GSTs may play a minor role but as no GSH-TNT conjugates have yet been 

identified from plant extracts, it is likely that where TNT conjugates have been 

identified from plants; they are likely to be glycosyl-conjugates (Gandia-Herrero et 

al. 2008; Rylott et al. 2009; Landa et al. 2010). Where any slight different has 

been observed between the 35SGSTU lines and WT, the overexpression of 

GSTs showed a negative impact on the plant. One possible explanation for this 

could be that GSH-conjugates of TNT are being produced but they are inhibitory 

to the proposed primary detoxification pathway of OPR-UGT metabolism, 

accounting for the reduced tolerance and uptake of 35SGSTU lines to TNT. It is 

also possible that GSTs do not conjugate TNT to GSH in plants but instead play 

a role in general oxidative stress response rather than direct conjugation.  

 

5.4.4.2 GSTs are Involved in the Oxidative Stress R esponse 

In addition to upregulation of GSTs, TNT treatment causes an oxidative stress 

response in Arabidopsis (Ekman et al. 2003). Enzymes involved in reactive 

oxygen species (ROS) scavenging are often upregulated during environmental 

stress including; oxidative stress, pathogen attack, herbicide treatment and 

exposure to abiotic treatments (Zhu et al. 1994; Moons 2005). The reactive 

oxygen species produced during oxidative stress cause membrane lipid 

peroxidation and DNA damage, producing cytotoxic products for example H2O2, 

which needs to be eliminated. GSTs can conjugate GSH to these molecules 

however this has not been observed in plants and the major role of GSTs in 

oxidative stress it likely to be through their glutathione peroxidase (GPOX) activity 

(Pickett et al. 1989; Dudler et al. 1991; Bartling et al. 1993). Cytotoxic 

hydroperoxides are produced as a result of oxidative stress and their reduction to 

alcohols is performed by selenium-dependent GPOX, non-selenium dependent 

phospholipid hydroperoxide glutathione peroxidases (PHGPX) and GSTs with 

GPOX activity (GST-GPOX), with the oxidation of two molecules of reduced 
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glutathione as electron donors (Eshdat et al. 1997; Dixon et al. 1998). However, it 

has been reported that the GST-GPOXs have limited activity, reducing only 

organic hydroperoxides of fatty acids produced by oxidative membrane damage 

and showing no activity towards phospholipid hydroperoxides or hydrogen 

peroxide. Not only that but each GST with GPOX activity has distinct substrate 

specificities, suggesting individual roles for the GSTs in stress tolerance (Moons 

2005). Both GSTU24 and U25 have been demonstrated to have GPOX activities, 

with U25 displaying very high activity towards cumene hydroperoxide, but as yet 

no lipid hydroperoxide substrates have been established (Dixon et al. 2009). It is 

therefore possible that GSTs play a role as ROS-scavenging enzymes, and their 

upregulation is a result of the oxidative stress resulting from TNT treatment. The 

in vitro conjugation of TNT could be simply a side-reaction resulting from the 

structural similarities between TNT and CDNB and no significant conjugation 

occurs in planta following TNT treatment. However, if GSTs with GPOX activity 

are involved in countering the stress response, it seems likely that plants over 

expressing these enzymes would show improved tolerance to TNT. Interestingly, 

the opposite is seen and the overexpression of GSTs U24 and U25 hinders TNT 

uptake and reduces biomass following TNT application. However, 0.1 and 1.0 

mM TNT treatment has been shown to inhibit peroxidase activity in horseradish 

plants, despite the stimulation of expression by the explosive (Nepovim et al. 

2004). It is also possible that the upregulation of GSTs by TNT occurs by the 

same mechanism as safener- induced expression and these GSTs offer no 

stress response or TNT transformation capability to the plant.  

 

5.4.4.3 TNT is a Safener, Inducing GSTs 

The structural similarity of TNT to other known substrates of GSTs may be 

adequate to induce expression and allow for low levels of in vitro activity but this 

is not sufficient to cause a physiological effect on TNT treated plants (Marrs 

1996). This gene induction would be a result of a safeners-effect, enhancing 

synthesis of detoxification enzymes. Safeners are non-phytotoxic compounds 

which confer protection to cereal crops from herbicide injury (Riechers et al. 

2010). They reduce the toxicity in a number of ways; direct interaction with 

biochemical targets or receptor proteins of herbicides, increasing rates of 

degradation or reducing uptake and translocation of herbicides (Davies et al. 
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1999). The most studied mechanism is promotion of herbicide metabolism in 

plants (Marrs 1996). It is assumed that safeners modulate the activity of 

transcription factors which interact with specific regulatory elements of the 

promoters of metabolic enzymes (Davies et al. 1999). Safener structures often 

resemble those of their respective herbicide and act by inducing detoxification 

genes GSTs, UGTs and P450s, stimulating vacuolar transport of conjugates and 

increasing the levels of cofactors for example GSH (Hatzios 1983). The induction 

of GSTs by TNT could be a result of the same induction pathway as observed for 

safeners. Regulatory elements on the promoters of Gsts react to both specific 

and broad signals. Octopine synthase (ocs) elements, present in the promoter 

regions of many GSTs are stress inducible, stimulated by hormones, heavy 

metals, oxidative stress and pathogen attack (Marrs 1996; Riechers et al. 2010). 

Whether TNT itself is a signal or if GST expression is a response to the resultant 

oxidative stress is not yet known. Additionally, although safeners stimulate GST 

expression in dicots, they are not effective at protecting them from herbicide 

injury. This suggests that unknown additional factors must be integral for the 

protection of monocot cereal crops from herbicide injury (DeRidder et al. 2002; 

DeRidder et al. 2006; Riechers et al. 2010). The work presented here is with the 

dicot Arabidopsis, hence the upregulation of GSTs by TNT may not be protective 

(DeRidder et al. 2006). This is observed for safeners which do induce GSTs in 

dicots, yet herbicides remain active towards them. This implies that GSTs could 

play a detoxification role in monocots. 

 

5.4.5 Concluding Remarks 
The overexpression of GSTs in Arabidopsis reduces TNT tolerance and uptake 

rates. No glutathionyl-TNT conjugates have been observed from plant samples, 

this may be due to their absence or their metabolism in the vacuole, though 

previous reports suggest that vacuolar transport is arrested by TNT. Three 

hypotheses have been proposed to explain the data presented in this chapter 

however none are fully justified by the results.  
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Chapter 6: Discussion  

 

The detoxification of 2,4,6-trinitrotoluene (TNT) in plants is thought to follow the 

‘green liver model’, with Phase I transformation, Phase II conjugation and Phase 

III transport and sequestration (Sandermann 1994). However for an effective 

phytoremediation approach it is imperative to gain a better understanding of the 

specific mechanisms of TNT detoxification used by plants. Previous 

investigations within this group have stemmed from a microarray of TNT treated 

Arabidopsis, which highlighted the upregulation of numerous detoxification gene 

families which could indicate their involvement in TNT transformation, including 

reductases, P450s and transferases (Lorenz 2007). Thus far, TNT detoxification 

studies of upregulated genes have been performed for oxophytodienoate 

reductases (OPRs), which can catalyse Phase I detoxification of TNT catalysing 

nitro group reduction producing; hydroxylaminodinitrotoluenes (HADNTs) and 

aminodinitrotoluenes (ADNTs) in addition to aromatic ring reduction yielding 

hydride and dihydride Meisenheimer products (Beynon et al. 2009). Investigation 

into the glycosyl- transferases (UGTs) has also been performed, these Phase II 

enzymes catalyse the conjugation of glycosyl molecules to both isomers of 

HADNT and ADNT, likely reducing the toxicity of TNT and leading to 

sequestration (Gandia-Herrero et al. 2008). Also upregulated in the microarray 

were a number of the glutathione transferase (GST) family (Lorenz 2007). GSTs 

are Phase II detoxification enzymes which function by conjugating the tripeptide, 

glutathione (GSH) to an electrophilic substrate (Dixon et al. 2010). Their activity 

in plants has been widely studied owing to their role in herbicide detoxification 

(Tal et al. 1993; Cummins et al. 1997; Dixon et al. 2003; Mezzari et al. 2005). It 

has been proposed on numerous occasions that GSTs play a role in TNT 

detoxification in plants, although no direct evidence has been observed (Mezzari 

et al. 2005; Rylott et al. 2009; Landa et al. 2010).  

 

The aims of this project were to identify if GSTs are active towards TNT and 

whether they are involved in TNT detoxification by Arabidopsis. To investigate 

this, both in vitro and in vivo characterisations of Arabidopsis GSTs were 
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performed. Seven GSTs were selected due to their high levels (8 to 47 fold) of 

upregulation following TNT treatment of Arabidopsis as detected by microarray 

analysis (Lorenz 2007).  

 

Real-time PCR (RT-PCR) of Arabidopsis treated with TNT verified the 

upregulation of the seven selected GSTs observed by the microarray 

experiments (Lorenz 2007), however the increased sensitivity of RT-PCR 

revealed expression levels to be 40 to 300 fold upregulated. The seven GSTs 

were cloned and expressed in Escherichia coli and purified by both GSH- and 

His- affinity chromatography. His-purification was more successful than GSH- 

purification as many of the GSTs (U1, U3, U4 and U7) did not bind well to the 

GSH- sepharose. This was unexpected as Tau class GSTs are commonly 

successfully purified from plant extracts by GSH- affinity chromatography 

(Edwards et al. 2005). Activity assays of the GSTs were performed with 1-

chloro,2,4-dinitrobenzene (CDNB) considered to be a generic substrate for GST 

studies. The observed activities were similar to rates previously published for 

these GSTs (Dixon et al. 2009); five of the seven GSTs were able to conjugate 

this substrate to GSH significantly more than lysate of E. coli containing empty 

vector, with GSTU24 and U25 exhibiting the highest rates of activity whilst 

GSTU1 and U4 activities were not significantly more than the negative control. 

The failure of GSH-purification and the lack of activity towards CDNB suggest 

that GSH has a reduced affinity to GSTU1 and U4; however sequence alignment 

of the GSTs showed that the catalytically important residues of the GSH-binding 

site are the same for all GSTs in this investigation. An assay was performed to 

determine if any of the GSTs had conjugation activity towards TNT. Previous 

reports of GSTs with conjugating activity towards TNT are limited to crude extract 

of equine liver GST (Brentner et al. 2008), which was therefore used as a positive 

control. TNT assays confirmed that the equine GST was able to reduce TNT 

concentration and produce a conjugate, and plant GSTs U24 and U25 were also 

active, with GSTU25 showing the most activity of the two. However, the assays 

with TNT and purified GSTs U1, U3, U4, U7 and U22 did not yield a decrease in 

TNT concentration or production of conjugate. It is therefore interesting that 

GSTU24 and U25 were the GSTs upregulated the most in the microarray and 

RT-PCR data, and the most active of the seven enzymes towards both the 
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generic GST substrate CDNB and TNT. This strengthens the likelihood that these 

enzymes play a role in Phase II conjugation of TNT in plants. To identify the 

structure of the conjugate mass spectrometry of TNT assays with purified 

GSTU24 and U25 were performed. This showed conjugation between TNT and 

GSH occurs through substitution of one of the nitro groups of TNT, also 

previously identified for equine liver GST (Brentner et al. 2008). However, it was 

not possible to further fragment the conjugate ion sufficiently to allow 

identification of the specific nitro group removed. The removal of a nitro group 

from TNT is a highly sought after reaction, it is the presence of three electron 

withdrawing nitro groups on TNT which provide stability to the aromatic ring 

through resonance (Qasim et al. 2007). This reduced stability could subsequently 

allow degradation and complete mineralisation.  

 

In Chapter 4 the activities of GSTU25 towards TNT and other substrates were 

characterised. The assay conditions were optimised, with pH 6.5 phosphate 

buffer producing the highest results for conjugate production and TNT stability, a 

relatively low pH compared to other characterised plant GSTs (Habig et al. 1974; 

Irzyk et al. 1993; Edwards et al. 2005; Kunieda et al. 2005). Optimal temperature 

was 30 °C, which produced the fastest reaction rate  with minimal protein 

inactivation and GSH oxidation occurring over the reaction length. This concurs 

with optimal temperatures for other plant GSTs (Dixon et al. 2005; Nutricati et al. 

2006; Farkas et al. 2007). The optimised conditions were employed for kinetic 

analysis of the reaction between GSTU25, GSH and TNT. Due to the low 

solubility of TNT, the substrate concentration used was not high enough to 

identify a Vmax and determine an accurate Km of the reaction. Interestingly, the 

Michaelis-Menten plots for TNT depletion and conjugate production were 

different. The rate of conjugate production appeared to level off, while TNT 

depletion remained linear (Figure 4.15). Despite careful analysis of previous 

mass spectrometric data, the presence of a diconjugate was not identified and 

breakdown of GSH- conjugates due to stability is not expected to occur. 

Extrapolated values from the TNT Michaelis-Menten plots compared to values 

from CDNB kinetics indicate that CDNB is a significantly better substrate than 

TNT for GSTU25.  
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The activity of GSTU25 towards structurally similar compounds; 

hexahydrotrinitrotriazine (RDX), dinitrotoluene (DNT) and aminodinitrotoluenes 

(ADNTs) was assayed to determine the substrate specificity of the enzyme. 

GSTU25 showed no activity to any of these tested substrates except TNT and 

CDNB. This suggests that the electrophilic strength of the aromatic centre is 

important for substrate binding in the active site. It also provided evidence for the 

reaction mechanism. The nitro groups of CDNB and the GST inhibitor 

trinitrobenzene (TNB) are resistant to substitution by the glutathione anion 

(Armstrong 1991; Bowman et al. 2007), however for TNT a nitro group is the 

leaving group. It is therefore proposed that the presence of the methyl group in 

TNT has an important role; it has an inductive effect supplying electrons to the 

neighbouring 2- and 4- nitro groups, reducing their resonance stability. This 

makes nucleophilic substitution by the thiolate anion favourable; making GSTU24 

and U25 the first enzymes identified which are capable of catalysing nitro group 

removal from TNT. This reaction is desirable for remediation purposes as the 

stability of the dinitrotoluene (DNT)- moiety of the conjugate is reduced compared 

to TNT and could allow complete mineralisation of TNT, as observed for 2,4-DNT 

which in bacteria can be further denitrated by dioxygenases, to produce 2,4,5-

trihydroxytoluene and eventual ring cleavage (Nishino et al. 2000).  

 

In Chapter 5 35SGSTU overexpression lines were produced in Arabidopsis to 

assess the role of GSTs in TNT transformation in planta. No lines with reduced 

expression were created as previous studies have found the functional overlap of 

GSTs too high to observe effects of individual genes (Yoon et al. 2007; Sappl et 

al. 2009). Overexpressing lines were produced for GSTU24 and U25, the two 

enzymes which exhibited activity towards TNT in vitro. RT-PCR analysis of 

transcript levels show that of the lines selected for study all had hundred or 

thousand fold- higher transcript levels of the appropriate GST than WT, except for 

35SGSTU25 line M, which was only four-fold overexpressed. There was also little 

overlap in overexpression of the GSTs, despite their high sequence identity. 

Analysis of protein levels by western blot was unsuccessful, possibly the supplied 

antibodies were no longer functional. A CDNB assay of protein extracts from 

35SGSTU24 and 25 overexpression lines was performed to investigate if 

increased protein levels reflected the increased transcript levels shown by RT-
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PCR. The overexpressing lines generally had some increase in activity towards 

this generic substrate, though not at a significant level for most lines, this is 

probably due to the activity of GSTs U19 and F8, which account for the majority 

of CDNB activity in plants and are likely to have overwhelmed the response of 

GSTU24 and U25 overexpression (Dixon et al. 2010).  

The lack of reliable data for protein overexpression levels limits the conclusions 

that can be drawn from the experiments performed with the 35SGSTU lines. If 

this work were to be repeated, the GSTs would be cloned into plants with the 

addition of an affinity tag, an extraction and purification method would have 

allowed easy determination of the levels of overexpressed protein in each line.  

Analysis of TNT tolerance of the overexpressing lines by root length and liquid 

culture studies was performed. In general these results showed that the 

35SGSTU lines showed reduced TNT tolerance and uptake compared to 

untransformed, wild type (WT) plants on TNT media, although root lengths of the 

plant lines when on media containing no TNT appeared enhanced or the same as 

for WT. This interesting observation, along with the reduced tolerance on TNT 

amended media suggests that GSTs do have a role in the plant’s response to 

TNT, but it does not significantly improve tolerance to the xenobiotic.  

 

The combination of in vitro and in vivo results from this thesis has provided three 

putative explanations for the role of GSTs in the TNT response of plants. The first 

is that GSTs are able to detoxify TNT by catalysing its conjugation to GSH. The in 

vitro results from recombinant GSTs in Chapter 3 indicated that GSTU24 and 

U25 are capable of conjugating TNT to GSH, and this product (GS-DNT) was 

shown to have reduced toxicity by a growth curve of TNT and recombinant E. coli 

expressing Arabidopsis GSTs. However, if conjugation were to occur within the 

plant then the overexpressing lines would be expected to exhibit improved 

tolerance to TNT than untransformed lines. Experimental evidence shows that 

the opposite is true and that the overexpression of GSTs in Arabidopsis leads to 

slightly reduced tolerance to TNT. In addition to this, the presence of conjugates 

in plant extracts has not been observed. It is possible that the GS-DNT 

conjugates are exerting a toxic effect on the OPR-UGT pathway, which might 

account for the decreased tolerance of the overexpressing lines. To test for this, 
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an OPR assay with TNT could be spiked with the conjugate to determine if any 

inhibition occurs. It is also possible that TNT is inhibiting the transport of 

conjugates into the vacuole and their accumulation within the cytosol is 

detrimental to the plant. Results suggesting the inhibition of ABC transporters 

have been shown by TNT treatment, which inhibits the transport of fluorescent 

conjugates (Mezzari et al. 2005). If this were to occur in the 35SGSTU 

overexpressing lines, then the build up of conjugates could account for the 

reduced tolerance to TNT of those lines compared to WT. This could be 

assessed with a similar method to Mezzari et al. (2005) by investigating the 

localisation of conjugates of other compounds, for example monochlorobimane, 

in the presence of TNT with the 35SGSTU lines. The identification of TNT 

conjugates within the 35SGSTU lines by mass spectrometry should also be 

optimised, with a positive control of CDNB treated plants.  

To assess the fate of TNT in the 35SGSTU lines, radiolabelled TNT could be 

used. This would allow visualisation of the localisation of TNT within the plant 

(Brentner et al. 2010) and fractionation of plant samples would show where the 

TNT was sequestered, for example in the vacuole or cell wall. However, the 

difficulties in obtaining such a chemical were prohibitive in this project. 

GSTs have an emerging role in the oxidative stress response of plants (Marrs 

1996). GSTU25 and to a lesser extent, GSTU24 have glutathione peroxidase 

(GPOX) activity (Dixon et al. 2009; Dixon et al. 2009). It is therefore possible that, 

following TNT treatment, GSTs act as reactive oxygen species (ROS) scavenging 

enzymes, removing cytotoxic products resulting from oxidative stress. However, if 

this were a protective role of GSTs, their overexpression in Arabidopsis would be 

expected to confer increased tolerance to TNT treatment.  

Reduced toxicity resulting from GPOX expression has been previously observed 

when a cotton GST with GPOX activity was expressed in tobacco; the 

transformed plants had lower levels of expression of the antioxidant enzymes 

peroxidase and superoxide dismutase (Yu et al. 2003). To determine if these two 

GSTs are protecting from oxidative stress, the 35SGSTU lines from this work 

should be tested for improved resistance to oxidative stress, it would also be 

interesting to assess tolerance on other abiotic stresses such as chilling and salt 

treatments (Pickett et al. 1989; Bartling et al. 1993; Yu et al. 2003), which have 

been shown to be improved by GST overexpression. GSTU25 is known to have 
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high activity towards cumene hydroperoxide, it would also be interesting to 

determine if the overexpressing plants show enhanced GPOX activity towards 

this substrate (Dixon et al. 2009). The levels of glutathione in the 35SGSTU lines 

should also be determined as they might also indicate differential oxidative stress 

responses to WT.  

It is possible that, despite the activity of GSTs towards TNT in vitro, their 

upregulation does not confer any activity towards TNT or products of oxidative 

stress in plants. Safeners are compounds which prepare crops for herbicide 

application, priming their detoxification pathways (Davies et al. 1999). 

Interestingly, whilst safeners induce gene expression, only in monocots are active 

proteins produced. It is this distinction which is exploited when safeners are 

applied to monocot crops. Safeners, like TNT share structural similarities with 

herbicides and function by inducing gene expression of GSTs and other 

detoxifying genes (Marrs 1996; DeRidder et al. 2002). The upregulation of GSTs 

in Arabidopsis could, as for safeners, simply induce expression without providing 

any further activity towards the compound. It is important to note that the 

induction of GSTs by safeners in Arabidopsis does not result in protection from 

herbicides as it does for monocot crop species (DeRidder et al. 2006). This 

indicates that detoxification by glutathionylation is less effective in dicotyledonous 

plants and it is possible that if this work were to be repeated in a monocot crop 

species, glutathione conjugation of TNT may be observed. If the plants show no 

increased conjugating activity to other substrates or no improved tolerance to 

stress treatments then the hypothesis for induction of expression but no further 

activity would be favoured. 

This work has investigated the role of GSTs in TNT detoxification. The activity of 

two Arabidopsis GSTs towards TNT has been identified, with in vitro assays and 

mass spectrometry showing that conjugation of TNT to GSH occurs through 

nitrite release. Despite this, overexpression of GSTs in Arabidopsis does not 

improve tolerance to TNT indicating that GSTs are unlikely to play a major role in 

TNT transformation in plants. However further work outlined above must be 

performed to confirm this. 
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