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Abstract

The objective of this study was to evaluate the potential use of volatile fingerprints produced

by Penicillium nordicum to determine whether strains were producers or non-producers of

ochratoxin A on a ham-based medium. Studies were thus carried out on a 3% ham medium

inoculated with spores at two water activities (0.995, 0.95 aw) at 25°C for up to 14 days. A

spore lawn inoculation technique was employed and agar discs were destructively sampled

after 1, 2, 3, 7 and 14 days, placed in 30 ml vials, sealed and the head space analysed after 1

hour incubation. The qualitative response of a hybrid sensor array of 23 sensors was used to

try and discriminate between controls, OTA producing and non-producing strains of P.

nordicum. The effect of the environmental conditions on growth and OTA production were

also evaluated. Principal Component Analysis was used to analyse the volatile fingerprint

data sets. Up to 72 hrs high associations were observed based on aw more than the capacity for

OTA production. However, after 7 days incubation the hybrid sensor array was able to

discriminate the two strains grown at 0.995 aw. After 14 days growth the hybrid sensor array

was able to discriminate the OTA producers from the non-producer strain replicates and the

control ham medium at both aw levels.
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Introduction

Stored ham is commonly covered by mould whose type and extension depends on

ecological conditions in the storehouse, especially the prevailing temperature and humidity

(Spotti et al., 1999). The microbial community is important as it determines the aroma and

the organolectic aspects of the product, and contributes to the characteristics of final products
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in different geographic regions (Thanks et al., 1986; Leistner, 1986); unfortunately, some

component microorganisms can also cause deterioration or produce undesirable metabolites.

Results from studies in various countries have shown that the most important source of

natural toxin contamination for human consumption of such products is from ochratoxin A

(OTA), when compared with other products of animal origin (Govaris et al., 2007). The

kidney and liver are the main target organs of OTA, resulting in teratogenicity,

carcinogenicity, and mutagenicity (Lai WeiHua et al., 2009; Govaris et al., 2007); it is also

implicated in the aetiology of Balcan Endemic Nephropathy (EFSA, 2006).

The presence of the toxin in meat and meat products could be the result of either direct

contamination with moulds or carry over from animals exposed to naturally contaminated

feed (Gareis, 1996). Recent data supports the direct contamination as a major source

(Battilani & Pietri, unpublished data). Penicillium nordicum, responsible for the production of

OTA in proteinaceous food, has been observed sporadically (Spotti et al., 2001) or as an

important component (26%) of the total Penicillium population isolated from ham in Italy

(Battilani et al., 2006).

The presence of Penicillium species as the dominant genus (88.3%) on dry-cured pork

meat was also reported in Norway (Asefa et al., 2009), with P. nalgiovense, P. solitum and P.

commune as the main species isolated, while in Spain the mould flora was dominated by

Aspergillus spp. and primarily by A. laucus, A. fumigatus, A. niger and A. flavus (Rojas et al.,

1991). No reports of P. nordicum on stored pork meat are available, but possibly some

misidentification of P. verrucosum could have occurred (Iacumin et al., 2008).

Mycotoxins and other non-volatile metabolites have traditionally been detected using

high performance liquid chromatography coupled to diode array detection (HAPLC-DAD)

and often also to mass spectrometry (LC-DAD-MS) (Smedsgaard, 1997). A new validated

HPLC-FLD method for OTA detection in dry cured meat and in blue cheese has been

developed recently to minimise the matrix effect and to improve the analysis performance

(Dall’Asta et al., 2007). These methods are destructive: they are applied at the end of the ham

ripening period and can thus lead to a loss of commercial product.

There has been interest in using volatile production patterns to try and discriminate

between spoilage fungi contaminating food products (Magan and Sahgal, 2007). Recently,

Sahgal et al. (2007) demonstrated the potential of discriminating between toxigenic and non-

toxigenic strains of mycotoxigenic species by using volatile production patterns. Previously,

Keshri amd Magan (2000) were able to discriminate fumonisin and non-fumonisin producer
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strains of Fusarium verticillioides based on volatile fingerprints. They also found that this

gave earlier results than those based on quantitative enzyme assays.

The objective of this study was to evaluate the potential for discrimination between a

toxigenic and non-toxigenic strain of P. nordicum using volatile production patterns on a

ham-based medium and the effect that environmental conditions had on growth and toxin

production.

Materials and methods

Strains used

Two strains of P. nordicum were included in the study, a OTA producer (MPVP P1669, BFE

838) and a non-OTA producer (MPVP P1446, BFE 851) (Bogs et al., 2006). They are both

held in the fungal collections of the Institute of Entomology and Plant Pathology, UCSC in

Piacenza (Italy) and Federel Research Centre for Nutrition and Food, in Karlsruhe

(Germany).

Inoculum preparation

The strains were initially inoculated on Yeast Extract Agar (Peptone from casein (tryptone)

6.0 g; yeast extract 3.0 g; agar-agar 15.0 g) and incubated at 25°C for seven days for the

inoculum preparation. The spores were collected using 10 ml of sterilised water and gently

agitating the culture surface to remove conidia. The concentration of the suspension was

modified to 108 conidia/ml by initially determining the concentration using a

haemocytometer.

Growth studies on ham medium (please elaborate ham medium preparation)

The medium used in these studies was based on 3% freeze dried ham per 1000 ml water with

the addition of 2% technical agar. This basic medium was modified to different aw levels by

substituting water with glycerol/water solutions (Dallyn and Fox, 1980) to obtain 0.98-0.80.

This aw range was used for the growth and OTA experiments. The treatments were incubated

at 25°C and the diameter of the colonies in two directions was measured after 2, 5, 7, 9, 12

and 14 days. Three small portions of medium (0.5 mm diameter) were collected from each

plate and used for OTA analysis at the end of the incubation period (14 days).

Volatile production patterns of P. nordicum strains
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For the detection of volatile fingerprints, experiments were carried out on unmodified

medium (0.995 aw) and at 0.95. The media were sterilised and the molten mixtures poured

into 9 cm Petri plates. For volatile production patterns a 0.2 ml conidial suspension was

spread over the whole surface of each of up to 24 replicate plates. These were incubated and

four replicates removed and destructively sampled.

Three random agar plugs (1 cm diameter) were taken from each replicate and placed

in 30 ml head space analyses vials after 1, 2, 3, 7 and 14 days and sealed with screw caps and

septa. The samples were incubated at 25°C for 1 hour to allow a build up of volatiles and then

analysed.

Volatile analyses was done in an NST 3220 Lab Emission Analyser carousel (Applied

Sensors, Linköping, Sweden). This system contains 10 metal oxide semiconductor field effect

transistors sensors (MOSFET), 12 metal oxide semiconductors sensors (MOS), and a

humidity sensor. It employs an auto sampler and a robotic double needle system to draw

sample headspace from the sampling vial, and flush it over the hybrid sensor array and the

headspace is passively replaced with air through the 2nd injection needle.

Data analysis

Data on fungal growth, OTA production and the sensor responses were analysed with the

Univariate analysis of variance in SPSS (Statistical Package for Social Science, ver. 15.0,

2006 SPSS Inc., Chicago Il USA) and a Tukey test was applied to separate means.

Data collected with the electronic nose were analysed by in-built software package furnished

by the system; Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied.

Statistica 7 was used for CA where the most representative e-nose sensors, using those

showing significant differences in their response were included. Euclidean distance was

selected to establish similarities between samples and Ward’s method to aggregate distances.

Results

Effect of environmental factors on growth and OTA production

Growth of P. nordicum was slow with initial visible growth after 2 days incubation and, by

the 14th day, the diameter of colonies was only about 27 mm (Table 1). The colonies were

significantly larger at 0.98 and 0.95 aw compared to lower aw treatments.

Table 2 shows the OTA production after 14 days incubation. The highest amount of

OTA was detected at 0.98 aw, followed by 0.95. The amounts obtained were significantly

higher when compared to the other conditions.
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Discrimination between P. nordicum strains based on volatile fingerprints

Figure 1 shows the relative response of one set of sensors to the different treatments used in

this study after 7 days incubation. There were differences in the response of the sensor array

to the toxigenic and non-toxigenic strain of P. nordicum which implies a difference in volatile

production patterns.

The PCA analyses after 1 – 3 days suggested very little discrimination between

treatments perhaps because of the very slow growth of the P. nordicum strains. However,

after 7 days there was discrimination of the P. nordicum strains, especially on the unmodified

ham medium (0.995 aw, Figure 2). More than 90% of the variation was accounted for by PCA

1 and 2. This was confirmed by the cluster analyses which showed the spatial separation

between treatments (Figure 3).

Figure 4 shows the results of the PCA after 14 days. This shows the effective

discrimination between the P. nordicum producer and non-producer strains at both aw levels

examined. However, producers grown at 0.995 and 0.95 aw could not be effectively

differentiated and this was confirmed by CA (data not shown).

Discussion

The application of an e-nose in detecting the presence of P. nordicum and OTA based on

volatile fingerprints gave promising results. The e-nose was able to discriminate the OTA

producer strain with respect to the non-producer after 7-14 days incubation. The volatile

fingerprints were also slightly different depending on the water availability of the medium

after 14 days. This may partially be due to the biosynthetic pathways for OTA production

being more active in the OTA producing strain (MPVP1669) at 0.98 than 0.95 aw.

The use of volatile fingerprints to separate between the two strains after 7 days

incubation was limited, and was possible under conditions with freely available water (0.995

aw). At 0.95 aw the slow growth and volatile production patterns may have been lower

resulting in the non-discrimination between the strains. Previous work with P. nordicum

grown on artificial media and incubated at 20°C for 7 days produced approx. 6 ppb of OTA

(P. Battilani, unpublished data). It may be that the parallel production of volatiles may be to

low for effective discrimination using our approach.

Sahgal et al. (2006) obtained similar levels of discrimination between strains of

dermatophytes when the concentration of volatiles generated in the headspace or the types of

volatiles were different. Needham and Magan (2003) in work relevant to the present study,

found some discrimination between toxigenic and non-toxigenic strains of P. verrucosum in
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relation to ochratoxin production at 0.95 aw on wheat-based agar media, although results for

A.flavus were less clear. Recent work on strains of the Aspergillus section nigri species has

shown more promise (Cabanes et al., 2009).

Previous studies with food spoilage microorganisms has tried to take into account the

volatile profiles produced and analysed by an e-nose combined with mass spectrometry (GC-

MS) . This showed a good correlation between volatiles identified during the development of

the spoilage profile (Olsson 2000; Tognon et al., 2005; Bianchi et al., 2009). An interesting

application of e-nose was reported by Karlshoj et al., (2007). They developed a classification

models for P. expansum spoilage of apples and a prediction models for patulin concentration

usable for apple juice production. This was based on the correlation between e-nose data and

HPLC quantification of patulin. The studies by Keshri and Magan (2000) certainly showed

that there was potential for discriminating between fumonisin and non-fumonisin producing

strains of F. verticllioides in vitro. Indeed, the volatile fingerprint approach was shown to be

faster than other more traditional approaches. The potential for this approach ahs also been

more recently reviewed by Sahgal et al. (2007).

This paper has shown that potential exists for using this approach. More detailed work

is now required with P. nordicum and OTA production in ham and pork cured meat products

to evaluate whether the relationship between volatile production patterns and threshold levels

of OTA can be correlated to enable rapid and real time predictions to be made of the presence

of harmful strains of P.nordicum or harmless strains which do not represent a risk to

consumers.
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Table 1. Effect of incubation time and available water on the growth of P. nordicum,
measured as diameter of the colonies on a 3% ham medium at 25oC. Figures with different
letters are significantly different (P=0.05).

Diameter
(mm)

Incubation time
(days)
2 4.6 f
5 11.9 e
7 15.6 d
9 19.2 c
12 24.3 b
14 27.3 a
Available water
0.98 30.1 a
0.95 32.1 a
0.93 20.4 b
0.90 12.5 c
0.85 3.0 d
0.80 3.0 d
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Table 2. The relative amounts of ochratoxin A produced by colonies after 14 days incubation
with the concomitant colony diamters. Figures with different letters are significantly different
(P=0.05)

aw
Diameter
(mm)

Ochratoxin A
(ng/g)

0.98 47.6 a 7992.7 a
0.95 51.3 a 4458.2 b
0.93 33.0 b 1390.1 c
0.90 23.0 b 481.7 c
0.85 3.0 c 0.0 c
0.80 3.0 c 0.0 c
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Figure 1. Example of the mean response of the metal oxide sensors to volatile produced by
different treatments for both the toxigenic (MPVP1669, BFE 838) and non-toxigenic
(MPVP1446, BFE 851) strains after 7 days at 25oC on a 3% ham-based medium.
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Figure 2. The PCA plot of the data after 7 days incubation to show that there is some
discrimination between the P. nordicum strains on a 3% ham-based medium based on the
volatile production patterns.
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Figure 3. Cluster analyses after 7 days. Key to treatments: B=blank; N PR 0.99=non-producer
at 0.99 aw; N PR 0.95=non-producer at 0.95 aw ; PR 0.99=producer at 0.99 aw; PR
0.95=producer at 0.95 aw.
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Figure 4. PCA after 14 days showing the relative discrimination between treatments. Key to
treatments: B=blank; N PR 0.99=non-producer at 0.99 aw; N PR 0.95=non-producer at 0.95
aw ; PR 0.99=producer at 0.99 aw; PR 0.95=producer at 0.95 aw.


