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ABSTRACT 

Mobile communication networks constitute large-scale sensor networks that generate huge amounts of data that 
can be refined into collective mobility patterns. In this paper we propose a method for using these patterns to 
autonomously monitor and detect accidents and other critical events. The approach is to identify a measure that 
is approximately time-invariant on short time-scales under regular conditions, estimate the short and long-term 
dynamics of this measure using Bayesian inference, and identify sudden shifts in mobility patterns by 
monitoring the divergence between the short and long-term estimates. By estimating long-term dynamics, the 
method is also able to adapt to long-term trends in data. As a proof-of-concept, we apply this approach in a 
vehicular traffic scenario, where we demonstrate that the method can detect traffic accidents and distinguish 
these from regular events, such as traffic congestions.  
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INTRODUCTION 

Mobile communication networks consist of cells that each covers a geographic area. When a mobile phone is 
active it is linked to a specific cell - typically the one that provides the strongest signal - which occasionally 
changes as the mobile phone is moving. By combining statistics about the number of phones that are linked to 
each cell over time with the cells' geographic coverage, we can infer collective mobility patterns. We propose a 
method for capturing significant shifts in such patterns in order to monitor, detect and assess the impact of 
accidents and other critical events. The long-term aim is to develop robust, decentralised processes that run 
within the cellular network itself in order to provide such services. These services can in addition enable basic 
mechanisms for improving the robustness of cellular networks by enhancing their ability to adapt to rapidly 
changing and anomalous loads that may occur during crisis. Using cellular networks as massive sensor networks 
is advantages in several respects. Firstly, cellular networks are ubiquitous and cover most populated areas. 
Secondly, they are already in place and do not require major investments in infrastructure. Thirdly, they are 
commonly used, and therefore produce huge volumes of data. Leveraging this data we can maintain reliable 
statistical models and estimates of collective mobility patterns.  

Our approach is based on a local measure that is approximately invariant on short time-scales under regular 
variations in mobility patterns. Long and short-term dynamics of this measure are estimated using Bayesian 
inference. This enables us to adapt to long-term trends as well as identify sudden changes as these cause the 
long and short-term dynamics to significantly diverge. The method is distributed as each network cell monitors 
local divergences. This, in combination with the large coverage of a cellular network, will give us a bird’s eye 
view of the effect of an accident in terms of the geographic distribution of divergences. Such a view is valuable 
when allocating emergency resources, in particular if there are multiple simultaneous incidents, for instance due 
to a natural disaster. Having a distributed and dynamic view of anomalies may also prove invaluable when 
finding the most efficient way to redirect traffic or direct an evacuation, or when determining which routes are 
blocked and should be avoided by emergency services. 

Mobility information in cellular network data has previously been used in several different areas, such as for 
classifying trajectories (Becker, Caceres, Hanson, Loh, Urbanek, Varshavsky and Volinsky, 2011), inferring  
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Figure 1. Four-lane highway covered by overlapping network cells ci. Arrows indicate inflow of vehicles. 

 

common routes (Görnerup, 2012), for location and trajectory prediction (Bhattacharya and Das, 1999; Yavas, 
Katsaros, Ulusoy and Manolopoulos, 2005), for determining modes of transportation (Sohn, Varshavsky, 
LaMarca, Chen, Choudhury, Smith, Consolvo, Hightower, Griswold and de Lara, 2006) or if a cell phone is 
stationary (Smith, Chen, Varshavsky, Sohn, and Tang, 2005), for mobility modeling and network tracking area 
optimisation (Chondronasiou and Papadia, 2011; Kreuger, Gillblad and Arvidsson, 2012), for modeling 
behaviour during emergencies (Chen, Zhai and Madey, 2011), and for studying wireless communication in 
vehicular traffic (Massey, W., and Whitt, W, 1994). The potential of utilising cell phone data in crisis 
management has also been demonstrated in (Bengtsson, Lu, Thorson, Garfield and von Schreeb, 2011), where 
cell usage and tower position data are successfully used to estimate population movements during a natural 
disaster and a cholera outbreak. 

Cellular networks have also been subject to anomaly detection (Xie, Han and Tian, 2011), for instance in 
(Pawling, Chawla, and Madey, 2007), where clustering is used to detect anomalous data points as outliers in call 
data records, e.g. in terms of initiation time, duration and type of service. In contrast to their work, we consider 
anomalous states of statistical representations, which we believe is more robust due to a higher resilience to 
noise in data, and less sensitive to privacy intrusions. The approach by Pawling et al. is used in a general-
purpose system for detecting emergencies and suggesting responses by using cell phone data in concurrence 
with agent-based modeling (Schoenharl and Madey, 2006). With respect to their work, our approach differs in 
that it is completely data-driven. Similarly, (Candia, González, Wang, Schoenhar, Madey and Barabási, 2008) 
consider collective mobility behaviour inferred from mobile communication data, and detect spatiotemporal 
anomalies using an approach based on percolation theory. Focusing on fraud detection, (Sun, Yu, Wu and 
Leung, 2004) instead propose an anomaly detection algorithm based on higher-order Markov models of mobility 
patterns. In comparison to their work, we instead propose a distributed and autonomous method that can be run 
within the cellular networks itself. 

In this paper we will demonstrate the applicability of our approach by presenting a proof-of-concept within a 
specific vehicular traffic scenario. In this setting, an approximately time invariant measure is defined as local 
densities of cell phones linked to a network cell and its neighbouring cells. We show that this approach can be 
used to detect anomalies in the form of traffic accidents, and that these can be distinguished from regular 
variations in mobility patterns, e.g. due to traffic congestions. We will also show that the method can be used to 
quantitatively assess the impact of an accident in terms of affected subsequent traffic flow. 

METHODS 

Due to lack of empirical data - in particular involving traffic accidents - we test and evaluate our approach using 
simulations. The simulations are based on two components that model vehicular traffic dynamics and cellular 
network activity, respectively. The compound model is not intended to constitute a completely faithful 
representation of real traffic and network dynamics, but rather it enables us to provide a proof-of-concept for 
motivating more extensive studies and experiments. In order to decrease the risk of introducing model-
dependent artifacts, we formulate and study a simple bare-bones scenario. We consider a stretch of a four-lane 
highway, where there are no slipways, exits or road crossings. At each end of the stretch, vehicles enter in both 
lanes with a given rate. The highway is evenly covered with network cells (further explained below), and the 
environment is completely homogenous in terms of geography, buildings etc. See Figure 1 for a schematic 
illustration of this scenario. 
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 (a)                                                                                           (b) 

Figure 2.  (a) Vehicle inflow modeled by a truncated mixture of two Gaussians. (b) Time series of the number of 
vehicles linked to a given cell, derived from simulation. 

  
  (a)                                                                                           (b) 

Figure 3.  Space-time diagrams starting at (a) 17000 s. and (b) 31000 s. Traffic runs from left to right, where a site is 
white if both lanes are occupied by vehicles, gray if one lane is occupied, and black if both lanes are empty. Time runs 
from top to bottom. The diagrams show the highway traffic in one direction. Note in (b) the emerged traffic jams that 
form waves that travel in the opposite direction of traffic. 

Vehicular traffic model 

The vehicular traffic simulation is based on a space- and time discrete model introduced by (Nagel, Wolf, 
Wagner, and Simon, 1998). In the simulation each vehicle obeys a set of rules that are defined in terms of the 
state of the vehicle (lane occupied and velocity) and its local neighbourhood (distance to the closest vehicles and 
their velocities). The model manages to capture properties observed from empirical traffic measurements, where 
the spontaneous formation of traffic jams is the most relevant property for this study. As in real traffic, these 
congestions emerge as waves that travel in the opposite direction of traffic. 

Following the results in (Grabec, Kalcher and Svegl, 2008), we model the time dependent inflow of traffic by 
using a truncated mixture of two Gaussians, see Figure 2(a), in order to capture variations of inflow during 24 
hours, such as low activity at night compared to high inflow rates at morning and evening rush hours. The 
purpose for modeling these variations is to determine how different hourly conditions affect our ability to 
distinguish accidents. A related objective of this study is to determine if it is possible to distinguish a common 
traffic jam from an accident using cellular network data. To further trigger traffic congestions at peak hours, we 
therefore extend Nagel et al.'s model by assigning each vehicle to one of two categories, where one category 
(that may be interpreted as buses and trucks) has a lower maximum velocity than the other (constituting regular 
cars). As exemplified in Figure 3, the model indeed exhibits spontaneous formation of traffic jams at peak 
hours. An accident is simply modeled by blocking one of the lanes in one direction at the centre of the highway 
stretch. 
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Cellular network model 

In practice, network cells overlap due to local perturbations in signal strength, caused for instance by varying 
geographic topology or obstacles such as buildings and vegetation. We simulate these perturbations in signal 
strength by using a model introduced by (Erceg, Greenstein, Tjandra, Parkoff, Gupta, Kulic, Julius and Bianchi, 
2006), which is based on experimental signal strength data that is fitted to a stochastic model. In the scenario we 
assume that cell phone usage is homogenous in all vehicles and that this usage is independent of the current 
vehicular traffic state. These are most likely false assumptions. One can for instance imagine that cell phones are 
used to a higher extent in traffic jams, or in the vicinity of major traffic accidents, than in free-flowing traffic. 
However, such variations are also likely to be advantageous for our purposes, as they result in signals that may 
be used to detect accidents more easily - signals that we consequently chose to discard in this study for sake of 
simplicity. 

The cell used by a phone is known by the network under several circumstances, e. g. at connections and 
disconnections, when performing handovers between cells, and when changing location areas. Under the 
simplifying assumption that network events that provide information about vehicle cell usage are time invariant 
and vehicle-independent, we refrain from modeling possible network events in detail in order to avoid 
introducing a multitude of additional parameters and dependencies. Instead, a uniform sample of all vehicles 
generates events that signal their cell usage. In this way we approximate the cell information as seen by the 
network, modulo a scaling factor that reflects the probability that a phone generate network events, by counting 
the number of vehicles for which each cell provides the highest signal strength. The hourly variations of such 
counts for a cell are exemplified in Figure 2(b). This plot demonstrates the stochasticity that is due to varying 
vehicular traffic and signal strengths, as well as shows how traffic congestions are revealed as oscillations at 
peak hours.  

Monitoring method 

Our strategy is to use a statistical measure based on cell usage that is approximately invariant under hourly 
variations and traffic congestions, but that changes when an accident occurs. In the highway scenario, the 
following measure D fulfills this property: For each cell ci, let D be the local distribution of vehicles linked to ci 
and its neighbouring cells ci-1 and ci+1. That is,  

  
where d denotes relative vehicle density with respect to the three cells. This measure is approximately invariant 
since it constitutes a relative local load that is roughly constant in relation to raw vehicle counts as illustrated in 
Figure 2(b). 

Bayesian estimators 

We dynamically estimate D from data using recursive Bayesian inference (Kreuger, Gillblad and Arvidsson, 
2012; Steinert and Gillblad, 2010), where prior estimates are influencing the current estimate. That is, at time t, 

  
where nj denotes vehicle count associated with cell j and r is a parameter that determines the degree of influence 
of the prior distribution, i.e. the time-scale considered (r is also interpreted as the number of samples used to 
estimate the prior distribution). The initial distribution, dj(0), is set to uniform in order to achieve maximum 
entropy. The estimate is updated each time a sufficient number of samples have been collected (this takes Δt 
seconds) in order to ensure reliable statistics. In this way we update D more frequently during rush hours than 
during night, for example.  

Two measures are maintained in parallel, where one measure, DL, captures long-term trends, and the other, DS, 
captures short-term dynamics. Both measures are estimated as above, but differ in that DL is less sensitive to 
recent dynamics. That is, rS << rL. Maintaining these two measures, we can capture sudden variations caused by 
accidents, by detecting differences in DL and DS, and at the same time adapt to long-term trends that are captured 
by DL. 

Divergence measure 

The difference between the long- and short-term dynamics is quantified as the Kullback-Leibler (K-L) 
divergence, K, between DL and DS, where the former is considered to be the baseline (the "normal" state): 

D = {di−1, di, di+1},

dj(t) =
dj(t−∆t)r + nj(t)

r +
∑i+1

k=i−1
nk(t)

,
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K-L divergence is an information theoretic measure that is commonly used for comparing probability 
distributions. It is interpreted as the amount of information that is lost when approximating DL with DS. In this 
context K-L also constitutes a quantitative measure of the impact of an event such as an accident. When K 
reaches a given threshold value, an accident is considered to be detected.  

RESULTS 

In the following simulations we consider a 4 km long stretch of highway covered by 5 network cells, where the 
centres of the first and the last cells are located at the endpoints of the highway. 70% of the vehicles have a 
maximum velocity of 100 km/h, whereas 30% have a maximum velocity of 80 km/h. All vehicles are used when 
estimating DL and DS. Lowering the fraction of vehicles considered will qualitatively give the same results as 
those reported here.  

Example 

We begin by exemplifying how the measure estimates and their divergence typically evolve after an accident, as 
shown in Figure 4. The dynamics of the measures depend on the time of the day, where peak hours are 
characterised by larger oscillations of the short-term estimate due to waves of traffic congestions. This can be 
seen when comparing Figure 4(a) and (b), where the former displays less variation due to the lack of traffic 
jams. Despite the variations at peak hour, an accident causes significant divergence that can be detected, Figure 
4(f), although the divergence is more distinct earlier in the day, as seen in Figure 4(e). Note that DL is relatively 
stationary regardless of the time of day, Figure 4(c) and (d). 

Evaluation 

We systematically evaluate the method by performing multiple runs under different conditions. More 
specifically, we vary the start time in discrete steps, t0=10000m seconds for m=1, 2, .., 8, and the detection 
threshold, s=0.01, 0.02,..., 0.05 bits, and measure the following properties: 

• The fraction of accidents that are detected. 
• The fraction of false positives (when the detector triggers although no accident has occurred). 
• The time it takes to detect an accident. 

In practice, we perform each test as follows: 

1. Set parameters t0 and s. 
2. Run the vehicular traffic simulation from t0-2g to t0-g seconds in order to avoid initialisation artifacts, 

where g=30 minutes. 
3. Start updating the estimates and run the traffic simulation for another g seconds. 
4. In half of the occasions, simulate an accident by blocking a lane in one direction. 
5. Continue running the traffic simulation while updating DL and DS.  
6. Abort the simulation if the divergence, K, reaches threshold s, or if the threshold is not reached within g 

seconds. 

Using the above test, we can estimate the fraction of correct accident detections, the probability of false 
positives and the detection time. As indicated in the example given in Figure 4, the traffic conditions in terms of 
congestions and lack thereof have an impact on these properties. Firstly, at very low vehicle inflow rates, m=1, 7 
and 8, accidents have no impact on the throughput of traffic, and therefore none of the accidents are detected. 
This is not due to that the method is not able to detect an anomaly, since there are no anomalies to detect. At the 
same time, there are no false positives since the threshold is above the noise floor at these start times. It is 
interesting to note the significant difference for m=2 and m=7, since the inflow at those times are roughly the 
same. The prior buildups of traffic are different though, as well as the higher order influx rates (a steep increase 
of rate, versus a steep decrease of rate) - both factors that affect the result. Secondly, all accidents are detected 
for m=2, whereas there are no false positives: an ideal situation due to a maximum vehicle inflow prior to the 
emergence of major traffic jams. The advantageous conditions are also reflected by the distinct increase of K in 
Figure 4(e). This start time also stands out when studying the estimated distributions of detection times for 
threshold s=0.05 bits, Figure 6, as it results in less variance than at other start times. 

K(DL;DS) =
∑

i

dL,i log
dL,i

dS,i
, 0 log 0 ≡ 0.
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  (a)                                                                                           (b) 

  
(c)                                                                                           (d) 

  
(e)                                                                                           (f) 

Figure 4.  Evolution of short-term, (a) and (b), and long-term, (c) and (d), estimates, where three densities are shown. 
These densities are associated with the middle cell in Figure 1 and its two neighbouring cells. The Kullback-Leibler 
divergence between (a) and (c), and (b) and (d), are shown in (e) and (f), respectively. Accidents occurring at 20000 s 
(left) and 30000 s (right) cause the short and long-term estimates to diverge, as seen in (e) and (f). 

 

Thirdly, the results at the remaining start times, for m=3 to 6, are more subtle as seen in Figure 5. All accidents 
are in these cases also detected, but as shown in Figure 5(b), the degree of false negatives is lower for m=4 due to 
fewer traffic congestions at midday. At the same time, the mean detection time is lower and on par with the 
detection time for m=2. In general, since detection times grow with the threshold, Figure 5(a), whereas the 
fraction of false positives decreases (with the exception of m=2), Figure 5(b), we face a tradeoff that is dictated by 
what is considered as reasonable expected detection times versus the risk of incorrectly detecting an accident. 
Again viewing the histograms in Figure 6, we see that the detection times can differ significantly for the same 
threshold. This is not surprising due to the strong stochastic components in the models, where large variations in 
dynamics have the consequence of smearing out the detection times. 
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  (a)                                                                                           (b) 

Figure 5.  (a) Mean detection times and (b) fractions of false positives. 100 runs per data point. 

 

 

Figure 6.  Histograms of detection times for threshold 0.05 bits. 1000 samples are used per histogram. 

DISCUSSION 

Even though we consider a bare-bones scenario that we model using several simplifying assumptions, the results 
reported here are promising and point to the possibility of employing data from cellular networks for detecting 
anomalies caused by critical events such as vehicular traffic accidents. As already pointed out, the study is 
intended to serve as a proof-of-concept, and the results should be interpreted with this in mind, as the 
quantitative outcomes of our evaluations will most likely not directly translate to a real scenario. Taking this 
into consideration, we would like to underline that the specific minutes of response times reported here, for 
instance, are not the main take-home-message. Results of relevance are instead that accidents are detectable, 
and that the detection time is on the order of minutes rather than hours. 

The approach would improve crisis response and management by enabling existing cellular networks to serve as 
ubiquitous sensor networks that require little additional investments in infrastructure and deployment. As the 
approach is distributed, autonomous and to a certain degree redundant, it is also robust in the sense that portions 
of the network may fail without disrupting the monitoring system as a whole. Although the granularity is 
relatively coarse (given by the geographic area covered by a cell) compared to GPS data, for instance, the 
method leverages on the huge amounts of data produced in the network in order to infer large-scale mobility 
patterns. Furthermore - again in comparison to methods based on satellite data (Voigt, Kemper, Riedlinger, 
Kiefl, Scholte and Mehl, 2007) - the proposed approach is also valid underground, such as in a subway system, 
and less sensitive to weather conditions (especially compared to methods based on image processing). For 
example, imagine a road tunnel, perhaps several kilometers long, that is supported by a cellular network (this is 
a scenario very similar to that depicted in Figure 1). By employing the proposed approach we may 
autonomously monitor the tunnel without having to install additional sensors or communication equipment, but 
by utilising the sensors that are already present: the cellular network. 

So far we have solely treated a specific scenario - a stretch of four-lane highway - and a specific application - 
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monitoring and detecting traffic accidents. However, our approach is very general; identify a measure that is 
approximately constant on short time-scales under regular circumstances, estimate its dynamics on short as well 
as long long time-scales, and monitor the divergence between these estimates. Clearly, such divergences can be 
due to any types of anomalies causing unusual dynamics. The method is in other words blind to the underlying 
cause of the divergence, and may very well be applicable in other scenarios, in and beyond crisis response and 
management. Another aspect to which the method is blind is that of time-scale. Here the short- and long-term 
estimators capture dynamics on the order of minutes and hours, respectively, but it could as well be days, weeks 
or months etc. A relevant question could for instance be; is the traffic flow this month unusual compared to the 
traffic flow the same month a year ago? Being able to consider several time-scales in this way opens up yet 
other potential applications areas, where it is relevant to monitoring and detecting subtle and nonobvious 
changes that happen over months or even years. 

When using cellular network data, privacy must be taken into consideration as location data may be perceived as 
sensitive. Since our approach is based in statistical models - aggregated information in the form of local 
densities - references to individuals or small groups of people and their whereabouts are not necessary, nor 
desirable from a statistical point of view. In fact, the accuracy and reliability of our approach are intertwined 
with anonymisation, in the sense that a large number of samples are a prerequisite for the method to work 
properly.  

CONCLUSIONS 

We have proposed an autonomous method for monitoring and detecting significant shifts in mobility patterns 
reflected in cellular network data. The method is based on detecting divergences between short and long-term 
dynamics of a measure that under regular circumstances is approximately time-invariant on short time-scales. 
We demonstrate this approach by studying a vehicular traffic scenario constituted by a stretch of four-lane 
highway. Using a compound model constituted by a vehicle traffic model and a cellular network model, we 
show that the method is capable of detecting accidents and distinguish these from regular traffic congestions, 
where the detection time and the likelihood of false alarms are found to be dependent on hourly variations in 
terms of inflow rate and presence of congestions. This proof-of-concept motivates further studies in more 
extensive scenarios, including empirical tests in a real-world setting.  
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