-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Swedish Institute of Computer Science Publications Database

Demo Abstract: EmuLink - Heterogeneous
Sensor Network Simulation in Cooja

Joakim Eriksson', Niclas Finne!, Nicolas Tsiftes', Thiemo Voigt®,
Mikael Gielda?, and Peter Gielda?

! Swedish Institute of Computer Science, Sweden
{joakime,nfi,nvt,thiemo}@sics.se
2 Ant Micro, Poland
{mgielda,pgielda}@antmicro.se

Abstract. Until now sensor network simulators have been limited when
it comes to the variety of the hardware platforms that can be simulated.
To enable simulation of heterogeneous sensor networks in Cooja, we
present EmulLink—a component that connects different emulators into
Cooja. In this demo, we demonstrate EmuLink’s capability to simulate
sensor networks combining nodes based on the TI MSP430 architecture
and nodes based on the ARM Cortex-M3 architecture.

1 Introduction

With the rapid increase in the amount of wireless sensor nodes and other wireless
devices forming heterogeneous networks, it becomes unfeasible to test real setups
using physical hardware. While one can test systems and protocols on an abstract
level by simulating wireless phenomena, such simulation alone is insufficient
because software can be prone to bugs and unexpected interrelations. Simulating
complicated wireless setups using exactly the same firmware image that will later
be used on real wireless nodes is therefore crucial.

The Cooja wireless simulator [6] is widely used, but the range of hardware
it can emulate has been limited. The original approach, in which MSPSim [2]
was tightly integrated into the Cooja source code, limited the ability of running
unmodified firmware images to nodes based on either 16-bit TT MSP430 CPUs
using MSPSim or 8-bit Atmel AVR CPUs using Avrora.

Taking into consideration the growing popularity of low-power 32-bit CPUs,
which are gaining a widespread adoption in the wireless sensor field [5], we
need a way to integrate Cooja with an emulation framework that can support
Cortex-M3. This was the reason for creating EmuLink, an abstract solution for
interconnecting Cooja and hardware emulation software.

Although Cooja has proven to be useful for interoperability tests of hetero-
geneous software stacks before creating EmuLink [3, 4], the emulated hardware
was limited to a single platform. By using EmuLink it becomes possible to take
interoperability testing one step further and have both heterogeneous software
and hardware.

https://core.ac.uk/display/11435403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

File Simulation Motes Tools Settings Help

=) simulation control (J@)][(+) Mate output
Aun Speed limit File Edit View

- T Mote | M
start | Pause [step | Reload S

4821 ID:2 Rine started with address 0.128.225.2.0.0.3L.186
e 4821 ID:z CSMA nullrdc. channel check rate 1000 He
4821 ID:2 802.15.4 PAN ID Gx1234, ELI-54:00:80:el:62:00:00:1f:ba, radio channel 16
Sese ID:3 Alive!
86 ID:2 sending broadcast nessage: ‘Hello’
= ———— ——lls461 ID:3 broadcast message received from 0.128: ‘Hello'
8 netwok BEE@|| o ID:2 broadcast message sent
View Zoom 8928 ID:L broadcast message received from 0.128: ‘Hello’

Filter:

1]
o)
x|

Speed: —

= Radio messages: 1 messages seen EE
[0) @ File Edit Anahzer Payload

[Time |From |To |Data
8455 2 13 33

IEEE 802.15.4 DATA 0
From 1234/0080:E102:0000:1FBA to 1234/FFFF

Payload (16 bytes)
81000080 E1020000 1FBA4865 6CECEFO0 Hello

Fig. 1. Screenshot of Cooja running a simulation with two STM32W motes emulated
using Prisma Emulator and one Tmote Sky mote emulated using MSPSim.

This demonstration exhibits the interconnection between MSPSim and Prisma
Emulator through EmuLink. We show a simulated network of both types of nodes
in Cooja, and show how we are able to send radio packets between the nodes us-
ing Contiki’s network stack. The graphical user interface of Cooja, shown partly
in Figure 1, allows direct interaction with the emulated nodes over the serial port,
showing their actual execution as it would appear running on real hardware.

2 Architecture

Figure 2 shows our simulation architecture consisting of the Cooja sensor net-
work simulator, MSPSim, Prisma Emulator, and EmuLink. In the following, we
describe each individual component briefly.

Cooja/MSPSim

Cooja is a cross-level network simulator implemented in Java. Cooja handles the
simulation of radio mediums and communication between nodes. The simulated
nodes are implemented using a plugin architecture enabling various types of
nodes. Node types range from abstract nodes implemented in Java to nodes
executing firmware images using cycle-accurate hardware emulators.

MSPSim is a Java-based emulator of the TT MSP430 microprocessor series.
MSPSim is tightly integrated in Cooja and provides cycle-accurate emulation,
which enables development of timing-sensitive applications in Cooja. Exactly the
same firmware that runs on a real sensor node can be loaded and executed in

COOJA Prisma

Network Simulation ARM Emulation
MSPSim Emu Emu STM
link link 32V

Fig. 2. EmuLink connects Cooja with external emulators such as the Prisma Emulator.

MSPSim, thereby providing a highly valuable development and debugging capa-
bility as well. Furthermore, we have earlier shown that Cooja/MSPSim enables
accurate network-scale power profiling of sensor networks [2].

Prisma Emulator

The Prisma Emulator is partly based on QEMU and supports emulation of
a wide variety of ARM microprocessors. The Prisma Emulator is extensible
through Python plug-ins that make it possible to easily set up emulation of
specific boards and System on Chip. For the Cooja integration we implement
emulation of the STM32W platform, which is a Cortex-M3 with an integrated
IEEE 802.15.4 radio.

The Prisma Emulator is implemented partly in native code, partly for the
NET framework. It executes in the Mono platform, which provides a cross-
platform .NET development framework [1]. The different run-time environment
used by Prisma Emulator makes it difficult to integrate into the Java-based
Cooja platform. Hence, this initial hurdle in creating heterogeneous simulation
support for Cooja is what motivated us to create the EmuLink component to
connect emulators implemented in any language.

EmuLink

EmuLink consists of an EmulLink component in Cooja that connects external
emulators into Cooja and EmulLink-enabled emulators that act as emulation
servers. When running a simulation, Cooja will schedule the emulators for exe-
cution and deliver radio messages as well as serial data to and from the nodes
that execute in the external emulators.

By using the concept of abstract emulation servers, EmuLink enables the use
of emulators written in any programming language with Cooja and also makes it
possible to distribute the hardware emulators on multiple computers to be able
to scale the simulations to large networks.

3 Demo Setup

The demo consists of two laptops, one running Cooja, and the other running
Prisma Emulator. We demonstrate a network simulation comprising internal

nodes emulated by MSPSim and external nodes emulated by Prisma Emulator.
The simulation shows that Cooja with EmuLink handles both types of nodes
and enables communication between them.

4 Conclusions and Future Work

EmuLink enables heterogeneous simulations in Cooja. This is shown using the
Prisma Emulator and connecting it to Cooja with EmuLink. With EmuLink
Cooja becomes a platform for interoperability testing on multiple hardware and
software platforms. With the availability of Prisma Emulator, Cooja also be-
comes a simulation framework for the 32-bit Cortex-M3.

A limitation with the current implementation is that Prisma Emulator is
driven by the system clock and runs in real time, thereby requiring the simula-
tions to also run in real time. Another effect of this design is that the simulations
become non-deterministic. We plan to improve this by driving the EmuLink-
connected emulators with Cooja’s simulation clock to enable the simulations to
run at arbitrary speeds.

Acknowledgments

This work was partly funded by the Uppsala VINN Excellence Center for Wire-
less Sensor Networks WISENET and by SSF, the Swedish Foundation for Strate-
gic Research.

References

1. Mono, the open source development platform based on the .NET framework.
http://mono-project.com/. Visited 2012-12-15.

2. J. Eriksson, F. Osterlind, N. Finne, A. Dunkels, N. Tsiftes, and T. Voigt. Accu-
rate network-scale power profiling for sensor network simulators. In Proceedings
of the European Conference on Wireless Sensor Networks (EWSN), Cork, Ireland,
February 2009.

3. J. Eriksson, F. Osterlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter,
and P. José Marrén. Cooja/MSPSim: Interoperability testing for wireless sensor
networks. In SIMUTools 2009, Rome, Italy, March 2009.

4. JeongGil Ko, Joakim FEriksson, Nicolas Tsiftes, Stephen Dawson-Haggerty, Jean-
Philippe Vasseur, Mathilde Durvy, Andreas Terzis, Adam Dunkels, and David
Culler. Beyond interoperability: Pushing the performance of sensor network IP
stacks. In SenSys 11, November 2011.

5. JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy, Michael
Bruenig, Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas Terzis. Low
power or high performance? a tradeoff whose time has come (and nearly gone).
In Proceedings of the European Conference on Wireless Sensor Networks (EWSN),
February 2012.

6. F. ('js'cerlind7 A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor
network simulation with Cooja. In International Workshop on Practical Issues in
Building Sensor Network Applications, Tampa, Florida, USA, November 2006.

