
Towards Business Processes Orchestrating
the Physical Enterprise with Wireless Sensor Networks

Fabio Casati‡, Florian Daniel‡, Guenadi Dantchev†, Joakim Eriksson∗, Niclas Finne∗, Stamatis Karnouskos†,
Patricio Moreno Montero∗∗, Luca Mottola∗, Felix Jonathan Oppermann+, Gian Pietro Picco‡,

Antonio Quartulli‡, Kay Römer+, Patrik Spiess†, Stefano Tranquillini‡, Thiemo Voigt∗
∗∗Acciona Infraestructuras S.A. (Spain), †SAP AG (Germany), ∗Swedish Institute of Computer Science,

+University of Lübeck (Germany), ‡University of Trento (Italy)

Abstract—The industrial adoption of wireless sensor net-
works (WSNs) is hampered by two main factors. First, there is
a lack of integration of WSNs with business process modeling
languages and back-ends. Second, programming WSNs is
still challenging as it is mainly performed at the operating
system level. To this end, we provide makeSense: a unified
programming framework and a compilation chain that, from
high-level business process specifications, generates code ready
for deployment on WSN nodes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are small, untethered
computing devices equipped with sensors and actuators.
WSNs can be easily deployed and are able to self-organize
to achieve application goals. Research has made significant
progress in solving WSN-specific challenges such as energy-
efficient communication. Industry, however, is reluctant to
adopt WSNs. We believe this is due to two unsolved issues,
integration and unification, schematically shown in Figure 1.

Integration refers to the need for strong cooperation of
business back-ends with WSNs. Current approaches typi-
cally consider the WSN as a stand-alone system. As such,
the integration between the WSN and the back-end infras-
tructure of business processes is left to application develop-
ers. Unfortunately, such an integration requires considerable
effort and significant expertise spanning from traditional
information systems down to low-level system details of
WSN devices. Moreover, these two sets of technologies
satisfy very different goals, making the integration even
harder. This paper presents a holistic approach where ap-
plication developers “think” at the high abstraction level of
business processes, but the constructs they use are effectively
implemented in the challenging reality of WSNs.

Unification refers to the need for a single, comprehensive
programming framework. It is notoriously difficult to realize
WSN applications. They are often developed atop the oper-
ating system, forcing the programmer away from the appli-
cation logic and into low-level details. Many programming
abstractions exist [1], but are hard to use since they typi-
cally focus on one specific problem. To drastically simplify
WSN programming, particularly for business scenarios, we
need a broader approach enabling developers to use several

Business 
Processes

Wireless 
Sensor Networks 

Business back-end 
not integrated with 

WSNs
Unified, 
comprehensive 
programming 
framework still 
missing 

Figure 1. Open problems for using WSNs in business processes.

abstractions at once. In this paper, we present a unified
comprehensive programming framework into which existing
WSN programming abstractions can blend smoothly.

II. APPLICATION SCENARIOS

A paradigmatic example of our target scenarios is venti-
lation in buildings. Fans are commonly operated at a fixed
rate, independent of room occupation, resulting in unneces-
sary ventilation of unoccupied rooms and over-ventilation
of sparsely occupied ones, ultimately wasting energy. A
smarter strategy may consider room occupation, resulting
in sustainable building management. Consider an office
environment, in which employees book meeting rooms on
the Web through a back-end process notifying the expected
participants. Room ventilation is minimal when no meeting
is scheduled. Sensors and actuators driven by the business
process increase ventilation before the meeting and until
either human presence is detected or CO2 levels are above
a certain threshold.

Realizing this system requires a tight integration between
the business process and the network of sensors and ac-
tuators dispersed in the environment, as the application
logic needs to extend to the latter. Moreover, implementing
the processing for adaptive ventilation complicates appli-
cation development, as it departs from the traditional data
collection—most common in WSN applications—to encom-
pass possibly distributed control loops. Similar requirements
are shared by numerous application domains such as predic-
tive maintenance aboard cargo vessels.

III. APPROACH

Our design revolves around three fundamental goals:
• makeSense must seamlessly integrate with existing

business process technology, providing an adoption
path that complements, instead of disrupts, existing
methodologies and technologies with WSN ones.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Application
Model

Model
Compiler

Macro
Program

Application
Capability
Model

System
Capability
Model

Macro
Compiler

WSN-ready
Binary

Figure 2. Compiling business process models into WSN-executable code.

• makeSense must be modular and extensible. As we
aim for our system to be useful across several real-
world applications, extensibility is key to ensure that
the programming abstractions and their implementation
can be easily adapted to the specificity of the target
domain as well as to unforeseen needs.

• for extensibility not to be detrimental to performance,
makeSense must self-optimize w.r.t. high-level perfor-
mance goals. This is necessary to support long-lasting
business processes subject to the randomness of the real
world and rapidly changing requirements.

A. Architecture Overview

Our architecture is based on the separation of concerns
provided by a distinction in layers of functionality: i) an
application layer concerned with business processes and
their modeling; ii) a macroprogramming layer concerned
with the distributed execution of activities within the WSN;
iii) a run-time layer concerned with the low-level aspects
supporting the above and enabling self-optimization. The
term “macro-programming” [1] refers to approaches that,
unlike node-centric ones, allow specifying the behavior of
multiple WSN nodes at once.

A model-driven approach connects the three layers (Fig-
ure 2). The application model represents a holistic, network-
agnostic view of the entire business process, i.e., including
the WSN and the process back-end. It includes performance
requirements (e.g., a certain level of reliability, or a mini-
mum lifetime). Details are further described in Section III-B.

Two compilation steps link the layers above. The model
compiler takes as input the application model and an ap-
plication capability model. The latter is a coarse-grained
description of the WSN, providing information such as the
type of sensors/actuators available and their operations. The
model compiler translates these descriptions into a program
written in a macro-programming language, described in
Section III-C, serving as an intermediate language closer
to the reality of WSN systems, yet high-level enough to be
potentially used directly by a developer.

The macro compiler takes as input the macro-program
generated by the model compiler and a system capability
model. The latter provides finer-grained information on
the deployment environment (e.g., how many sensors of a
given type are deployed at a location). The macro-compiler
generates executable code that relies only on the basic
functionality provided by the run-time support available on
the target nodes. By leveraging the system capability model,
the macro compiler can generate different code for differ-

ent nodes, based on their application role. The executable
code contains the mechanisms enabling self-optimization,
described in Section III-D.

B. Business Process Modeling

When integrating WSNs with business processes, most
research projects and productive set-ups merely add a service
facade to the WSN and orchestrate its services centrally.
If middleware is deployed, that is done either purely in a
central system [2] or with additional local components close
to the WSN or on its gateway [3]. In makeSense, we use
a more radical approach. As our goal is to decrease the
effort of programming WSN applications, tools for process
modeling are used to create the application top-most level.
A process modeler models hybrid processes, of which one
part is executed conventionally in a central execution engine,
while another part is executed directly by the WSN.

We use and extend the Business Process Modeling Nota-
tion (BPMN). By introducing new attributes, the modeler can
specify a new intra-WSN participant, containing the logic
executed by the WSN. As the latter is resource-constrained,
we allow only a subset of BPMN elements. Furthermore,
we introduced a new WSN activity type. This can be used
only within the intra-WSN participant and is (except for the
message activity) the only allowed activity type there. The
WSN activity is backed by a meta-model, described in the
next section. As WSNs are inherently distributed systems,
we also introduced a Target attribute for lanes and activities
within the intra-WSN participant, that allows specifying
where the respective logic should be executed, based on
labels that are relevant at the modeling layer. Finally, we
added performance annotations, expressing that the WSN
should optimize its operation for a specific goal (e.g., system
lifetime or reliability) within a certain subsets of activities.

To assist the process modeler in creating correct, exe-
cutable models, we use a set of meta-models that describe
the WSN in terms of the logical functionality it provides,
along with the way it is embedded into the physical set-up
(e.g., which sensing or actuation is supported at which logi-
cal location). Instances of these meta-models can be created
either manually or through dynamic service discovery.

At run-time, the BPMN process is executed in a dis-
tributed fashion. For message exchange between the intra-
WSN participant and the other participants, the run-time uses
a lightweight protocol, reducing encoded message size by
using message structure information on both sides. Commu-
nication endpoints caring for serialization and deserialization
of messages and for process instance correlation are gener-
ated automatically as part of the compilation process.

C. The makeSense Macroprogramming Language

Our intent is not to propose another macro-programming
language. Rather, it is to provide a framework where the
abstractions contributing to the language are decoupled,



Collective Action

Report ActionTell Action

Local Action

Action

Distributed Action

Meta-Abstraction

Modifier

Target

Data Operator
<<use>>

<<use>>

<<use>>

<<use>>

1

0..1

Figure 3. A model for the meta-abstractions of the makeSense macro-
programming language.

leverage on existing implementations, and can be changed
or extended easily to suit specific application needs.

This goal influenced the entire language design. To prop-
erly identify the units of functionality, reuse, and extensions
we defined the notion of meta-abstraction, implemented
through different “concrete” abstractions, as described later.
Abstractions provide the key concepts enabling interaction
with the WSN. However, their composition can be achieved
by using common control flow statements, provided by
a core language that serves as the “glue” among macro-
programming abstractions. The core language, in our case
a stripped-down version of Java we tailored for WSNs,
is also the trait d’union between the macroprogramming
abstractions and the BPMN business process model.

Figure 3 shows a UML meta-model for the meta-
abstractions provided by the macroprogramming language.
It focuses on the notion of action, a task executed by one or
more WSN nodes. Actions are separated into local, whose
effect is limited to the node where the action is invoked (e.g.,
acquiring a reading from the on-board temperature sensor),
and distributed, whose effect instead spans multiple nodes.

Distributed actions are further divided into tell, report,
and collective actions. The former two represent the one-to-
many and many-to-one interaction patterns commonly used
in WSNs to enable communication between the node (the
“one”) issuing the action and a set of nodes (the “many”)
where the latter is executed. A tell action enables a node to
request the execution of a set of actions on other nodes, e.g.,
to issue actuation commands or to trigger reconfiguration of
system parameters such as the sampling rate. A report action
enables a node to gather data from other nodes. Event-based
abstractions and periodic, continuous queries both fall in this
category. Data acquisition occurring on each target node is
specified by a local action given as input to the report action.
The output of the local action is returned to the report one.
Collective actions, in contrast to tell and report ones, do
not focus on a special node where the action starts or ends.
They enable a global network behavior and are executed
cooperatively by the entire WSN through many-to-many
communication. An example are distributed assertions [4],
where programmers specify a (global) property monitored
collectively by the WSN nodes.

Distributed actions may optionally have modifiers associ-
ated with them, “customizing” their behavior. We defined
two modifiers, target and data operator. In our scenarios
the nodes possibly differ along several dimensions, both
physical and logical. For example, ventilation in Section II
requires both CO2 and presence sensors. Programmers must
be able to map actions to the set of nodes of interest. A target
identifies a set of nodes satisfying application constraints,
and gives the ability to apply a distributed action to the
nodes in this set. Instead, a report action may have a data
operator, specifying processing performed on the results
after gathering and before they are returned to the caller,
e.g., to filter or aggregate the data.

To create an instance of a meta-abstraction, a class
implementing its interface must be defined in the core
language. As abstraction implementations typically closely
interact with the operating system, methods of abstraction
classes are implemented in C using a native code interface
provided by the core language. Some abstractions require
extensive configuration, for example, a target needs to define
a set of nodes based on their properties [5]. To simplify
such configuration, the core language supports the concept
of embedded languages, code snippets formulated in the
declarative configuration language provided by an abstrac-
tion. These are efficiently compiled by appropriate compiler
plugins, instead of being interpreted at runtime.

D. Run-Time System

Besides providing a foundation for the distributed proto-
cols in support of the macro-programming language, the run-
time system offers self-optimization functionality to adapt
the system behavior to changing requirements based on
developer-provided high-level performance goals. For exam-
ple, in the scenario of Section II, the high data reliability
required to accurately monitor the persons’ presence will
correspond to different protocol settings compared to situa-
tions with no ongoing meetings, when energy preservation
is the major performance concern.

To achieve this functionality, we gather run-time infor-
mation from the WSN (e.g., network topology and protocol
performance) and feed these to a reinforcement learning
algorithm that uses simulations to explores the space of
possible protocol configurations. At the end of each simula-
tion round, the learning process evaluates the performance
obtained with a given protocol setting w.r.t. the applica-
tion’s performance goals. Based on this, we derive self-
optimization policies that specify which protocol parameters
provide better performance as a function of the current
application performance goal. We distribute the policies back
to the deployed network where nodes will apply them upon
recognizing changes in the current performance goal.

This approach sharply differentiates from existing so-
lutions. Rather than requiring detailed modeling of the
individual protocols, we treat the entire application as a



Figure 4. BPMN diagram for a fragment of the ventilation scenario.

black-box. This may lead to sub-optimal solutions, but also
enjoys greater flexibility as it lets users add programming
abstractions to the framework along with their supporting
protocols and have the latter “implicitly” optimized.

IV. CURRENT STATUS

We implemented the extended BPMN meta model in
Signavio Core Components, an open source, browser-based
BPMN editor. Our prototype implementation is focused
on the model-to-macrocode transformation. Future work
includes extending a BPMN runtime with the lightweight
messaging protocol in JSON. The macro-compiler prototype
is implemented as a multi-pass compiler employing the
ANTLR parser generator and the StringTemplate engine.
Currently, the compiler is primarily optimized for main-
tainability and extensibility. We also implemented concrete
abstractions for report and tell actions, and for the target
modifier. The former is a variation of a standard WSN
data collection protocol, whereas the others rely on Logical
Neighborhoods [5]. The self-optimization functionality is a
separate stand-alone prototype written in Java that we are
currently integrating into the makeSense run-time.

V. CASE STUDY

Figure 4 depicts a fragment of the business process model
for ventilation we briefly outlined in Section II. The whole
process is modeled with two participants, the WSN-aware
participant on top and the intra-WSN participant (modeled
in more detail) that is converted into an application by
generating macrocode. The zoomed part of the process
shows a WSN activity that sets up and executes a periodic
reading of CO2 sensors in a certain room. By graphically
combining abstractions—here a target specifying the room
and a local action to read the sensor are used with a report
action to collect sensor data—along with meta-information
of the current WSN setup, the model becomes rich enough
to be transformed into macrocode.

The corresponding code in Figure 5 describes the instruc-
tions to define a target including all CO2 sensors and to

...
code nhoodTemplateS = {:
neighborhood template CO2Sensors()
f.getFunction() = "sensor" and t.getType() = "co2"

create neighborhood co2Sensors from CO2Sensors () :};
Target co2Sensors = lnew LN(sensorNeighborhoodDef);

Report co2Stream = lnew Stream();
co2stream.setTarget(co2Sensors);
co2Stream.setParameter("period", 5 * 60);
co2Stream.execute();
...

Figure 5. Macro-programming language fragment for Figure 4.
collect periodic data from them using an instance of report
action implemented with Stream. The abstraction-specific
code inside the code variable is the Logical Neighbor-
hood [5] custom language. This is used to create an instance
of target, referring to local actions to retrieve the function
and type of node to possibly include in the target. The target
is given as parameter to a setTarget method invoked on
an instance of report. The remaining method invocations are
used to set parameters for the functioning of the Stream
instance, e.g., its reporting period.

The BPMN model also contains performance annotations.
Based on this and monitoring data, the self-optimization
functionality tunes the protocols’ parameters, e.g., by going
into a very low power mode when no meeting is scheduled
and no presence of people has been detected.

VI. CONCLUSION

We presented early results of the makeSense project,
which tackles the unification of existing WSN programming
abstractions and the integration of WSNs with business
process models and back-ends. These issues are hampering
industrial WSN adoption, thus, we believe that makeSense
will foster adoption of WSNs in industry applications.

ACKNOWLEDGMENTS

This work is supported by the European Commission
through the makeSense and CONET projects.

REFERENCES

[1] L. Mottola and G. Picco, “Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art,” ACM
Computing Surveys, vol. 43, no. 3, 2011.

[2] C. Decker, T. Riedel, M. Beigl, L. de Souza, P. Spiess,
J. Muller, and S. Haller, “Collaborative business items,” in IET
Int. Conf. on Intelligent Environments, 2007.

[3] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio,
“Interacting with the SOA-based Internet of Things: Discov-
ery, query, selection, and on-demand provisioning of Web
services,” IEEE Trans. on Service Computing, vol. 3, no. 3,
2010.

[4] K. Römer and J. Ma, “PDA: Passive distributed assertions for
sensor networks,” in Proc. of the Int. Conf. on Information
Processing in Sensor Networks (IPSN), 2009.

[5] L. Mottola and G. Picco, “Logical Neighborhoods: A Program-
ming Abstraction for Wireless Sensor Networks,” in Proc. of
the Int. Conf. on Distributed Computing in Sensor Systems
(DCOSS), 2006.


