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Abstract.

Many approaches used for diagnostics today are based on a precise model. This excludes
diagnostics of many complex types of machinery that cannot be modelled and simulated easily
or without great effort. Our aim is to show that by including human experience it is possible
to diagnose complex machinery when there is no or limited models or simulations available.
This also enables diagnostics in a dynamic application where conditions change and new cases
are often added. In fact every new solved case increases the diagnostic power of the system.
We present a number of successful projects where we have used feature extraction together
with case-based reasoning to diagnose faults in industrial robots, welding, cutting machinery
and we also present our latest project for diagnosing transmissions by combining Case-Based
Reasoning (CBR) with statistics. We view the fault diagnosis process as three consecutive
steps. In the first step, sensor fault signals from machines and/or input from human operators
are collected. Then, the second step consists of extracting relevant fault features. In the final
diagnosis/prognosis step, status and faults are identified and classified. We view prognosis as a
special case of diagnosis where the prognosis module predicts a stream of future features.

1. Introduction

Many approaches used for diagnostics today are based on a precise model. This is a powerful
approach if it is possible to build a precise model or simulation of the object to diagnose.
Unfortunately complexity, dynamics and costs to build precise models exclude diagnostics of
many types of machinery in reality that cannot be modelled and simulated easily or without
great effort. Our aim is to show that by also using human experience it is possible to diagnose
complex machinery when there is no strong model or simulation available. This also enables
diagnostics in a dynamic application where conditions change and new cases are often added.
In fact every newly solved case increases the diagnostic power of the system.

Artificial intelligence is a cross disciplinary subfield of computer science concerned with
understanding the nature of intelligence and the attempt to construct computer systems able to
perform intelligent reasoning and action. Intelligence involves many aspects such as perception,
problem solving, learning, planning, symbolic reasoning, creativity, and language understanding
to mention a few. Rule based systems emerged during the eighties but their use is limited due to
the knowledge acquisition bottleneck and the time and cost involved to create a large rule base,
verify and validate them, and keep them up to date. An emerging method is CBR, reasoning out
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of the original cases. CBR has its root in cognitive science and has been applied to numerous
application domains, among them fault diagnosis.

In this paper, we review previous research in CBR and the applications of CBR to fault
diagnosis and prognosis. We also present three applications of CBR for fault diagnosis in detail
where we have used feature extraction together with case-based reasoning to diagnose faults
in industrial robots, welding, and cutting machinery. Finally, we present our latest project for
diagnosing transmissions by combining case-based reasoning with statistical methods.

The paper is structured as follows. Section 2 gives an overview of CBR in general. In Section
3, we review previous work on CBR applied to diagnosis and prognosis. Section 4 contains
detailed descriptions of three applications of CBR for fault diagnosis. Section 5 presents future
work in combining CBR and statistics.

2. Case-based reasoning

The idea in CBR is to use experience to solve problems using a cognitive process similar to how
humans reason [1, 2]. If we face a problem, we most often solve it by applying a solution from
a similar situation from the past. A simple example of a CBR approach in the Internet era is
how people, e.g. software developers, use search engines to solve problems. If they encounter a
problem, they search the Internet for people having a similar problem. If a solution is provided,
they adapt that solution to their own circumstances. Thus, CBR is about automating that
process of defining problems and finding solutions.

One important principle in CBR is that inference is made directly from the set of observed
cases (examples), and not from a model generalised from the cases. This basic idea of inference
relates CBR very closely to machine learning, to which it is sometimes considered to be a subfield
[3, 2]. However, CBR was also developed as a more flexible approach to knowledge modelling
than rule based expert systems, which are in essence static and not very easily updated with
new knowledge [4, 5]. Therefore, CBR is neither considered a machine learning technology nor
a pure expert system, but a knowledge management methodology for problem solving [6, 2].

The CBR knowledge management cycle shown in figure 1 was first presented in [1]. First
the problem is matched against the case library and similar cases retrieved. Similarity functions
capture domain knowledge and similarity is based on how easily the solution can be adapted
to the new problem. Adaptation is often a set of rules, e.g. in the medical area a child under
12 is recommended half the dose of medicine compared with an adult. The reuse step may not
only adapt single cases, it may, depending on the domain need to merge cases, e.g. a patient
may have two diseases at the same time. Revision is manual in many CBR systems and once
the person is convinced that the proposed solution meets and solves the new problem then the
solution is confirmed. Once confirmed and deployed, the new case and its results are stored in
the case library.

How each step is implemented varies from application area to application area, and in each
step, different methods from other research areas, in particular machine learning and knowledge
representation and reasoning, can be applied. For instance, similarity and adaptation may be
implemented with a large variety of techniques such as conceptual models, neural nets, fuzzy
rules, Bayesian nets, mathematical algorithms etc. Using CBR will reduce repetition of mistakes
if similar unsuccessful cases are presented for the user as warning examples. Explaining why two
cases are similar is also important and transfers knowledge to the user. Cases may in some
application domains contain large volumes of sensor data.

3. Fault diagnosis

Fault diagnosis is about identifying the type of fault, its severity, location and time of detection
before it causes damage [7, 8]. Figure 2 shows a generic fault diagnosis process, where we view
the fault diagnosis process as three consecutive steps. In the first step, sensor fault signals from
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Figure 1: The CBR cycle, adapted from [1].

machines and/or input from human operators are collected. Then, the second step consists of
extracting relevant fault features. In the final diagnosis/prognosis step, faults are identified and
classified. In case of also doing fault prognosis, there is a parallel step that uses the current
features to predict the future stream of features, which is then used as input to the diagnosis.

signals

"

Figure 2: The generic fault diagnosis process.

There are mainly two approaches to fault diagnosis and prognosis, model-based and data-
driven. In the former case, a detailed model of the physical system is built that can given fault
data, identify the faults or predict them. In the latter case, the system learns to recognize and
predict faults from examining the stream of fault data. The drawback of the former is that the
approach requires a lot of work and a lot of detailed knowledge while the latter will not be able
to identify faults that never have occurred (it may only identify a deviant behaviour not similar
to any past cases). Thus, many times it can be a good idea to combine both approaches. CBR
can be used in both the diagnosis step as well as in the prognosis as we can see in the next
sections.

3.1. Case-based fault diagnosis

Case-based reasoning has been considered an option for fault diagnosis since the beginning of
the CBR field. An early paper on evaluating the cognitive aspects of CBR for engineering
diagnosis was presented in [9], and an early CBR system for technical diagnosis in engineering
was MOLTKE [10, 11] and its extension PATDEX [12]. Another is CELIA, which is a CBR
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system for automobile troubleshooting [13]. In the INRECA project, a set of tools for developing,
validating, and maintaining decision support systems using a combination of inductive decision
tree learning and CBR and more were developed [14]. A sample application in INRECA is
fault diagnosis on robots that integrates causal trees, decision trees and CBR [15]. In [16],
the authors present a CBR system combined with an expert system for classifying images from
ultrasonic rail-inspections in order to detect defects. The images are first classified by a set of
expert rules. Then, if classification failed, the CBR system makes a classification, but if it also
fails, the classification is left to the experts. Cases were created from a historical set of images
with expert classifications. The paper also contains a qualitative comparison between the CBR
approach and using expert rules or statistical classification, deeming CBR to be a more flexible
approach. A hybrid CBR diagnostic system combining model-based diagnosis and CBR was
presented in [17]. CBR was used to help the user find alternative solutions as a complement
to the model-based suggestions, and to let the system learn from experience. The system was
applied in two scenarios: diagnosis of a robot and of a nuclear ventilation system. ICARUS is
a CBR-based system for off-board fault diagnosis of locomotives [18]. The system was built to
use fault messages from the locomotive as input. Historical fault log and repair data, as well
as expert knowledge were used to create cases and validate the functionality of the system. In
[19], a hybrid CBR system with an ART-Kohonen neural network (ART-KNN) for diagnosing
an electric engine is described. The ART-KNN is used for guiding the CBR system in finding
similar cases, to find the best diagnosis. CBR diagnosis has also been applied in self-healing
autonomic computing [20]. In the paper, CBR is used for automatically repairing faults in a
service delivery context where cases are failure execution episodes mapped to corresponding
solutions. A CBR approach for diagnosing faulty robot gearboxes was developed in the Ph.D.
thesis by Olsson (et al.) [21, 22, 23]. The thesis is a compilation of papers where the author
applies frequency and time analysis using Discrete Wavelet Transform as well as Discrete and
Fast Fourier Transform in order to extract signal features. Then, the signal is classified using
a CBR approach according to cases of known faulty and fully functioning gearboxes. More
recently, in [24], an advanced CBR system for automobile service troubleshooting is described.
It uses associate-rule mining, CBR and text mining to extract cases and propose solutions given
fault symptoms. A customer support diagnosis system was developed in [25]. The authors
created cases from existing machine diagnosis reports collected during the previous 5 years.
Finally, [26] presents a comprehensive overview of applying CBR diagnosis in a condition based
maintenance system. The authors look at the system as a whole and how CBR fits into the full
picture. One of the conclusions is that the CBR system has some similarities to the OSA-CBM
standard and another that the system can successfully reuse the experience of the maintenance
personnel for fault diagnostics.

3.2. Case-based fault prognosis

There is less work in case-based prognosis compared to diagnosis. An early attempt to address
the problem of doing fault prognosis and diagnosis on jet engines is presented in [27]. The authors
developed a hybrid CBR system in combination with a model-based system. In [28] the authors
present a CBR system for aircraft fleet maintenance. The system uses failure and warning
messages that are generated by the aircraft equipment, which can be textual descriptions.
Given the textual descriptions, the system proposes initial diagnosis and explanations. Another
approach applied to predicting the remaining useful life of aircraft engines based on fuzzy
instance-based learning was proposed in [29]. A set of nearest neighbours defined by a fuzzy
based similarity metric are retrieved and then a prediction is made from a fuzzy aggregation
of the neighbours remaining useful life. Genetic algorithms are used for keeping the similarity
model updated given new training cases.
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4. Three applications of case-based fault diagnosis

In this section, we review three successful projects where we applied CBR . for fault diagnostics.
The first project is about detecting cracks in a welding process using sensors and CBR. In the
second project, we applied CBR to non-intrusive monitoring and diagnosis of milling machines.
The third project is about decision support for adjustment of production equipment producing
parts drifting towards unacceptable dimensions.

4.1. Crack detection in welding process

In the project about crack detection, recordings of several welding processes were done mainly
focusing on the cool down time in the near seconds after a finished welding process [30]. The
aim is to determine the signature that is generated by an emerging crack during the welding
process. Figure 3 shows a metal test piece where the acoustic emission sensor is mounted at the
top left.

Figure 3: Metal test piece with the acoustic emission sensor mounted
at the top left.

Some results from the case-based crack detection project are the following:

Ultra sound sensor(s) were selected as a suitable recording equipment

A set of initial recordings from different phases of welding processes was collected and then
data from 2 normal and 10 welds with cracks were analysed.

Suitable features to classify the condition of welding processes were selected

Methods and algorithms for classification of welding processes were developed
— 100% of cracked welds correctly classified
— 1 normal weld incorrectly classified as cracked (false positive)

In figure 4, we show an example of extracted time-FTT of frequency bands 200-1000 kHz of
a weld with cracks, depicting main and first order overtone spectrum of recorded cracks.
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Figure 4: Example of extracted time-FTT of frequency bands 200-1000 kHz
of a weld with cracks.

4.2. Process monitoring and diagnosis of milling machines

In the milling machine project, we made a case study of sensorless, nonintrusive monitoring of
a milling process. We recorded sound measurements from the milling process, and identified
adequate measurement features that were fed into a diagnostic algorithm. Figure 5 shows an
unprocessed sample signal after the cutting tool was changed.

In the recorded signals, we have identified patterns that will enable condition monitoring
to determine the cutting conditions and cutting stages of the milling machine. We used these
patterns to determine the cutting conditions and cutting stages of the milling machine. A
condition can be classified into the category that describes the fault.
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Figure 5: Unprocessed signal after cutting tool was changed.
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Figure 6: Processed signal from before the cutting tool was changed.
A FFT window of size 100 milliseconds, frequency interval 1-200 Hz.

Figure 6 shows the frequency analysis with a FFT window size of 100 milliseconds and
frequency interval 1-200 Hz. Amplitude of frequencies is increasing gradually when the cutting
steel has to be changed. By the extraction of such information, we can build a library of
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boundary cases from these features. Figure 7 shows a sample of an extracted feature where
there is a significant peak at 10 Hz before the cutting tool was changed.
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Figure 7: Significant peak at 10 Hz, extracted from the signal in
figure 6

4.8. Geometric production measurements

In the project about production measurements, we have developed a case-based tool for
supporting the adjustments of a production line producing parts drifting towards unacceptable
dimensions (called defect parts) [31]. Measurements, adjustments and their outcome of defective
parts are connected and saved as cases. A case maps measurement features from off-target parts
(problems) to action taken previously to adjust production line (solution) to bring production
back to target. A case library of such cases is assembled and made available to provide real-time
decision support in any situation to technicians.

5. Future work: sound test of transmissions
In a doctoral thesis project, we will develop a statistical approach to CBR for fault diagnosis
and prognosis of construction vehicle transmissions.

In the production line of vehicle transmissions, each transmission is tested in various ways
to ensure that it functions correctly before being assembled in a vehicle. In one of the
tests, the sound of the transmission is recorded and if it is outside some manually configured
limits, it is considered faulty. We will develop a more flexible CBR-~based approach that can
learn from experience. Thereby, given feedback from the testers, it will also learn subjective
impressions of faulty sounds. Consequently, next time the system encounters a sound similar to
a previously encountered faulty sound, it will also be considered faulty, and a fault solution can
be recommended.

CBR is a very intuitive, user-friendly, yet powerful approach to diagnosis. As a young and
largely applied research field, its theoretical foundation is not fully developed. Statistics, on the
other hand, is a very theoretically well-founded research field, but can be difficult to approach
without a lot of prior knowledge. We will therefore investigate kernel-based non-parametric
statistical methods as a means to keep the intuitiveness and user-friendliness of CBR while
still adhering to the theoretical foundation and power of statistical methods. We will use the
statistical methods for the retrieval and the reuse parts of the CBR cycle in figure 1. The
similarity between a new problem, as well as the diagnosis of it, will be expressed as probability
distributions over the set of known cases and known faults, respectively. In addition, we will be
able to express how unlikely a new problem is compared to the previous cases, and thus, we will
identify unknown cases that then can be manually diagnosed.
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6. Conclusions

We have in the paper introduced CBR and presented three successful applications and one
application currently being investigated. CBR is a method worth exploring especially when the
domain knowledge is weak. This is often the case in engineering tasks since reality is often so
complex that building a model and performing simulations is not possible or computationally too
expensive. It may require a considerable amount of work to build such models and simulations
may take much processor capacity beyond what is possible to calculate in a reasonable timeframe.
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