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Abstract:
Companies that process business critical and secret data are reluctant to use utility and cloud
computing for the risk that their data gets stolen by rogue system administrators at the hosting
company. We describe a system organization that prevents host administrators from directly
accessing or installing eaves-dropping software on the machine that holds the client’s valuable
data. Clients are monitored via machine code probes that are inlined into the clients’ programs
at runtime. The system enables the cloud provider to install and remove software probes into the
machine code without stopping the client’s program, and it prevents the provider from installing
probes not granted by the client.

1 Introduction

In cloud computing, computing resources are
provided by one or more organizations, and are
used by other organizations. This is usually the
only shared interest between the providers and
the clients, and that distinguishes cloud comput-
ing from regular distributed computing within a
company. The limited shared interest in cloud
computing is the fundamental reason for the
client to distrust the cloud provider, as well as
for the provider to distrust the client.

However, cloud computing’s large potential
for more efficient computing, in both technical
and economical sense, is a strong reason to try to
overcome this mutual distrust.

Research in security for cloud computing has
focused on isolation of the clients’ computation
inside virtual machines (VM) on various levels to
protect the cloud infrastructure from attacks by
clients, and to protect clients from attacks from
each other (Christodorescu et al., 2009). This
problem is now routinely solved with virtualiza-
tion.

Current solutions have not done enough to
address the issue of how to protect the client
from the provider. The lack of protection against
the provider has prevented the adoption of cloud
computing for clients that have private, business

critical or confidential data or algorithms i.e. the
financial, government, health, pharma, and movie
sectors. The risk clients face of having their data
or programs leaked or stolen by the provider, ei-
ther deliberately, by mistake, or by a disgruntled
or black-mailed employee, has so far been consid-
ered too large. In (Kuttikrishnan, 2011) several
studies of cloud adoption are summaprized and
reporting as one obstacle that cloud adoption ”in-
volves developing trust and overcoming the fear
of change and loss of control over data and pro-
cesses.”

While the risk from attacks by the provider are
not unique to the cloud (they are already present
in hosted environments), they are increased by
the more short-lived and anonymous relation-
ships between the parties in clouds with multiple
providers and automatic migration of data and
computation.

We propose a novel solution to the problem
of mutual distrust. It is based on using trusted
computing to prevent the cloud provider from
installing eaves-dropping software on the plat-
form, on using a binary translation framework
to let the provider install software probes into
the clients software, and on an initial negotia-
tion phase to determines which probes may actu-
ally be installed on the platform to satisfy both
provider and client. So, while the provider is
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locked out from the client’s VM she is provided
with another tool that enables her monitor the
client’s VM for malicious behavior without com-
promising the client’s need for data protection.

The next section describes the system archi-
tecture. Section 3 explains the current implemen-
tation. It is followed by an analysis of the security
of the system in section 4. The paper is concluded
in section 5 with related work and the contribu-
tions made in this system.

2 Architecture

Our goal is to have a runtime system for
clouds where the provider can check for e.g.
viruses/botnets, unlicenced software, etc., while
at the same time verifiably show to a remote client
that the provider has no posibility to extract un-
due information from the client’s virtual machine.

2.1 Resources

The cloud infrastructure is composed of computa-
tional resources, a resource management system,
and a PKI with certifying authorities. The com-
putational resources are the computers, networks
and storage that the provider is offering to clients.

Figure 1 shows a computer in the cloud that is
running a virtualization layer, management soft-
ware, a machine code inliner and the client’s soft-
ware.

The provider configures the computers by set-
ting them up for trusted boot, installs the nec-
essary software on them (the “trusted software
stack”), and registers their availability to the re-
source management system. See step 1 and 2 in
figure 2. The software that is installed on the

computers is responsible for only permitting au-
thorized commands to be executed. In particular,
it must prevent the provider from gaining root
access or full control over the machine. Trusted
third parties may be required to audit the trusted
software for bugs and to make sure that the ma-
chines are guarded against physically attacks or
modifications.

2.2 Software Probes

Instead of root access or physical access, the cloud
administrators are provided with a software tool
that enables them to install software probes into
the client’s running program. The probes may
check for network attacks made by the client, for
undue hardware access, or perform software li-
cense enforcement by detecting execution of li-
censed code. Since they are in software, probes
can be arbitrarily complex, but to prevent probes
from leaking information to the provider, only
safe probes authorized by the client must be in-
stalled. This is assured by the trusted manage-
ment software.

A probe is monitoring the CPU state and one
or several memory cells or data structures inside
the client’s VM, in the kernel or in the application
programs. (Constructing probes that look into
application data structures will require access to
symbol tables or debug information.) When the
probe detects an action, it can update counters or
other data structures in a protected memory area
which is not adressable by the client software. An
appropriate probe may thus detect execution pat-
terns that the provider has requested to scan for.
How the provider gets the information from the
probe is described in section 2.4.

Probes are built into the code at the time that
it is Jut-In-Time (JIT, immediately before exe-
cution) translated from its original form to the
code to be actually executed. For each machine
instruction in the original code a corresponding
function that emulates the instruction on a vir-
tual CPU exists. To create new machine code for
a sequence of instructions in the original program,
a sequence of function calls are created in the
LLVM (Lattner and Adve, 2004) intermedate rep-
resentation (IR). These calls are then linked (at
run time) with in-memory IR code for the func-
tions, inlined, constant folded, and optimized, be-
fore new machine code is emitted. A cache can
be used to avoid redoing this for loops.

Concretely, probes are implemented as mod-
ifications/extensions to the functions that emu-



late machine instructions. For instance, they may
count the number of times a certain memory ad-
dress is accessed by the ADD instruction. While
this check at first will appear at ever place the
ADD instruction occurs, the optimization step
will in many cases be able to remove this check
based on constant information known at run-
time.

2.3 Procurement

A client wishing to run a private computation on
a cloud resource contacts the resource manage-
ment system to get access to a free resource. See
steps 3 and 4 in figure 2. In the negotiation with
the resource management system the client can
negotiate an acceptable set of probes that may
be installed on the machine, but if no agreement
can be made, no resource can be allocated. Once
details about payment have been cleared, the re-
source management system issues a resource def-
inition file containing a policy description.

2.4 Resource and Policy
Description File

The resource description contains a policy (see
figure 1) consists of a list of commands that
may be executed, and the identity of the one
who may trigger them. For instance the client
“C1” may execute the commands “run” and “de-
stroy” to start and remove his virtual machine.
The provider “cloudP” may execute the com-
mand “installVirusProbe”, “removeVirusProbe”,
and “getVirusProbeReading”. The meaning of
these commands are also defined by the policy
file, as the commands are defined in program files
whose checksums are stored in the policy file.

The resource description file also contains the
checksums that the trusted software stack will
generate in the Trusted Platform Module (TPM),
the public key of the TPM on the physical com-
puter, and the network address of the resource’s
Launch Manager.

The file is signed by the provider, and the sig-
nature is verified by the resource computer during
the VM Launch step.

2.5 VM Launch

To start using the resource, the client contacts
the Launch Manager and asks via a challenge re-
sponse protocol for proof that the machine has a
genuine TPM on a certified platform. (See step
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5 in figure 2.) The Launch Manager asks the
TPM chip to provide the necessary signed cer-
tificates and forwards them to the client who ver-
ifies them. (Essentially, a TPM chip contains a
protected private key that the software cannot
access. The chip maker has supplied a certificate
stating that a chip with the associated public key
was made in their factory. The client asks (via
the Launch Manager) the TPM to sign a partly
random string. The response is checked to see
that signatures and certificates match.)

Once satisfied that the platform is genuine,
the next step for the client is to verify that the
correct trusted software stack is installed. For
that, the client requests a signed dump of the
checksum registers in the TPM. The TPM check-
sum registers are updated during system startup,
from BIOS (on machine initialization code) start
and on, and can only be physically reset by
rebooting the machine. Since all the trusted
software checksums all trusted software it loads
in, the checksum registers will be in a specific
state, depending on which software that has been
loaded.

Once the client has verified that the checksum
registers are in the state described in the resource
file (and potentially checked with a third party
that this software stack is indeed to be trusted),
it can upload the private data and code to the
cloud, knowing that control of the machine can
only be done via the narrow command interface
defined in the policy description. (See step 6 in
figure 2.)

2.6 Probe Inlining

The software probes are inlined into the client’s
machine code with a Binary Code Inliner that
runs underneath the client’s program, essentially
as a JIT compiling machine emulator. (See step



7 in figure 2.)
The main reason why the probes are JITed in

rather than inserted as jumps is to enable com-
plex probes to be mixed into the code every-
where without causing excessive branching, since
that is expensive on modern architectures with
deep pipelines, prefetching, and branch predic-
tion. Another reason is that the JITed probes
can be reduced in size by JIT optimization using
local knowledge of the machine code.

The Inliner disassembles machine instructions
up until a branch and generates new code that
emulates the instructions in another area of the
memory. The emulation code may be extended
with probe code to do more things than the nor-
mal code, such as maintain counters, track state
changes or information flows in the program, de-
tect the occurrence of certain data in the memory,
etc.

The Inliner optimizes the code to remove con-
stant checks, inline function calls, reuse partial
computation values, and merge multiple updates
to the same memory location into one. Thus,
JITed monitoring code that does a lot of the
same checks all the time can be greatly reduced
in size compared to running the full monitoring
code each time.

The JITed code is stored into a code cache,
and once an already JITed entry point is called
again, the cached code is used. Since loopy code
will achieve high cache hit rate, the expensive JIT
step will be amortized. The additional cost of
probe processing cannot be amortized since it is
new functionality that is added to the system.
The probing cost should thus be considered as
a cost for protection against a omnipotent but
rogue system administrator.

Turning probes on and off amounts to using
different sets of emulation code and using sepa-
rate code caches or clearing the code cache when
probes are toggled.

3 Implementation

3.1 Base System

Our current implementation is running on a dual
hexcore Intel Xeon based Ericsson GEP3 board.
The GEP3 has a TPM soldered onto the board
(and not replaceable TPM module). It has a spe-
cial BIOS that checksums the BIOS, firmware and
boot loader before it passes control to the boot
loader.

The boot loader is a version of Trusted
Grub (Trusted Grub, ) which is configured to
checksum and load a Xen VMM (Virtual Machine
Monitor, a software layer that provides virtualiza-
tion functionality and isolation), a Linux kernel
and a ramdisk, before it launches Xen. Xen then
launches the Linux kernel in a virtual domain, the
Control VM.

The Linux kernel creates checksums of all the
binaries and config files that are loaded into the
system and keeps the checksums in a loaded files
list that can later be checked by a client. Since
varying load order would change and aggregated
checksum, the checksums are not stored in the
TPM checksum registers. Instead, the client has
to check the kernel’s list to make sure that no
unauthorized program has been launched before.

3.2 Launch Manager

After the boot process has finished, the Launch
Manager is started. It is written in Java and uses
the IAIK java Trusted Software Stack (IAIK java
Trusted Software Stack, ) to communicate with
the TPM chip on the board. The Launch Man-
ager is run as a user level process and has no sys-
tem level access. Access to the TPM device and
Xen commands are provided via group permis-
sions and setuid:ed scripts that double check the
parameters and access rights before execution.

All communication with the Launch Man-
ager is made over TLS (Transport Layer Secu-
rity communication protocol) and uses certifi-
cates to establish identities of all parties. The
launch manager receives the resource description
file from the client and starts to accept and ex-
ecute the commands that are listed in the re-
source definition file, provided that all file check-
sums are correct. The commands to manipu-
late the virtual machines are executed with Java’s
Runtime.exec(cmd).

During the launch phase, the Launch Man-
ager sends back a bind key to the client, which is
a public key inseparably tied (or bound) to the
machine’s TPM, which the client uses to encrypt
its secret data. The encrypted data can then only
be decrypted by the very TPM on which the bind
key was created.

The Launch Manager receives an encrypted
tar file containing the VM image and other nec-
essary files from the client which it decrypts, un-
packs and uses to create the virtual machine. The
client’s code is not set to run directly into another
Xen domain. Instead the Launch manager creates
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a Customer VM domain with a Binary Code In-
liner kernel, and then sends over the client’s code
and data to the Inliner to execute, together with
the software probe files to be installed.

3.3 Binary Code Inliner

The Binary Code Inliner is based on the Mini-OS
Xen software. It is a miniature kernel that can be
used for driver domains. The Binary Code Inliner
contains the LLVM libraries necessary for disas-
sembling, building, optimizing and JIT compiling
native machine code.

The Inliner communicates with the Launch
Manager over the Xenbus message passing inter-
face, and via a shared memory page for fast trans-
fer of files between the domains.

The Inliner uses different memory regions for
the client’s VM’s RAM and the memory in which
the probes store their state information. (See
figure 3.) Since the pure emulation code never
will access the probes memory area, there is no
machine instruction the client can use to ac-
cess the probe memory. But probe code that is
mixed in with the emulation code can access the
probe memory as normal memory, without need-
ing changing the memory context or using traps.
Therefore the JIT compilation can produce very
lightweight and ubiquitous software probes.

The Inliner is written in C++ and C to inter-
face with LLVM and Mini-OS and is about 2MB
in size, mostly due to the large libraries that it in-
cludes. It currently only supports a subset of the
full X86 instruction set, and more sophisticated
optimization such as optimization across multiple
code blocks is not yet implemented.

4 Security Analysis

4.1 Locking out the provider with
TC

A rogue system admin may try to eaves-drop and
dump data in the clients’ virtual machines to sell,
use, or to keep “for a rainy day”. Trusted Com-
puting (TC) with hardware chip (TPM) is used
to convince the client that no eaves-dropping soft-
ware is installed. Trusted boot lets the client ver-
ify that the system was started up in a known
state, but it is the loaded trusted software that
correctly must prevent remote login and other un-
due access, as Trusted Computing (TC) cannot
protect against software bugs in that software.

Some attacks can be detected by TC, i.e. if an
intrusion has triggered loading of an unexpected
binary it will be listed in the kernel’s loaded files
list, but in general TPM really relies on having a
locked down trusted software stack. In the de-
scribed system the trusted software stack con-
sists of the BIOS, firmware, boot loader, Xen, the
Linux kernel, the OS configuration files, and the
Launch Manager and its runtime system (Java).
The need for trust is reduced by layering. The
trust in the Launch Manager does not have to be
complete, as it is partly isolated with OS tech-
niques. The Launch Manager runs as a low privi-
leged user process that is not allowed to arbitrar-
ily access VM memory or other xm or xenstore
commands. In the current implementation the
Launch Manager is responsible for decrypting the
client’s VM image. This task should be moved
into the kernel, to remove the ability for a sub-
verted Launch Manager or other process in the
Control VM to leak decrypted uploaded client
data.

The Launch Manager is written in Java,
but may also execute commands with
Runtime.exec(cmd). The commands that
it executes are taken from a policy file that
was signed by the provider, but the client has
full access to what the commands do and their
binary code. Because their checksums are also
in the policy file the management commands
cannot be modified neither by the client nor
by the provider. To prevent the provider from
putting malicious commands into the policy
file, the client needs an external auditor to vet
the code. The cost of the vetting will spur the
adoption of commonly used and well understood
software and policies, or increase demand for
formal computer-checked security proofs.



TC does not guard against physical attacks
except through obscurity and complexity, and in
theory TC can be circumvented by tricking the
TPM to be reset by physically manipulating its
input pins. After a reset, arbitrary values can
be loaded into the checksum registers, hiding the
presence of malicious software. The data in RAM
capsules and hard disk is not encrypted by the
TPM. To prevent the hardware from being phys-
ically extracted from the machine the machines
must be guarded, and policies must be enforced
to for instance never let a single unmonitored sys-
tem admin manipulate the machines. Since the
TPM does not encrypt the data in memory or the
computation, it does not protect against forced
access to the hardware (e.g. due to a warrant).

TC is vulnerable to TPM chipmakers that is-
sue false TPM certificates or put in backdoors
in the chip to extract the private keys, as it en-
ables man-in-the-middle attacks on the suppos-
edly authenticated communication between the
client and the TPM.

4.2 Locking out the client

The system relies on standard techniques for lock-
ing out the client from attack on infrastructure
and other clients: the clients’ software is executed
in low privileged virtual machines whose access to
hardware goes via a virtual device layer that en-
forces limits on network access, I/O and memory
capacity consumption. The standard techniques
are not sufficient for detecting and blocking bot-
nets and other malicious software that may thrive
in the cloud. A cloud client who is hacked may
be made to run software that causes great dam-
age on others. To detect such activity, providers
usually have the ability to look deep into their
clients’ processes and VMs. Unfortunately, the
same ability also opens up to data-stealing by
rogue system admins. Instead of giving direct and
full access to the admins, the cloud architecture
provides a means for them to inject pre-defined
software probes that probe for characteristic pat-
terns or activities of botnets, viruses, etc., and
act or alert only when something is detected.

Malicious software in the client may try to cir-
cumvent the probes by overwriting the memory
area where they store state information. They
are unable to do so because each instruction in
converted into new code that cannot explicitly
address the probes’ private memory area.

An attacker may try to disassemble the code
to detect the probes, but the machine instructions

that the client will see are read from a different
part of the memory than the actual machine code,
because the memory is virtualized. A client dis-
assembling the instruction at its PC register will
disassemble its virtual memory, because the PC
(and the other registers) is virtualized and points
into the original code, not the newly generated
code with probes.

The layered design is helpful if there are bugs
in the Binary Code Inliner and LLVM. In the
worst case, an attacker may construct an instruc-
tion sequence that tricks LLVM’s JIT compiler to
produce JITed code that breaks out of the Inliner.
The risk is minimal, but if that happens, the pro-
gram is still isolated in the Customer VM, which
is an unprivileged Xen domain, and it is therefore
prevented from attacking the Launch Manager in
the Control VM.

5 Related Work and Contributions

5.1 Related Work

Terra (Garfinkel et al., 2003) describes a trusted
virtual machine monitor that uses Trusted Com-
puting (Trusted Computing Group, ) to prevent
the machine owner (provider in our terminology)
from accessing the contents of a virtual machine
to protect its confidentiality. Trusted Computing
for cloud computing is first suggested as a possi-
ble solution by (Santos et al., 2009), which so far
only contains early work on protocols for launch-
ing and migrating virtual machines protected by
Trusted Computing. TVDc (Berger et al., 2008)
let the client check the integrity of a Xen dom0
and the user domains via virtual TPMs, but the
TVDc provider is neither locked out nor given an
alternative means for controlling the client.

Machine code to machine code JIT translation
has been used to speed up execution in the Dy-
namo system (Bala et al., 2000). It is not used to
insert additional monitoring code into the gen-
erated code. PIN (Reddi et al., 2004) and Dy-
namoRIO (Bruening, 2004) are tools that let a
user write probes that are dynamically injected
into an application level program, not a full OS.
The probes are compiled before injection, and no
further optimization is done at runtime. Their
APIs operate on instruction level and basic block
level.

LLVM (Lattner and Adve, 2004) is a compiler
framework that has an intermediate code repre-
sentation that enables programmatical modifica-



tion, optimization and JIT compilation at run-
time. It is used in the Binary Code Inliner to
produce optimized code for each translated basic
block on the fly.

Xen (Barham et al., 2003) uses hardware
based protection to isolate virtual machines and
separate memory areas. Xen can only monitor
a few things, such as what goes in and out via
the virtual devices, memory and CPU utilization
rate.

PINOS (Bungale and Luk, 2007) instruments
full OS by running PIN inside a Xen VM. Its
uses the same low-level API as PIN. XenAc-
cess (Payne et al., 2007) is a tool that permits
looking/sampling into the memory of a running
virtual machine by following entries and point-
ers in the symbol tables and data structures in
the VMs memory. It does not enforce limits, and
it does not monitor memory or registers continu-
ously, but only when an external monitoring pro-
gram is explicitly started from outside of the VM.

Van Dijk, et al. (Van Dijk and Juels, 2010)
argue that software alone, such as fully homo-
morphic encryption or secure multiparty compu-
tation is not enough to provide privacy-preserving
cloud computing. They point out Trusted Com-
puting’s weakness with respect to hardware at-
tacks. Parno points out the problem of getting
the TPM key to the client (Parno, 2008). We
argue that hardware attacks may be countered
with (human) guards, and that a public key in-
frastructure can prove to a user that the keys are
genuine.

While our system uses policies to inline spe-
cialized machine code into the client’s binary, it
has still been compared to iRODS (Wan et al.,
2009), a policy based system for controling cloud
clients’ access to data. While iRODS enforces
policies at specific enforement points, our sys-
tem may insert control policies anywhere into the
client’s binary. It may also excercise control over
the execution, not just over access to data. While
the iRODS system is more mature, our system is
yet but a (versatile) tool for implementing and ex-
ecuting fine grained policies. Which those policies
will be, what they will measure and how to im-
plement them concretely still remains to be found
out.

While some recent surveys of multi-tenant
clouds (Rodero-Merino et al., 2012) still ignore
the risk of a rogue provider, Vaquero et. al. (Va-
quero et al., 2011) list what they consider the
main threats to IaaS clouds, including malicious
insiders, the risk for data loss and leakage, and

account or service hijacking. They survey cur-
rent work addressing these threats, i.e. (Constan-
dache et al., 2008; Descher et al., 2009; Baldwin
et al., 2009). With respect to the threat of in-
siders, the listed solutions only address the task
of locking out the provider. The main purpose of
our solution is to provide an environment that re-
stores some power to the provider by offering her
a versatile tool to, in a controlled way, inspect the
client at run time.

5.2 Contribution

Our contribution is to develop a cloud architec-
ture and proof-of-concept prototype implemen-
tation that (under the Trusted Computing as-
sumptions) can prove to the client that no eaves-
dropping software is or can be installed on the
resource computer.

The cloud administrators’ lost supervisory
powers are partially compensated with a generic
tool (probe inlining) in which invasive checks
and enforcement of the client’s VM for detec-
tion and thwarting of dangerous activities can be
implemented. The plan is that probes for bot-
nets, viruses, and cloud infrastructure attacks will
be implemented in this framework, but specific
probes have not been the focus of our current
work. Probes are installed on a fine-grained per-
instruction level meaning they are always on, and
the probes cannot be accessed or circumvented in
any way by the client’s software.

The idea to only let cloud system admins in-
stall software probes into the clients’ VMs instead
of having full access to a machine is new. Our ap-
proach for doing that, JIT machine code transla-
tion is not new, but our approach of translating it
into an intermediary compilation format that en-
ables mixing in high level probing functions, and
to optimize entire basic blocks rather than indi-
vidual instructions, is to our knowledge not found
elsewhere.

We also have contributed a TPM based ar-
chitecture in which policies that determine the
extent of probing first are negotiated between
provider and client, and later provably enforced
by the cloud software.

We have presented a security analysis to high-
light the strengths and limitations of the security
provided by this cloud architecture.

The current work consists of the architecture
for the runtime system for the probes, and does
not yet provide any specific language for declar-
atively defining probes. Defining concrete probes



for actual threats remains an issue for future
work.
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