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Abstract

The problem of �nding e�cient maintenance and inspection schemes

in the case of components with a stochastic life time is studied and a mixed

integer programming solution is proposed. The problem is compared with

the two simpler problems of which the studied problem is a generalisa-

tion: The opportunistic replacement problem, assuming components with

a deterministic life time and The opportunistic replacement problem for

components with a stochastic life time, for maintenance schemes without

inspections.
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1 Introduction

This report concerns how to �nd e�cient maintenance plans by mixed integer
programming methods.

1.1 Participants and Contributions

Markus Bohlin: DUST project leader, discussions, experiments using AMPL
and CPLEX

Jan Ekman: ideas, discussions, experiments using AMPL and CPLEX, pro-
ducing the �nal report with �gures and text, giving a presentation of the
work

Anders Holst: discussions

1.2 On the maintenance problems studied in this report

Production and maintenance planning is often a problem which is not easily
separated into production planning and a maintenance planning. Therefor the
overall goal of maintenance planning is manifold such as �nding desirable and
legal maintenance personnel planning schemes, avoiding unnecessary production
loss, avoiding maintenance and inspections with low gain, avoiding corrective
maintenance in the cases this is expensive and making planning negotiations
possible by presenting preliminary maintenance early in the planning process.
In this report we will consider the general and simpli�ed problem of maintenance
planning by assuming that it is possible to estimate costs of making maintenance
and estimate risks for failures. It may be that the maintenance costs is to be
interpreted as the result of encoding all desirable and unwanted aspects of a
plan. We assume that components of units to maintain have a stochastic life
time such that there is always a small chance of failure regardless of how often
service is made. By de�ning the maintenance problem this way it will be possible
to compare any two plans and decide which one is the best, although the overall
goal may be manifold and somewhat vague. In the mathematical model of the
problem it may either be the case that risks of failures are represented as costs or
that a part of the model is that the risks of failures are below given thresholds.

The problem studied in this report is a very general one but still not well-studied,
although realistic and highly relevant. It is a generalisation of the much simpler
opportunistic replacement problem (P1) which assumes deterministic life time of
components. It is also a generalisation of the opportunistic replacement problem

for components with a stochastic life time (P2) which does not take inspections
into account. Thus, considering both stochastic life times of components and
inspections we will call our problem the opportunistic replacement and inspection

problem for components with a stochastic life time (P3).
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This problem (P3) has a speci�c nature, which not so much accentuated in the
�rst two problems, (P1) and (P2), in that the option to re-plan is central for the
problem. The reason for this is of course that nothing is gained by the planned
inspections unless we react on them by re-planning. If we among inspections
include continuous surveillance by sensors then we need to react to information
that may arrive at any time and especially during the execution of the plan itself.
In order to be able to decide which of two plans is to prefer we need to estimate
the gain of re-planning during the course of the plan. The problems (P1) and
(P2) are generally solved without considering re-planning during the execution
of the plan. In reality re-planning often cannot be avoided. Hence taking re-
planning into account may be interpreted as making the mathematical model
more realistic. It may also be considered as a way of �nding less sub-optimal
solutions to maintenance problems.

1.3 Related work

The opportutunistic replacement problem is studied in [1] and [2]. A survey
of optimal maintenance for multi component systems is given in [5]. For an
introduction to AMPL and integer programming see for instance [3] and [4].
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Figure 1: A maintenance scheme

2 The opportunistic replacement problem

2.1 Introduction

As mentioned above the opportunistic replacement problem refers to the case
that the components life time are deterministic. In this case inspections has
no value. The phrase opportunistic refers to that the model takes into account
that it may be bene�cial to make several replacements at the same time, thus
making use of the opportunity o�ered by a replacement occasion to make another
replacement at the same time.

We consider maintenance of a unit consisting of a �xed number n of components
and we represent time by discrete time steps and consider a plan for a limited
duration in time. This will make it possible to model the opportunistic replace-
ment problem as a mixed integer program. A maintenance scheme, see �gure
1, determines in each time step which components are replaced. The scheme
must satisfy given conditions on how often components need to be replaced. We
assume that these so called life times of each of the components are known. The
life time may be di�erent for di�erent components. The opportunistic replace-
ment problem aims at �nding a maintenance scheme that satis�es the conditions
and minimises the cost of maintenance.
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2.2 Notation

Constants and indexes

T the total number time steps that the optimisation concerns

t a time step, t ∈ [1, T ]

n number of components

i component index, i ∈ [1, n]

ci cost of replacing component i

d replacement occasion cost

For the mixed integer formulation of the problem we use the following binary
variables for de�ning the events of a service plan.

xit component i is replaced in time step t

zt some component is replaced in time step t

2.3 A mixed integer formulation of the problem

Without presenting all the details we can say that the opportunistic replacement

problem is basically to minimise the following maintenance cost C�x subject to
given conditions on life times.

C�x =
T∑

t=1

n∑
i=1

cixit +
T∑

t=1

dzt

The purpose of the subscript �x here is to lead the mind to something that has
nothing to do with randomness. C�x, in this case is a value which in no part
is composed of a random variable or an estimate, such as average value, of a
random variable.

That the conditions on life times are given means just that the components life
times are not variables as part of the mixed integer problem. The life times
may for instance be estimated from historical data or the result of mechanical
calculations.

This simple formulation of the problem, as minimising the cost C�x above, needs
to be modi�ed by adding costs and constraints if we aim at an appropriate way
to handle the period boundaries. At the plan period start the maintenance
history, see �gure 1, needs to be taken as an input to the problem. This means
adding constraints to the problem. In most cases a plan with recently replaced
components at the plan period end has a higher value than a plan were all
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components have to be replaced soon after that the plan ends. Hence, we
also need an additional cost or gain related to the maintenance state at the
plan period end. In addition to these modi�cations of the problem there may of
course, in the speci�c cases, be a lot of other constraints, for instance concerning
production loss and the availability of personnel and other resources for making
maintenance.
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Figure 2: A model of component wear with a 99% certainty interval and a
planned replacement with 1% risk of failure

3 The opportunistic replacement problem for com-

ponents with a stochastic life time

3.1 Introduction

The problem in this section di�ers from the problem in the previous section only
in that we consider components with a stochastic life time. For the problem in
this section we will assume that we have some knowledge of the component wear
which makes it possible to model the wear statistically, see as an example �gure
2. The wear model, though, need not be linear in time, as is depicted in the
�gure. Such statistical models of wear may be estimated from historical data
obtained at replacements, from inspections or from surveillance of components
or it may be obtained otherwise as for example from mechanical properties of
the components.

For the problem in the previous section there were only one kind of mainte-
nance activity, that is replacements of components. For the problem in this
section there are two: replacements and corrective maintenance, where correc-
tive maintenance means maintenance of failing components. The plan will still
only consist of replacements though. For the problem formulation we, in addi-
tion to the cost C�x of the plan given in the previous section, need to consider
another plan cost Crisk, the average cost for corrective maintenance.

It is only because of that we are concerned with stochastic component life times
that we need to take corrective maintenance into account. With deterministic
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life times we can make service or replace components before they fail. But
also in this case, with deterministic life times, one service strategy is to make
nothing but corrective maintenance, i.e. we wait till the components break down
to make service. That kind of service is of course also one possibility for the
case of statistically modelled component life times. The di�erence between a
deterministic life time model and a stochastic is though that, in the latter case,
such a strategy of no preventive maintenance may appear as the solution to the
problem of �nding the optimal maintenance scheme.

3.2 Notation

We use the notation of section 2.2 together with the following constants

ai a �xed cost for failure of component i

riu the chance of failure of component i if not replaced in the last u steps
in time

Crisk(i, u) an average cost for failure of component i if not replaced in the
last u steps in time

αiu a cost correction term (explained below)

and the binary variable hi(t1, t2)

hi(t1, t2) component i is not replaced in the time interval [t1, t2]

Assuming that the risk of failure, according to a degeneration model, will in-
crease with the time since last replacement we will for a component i have an
increasing average failure cost

Crisk(i, u) = ai riu

with increasing time u since last service.
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Figure 3: Taking failure risks into consideration

3.3 A mixed integer formulation of the problem

Without presenting all the details we can say that the opportunistic replacement

problem for components with a stochastic life time is basically to minimise the
maintenance cost C�x + Crisk, see �gure 3.

C�x =
n∑

i=1

T∑
t=1

ci xit +
T∑

t=1

d zt

Crisk =
n∑

i=1

T ′∑
u=2

T∑
t=1

(Crisk(i, u) − αiu) hi(t − u + 1, t − 1)

Here αiu is a correction term for that we in Crisk incorrectly will include the
risk costs for all the sub-intervals of each interval [t − u + 1, t − 1] in which
component i is not replaced. The reason for still using the variable hi(t1, t2)
and not another formulation, where the correction could have be avoided, is
that using the variable hi(t1, t2) gives high performance in solving the mixed
integer program.

Concerning the conditions subject to the problem this problem and the deter-
ministic component life time problem di�ers in that, for the problem in this
section, we do not have to have any life times conditions. For speci�c cases we
may of course still have conditions on maximum and minimum time of compo-
nent usage. Similar to the deterministic problem an appropriate managing of
the period boundaries requires some modi�cations of costs and condition and
in speci�c cases there may be yet additional constraints.
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Figure 4: A maintenance scheme with replacements and inspections

4 The opportunistic replacement and inspection

problem for components with a stochastic life

time

4.1 Introduction

We now turn to the case that the maintenance scheme consists of both replace-
ments and inspections, see �gure 4. In this case the maintenance in consists of
three types of actions:

• component inspections

• component replacements

• corrective maintenance

The inspections and replacements are called events and may be either planned
or pre-historic. Just as for the previously studied problems we aim at �nding
a maintenance scheme that minimises the total plan cost. The big di�erence
between this problem and the previous ones is that the total plan cost need to
include the gain of re-scheduling as a response to the outcomes of the inspections.
Re-scheduling is the only way to gain anything from making inspections.
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Since re-scheduling is part of the planning process we may consider maintenance
planning as consisting of two phases:

1. making an initial plan consisting of inspections and component service

2. the operative re-planning phase resulting in the carried out maintenance

The total plan cost we aim at minimising is

C = C�x + Crisk + Cinsp

The �xed costs C�x are the sum of the costs for the planned replacements and
inspections. The risk cost Crisk is an estimated average cost obtained from the
risk for a failure and an estimated cost for corrective maintenance of a failed
component.−Cinsp is an estimation of the inspection information gain. If Cinsp >
0 we would get a better plan by removing all the inspections. Hence Cinsp <
0 for any reasonable plan and therefor we consider −Cinsp as a gain. Since
Cinsp occurs as a part of the plan cost, we will nevertheless use the inspection

information cost to refer to Cinsp.

As for the previously studied problems, we assume that there is a plan pre-
history. The inspections and replacements that occurs at or after the plan start
we call planned and the ones at or before the plan start we call pre-historic.
We assume that the pre-history, for each component, contains information on
at least one event, that is an inspection or a replacement, for each component,
see �gure 4.

We will restrict the problem by, for each component, not allowing a planned
inspection to be immediately succeeded by another inspection. That an event,
that is an inspection or a replacement, is immediately preceded or succeeded
by another event here means that there is no third event in between these two
events. For any component, the pre-historic inspections may be succeeded by
any number of inspections. For any component, an inspection may also be pre-
ceded by any number of pre-historic inspections. The restriction is non-essential
since we count on re-planning as a response to the inspections whenever inspec-
tion information arrives. That is, for the resulting maintenance the inspection
of any component may be succeeded by any number of inspections.

We will begin by presenting a mixed integer formulation of the problem under
the assumption that we know how to estimate the information gain of a sin-
gle inspection. After that we study the information gains, or costs, of single
inspections.
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Figure 5: A planned inspection immediately preceded by a pre-historic inspec-
tion with outcome j and immediately succeeded by a replacement

Figure 6: A planned inspection immediately preceded by a replacement and
immediately succeeded by another replacement

4.2 Notation

An inspection who's outcome is dependent on the pre-history, we will be call a
initial inspection. The other inspections are simply called non-initial. A non-
initial inspection of a component occurs after a planned replacement of the same
component, that is a replacement not belonging to the plan pre-history.

Constants and indexes:

T the total number time steps that the optimisation concerns

t, u time steps, t, u ∈ [1, T ]

n the number of components

i a component index, i ∈ [1, n]

bi the cost of inspecting component i

ci the cost of replacing component i

d a replacement occasion cost

ai a �xed cost for failure of component i

riu the chance of failure of component i if not replaced in the last u steps
in time
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Derived costs:

αiu, βijsu cost correction terms, explained in the text

C�x the total costs for the planned replacements and inspections

Crisk(i, u) an average cost for failure of component i if not replaced in the
last u steps in time

Crisk the total costs for the planned replacements and inspections

C(1)(i, s, u) the average cost of re-scheduling as a response to the outcomes
of an inspection of component i time s after a replacement and time u
before a another replacement of the same component, see �gure 5.

C(2)(i, j, s, u) the average cost of re-scheduling as a response to the out-
comes of an inspection of component i time s after an inspection with
outcome j and and time u before a replacement of the same component,
see �gure 6.

C
(1)
insp the average total cost of re-scheduling as a response to the inspections
outcomes for the initial inspections, that is the inspections for which the
gain is dependent on the plan pre-history, see �gure 5.

C
(2)
insp the average total cost of re-scheduling as a response to the inspections
outcomes for the non-initial inspections, that is the inspection for which
the gain is not dependent on the plan pre-history, see �gure 6.

Cinsp the average total cost of re-scheduling as a response to the inspections
outcomes

C the total cost of the maintenance scheme

Binary variables:

xit component i is replaced in time step t

yit component i is inspected in time step t

zt some component is replaced in time step t

hi(t1, t2) component i is not replaced in the time interval [t1, t2]

w
(1)
istu at time t there is an inspection of component i which is at least time

s after a replacement and at least time u before a another replacement of
the same component, see �gure 6.

w
(2)
ijstu at time t there is an inspection of component i which is at least
time s after another inspection with outcome j and at least time u before
a replacement of the same component, see �gure 5.
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4.3 A mixed integer formulation of the problem

In this section we formulate the opportunistic replacement and inspection prob-
lem for components with a stochastic life time as a mixed integer problem. This
formulation is made under the assumption that we know how to estimate the
gain of an inspection. In the coming sections we will show how to estimate
inspection gains.

Without presenting all the details we can say that the opportunistic replacement

and inspection problem for components with a stochastic life time is basically to
minimise the maintenance cost C de�ned as

C = = C�x + Crisk + Cinsp Cinsp = C
(1)
insp + C

(2)
insp

where

C�x =
n∑

i=1

T∑
t=1

bi yit +
n∑

i=1

T∑
t=1

ci xit +
T∑

t=1

d zt

Crisk =
n∑

i=1

T ′∑
u=2

T∑
t=1

(Crisk(i, u) − αiu) hi(t − u + 1, t − 1)

C
(1)
insp =

n∑
i=1

T∑
t=1

T ′∑
s=1

T ′′∑
u=1

(
C(1)(i, s, u) − βi1su

)
w

(1)
istu

C
(2)
insp =

n∑
i=1

T∑
t=1

T ′∑
s=1

T ′′∑
u=1

(
C(2)(i, j, s, u) − βijsu

)
w

(2)
ijstu

and where the variables w
(1)
istu and w

(2)
ijstu may be expressed in terms of hi(t1, t2)

as follows

w
(1)
istu = yit × hi(t − s + 1, t − 1) × hi(t + 1, t + u − 1)

w
(2)
ijstu = y′

it × init(i, j, s − t) × hi(t − s + 1, t − 1) × hi(t + 1, t + u − 1)

where y′
it denotes that an initial inspection of component i takes place at time

t and init(i, j, v) is an input constant meaning that at v steps in time before the
plan start there is pre-historic inspection with outcome j of component i.

For similar reasons as the formulations of the cost Crisk uses the correction terms
αiu also the inspection costs C

(1)
insp and C

(2)
insp have correction terms βijsu. As

for the previous problem without in sections the problem in this section may be
subject to some conditions and additional costs or gains

Concerning the conditions subject to the problem this problem and the deter-
ministic component life time problem di�ers in that, for the problem in this
section, we do not have to have any life times conditions. For speci�c cases we
may of course still have conditions on maximum and minimum time of compo-
nent usage. Similar to the deterministic problem an appropriate managing of
the period boundaries requires some modi�cations of costs and condition and
in speci�c cases there may be yet additional constraints.
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Figure 7: An updated model of component wear as the result of an inspection
result that shows that the wear is above the average

5 Estimation of information gain of inspections

5.1 Introduction

Figures 7 and 8 aim at showing what we gain by an inspection. By an inspection
the remaining life time in general will be clearer. In statistical terms the life time
variance will decrease. This is indicated in the �gures by the green triangles
showing an updated statistical model as a result of the inspection outcome.

In �gure 7 the wear is above the average wear. However, as the �gure shows,
even if we do not re-schedule the replacement to a earlier point in time the risk
of failure before the replacement is not higher than it was from start. This is the
consequence of that the the variance is lower for the updated life time model. In
�gure 8 the wear is below the average and in this case we have the opportunity
to re-schedule the replacement to a later point in time and still keep the failure
risk at the initial level.

The gain of inspection information stems the from option to re-plan, based on
the information. Let us for simplicity think of gain as a negative cost, such that
we do not need to refer to both �cost� and �gain.� In order to estimate the plan
cost we need to convert the information gain into something of the same sort as
the other costs. Inspection takes two re-planning costs into consideration

• cost related to change of time for the next replacement

• cost related to the altered risk of failure
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Figure 8: An updated model of component wear as the result of an inspection
result that shows that the wear is below the average

Even if we do not re-plan, the inspection information will lead to a decrease
in the risk of failure, for some of the outcomes of the inspection. For other
outcomes, inspection information leads to that the risk of failure will increase,
even if no re-planning takes place. For each point in time there is a risk of failure
of each of the components. We do however assume that we do not discover the
failures until inspections. Moreover we assume that the cost for a failure is
constant and independent of how long it was since it appeared.
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Figure 9: Re-scheduling a replacement from u time steps after inspection to
u(i, k) time steps after inspection

5.2 Notation

For the estimation of gain of inspections we use the following notation in addition
to one the given in section 4.2 .

ω the number of inspection outcomes for each of the components

k, j inspection outcomes , k, j ∈ [1, ω]

u(i, k) a re-scheduling strategy for component i as the number of time
steps from an inspection with outcome k to the immediately succeeding
replacement

δi the gain of delaying replacement of component i one time step

riu the chance of failure of component i if not replaced in the last u steps
in time

gis(j, k) the probability that an inspection of component i will have have k
as outcome s ≥ 0 time steps after a previous inspection with j as outcome.

biuk the gain of re-scheduling replacement from time u to u(i, k) given the
inspection result k

5.3 The information gain of a single inspection

To �nd a formula for the information gain of an inspection we will estimate the
gain di�erence with and without a given inspection. We start by considering
the information gain for a given inspection outcome.

We let the outcome k of an inspection of a component be a natural number
in [1, ω], assumed to encode the component degree of wear. We will use the
convention that 1 is the lowest degree of wear, for which the component is to
be regarded as new. The highest degree of wear is the maximum outcome ω
of an inspection and this outcome denotes failure. We assume that we have a
model of degradation from which we have constructed an algorithm to derive
the probability gis(j, k) that an inspection of component i will have have k as

18



outcome at time s ≥ 0 after a previous inspection with j as outcome. We have
previously used ris to denote the chance of failure of component i if not replaced
in the last u steps in. Hence we have

ris = gis(1, ω)

Given an outcome k as the result of an inspection, see �gure 9, we assume that
have a re-scheduling strategy u(i, k) for component i, where u(i, k) is the number
of time steps from an inspection with outcome k to the planned replacement that
immediately succeeds the inspection. This strategy may itself be the result of a
separate optimisation. In this report we simply assume that the re-scheduling
strategy u(i, k) is given as input to the problem.

Assume that the planned replacement immediately succeeding an inspection is u
time steps after the inspection as shown in �gure 9. Assume that the inspection
results in the outcome k and that after that the planned replacement is re-
scheduled to take place u(i, k) time steps after the inspection instead. Hence,
as a consequence we have the following di�erence in risk of failure

gi u(i,k)(k, ω) − giu(k, ω)

As mentioned in section 4.1, although the inspection information cost Cinsp in
general is negative we still refer to it as a cost. We will analogously, in the
continuation, let the notation be given in terms of costs, although these costs
in general are negative.

Remember that ai is the �xed cost for failure of component i. We thus have the
following cost di�erence with respect to failure

ai

(
gi u(k)(k, ω) − giu(k, ω)

)
We In addition to the re-scheduling strategy u(i, k) we also assume that we have
an estimate of the gain δi of moving a replacement one time step ahead. Since
moving a replacement one time step ahead means a negative cost, we have the
following cost di�erence with respect to change of time for the next replacement

δi (u − u(i, k))

Hence the cost biuk of re-scheduling a planned replacement immediately suc-
ceeding an inspection from time u to u(i, k) given the inspection result k is

biuk = δi (u − u(i, k)) + ai

(
gu(k)(k, ω) − gu(k, ω)

)
Recall that C(2)(i, j, s, u) is the average cost of re-scheduling as a response to
the outcome of an inspection at some time step, say t, of component i time s
after an inspection with outcome j and and time u before a replacement of the
same component, see �gure 5. Hence to calculate this average cost we have to
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consider all possible outcomes k of the inspection at time t and the probability
gis(j, k) of each of the outcomes. That is

C(2)(i, j, s, u) =
ω∑

k=1

gis(j, k)biuk

Similarly for C(1)(i, s, u) the average cost of re-scheduling as a response to the
outcomes of an inspection at some time step, say t, of component i time s after
a replacement and time u before a another replacement of the same component,
see �gure 6

C(1)(i, s, u) =
ω∑

k=1

gis(1, k)biuk

These two formulae above are the single inspection information cost formulae.

5.4 On the distribution gis of inspection outcomes

To make it simple to express the properties of the inspection distribution we do
the following:

1. consider service as a kind of inspection, with the special feature of making
the component become new

2. let gis be the probability matrix such that gis(j, k) is the probability that
an inspection of component i will have have k as outcome at s ≥ 0 units
in time after a previous inspection with j as outcome.

3. let failure be one of the outcomes at inspection and let ω denote that
outcome

With this notation gis(1, ω) is the probability of failure of component i at s
units in time after a replacement and gis(j, ω) is the probability of failure of
component i at s units in time after an inspection with j as outcome. We notice
that for k 6= ω and for all s ≥ 0

gis(ω, ω) = 1 gis(ω, k) = 0 gi0(k, k) = 1

The interpretation of gis(ω, ω) = 1 is that: if a failure occurs, then it will
persist. Hence gt is upper triangular. We assume that a higher inspection
outcome means a more degraded state, that is

j > k → gis(j, k) = 0

where ω > k for all k 6= ω. Let m be the number of outcomes, we notice that
each of the row sums is the probability of the outcome of the �nal inspection
under the condition that a previous inspection has a given outcome j.

m∑
i=1

gis(j, i) = 1
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The column sums does however not add up to one. We have the matrix com-
position rules

g(i,s+u) = gisgiu giugis = gisgiu gisgi0 = gs

and we see that gt is recursively given in terms of g1.

We have for instance, using j > k → gis(j, k) = 0

g(i,s+u)(j, k) =
k∑

i=j

gis(j, i)giu(i, k)

5.5 Reformulation of the inspection information cost

Recall the formulae for the information cost of an inspection

C(1)(i, s, u) =
ω∑

k=1

gis(1, k)biuk C(2)(i, j, s, u) =
ω∑

k=1

gis(j, k)biuk

biuk = δi (u − u(i, k)) + ai

(
gu(k)(k, ω) − gu(k, ω)

)
By using the results of the previous section and that ris = gis(1, ω) these for-
mulae may reformulated as follows

C(1)(i, s, u) = δiA1 + aiA2

C(2)(i, j, s, u) = δiB1 + aiB2

A1 = u −
ω∑

k=1

gis(1, k)u(i, k) A2 =

(
ω∑

k=1

gs(j, k)gu(k)(k, ω)

)
− r(i,s+u)

B1 = u −
ω∑

k=1

gis(j, k)u(i, k) B2 =

(
ω∑

k=1

gis(j, k)gu(k)(k, ω)

)
− gs+u(j, ω)
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Figure 10: An example with four di�erent outcomes of an inspection of a com-
ponent

6 An example

6.1 A distribution

Let us as an example consider a unit consisting of just one component and the
number inspection outcomes be just four, where 1 means �counts as new�, 2
means �low degradation�, 3 means �high degradation� and ω = 4 means that
the component has failed, see �gure 10. Let gs(j, k) be the probability that an
inspection of the component will have have k as outcome at s ≥ 0 units in time
after a previous inspection with j as outcome. Let gs be de�ned as below.

g0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



g1 =


0.9 0.09 0.009 0.001
0 0.9 0.09 0.01
0 0 0.9 0.1
0 0 0 1
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g2 = g1g1 =


0.81 0.162 0.0243 0.0037
0 0.81 0.0162 0.028
0 0 0.81 0.19
0 0 0 1



g3 = g1g2 =


0.729 0.2187 0.04374 0.00856
0 0.729 0.2187 0.0523
0 0 0.729 0.271
0 0 0 1



g4 = g1g3 =


0.6561 0.26244 0.06561 0.01585
0 0.6561 0.26244 0.08146
0 0 0.6561 0.3439
0 0 0 1


Consider �gure 5 and assume that we make an inspection with outcome j = 2
in a time step t− 3, that is s = 3. Then the likelihood of having outcome k = 3
in time step t is g3(2, 3) = 0.2187 and the probability of having a failure, ω = 4,
at time step t + 4, that is u = 4, is g4(2, 4) = 0.08146.

6.2 Strategy

Let the strategy u(k) be

u(k) =


5
2
1
0

k = 1
k = 2
k = 3
k = ω

With j = 1 the risk of failure at t + u(k) is

ω∑
k=1

g3(1, k) × gu(k)(k, ω)

= g3(1, 1) × g5(1, ω) + g3(1, 2) × g2(2, ω) + g3(1, 3) × g3(3, ω) + g3(1, ω)
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