
A workflow for software development within

computational epidemiology∗

Baki Cakici1,2 and Magnus Boman1,3

{cakici, mab}@kth.se

Abstract

A critical investigation into computational models developed for study-
ing the spread of communicable disease is presented. The case in point is
a spatially explicit micro-meso-macro model for the entire Swedish popu-
lation built on registry data, thus far used for smallpox and for influenza-
like illnesses. The lessons learned from a software development project
of more than 100 person months are collected into a check list. The list
is intended for use by computational epidemiologists and policy makers,
and the workflow incorporating these two roles is described in detail.

1 Introduction

1.1 Computational epidemiology

In 1916, Ross noted that mathematical studies of epidemics were few in number
in spite of the fact that “vast masses of statistics have long been awaiting proper
examination” (page 205, [1]). In the 90 years which followed, the studies made
were analytic, and the micro-level data available were largely left waiting, to
leave room for systems of differential equations built on homogeneous mixing.
This is remarkable not least because the modeling problem remains the same
throughout history: “One (or more) infected person is introduced into a com-
munity of individuals, more or less susceptible to the disease in question. The
disease spreads from the affected to the unaffected by contact infection. Each
infected person runs through the course of his sickness, and finally is removed
from the number of those who are sick, by recovery or by death. The chances
of recovery or death vary from day to day during the course of his illness. The
chances that the affected may convey infection to the unaffected are likewise
dependent upon the stage of the sickness.” (page 700, [2]). Heterogeneity is
present already in this classic description, in several places; susceptibility, mor-
bidity, and also contact patterns, if only implicitly. Only with the advent of

1Royal Institute of Technology (KTH/ICT/SCS), SE-16440 Kista, Sweden
2Swedish Institute for Communicable Disease Control (SMI), SE-17182 Solna, Sweden
3Swedish Institute of Computer Science (SICS), SE-16429 Kista, Sweden
∗Please cite as: Baki Cakici, Magnus Boman, “A workflow for software development

within computational epidemiology”, Journal of Computational Science, Available online 6
June 2011, ISSN 1877-7503, doi:10.1016/j.jocs.2011.05.004

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

powerful personal computers, were micro-level data given a role in the modeling
of epidemics. Executable simulation models in which each individual could be
modeled as an active object with its own attributes [3], often referred to as an
agent, began to appear [4, 5, 6]. A new area within computer science, compu-
tational epidemiology, has recently become established as the scientific study
of all things epidemiological except the medical aspects. This area is turning
into computational science (see, e.g., [7]), following the example of computa-
tional biology, computational neurology, computational medicine, and several
other new areas focusing on building computationally efficient executable mod-
els. This development also includes the social sciences, as in computational
sociology [8].

1.2 Model description

The model on which the analysis below is based has been continuously developed
since 2002 by a cross-disciplinary group of researchers from the fields of medicine,
statistics, mathematics, sociology and computer science. Since 2004, a team of
developers have implemented various versions of a software tool, representing
the computational part of the model, recently made available as open source
software and licensed under GNU General Public License Version 3 [9]. In
parallel with the implementation, the requirements on the model have changed
many times. It began as a model for predicting the effects of a possible smallpox
outbreak in Sweden [10], which was later transformed into a model for studying
pandemic influenza, and is now a model that could be used for many different
kinds of communicable disease studies (excluding vector-borne diseases, i.e.,
diseases with animal reservoirs). The model is a detailed representation of real
situations, sometimes referred to as a tactical model, as opposed to simpler
strategic models [11]. For instance, the model was recently used to study a
fictitious scenario of H4N6: a new influenza virus strain that was assumed
to be deadly, highly contagious, and introduced into a completely susceptible
population. In all, the development project has included more than 100 person
months of implementation work, and consists of more than 5000 lines of C++

code.
The parameters used to represent individuals in the model are age, sex and

current status (alive or deceased). Each individual is also assigned a home, a
workplace, and a department within that workplace. The movement of individ-
uals outside of home and workplace are represented using travel status (home
or in another location), emergency room visits, and hospitalizations.

Infections caused by social contact outside of work or home are classified
as context infections. When the context infection process is active, there is a
probability that an infectious individual will infect those that live within a fixed
radius. Context contact radius defines the size of neighborhoods, mirroring the
interaction of every individual with others, based on geographical proximity and
the social network.

The disease affects every individual through three parameters: infectious-
ness, death risk, and place preference. The infectiousness parameter influences
the probability that the infected individual will infect others in the same home,
workplace, or neighborhood. The death risk depends on the disease level and is
expressed as a probability. Place preference is the probability distribution used
when deciding where the individuals will spend their day (workplace, home, pri-

2

mary care, or hospital). These parameters are defined for five levels of severity:
asymptomatic, mild, intermediate, severe, and critical. In addition, there are
four disease profiles: asymptomatic, mild, typical, and atypical.

The model description is combined with Swedish data on workplaces, house-
holds, and individuals. Workplaces include companies, schools, healthcare, and
other state institutions. For each workplace, the data indicate the total number
of workers, geographical coordinates, and workplace type. The current version
of the simulation platform uses data from the Swedish Total Population Regis-
ter, the Swedish Employment Register, and the Geographic Database of Sweden
(cf. [12]).

Because the model was developed with the purpose of being run with data for
the country of Sweden, it has been used solely for studying outbreaks in that
country. Sweden has relatively many infection clinics and good international
reputation for detailed clinical reports of communicable disease. Thus, in some
areas of disease control, Sweden works well as a role model. Other countries face
special local problems, however, and results have sought to be generalizable, for
example contributing to the complicated model of EU care-seeking behavior.
Generally speaking, the project goals have included to sensitize policy makers
to the scope of possible disruption due to a newly emergent disease event, and
to identify a range of policy handles which can be used to respond to such an
episode.

A sample case description illustrates how an experiment would be described
using the executable model. The sample case simulates the effects of pandemic
influenza in Sweden, without any interventions, for 300 days. The simulation is
initiated with 50 infected individuals, randomly selected from the entire popu-
lation. Since the data set is registry data for the entire country, any random
selection procedure is uniform, i.e., an individual has a 50 in nine million chance
of being initially infected. This does not mirror realistic spread, which would
more typically be an airplane or a boat arriving to Sweden with one or more
infected individuals on board, but in the sample case it at least provides an
opportunity to discuss the complex matter of how epidemics start. The maxi-
mum size for an office is set to 16 individuals and all workplaces with more than
16 employees are split into departments, each containing 16 or fewer members.
This value is not arbitrary, but corresponds to the average size of a Swedish
workplace. Context contacts – the parameter representing the average number
of contacts outside the home or the workplace – is set to 15. Even if that number
was recommended by the sociologists in the project, it is somewhat arbitrary,
and is therefore subjected to sensitivity analyses in our sample case. Naturally,
such analyses would be extensive in a real policy case; here the reason for their
inclusion is chiefly pedagogical.

1.3 Disposition

A report on lessons learned from the software development project constitutes
the bulk of the analysis below. It starts with a description of the workflow in
a computational epidemiology project, and observations on the micro–meso–
macro link follow. More detailed descriptions of what it actually means to
manage and run a simulator are then provided, before discussing the scientific
merits and challenges of this kind of research, and the concluding check list is
presented.

3

2 Workflow

2.1 Model development

The process of developing a model for outbreaks today often includes the de-
velopment of a simulator, allowing for scenario execution and relatively swift
sensitivity analyses. The simulator does not capture the entire model, but only
those parts that are subject to uncertainty or those that involve stochastic pa-
rameters. The instigator is typically a policy maker (PM), knowledgeable in
public health issues, and seeking to evaluate various scenarios. The PM may
well have medical training, or even be an epidemiologist. The implementer of
the simulator is a computational epidemiologist (CE): a modeler knowledgeable
in computer science, and the social sciences, typically without much medical
training. Naturally, both PM and CE could denote a team instead of a single
person. A schematic workflow for developing and using a simulator, depicting
the roles of both PM and CE, is presented in Figure 1.

Requirements
specification

Simulator Experiment

Output report

Output
data and

logs

Sensitivity
analyses

Validation

Policy
Maker

Policy
Maker

 Computational
 Epidemiologist

 Computational
 Epidemiologist

 Implementation

Technical
requirements

User
requirements

 Real outcomes (model scenario vs. real outbreaks)

 Post-processing

 Revised requirements on experiments
Input

 (parameter values and
possible scenarios)

 Execution

Figure 1: The schematic workflow of developing and running an exe-
cutable model, incorporating policy makers and computational epidemi-
ologists.

4

As in all development projects, work begins with a requirements specifica-
tion, to which the PM contributes user requirements and the CE contributes
technical expertise. From this specification, the simulator is built. It consists of
a software package with two parts: a simulation engine and a world description.
The latter is not the complete description of the world under study, but covers
only those parts that have a bearing on the executable model. This model-
ing work is carried out by the CE, with considerable assistance from medical
professionals. The CE implements the simulator in accordance with the speci-
fication and medical expertise. The CE will also seek to verify the accuracy of
the simulator (e.g., through extensive testing, or even logical proof). The CE
works in two distinct sequential steps that cannot be combined: design and im-
plementation. Software engineers are taught not to modify their design during
the implementation stage to “improve” the model, no matter how tempting this
might be. If design decisions leak into the implementation stage, the software
project quickly becomes impossible to maintain. What software design means
in the area of computational epidemiology is the craft of knowing which pa-
rameters to vary, being aware of their mutual dependence, and how to openly
declare all simplifying assumptions.

Once the simulator is complete it is given a version number, and one may
proceed to experiments. For an experiment to be meaningful, the PM must en-
visage scenarios. The PM must also provide values for some input parameters.
Each parameter in the model is important, and even slight changes to an input
value might have a drastic effect on the output. The kind of model considered
here is a complex system: a system which cannot be understood through un-
derstanding its parts. Before the CE can run the system, the world description
must be populated with data, which typically need a significant amount of post-
processing to allow for smooth use in the simulator. In addition, one must then
attempt to ascertain that the resulting data set is accurate and noise-free. The
data set in the here described model was sensitive with respected to personal
integrity, as it consisted of registry data on the entire Swedish population of
approximately nine million individuals. This sensitivity rendered many kinds of
replication experiments impossible.

Once the system runs, it will produce a vast amount of output, so exper-
iments must be set up carefully to avoid information overload. The so-called
induction trap – the lure of running too many experiments for each scenario
because it is easy to produce more output, and then jumping to inductive con-
clusions too swiftly [13] – must also be avoided. The output and logs of a set
of runs typically do not lend themselves to straightforward reading, but require
post-processing. In practice, this means turning huge text files into calculable
spreadsheets, and further into graphs and diagrams. Those outputs can then be
presented back to the PM, who can then call for more experiments, sensitivity
analyses, or even a revision of the requirements specification. The CE in this
process makes certain design choices, e.g., which output data to present and
how. It is important that this process is iterative and that the PM is given
the option of making informed choices, by having at least some grasp of what
is realistic to do, given the constraints of computational complexity. The CE
must provide technical specifications on further experiments, and the techni-
cal competence used also comes with a responsibility to inform: the PM must
know what options there are, and why and how certain results were omitted or
deemed irrelevant. Because the PM is typically the one responsible for acting

5

upon results obtained, a chain of trust to the CE must be upheld. Likewise, the
CE should react if the PM, for example, calls only for certain experiments to
be run, or if the selection is made so as to confirm a preconceived truth, in a
pseudo-scientific fashion [14].

In principle, the output of the executable model can finally be validated
by comparing its predictions to real outcomes of actual policy interventions for
the population modeled, given that the input parameters adequately model the
real population prior to those interventions. Naturally, some scenarios could be
considered extreme (e.g., the introduction of an entirely new influenza virus to a
population without native immunity) and are simulated precisely because they
cannot be studied in the real world. In such scenarios, validation can, at best,
pertain only to parts of the model. More importantly, simulations of outbreaks
are difficult to validate because the simulated event is rare. Catastrophic events
are characterized by low probability and disastrous consequences (see, e.g., [15]),
and yet the input data are collected from the normal state of the population in
non-outbreak situations. Using this input, the simulator is expected to produce
one possible yet highly unlikely scenario to provide researchers and policy makers
with more opportunities to observe and learn about the unlikely event.

Since computational epidemiology is problem-oriented and constitutes ap-
plied science, models are often pragmatic in the sense that they are adapted to
their use as policy-supporting tools. Any provisos made have to be grounded
in the culture of the decision making entity, such as a government or a phar-
maceutical company, making alignment studies, in which models are docked for
replication studies [16] difficult.

2.2 The micro-meso-macro link

In microsimulation models of outbreaks, individuals are exposed to the disease
and may infect other individuals that they come into contact with. The most
primitive unit is the individual and the focus is on the activities of the individual,
for the purposes of studying transmission. By contrast, macrosimulation focuses
not on the individual, but on the whole society. All members (i.e., the whole,
possibly stratified, population) share the same properties and move between
different disease states such as susceptible, infected, and resistant.

Even if originally conceived as a pure microsimulation model, the executable
model discussed here has macro-level parameters, e.g., workplace size. This pa-
rameter governs how many colleagues a working individual interacts with during
a working day. To “interact with” here means that there is an opportunity for
infection, given that either the individual or the colleague is ill. Even though
micro data are available for each workplace – including the number of employ-
ees at each company – it is defensible not to use these data in full, since large
workplaces have so many employees that it makes no sense to assume that the
individual interacts with them all. In reality, the individual might not even see
more than a fraction of the total number of colleagues on a given day. The
workplace size is therefore set to a precise value, meant to capture an average
number of colleagues, which is kept constant throughout a set of runs.

By definition, macro models do not represent local interaction. However, in
any dynamic model utilizing micro data, including SIR-inspired individual-based
models [17], local interaction will affect the output. If there appear discernible
patterns in the output that are not explicitly stated by the model descrip-

6

tion at the outset, they are referred to as emergent patterns. In the described
model, all output logs are mapped onto a real population. This means that
every discernible pattern has an interpretation that can be understood in the
epidemiological context, using terms such as “spread” and “giant component”,
and also in the societal context, using terms like “number of infected” and “ab-
senteeism”. Hence, patterns discernible at the macro level resulting from local
interactions at the micro level are easily made understandable to the PM.

The meso layer [18] includes everything that is more general than the prop-
erties of single individuals but less general than the properties of the whole
society. In the model at hand, this is most visible in neighborhoods, defined by
the geographical proximity of different households. Adding the meso layer to
an epidemiological model enables researchers to represent a crucial part of hu-
man interaction: social contacts outside the home or workplace. This includes
encountering others while shopping, and social gatherings of neighbors.

Variables in the executable model represent properties of the real population,
but many of them cannot be observed directly. Therefore, the argument goes,
a suitable value for the executable must be determined by experimenting with
the simulator. In the implementation phase, the CE strives to get a handle on
the parameter space, i.e., the value space for all parameters that can be subject
to variation. To illustrate this, a sample case is now considered.

To find a suitable value for the parameter context contacts, representing the
average number of contacts outside the home or the workplace, the behavior of
the simulated outbreak is observed using the total number of infected individuals
per week for a large interval of context contact values. The interval is set to
start from zero, where the model behavior is undefined, to where the parameter
no longer has an observable impact, i.e., when it is high enough to exhaust
the population regardless of all other parameters. Within the [8,20] interval,
changing the context contacts parameter had, in this example, a significant
effect on the behavior of the model. Repeating the same series of experiments
with a smaller step size within the [8,20] interval, a smaller region of interest
was obtained within the [14,16] interval. Finally, the analysis was repeated one
last time for the [14,16] interval with a smaller step size. Figure 2 shows the
number of infections per week for five runs where all parameters except context
contacts were kept constant. Further simulations were run to observe the effects
of variation due to random seeds when contacts was set to 15. Figure 3 shows
the number of infections per week for three runs with different random seeds
where all other parameters were kept constant. Other variables in the executable
model that should be decided using a similar process include (but are not limited
to): number of initially infected, office size, place choice based on disease level,
place choice based on age, length of a work day, and the probability of receiving
a symptomatic disease profile.

2.3 Stochasticity

An outbreak of pandemic influenza is a rare event. To trigger such an outbreak,
either the simulations must be run repeatedly for a long period until an outbreak
occurs, or the model must be configured in such a way that outbreaks will occur
with higher frequency than in the real world. The former is not practical since
it might take millions of runs before anything happens, and the latter comes
with the risk of compromising the validity of output by introducing exogeneous

7

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30 35 40 45

#
 o

f
in

fe
c
te

d

Week

of infected per week

Figure 2: Number of infections per week for five runs where all param-
eters except context contacts were kept constant.

variables that change the effects of the simulated outbreak.
All random events in the model use a series of numbers that are generated at

run-time using the initial seeds provided by the user. Therefore, the outcome of
every “random” event in a simulation run depends only on the initial seeds. By
using the same seeds, identical results can be obtained using different computers,
operating systems, or compilers.

In the present model, one highly influential parameter is the number of ini-
tially infected. When 50 randomly selected individuals are infected, an outbreak
is triggered in nearly every run. If only three individuals are selected instead,
the outbreaks become much more rare. This is due to the heterogeneity of the
population: individuals with more contacts are more likely to initiate outbreaks
if infected, and it is more likely that a highly connected individual would be
infected if 50 rather than three are infected initially.

It is often assumed in executable models that in a few generations, a sim-
ulation with three infected would reach the stage with 50 infected, and that
the difference between them would be negligible. Certainly every simulation

8

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30 35 40 45

#
 o

f
in

fe
c
te

d

Week

of infected per week

Figure 3: Number of infections per week for three runs with different
random seeds where all other parameters were kept constant. Each ran-
dom seed is a vector of numbers generated by a pseudo-random number
generator.

with three initially infected would reach a stage with 50 infected, given that an
outbreak occurs during the run. Therefore simulations can be started from the
stage where 50 individuals are infected since that is the minimum number at
which the simulation platform produces outbreaks in the majority of runs. This
assumption is far from ideal. The simplest observable effect is that no runs will
have less than 50 infected. This is acceptable because the object of study is
nation-wide outbreaks. However, the difference between the two approaches is
not negligible because 50 randomly selected individuals will not have the same
geographical distribution as 50 individuals whose infections originate from three
individuals. The 50-from-three group will most likely have overlapping social
networks because they were all infected by three individuals, as opposed to
being randomly selected from a population of nine million. As the outbreak
grows to one thousand or one hundred thousand infected, the difference may
lose its significance, but quantifying that significance remains challenging for all

9

executable models that use heterogeneous populations. Hence, this is a good
example of a simulation in which the CE makes an assumption about things
beyond the PM’s control, or even grasp. Good software development requires
that such assumptions be made explicit and communicated to the PM.

3 Conclusion

The lessons learned from the software development project described above can
be summarized in the form of a check list. Even if the list is not exhaustive,
developers of computational epidemiology models could check off the items on
the list, as applicable to their project. The presented workflow and checklist
do not include surveillance in computational epidemiology and instead focus on
modeling and simulation. A more comprehensive workflow for computational
epidemiology would have to incorporate computer-assisted infectious disease
surveillance, often performed using complex software platforms tailored to the
task [19, 20, 21, 22], and the interaction of its users with the actors already
identified in the preceding sections.

Computational epidemiology is a new area, and many of the methods and
theories employed have yet to benefit from thorough scientific investigation.
Even if important steps towards amalgamating models and performing align-
ment experiments have been taken (see, e.g., [23]), the area is in need of extensive
methodological advancement. The following checklist is intended to be a con-
tribution to such development. Not every item in the check list introduces new
issues for policy makers or computational epidemiologists, but, depending on
the reader’s area of expertise, one or two are highly likely to be more significant
than the others. Much of it is part of the folklore of the area, and could be
classified as procedural and pragmatic know-how. More specifically, the con-
tribution is to have these items made explicit as one concise list, and tied to
working procedures as demonstrated by our workflow description (Figure 1).

1. All population data sets are regional
To have access to data on the entire population on the planet is not a realistic

goal. Hence, most studies are limited to one geographic region, such as a city, a
state, or a country [24]. This means that the universe of discourse includes not
only the individuals in this geographic region, but also that a certain proportion
of the individuals must be allowed to leave the region. Moreover, visitors and
immigrants from other regions should be included in the population data. Some
computational epidemiology projects employing micro data use census data,
others extrapolate from samples, and yet others use synthetic data. In the rare
cases where registry data is available for a large population – as is the case for
the Swedish population – hard methodological questions must still be answered
regarding the generalizability of results: which parts of a scenario execution in
Sweden are likely to be analogous to ones in Norway, Iceland, or the state of
Oregon?

2. Population data are sensitive
Even after extensive post-processing, any data set with real population data

is subject to privacy and integrity concerns. In almost all countries, this means
that running a simulator with the data set is subject to applying to an ethics
board. If approved, data must be kept safe and experiments may be run in
designated facilities only. This makes replication studies difficult, and it also

10

restricts alignment studies to less interesting data sets.
3. Verifying the simulator is a serious engineering challenge
To formally verify that the simulator produces adequate results, is free from

programming bugs, and can handle the computational complexity of modeling
large outbreaks is, in general, not possible. The software is too large, as is the
variation of possible input values and the spectrum of sensitivity analyses. Ex-
tensive testing – varying the hardware environment and the parameter values,
including the random seeds for stochastic processes – yields evidence for ade-
quacy, but no guarantees. This does not entail that the simulator is without
use, or not to be trusted, but merely that its construction and maintenance is
an engineering challenge.

4. Validating the simulator output is hard
Pandemics have been few and far between. Modeling a future scenario on

a real outbreak of the past has been done with some success in the area of
epidemiology. The structural properties of current and future societies may vary
greatly from those studied in the past, however. Air travel, hygiene, and working
conditions are three out of many factors that affect the spread of communicable
disease and that vary greatly in the historical perspective. The low probability
of catastrophic events such as a pandemic makes it very hard to validate any
simulation experiment against real-world events.

5. Assumptions and hypotheses should be stated and controlled by the policy
maker

Placing assumptions on top of assumptions will only create a gap between
the policy maker and the computational epidemiologist. As illustrated by the
example of selecting different initially infected individuals, the description of a
single assumption can be interpreted in multiple ways, and the implementation
of different interpretations can diverge significantly from the respective inten-
tion. The complexity of communicating all assumptions implied by the decisions
of the policy maker arises from the tremendous difficulty in identifying implicit
assumptions at every step of development. Because every addition to the model
carries the risk of modifying the interaction of existing parameters, ensuring
that all assumptions have been made by the policy maker becomes a formidable
challenge.

6. Triggering outbreaks in the simulator is nontrivial
To implement a simulator that always produces outbreaks is easy. Increasing

the infectiousness of a disease (as done, e.g., [17]) or the number of initially
infected, quickly yields a disease pattern affecting the entire giant component,
i.e., every individual connected to other individuals through the social network
or by geographical proximity (cf. [25]), forming the largest connected subgraph
of the population graph (cf. [26]). If such settings are inconsistent with empirical
data, or with assumptions and hypotheses declared, however, then the adequacy
of the model should be questioned. There is evidence for the fact that the initial
stages of a pandemic require a different kind of modeling than the later stages
[27]. It would therefore be näıve to think that increasing the number of initially
infected – in order to trigger outbreaks in a larger proportion of runs – would
not affect the model of the entire pandemic.

7. Hybrid models need constant refinement
A model in which the micro, meso, and macro properties are integrated has

the potential to mirror reality in a relatively accurate way. Under the proviso
that model adequacy yields better prediction, one could discard the simplest

11

models in favour of such hybrid models. The level of ambition, however, comes
at the price of the model never being finished, and model-dependent artifacts
becoming more difficult to identify. Since the world to be modeled is a moving
target, and since macro data can often be replaced by micro data as it becomes
available, there are always refinements to be made. The devil is in the details.

Acknowledgements

The authors would like to thank the current leader of the MicroSim project
at the Swedish Institute for Communicable Disease Control, Lisa Brouwers.
The authors also thank Olof Görnerup, Eric-Oluf Svee, the editor, and the
anonymous reviewers for their constructive comments.

References

[1] R. Ross, “An application of the theory of probabilities to the study of a
priori pathometry. Part I,” Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character,
vol. 92, pp. 204–230, Feb. 1916.

[2] W. O. Kermack and A. G. McKendrick, “A contribution to the mathe-
matical theory of epidemics,” Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character,
vol. 115, pp. 700–721, Aug. 1927.

[3] M. Boman and E. Holm, “Multi-agent systems, time geography, and mi-
crosimulations,” in Systems Approaches and their Application (M.-O. Ols-
son and G. Sjöstedt, eds.), ch. 4, pp. 95–118, Springer, 2004.

[4] S. Eubank, H. Guclu, V. Kumar, M. Marathe, A. Srinivasan, and
N. Toroczkai Zand Wang, “Modelling disease outbreaks in realistic urban
social networks,” Nature, vol. 429, pp. 180–184, 2004.

[5] N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley,
A. Meeyai, S. Iamsirithaworn, and D. S. Burke, “Strategies for contain-
ing an emerging influenza pandemic in Southeast Asia,” Nature, vol. 437,
pp. 209–214, Sept. 2005.

[6] I. M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul,
D. A. T. Cummings, and M. E. Halloran, “Containing pandemic influenza
at the source,” Science (New York, N.Y.), vol. 309, pp. 1083–1087, Aug.
2005.

[7] D. Balcan, B. Goncalves, H. Hu, J. J. Ramasco, V. Colizza, and A. Vespig-
nani, “Modeling the spatial spread of infectious diseases: The global epi-
demic and mobility computational model,” Journal of Computational Sci-
ence, vol. 1, no. 3, pp. 132 – 145, 2010.

[8] J. M. Epstein, “Agent-based computational models and generative social
science,” Complexity, vol. 4, no. 5, pp. 41–60, 1999.

12

[9] Swedish Institute for Communicable Disease Control, “Microsim Source
Code.” https://smisvn.smi.se/sim/, October 2010.

[10] L. Brouwers, M. Boman, M. Camitz, K. Mäkilä, and A. Tegnell, “Micro-
simulation of a smallpox outbreak using official register data,” Eurosurveil-
lance, vol. 15, no. 35, 2010.

[11] F. Coelho, O. Cruz, and C. Codeco, “Epigrass: A tool to study disease
spread in complex networks,” Source Code for Biology and Medicine, vol. 3,
no. 1, 2008.

[12] Statistics Sweden. http://www.scb.se, October 2010.

[13] K. Popper, “Philosophy of science: A personal report,” British philosophy
in mid-century, pp. 155–191, 1957.

[14] I. Lakatos, “Science and pseudoscience,” in Philosophical Papers vol. 1,
pp. 1–7, Cambridge University Press, 1977.

[15] R. Thom, Structural stability and morphogenesis: An outline of a general
theory of models. Addison-Wesley, 1993.

[16] R. Axtell, R. Axelrod, J. M. Epstein, and M. D. Cohen, “Aligning simu-
lation models: A case study and results,” Computational & Mathematical
Organization Theory, vol. 1, pp. 123–141, Feb. 1996.

[17] B. Roche, J.-F. Guegan, and F. Bousquet, “Multi-agent systems in epidemi-
ology: A first step for computational biology in the study of vector-borne
disease transmission,” BMC Bioinformatics, vol. 9, no. 1, 2008.

[18] H. Liljenström and U. Svedin, eds., Micro, meso, macro: Addressing com-
plex systems couplings. World Scientific, 2005.

[19] J. Espino, M. Wagner, C. Szczepaniak, F. Tsui, H. Su, R. Olszewski, Z. Liu,
W. Chapman, X. Zeng, L. Ma, Z. Lu, and J. Dara, “Removing a barrier
to computer-based outbreak and disease surveillance – The RODS Open
Source Project,” MMWR Morb Mortal Wkly Rep., vol. 53 Supplement,
pp. 32–39, September 2004.

[20] M. Crubezy, M. O’Connor, Z. Pincus, M. Musen, and D. Buckeridge,
“Ontology-centered syndromic surveillance for bioterrorism,” Intelligent
Systems, IEEE, vol. 20, no. 5, pp. 26–35, 2005.

[21] D. Abramson, B. Bethwaite, C. Enticott, S. Garic, T. Peachey,
A. Michailova, and S. Amirriazi, “Embedding optimization in computa-
tional science workflows,” Journal of Computational Science, vol. 1, no. 1,
pp. 41 – 47, 2010.

[22] B. Cakici, K. Hebing, G. M., P. Saretok, and A. Hulth, “CASE: A frame-
work for computer supported outbreak detection,” BMC Med Inform Decis
Mak, vol. 10, no. 14, 2010.

13

[23] M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A. T. Cum-
mings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann, D. Wa-
gener, R. Beckman, K. Kadau, C. Barrett, C. A. Macken, D. S. Burke,
and P. Cooley, “Modeling targeted layered containment of an influenza
pandemic in the United States,” PNAS, vol. 105, no. 12, pp. 4639–4644,
2008.

[24] D. L. Chao, M. E. Halloran, V. J. Obenchain, and I. M. Longini, Jr,
“FluTE, a publicly available stochastic influenza epidemic simulation
model,” PLoS Comput Biol, vol. 6, p. e1000656, Jan. 2010.

[25] M. Youssef, R. Kooij, and C. Scoglio, “Viral conductance: Quantifying the
robustness of networks with respect to spread of epidemics,” Journal of
Computational Science, vol. In Press, pp. –, 2011.

[26] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, pp. 167–256, 2003.

[27] E. Bonabeau, L. Toubiana, and A. Flahault, “The geographical spread of
influenza,” Proceedings of the Royal Society B, vol. 265, pp. 2421–2425,
1998.

14

