
On the Reification of Global Constraints

Nicolas Beldiceanu
TASC team (INRIA/CNRS), Mines de Nantes, FR-44307 Nantes, France

Nicolas.Beldiceanu@mines-nantes.fr

Mats Carlsson
SICS, P.O. Box 1263, SE-164 29 Kista, Sweden

Mats.Carlsson@sics.se

Pierre Flener and Justin Pearson
Uppsala University, Department of Information Technology, Box 337, SE-751 05 Sweden

Pierre.Flener@it.uu.se, Justin.Pearson@it.uu.se

SICS Technical Report T2012:02
ISSN: 1100-3154

Abstract: We introduce a simple idea for deriving reified global constraints in a systematic way. It is based on
the observation that most global constraints can be reformulated as a conjunction of pure functional dependency
constraints together with a constraint that can be easily reified. We first show how the core constraints of the
Global Constraint Catalogue can be reified and we then identify several reification categories that apply to at
least 82% of the constraints in the Global Constraint Catalogue.

Keywords: Global constraint; reification; functional dependency.

February 15, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 2

2 How to Derive Reified Global Constraints 2

3 Reification of Core Global Constraints 3

4 Categories Used in Reifying Constraints 5

5 Conclusion 8

A Classification of Global Constraints w.r.t. Reification 10

1

1 Introduction

Conventional wisdom has it that many global constraints cannot be easily reified, i.e., augmented with a
0-1 variable reflecting whether the constraint is satisfied (value 1) or not (value 0). Reified constraints are
useful for expressing propositional formulas over constraints (e.g., negation, disjunction [19], implication)
and for expressing that a certain number of constraints hold (e.g., the cardinality operator [18]). Using
known algorithms from automata theory, we have shown [5, page 271: see keyword “reified automaton
constraint”] how to reify a global constraint that can be expressed in terms of a finite automaton that
does not use any counters [4, 15]. However, many global constraints, such as alldifferent [16] and
cumulative [1], cannot be expressed by an automaton whose size is polynomial in the number of
variables of the constraint. The importance of the negation of global constraints has recently increased,
both in the context of a constraint seeker with negative samples [7] and for proving the equivalence of
two constraint models [2, 13].

Many early constraint programming systems, such as CHIP, GNU Prolog, Ilog Solver, and SICStus
Prolog, provide reification for arithmetic constraints. For CHIP [10, page 174] this was indirectly done
by a construct of the form if Cond then Pred1 else Pred2 where Cond is a binary constraint, while
Pred1 and Pred2 are program clauses. However, when global constraints started to get introduced (e.g.,
alldifferent and cumulative), reification was not available for global constraints. We believe that, in
the early 1990s, reification was not considered for global constraints since it was believed that reification
could only be obtained by modifying the filtering algorithms attached to each global constraint.

2 How to Derive Reified Global Constraints

A global constraint GC (A) can be defined by restrictions R(A) on its arguments A, e.g., restrictions
on the bounds of its arguments, and by a condition C(A) on its arguments, i.e., we have GC (A) ≡
R(A)∧C(A). For instance, for a constraint defined by a finite automaton (e.g., global contiguity [6,
page 1058]), a typical restriction is that the variables take values in a given alphabet (e.g., values 0 and 1
for global contiguity). See [6, pages 9–17] for other examples of such restrictions. Note that the
set of restrictions may be empty, that is R(A) may be always satisfied. We define the reified version of
GC (A) as R(A) ∧ (C(A)⇔ b), where b is a 0-1 variable reflecting whether constraint GC (A) holds or
not. The motivation for this definition is that the negation of a global constraint GC (A) should still
satisfy the restrictions R(A).

Let a core reifiable constraint be a constraint of the form of a Boolean combination of linear arithmetic
equalities and inequalities and 0-1 variables. We assume that such constraints are already reifiable,
without resorting to the methods being developed in this report. This is the case in all constraint
programming systems that we are aware of.

We call a pure functional dependency constraint (PFD) a constraint where no additional condi-
tion is imposed by the constraint other than determining some of its variables; it can therefore never
fail when the variables to be determined are unrestricted. For instance, nvalue [6, page 1466] is a
PFD constraint since it just determines the number of distinct values of a collection of variables, while
cycle(nc, 〈s1, . . . , sn〉) [6, page 828] is not since it does not hold for all combinations of 〈s1, . . . , sn〉 in
[1, n]: it determines the number nc of permutation cycles of the sequence 〈s1, . . . , sn〉; as a necessary
condition, 〈s1, . . . , sn〉 must be all distinct (note that alldifferent is not a PFD constraint). A PFD
constraint may determine more than a single variable, witness the sort [6, page 1772] constraint. The
global constraint catalogue [6] contains a significant number (23%) of PFD constraints.

We now provide the key observation that allows us to reify most global constraints in a straightforward
way. Given a global constraint GC (A) defined by R(A)∧C(A), it turns out that the condition C(A) can
often be reformulated as a conjunction CF 1(A1,V1)∧· · ·∧CF p(Ap,Vp)∧CN (Ap+1) of constraints, where
each constraint CF i(Ai,Vi) (with 1 ≤ i ≤ p) is a PFD constraint for which the determined variables Vi
do not occur in A, and where CN (Ap+1) is a constraint for which reification can be obtained in a known
way (i.e., we may use CN (Ap+1) ⇔ b). The arguments of the constraints CF i(Ai,Vi) (with 1 ≤ i ≤ p)
and CN (Ap+1) must obey the following conditions:

• Vi (with 1 ≤ i ≤ p) is a non-empty set of distinct unrestricted variables, i.e., it has an empty
intersection with A ∪ V1 ∪ · · · ∪ Vi−1 ∪ Vi+1 ∪ · · · ∪ Vp.

2

• Ai ⊆ A ∪ V1 ∪ · · · ∪ Vi−1 (with 1 ≤ i ≤ p), i.e., Ai gets fixed when A,V1, . . . ,Vi−1 are fixed.

• Ap+1 has a non-empty intersection with V1 ∪ · · · ∪ Vp and is included in A ∪ V1 ∪ · · · ∪ Vp.

• Vi has a non-empty intersection with Ai+1 ∪ · · · ∪ Ap+1, i.e., each introduced variable is used at
least once.

If all the variables of A that occur in one of the Ai (with 1 ≤ i ≤ p) are fixed, then all variables in
Vi (with 1 ≤ i ≤ p) are also fixed, by the PFD constraints. Note that, from the first two conditions,
the conjunction CF 1(A1,V1) ∧ · · · ∧ CF p(Ap,Vp) never fails when the variables of V1,V2, . . . ,Vp are
unrestricted, i.e., it determines the variables of V1, . . . ,Vp from the arguments A.

In this context, the reified version of GC (A) is expressed as follows:

R(A) ∧ CF 1(A1,V1) ∧ · · · ∧ CF p(Ap,Vp) ∧ (CN (Ap+1)⇔ b)

3 Reification of Core Global Constraints

We now illustrate our approach on the core [6, page 199] constraints of the Global Constraint Catalogue,
showing how to reify them by using a conjunction of PFD constraints and a constraint for which reification
is directly available. Without loss of generality, we ignore the argument restrictions on these constraints.
Note that the core constraints element, global cardinality, global cardinality with costs,
nvalue, and sort are PFD constraints and can thus be used in the reformulations of the other core
constraints.

alldifferent(〈v1, . . . , vn〉) [6, page 434] is reified as follows:

sort(〈v1, . . . , vn〉, 〈w1, . . . , wn〉) ∧ (w1 < w2 ∧ · · · ∧ wn−1 < wn)⇔ b

global cardinality(〈x1, . . . , xn〉, 〈v1 o1, . . . , vm om〉) [6, page 1034], where vj and oj (with j ∈ [1,m])
respectively denote the value for which we count the number of occurrences and the corresponding
number of occurrences among the xi variables (with i ∈ [1, n]), is reified as follows:

global cardinality(〈x1, . . . , xn〉, 〈v1 p1, . . . , vm pm〉) ∧
(o1 = p1 ∧ · · · ∧ om = pm)⇔ b

Being a PFD constraint, global cardinality is used in the PFD part of its reformulation, but with
other determined variables; the reified-constraint part of the reformulation compares the two sets of
determined variables.

global cardinality with costs(〈x1, . . . , xn〉, 〈v1 o1, . . . , vm om〉,matrix , cost) [6, page 1052], where
the first two arguments have the same meaning as in global cardinality, and matrix and cost re-
spectively denote a matrix providing the cost of assigning value vj (with j ∈ [1,m]) to variable xi (with
i ∈ [1, n]) and the sum of the costs of assigning x1, . . . , xn, is reified as follows:

global cardinality with costs(〈x1, . . . , xn〉, 〈v1 p1, . . . , vm pm〉,matrix , c) ∧
(o1 = p1 ∧ · · · ∧ om = pm ∧ cost = c)⇔ b

element(i , 〈t1, . . . , tn〉 , v) [6, page 958] is reified as follows:

element(i , 〈t1, . . . , tn〉 , w) ∧ (v = w)⇔ b

The reification involves only an equality constraint because element is a PFD constraint, where the
only condition is that value v is uniquely determined by the index i and the table 〈t1, . . . , tn〉.

cumulative(〈s1 d1 e1 r1, . . . , sn dn en rn〉, limit) [6, page 786], where si, di, ei, and ri (with i ∈ [1, n])
respectively denote the start, duration, end, and resource consumption of task i, can be reified by a
reformulation that uses PFD constraints for determining the maximum resource consumption:

• For each pair of tasks i, j (with i, j ∈ [1, n]) we create a variable rij , which is the resource
consumption of task j if task j overlaps the start of task i, and 0 otherwise:

– For j = i: (di = 0 ∧ rij = 0) ∨ (di > 0 ∧ rij = ri)

3

– For j 6= i: ((sj ≤ si ∧ ej > si ∧ si < ei) ∧ rij = rj) ∨ ((sj > si ∨ ej ≤ si ∨ si = ei) ∧ rij = 0)

• For each task i (with i ∈ [1, n]) we create a variable sr i, which is the sum of the resource
consumptions of the tasks that overlap the start of task i (task i overlaps its own start), i.e.,
sr i = ri1 + · · ·+ rin.

Finally, (s1 + d1 = e1 ∧ · · · ∧ sn + dn = en ∧ sr1 ≤ limit∧ · · · ∧ srn ≤ limit)⇔ b is the reified constraint.
Overall, this reification involves O(n2) constraints. Alternatively, cumulative can be reified by a
reformulation that uses O(n ·m) constraints, where m is the number of time-points of the overall make
span. Especially in the context of bin packing problems, n tends to be larger than m.

• Let t and t be the smallest and largest time-points that any task can cross, respectively.

• For each j in [t, t], let sr j be the total resource consumption at time-point j:∑
i∈[1,n]

(si ≤ j < ei) · ri = sr j ,∀j

Finally, (s1 + d1 = e1 ∧ · · · ∧ sn + dn = en ∧ sr t ≤ limit ∧ · · · ∧ sr t ≤ limit)⇔ b is the reified constraint.
cycle(nc, 〈s1, . . . , sn〉) [6, page 828] holds if S = 〈s1, . . . , sn〉 is a permutation of [1, n] with nc

permutation cycles. It is reified as follows:

• For expressing the PFD part of the reformulation of the implied alldifferent(S) constraint, we
state the sort(S, 〈r1, . . . , rn〉) PFD constraint.

• The key idea is to extract for each si (with i ∈ [1, n]) all the sj that belong to the same permutation
cycle. This is done by stating the following conjunction of n− 1 PFD constraints:

element(i, S, si,1) ∧ element(si,1, S, si,2) ∧ · · · ∧ element(si,n−2, S, si,n−1)

• Using the minimum(namei, 〈i, si,1, si,2, . . . , si,n−1〉) PFD constraint for all i ∈ [1, n], we determine
a unique representative namei for the permutation cycle containing si.

• Using the nvalue(nb, 〈name1, . . . ,namen〉) PFD constraint, we determine the number nb of per-
mutation cycles.

Finally, (r1 < r2 ∧ · · · ∧ rn−1 < rn ∧ nc = nb)⇔ b is the reified constraint, using the second part of the
reformulation of the implied alldifferent constraint and a condition on the numbers of permutation
cycles.

diffn(〈〈o11 s11 e11, . . . , o1m s1m e1m〉, . . . , 〈on1 sn1 en1, . . . , onm snm enm〉〉) [6, page 872], where oik,
sik, and eik (with i ∈ [1, n] and k ∈ [1,m]) respectively denote the origin, size, and end in dimension k
of object i, is reified as follows: ∧

1≤i≤n
1≤j≤n

i<j

∨
1≤k≤m

(sik = 0 ∨ sjk = 0 ∨ oik ≥ ejk ∨ ojk ≥ eik) ∧
∧

1≤i≤n
1≤k≤m

(oik + sik = eik)

⇔ b

The constraint holds if each pair of these objects has no overlap. Unlike in all the previous examples,
we do not need any PFD constraints here, i.e., p = 0.

disjunctive(〈o1 d1, . . . , on dn〉) [6, page 912], where oi and di (with i ∈ [1, n]) respectively de-
note the origin and duration of task i, is reified by a reformulation that uses the PFD constraints
sort permutation [6, page 1778] and element for expressing a reordering of the tasks:

sort permutation(〈o1, . . . , on〉, 〈p1, . . . , pn〉, 〈s1, . . . , sn〉) ∧∧
1≤i≤n

element(pi, 〈d1, . . . , dn〉, dur i)

Finally, (s1+dur1 ≤ s2∧· · ·∧sn−1+durn−1 ≤ sn)⇔ b is the reified constraint. Note that we assume that
all durations are strictly positive: this implies that all task origins are distinct, which consequently leads

4

leq gt

xi ≤ xi+1

xi > xi+1

xi ≤ xi+1

xi > xi+1 leq gt

xi ≤ xi+1

xi > xi+1

xi ≤ xi+1

xi > xi+1

Figure 1: Automaton for the increasing constraint, and its complement.

to 〈p1, . . . , pn〉 being functionally determined by 〈o1, . . . , on〉 in the sort permutation(〈o1, . . . , on〉,
〈p1, . . . , pn〉, 〈s1, . . . , sn〉) constraint. If some durations can be zero, then one should rather use the
reification introduced for the diffn constraint.

minimum weight alldifferent(〈v1, . . . , vn〉,matrix , cost) [6, page 1394], where matrix and cost
respectively denote a matrix providing the cost of assigning value j (with j ∈ [1, n]) to variable vi (with
i ∈ [1, n]) and the sum of the costs of assigning v1, . . . , vn, is reified as follows:

sort(〈v1, . . . , vn〉, 〈w1, . . . , wn〉) ∧
element(v1,matrix 1, c1) ∧ · · · ∧ element(vn,matrixn, cn) ∧

(w1 < w2 ∧ · · · ∧ wn−1 < wn ∧ c1 + · · ·+ cn = cost)⇔ b

where matrix i (with 1 ≤ i ≤ n) denotes line i of matrix , i.e., the costs associated with assigning variable
vi to the values 1, . . . , n.

nvalue(nval , 〈v1, . . . , vn〉) [6, page 1466] is reified as follows:

nvalue(w, 〈v1, . . . , vn〉) ∧ (nval = w)⇔ b

sort(〈v1, . . . , vn〉, 〈s1, . . . , sn〉) [6, page 1772] is reified as follows:

sort(〈v1, . . . , vn〉, 〈t1, . . . , tn〉) ∧ (s1 = t1 ∧ · · · ∧ sn = tn)⇔ b

Note that this constraint was only recently added to the set of core global constraints of the Global
Constraint Catalogue, for a reason that will become clear in the next section.

4 Categories Used in Reifying Constraints

We now introduce some reification categories that apply to a significant number of constraints of the
Global Constraint Catalogue. A constraint may be reifiable according to several categories. Appendix A
lists the categories, if any, of each constraint of the Global Constraint Catalogue [6].

In the context of the automaton meta-constraint [4], a constraint on a sequence X of variables can
sometimes be modelled with the help of a finite automaton, possibly with counters, that operates not
on X, but on a sequence of signature variables that functionally depend via signature constraints on a
sliding window of variables within X. For example, consider the increasing([x1, . . . , xn]) constraint,
which enforces x1 ≤ x2 ≤ · · · ≤ xn. With the signature constraints xi ≤ xi+1 ⇔ si = 1 and xi > xi+1 ⇔
si = 0, for all 0 ≤ i < n, we get a sequence of n − 1 signature variables si that can be fed to a finite
automaton that recognises the language 1∗. Rather than labelling the transitions of that automaton with
values of the domain of the signature variables (the set {0, 1} in our example), we here label them with
the corresponding conditions of the signature constraints, as on the left of Figure 1. If each signature
variable depends on a sliding window of size j within X (in our example, we have j = 2), then we say
that the signature constraints are j-ary.

Category Auto(0, 0): Automata without counters and without signature constraints. A
constraint that can be modelled by an automaton without counters and without signature constraints
(that is via the regular constraint [15]) can be reified with the help of another automaton in the way
we already described in [5, page 271], so that there are no PFD constraints in the reformulation (p = 0).
For example, Figure 2 shows how to reify the global contiguity [6, page 1058] constraint. There are
19 such constraints in the catalogue.

5

 0

 1

 0

 1

 0

g

f

e

d

c

b

a

s

g

f

e

d

c

b

a

 0

 1

 0

(A) (B) (C)

0

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

Figure 2: (A) Automaton for recognising solutions to the global contiguity constraint. (B) Comple-
ment automaton, constructed by a standard technique of automata theory, for recognising non-solutions
to the global contiguity constraint. (C) Automaton for the reified global contiguity constraint,
built from the two previous automata upon assuming that the reifying 0-1 variable comes before the
sequence of constrained variables.

Category Auto(0, j > 0): Automata without counters but with signature constraints of arity
j > 0. A constraint that can be modelled by an automaton without counters but with signature
constraints of arity j > 0 can be reified as follows: the signature constraints correspond to the PFD
constraints, while the automaton itself can be reified as in category Auto(0, 0). For example, consider
the automaton on the left of Figure 1 for the increasing([x1, x2, . . . , xn]) constraint discussed above.
The reification of increasing consists of the n − 1 signature constraints as the p PFD constraints,
together with a constraint for the reified automaton, which is constructed, as in Figure 2(C), from the
automaton and its complement, which is on the right of Figure 1. There are 41 such constraints in the
catalogue. The 60 constraints of category Auto(0, j) with j > 0 or j = 0 are annotated in the catalogue
with the keyword “reified automaton constraint”.

Category Auto(i > 0, j): Automata with i > 0 counters. A constraint that can be modelled by
an automaton with i > 0 counters c1, . . . , ci with expected values v1, . . . , vi and either without signature
constraints (j = 0) or with signature constraints σ (of arity j > 0) can be reified as follows:

σ ∧ automaton(. . .) ∧ (w1 = v1 ∧ · · · ∧ wi = vi ∧ wi+1 = 1)⇔ b

where:

• ci+1 is an auxiliary counter, with initial value 1 if the start state is an accept state, and 0 otherwise,

• w1, . . . , wi+1 are the counter values in the state where the automaton stops,

• any arc leading to an accept state is amended with the assignment ci+1 ← 1,

• any arc leading to a non-accept state is amended with the assignment ci+1 ← 0,

• finally, all states are turned into accept states.

Figure 3 shows an example of this transformation. Note that the two previous categories could also be
handled like this one. There are 30 such constraints in the catalogue. Except for change continuity,
group, and group skip isolated item, which fall into the Conj category discussed below, they are
the constraints annotated in the catalogue with the keyword “automaton with counters”.

6

N←0

1

2, 3

1

2

3

1, 2

3
N←N+1

1, 2, 3

N←0
T←0

1
T←1

2,3
T←0

1
T←1

2
T←1

3
T←0

1,2
T←1

3
N←N+1

T←11,2,3
T←0

Figure 3: Left: Automaton (without signature constraints) for a constraint over {1, 2, 3} requiring that
the first 2 be preceded by at least one 1, that the first 3 be preceded by at least one 2, and that there
be at least one occurrence of 1; the counter N counts the number of occurrences of 3. Right: Its version
used for reification, with an auxiliary counter T , reflecting the truth value.

Category RIC: Built-in reifiable integer constraints. A built-in reifiable integer constraint triv-
ially satisfies our general reification pattern with p = 0 PFD constraints. Built-in reifiable constraint
correspond to simple arithmetic constraints (e.g., x mod y = 0) or comparison constraints (e.g., x ≤ y)
involving two integer variables. There are 14 such constraints in the catalogue.

Category RSC: Built-in reifiable set constraints. A built-in reifiable set constraint trivially sat-
isfies our general reification pattern with p = 0 PFD constraints. There are 2 such constraints in the
catalogue: eq set and in set.

Category Logic: Logical formula involving built-in reifiable constraints. A constraint that
can be reformulated as a logical formula involving only built-in reifiable constraints (e.g., all equal,
cumulative, diffn). There are 33 such constraints in the catalogue.

Category QLogic: Quantified logical constraints. A category consisting of the geometrical con-
straints of the catalogue, e.g., disjoint sboxes. A dedicated sublanguage for encoding such formulas in
the context of the geost constraint was suggested in [9]. The main purpose of the geost constraint is to
prevent a collection of geometrical objects from overlapping in multiple dimensions. The non-overlapping
condition has a straightforward formulation as a core reifiable constraint. The sublanguage can be seen
as syntactic sugar for core reifiable constraints expressing extra conditions, in fact the sublanguage is
implemented by unfolding into such constraints considered by geost globally together with the non-
overlapping condition. There are 17 such constraints in the catalogue, annotated with the keyword
“logic”.

Category Sort: Constraints with sort in a reformulation. Some constraints involving one or
more collections of variables become much simpler to reformulate when these collections are sorted. The
sort constraint can then be used as one of the PFD constraints of the reformulation, and the reified
condition involves the sorted variables. Among the core constraints, the alldifferent constraint fits
this special case, as seen in Section 3. There are 33 such constraints in the catalogue, annotated with
the keyword “sort-based reformulation”.

Category Conj: Conjunction of reifiable constraints. Constraints that can be reformulated as
a conjunction (usually already given in the catalogue) of already reifiable or now reifiable (due to this
report) constraints can now be reified. For example, consider the lex chain lesseq([X1, . . . , Xn]) con-
straint, which requires the sequence of sequences Xi to be lexicographically non-decreasing. It can be re-
formulated as

∧
i∈[1,n−1] lex lesseq(Xi, Xi+1), hence is reifiable as

∧
i∈[1,n−1] lex lesseq(Xi, Xi+1, bi)∧

(b1 = 1 ∧ · · · ∧ bn−1 = 1) ⇔ b, since lex lesseq is now reifiable (as in category Auto(0, 2)). There are
21 such constraints in the catalogue.

7

Category PFD: Pure functional dependency constraints. Following the pattern used in Section 3
for the element, global cardinality[with costs], nvalue, and sort core constraints, one can
reify any PFD constraint. A constraint c(A, v1, . . . , vn) where the argumentsA functionally determine the
variables v1, . . . , vn with no other extra condition is reified into b by c(A, w1, . . . , wn)∧(v1 = w1∧· · ·∧vn =
wn) ⇔ b. There are 89 such constraints in the catalogue, annotated with the keyword “pure functional
dependency”.

Category GenPat: None of the above. A constraint that does not belong to any of the already
introduced categories, but that follows the general pattern described in Section 2. There are 45 such
constraints in the catalogue.

5 Conclusion

Based on the idea that most constraints can naturally be defined by a determine and test scheme,
where the determine part is associated to pure functional dependency (PFD) constraints that determine
additional variables, and the test part to a core reifiable constraint on these variables, we have shown
that most global constraints can be reified. Surprisingly, this simple idea allows us to reify at least 313 of
the 381 (i.e., 82%) constraints of the Global Constraint Catalogue. Most of the constraints not covered
are graph constraints involving set variables.

Related Work. Some of our insights might be folklore. For instance, Tip 5.3 of [17, page 78] outlines
the idea of our PFD category and gives an example, but the notion of PFD and our more general pattern
of Section 2 are not identified. Similarly, Example 14 of [13, page 58] also provides an example of
negation for a PFD constraint without identifying the pattern. The reformulations of constraints such
as alldifferent or global cardinality in [8] can be unfolded to make explicit the PFD and core
reified constraints. Methods for modifying an automaton for counting string properties were described
in [14, page 7] and in [3]. As observed in [11, Section 4], given a global constraint c and its propagator,
it is straightforward to construct a propagator for its half-reified version b⇒ c, but not so for the only-if
version c⇒ b. Other work on generic reification does not exploit global constraints, or does not achieve
domain consistency, or requires a propagator for the negated constraint: see the discussion in [12]. In
the context of software verification, the equivalence of constraint models must sometimes be proven and
one needs to negate global constraints [13]. Similarly, the work of [2] is restricted to global constraints
that can be reformulated as conjunctions of standard reifiable binary constraints.

Future Work. The obtained reifications can be exploited in many ways. For instance, one can use
them for the reformulation of some global constraints. While this may not be very efficient from a memory
point of view for a reformulation whose size is quadratic in the number of variables of the constraint,
the reformulations within the categories Auto(0, 0), Auto(0, j > 0), Auto(i > 0, j), Sort, Conj, and PFD
are quite compact. From a filtering point of view, note that the reformulation of constraints of category
PFD is as efficient as the original filtering algorithm of the constraint. Also, one can use these reifications
as a simple way for computing the violation cost of constraints. This should be straightforward since
the violation cost would be computed only from the part of the reification corresponding to the easily
reifiable constraint, and not from the pure-functional-dependency part. It remains to investigate whether
these reifications could also be used for generating explanations or for lazy clause generation. Finally, an
open question is whether the approach proposed by this report allows us to reify any global constraint.
Most likely, in order to address this question formally, one should first provide a formal definition of
global constraint that is not linked to any operational aspect.

Acknowledgements

The third and fourth authors are supported by grant 2011-6133 of Vetenskapsr̊adet (the Swedish Research
Council).

8

References

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and placement
problems. Journal of Mathematical Computer Modelling, 17(7):57–73, 1993.

[2] C. E. Alvarez Divo. Automated reasoning on feature models via constraint programming. Master’s
thesis, Department of Information Technology, Uppsala University, Sweden, 2011. Available as
Report IT 11 041 at http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156437.

[3] N. Beldiceanu, M. Carlsson, P. Flener, and J. Pearson. On matrices, automata and double counting.
In A. Lodi, M. Milano, and P. Toth, editors, Proceedings of CPAIOR’10, volume 6140 of LNCS,
pages 10–24. Springer-Verlag, 2010.

[4] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from constraint checkers. In
M. G. Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages 107–122. Springer-Verlag,
2004.

[5] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog, 2nd Edition. Tech-
nical Report T2010:07, Swedish Institute of Computer Science, 2010. Available at http://soda.

swedish-ict.se/view/sicsreport/.

[6] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog, 2nd Edition (revision a).
Technical Report T2012:03, Swedish Institute of Computer Science, February 2012. Available at
http://soda.swedish-ict.se/view/sicsreport/.

[7] N. Beldiceanu and H. Simonis. A constraint seeker: Finding and ranking global constraints from
examples. In J. H.-M. Lee, editor, Proceedings of CP’11, volume 6876 of LNCS. Springer-Verlag,
2011.

[8] C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. Decompositions of all
different, global cardinality and related constraints. In C. Boutilier, editor, Proceedings of IJCAI’09,
pages 419–424, 2009.

[9] M. Carlsson, N. Beldiceanu, and J. Martin. A geometric constraint over k-dimensional objects and
shapes subject to business rules. In P. J. Stuckey, editor, Proceedings of CP’08, volume 5202 of
LNCS, pages 220–234. Springer-Verlag, 2008.

[10] COSYTEC. CHIP Reference Manual, release 5.1 edition, 1997.

[11] T. Feydy, Z. Somogyi, and P. J. Stuckey. Half reification and flattening. In J. H.-M. Lee, editor,
Proceedings of CP’11, volume 6876 of LNCS, pages 286–301. Springer-Verlag, 2011.

[12] C. Jefferson, N. C. A. Moore, P. Nightingale, and K. E. Petrie. Implementing logical connectives in
constraint programming. Artificial Intelligence, 174:1407–1429, November 2010.

[13] N. Lazaar. Méthodologie et outil de test, de localisation de fautes et de correction automatique des
programmes à contraintes. PhD thesis, Rennes 1 University, France, 2011. In French.

[14] J. Menana, S. Demassey, and N. Jussien. Modélisation et optimisation des préférences en planifi-
cation de personnel. Technical Report Research Report 11-01-INFO, École des Mines de Nantes,
2010. In French.

[15] G. Pesant. A regular language membership constraint for finite sequences of variables. In M. G.
Wallace, editor, Proceedings of CP’04, volume 3258 of LNCS, pages 482–495. Springer-Verlag, 2004.

[16] J.-C. Régin. A filtering algorithm for constraints of difference in CSP. In Proceedings of AAAI’94,
pages 362–367, 1994.

[17] C. Schulte, G. Tack, and M. Z. Lagerkvist. Modeling and Programming with Gecode (version 3.7.1),
October 2011. Available from http://www.gecode.org/.

9

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-156437
http://soda.swedish-ict.se/view/sicsreport/
http://soda.swedish-ict.se/view/sicsreport/
http://soda.swedish-ict.se/view/sicsreport/
http://www.gecode.org/

[18] P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical connective in constraint
logic programming. In Proceedings of ICLP’91. MIT Press, 1991.

[19] J. Würtz and T. Müller. Constructive disjunction revisited. In Proceedings of KI’96, volume 1137
of LNAI, pages 377–386. Springer-Verlag, 1996.

A Classification of Global Constraints w.r.t. Reification

The following table gives for each constraint of the Global Constraint Catalogue [5] the categories, if any,
of Section 4 that the constraint belongs to, as well as an optional comment explaining for instance how
to reformulate the reified constraint (unless otherwise stated, without considering the restrictions on its
arguments). When needed in the third column, the first column gives the template of the constraints,
i.e., its name and the structure of its arguments.

Note that, whenever possible, the reformulations given in the table have been done with the intention
to be as compact as possible in terms of the size of the reformulation. Whenever there was a choice
between a sort-based reformulation and a global cardinality-based reformulation, we chose the
sort one, as it has the advantage not to make explicit the set of potential values that may be assigned
to the variables, since this set may be very large.

An argument is either a scalar (an integer or domain variable) or a collection of tuples of attribute-
value pairs. A collection of n tuples with attributes say a and b is displayed as 〈ai, bi〉ni=1 or as 〈a,b〉n.
A collection displayed without superscript stands for a singleton collection, for example as given in

the first argument of elem. Nested collections are displayed expanded, e.g.,
〈
〈oi,j , si,j , ei,j〉mj=1

〉n

i=1
or

〈〈o, s, e〉m〉n stands for a collection of n tuples, each consisting of a single attribute whose value is a
collection of m tuples with attributes o, s, and e. The same collection notation is used in the reification
formulas.

Global Constraint Categories Comment
abs value(y, x) PFD, Logic (y = |x|)⇔ b

alldiff at least k pos(k, 〈〈v〉m〉n) Logic
∧n−1

i=1

∧n
j=i+1

∑m
`=1(vi,` 6= vj,`) ≥ k

all equal(〈v〉n) Logic (v1 = v2 ∧ · · · ∧ vn−1 = vn)⇔ b

all incomparable(〈〈v〉m〉n) Conj conjunction of incomparable constraints on
pairs of vectors

all min dist(md , 〈v〉n) Sort sort(〈v〉n , 〈s〉n)∧(s2−s1 ≥ md∧· · ·∧sn−sn−1 ≥
md)⇔ b

alldifferent Sort see Section 3
alldifferent between sets ? set constraint
alldifferent consecutive values(〈v〉n) Sort sort(〈v〉n , 〈s〉n)∧(s2−s1 = 1∧· · ·∧sn−sn−1 =

1)⇔ b
alldifferent cst(〈v, c〉n) Sort (u1 = v1 + c1 ∧ · · · ∧ un = vn + cn) ∧

sort(〈u〉n , 〈s〉n)∧(s1 < s2∧· · ·∧sn−1 < sn)⇔ b
alldifferent except 0(〈v〉n) Sort sort(〈v〉n , 〈s〉n) ∧ ((s1 = 0 ∨ s1 < s2) ∧ · · · ∧

(sn−1 = 0 ∨ sn−1 < sn))⇔ b
alldifferent interval(〈v〉n , si) Sort (v1 = si · q1 + r1 ∧ · · · ∧ vn = si · qn + rn) ∧

sort(〈q〉n , 〈s〉n)∧(s1 < s2∧· · ·∧sn−1 < sn)⇔ b
(with 0 ≤ ri < si)

alldifferent modulo(〈v〉n ,mod) Sort (v1 = mod · p1 + r1 ∧ · · · ∧ vn = mod · pn + rn) ∧
sort(〈r〉n , 〈s〉n)∧(s1 < s2∧· · ·∧sn−1 < sn)⇔ b
(with 0 ≤ ri < mod)

alldiff on intersection(〈u〉m , 〈v〉n) GenPat Let 〈w〉p be the values that can be assigned to the
variables of 〈u〉m and 〈v〉n: gcc(〈u〉m , 〈w, c〉p)∧
gcc(〈v〉n , 〈w,d〉p)∧(

∧p
i=1(ci = 1∧di = 1)∨ci =

0 ∨ di = 0)⇔ b

alldifferent partition(〈v〉n , 〈〈val〉mp〉p) Sort
∧n

i=1

∧p
j=1(vi ∈ 〈valj〉mj ⇔ ui = j) ∧

sort(〈u〉n , 〈s〉n)∧(s1 < s2∧· · ·∧sn−1 < sn)⇔ b

10

Global Constraint Categories Comment
alldifferent same value(ns, 〈u〉n , 〈v〉n) Sort sort(〈u〉n , 〈s〉n) ∧ s =

∑n
i=1(ui = vi) ∧ (s1 <

s2 ∧ · · · ∧ sn−1 < sn ∧ ns = s)⇔ b

allperm(〈〈v〉m〉n) Sort sort(〈v2〉m , 〈s2〉m)∧· · ·∧ sort(〈vn〉m , 〈sn〉m)∧
lex lesseq(〈v1〉m , 〈s2〉m) ⇔ b2 ∧ · · · ∧
lex lesseq(〈v1〉m , 〈sn〉m) ⇔ bn ∧ (b2 ∧
· · · ∧ bn)⇔ b

among PFD,
Auto(1,1)

among diff 0 PFD,
Auto(1,1)

among interval PFD,
Auto(1,1)

among low up Auto(1,1)
among modulo PFD,

Auto(1,1)

among seq(`, u, s, 〈v〉n , 〈val〉m) Conj among low up(`, u, 〈vj〉i+s−1
j=i , 〈val〉m), for all

i ∈ [1, n− s+ 1]
among var PFD
and PFD,

Auto(0,0)
arith Auto(0,1)
arith or Auto(0,2)
arith sliding Auto(2,0)
assign and counts(〈col〉m , 〈b, c〉n , rel , `) Logic Let 〈w〉p be the values that can be assigned to

the variables of 〈b〉n:
∧

i∈〈w〉p(ni =
∑n

j=1(bj =

i ∧ cj ∈ 〈col〉m)) ∧ (
∧

i∈〈w〉p(ni rel `))⇔ b

assign and nvalues(〈bin,val〉n , rel , `) GenPat Let 〈b〉p be the values that can be assigned
to the variables of 〈bin〉n, and let ε be an
integer not in 〈b〉p:

∧
j∈〈b〉p

∧n
i=1(bini =

j ∧ vj,i = val i) ∨ (bini 6= j ∧ vj,i =
ε) ∧

∧
j∈〈b〉p nvalue(nv j , 〈ε, vj,1, . . . , vj,n〉) ∧

(
∧

j∈〈b〉p((nv j − 1) rel `))⇔ b

atleast Auto(1,1)
atleast nvalue(nval , 〈v〉n) GenPat nvalue(nv , 〈v〉n) ∧ (nv ≥ nval)⇔ b

atleast nvector(nvec, 〈〈v〉m〉n) GenPat nvector(nv , 〈〈v〉m〉n) ∧ (nv ≥ nvec)⇔ b
atmost Auto(1,1)
atmost1 ? set constraint
atmost nvalue(nval , 〈v〉n) GenPat nvalue(nv , 〈v〉n) ∧ (nv ≤ nval)⇔ b

atmost nvector(nvec, 〈〈v〉m〉n) GenPat nvector(nv , 〈〈v〉m〉n) ∧ (nv ≤ nvec)⇔ b
balance PFD
balance cycle ?
balance interval PFD
balance modulo PFD
balance partition PFD
balance path ?
balance tree ?
between min max Auto(0,2)
bin packing Logic similar to cumulative
bin packing capa Logic similar to bin packing but introduces fixed

items wrt. maximum capacity

11

Global Constraint Categories Comment
binary tree(nt , 〈k, t〉n) GenPat

∧n
i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

gcc no loop(`, 〈t〉n , 〈i, oi〉ni=1) ∧
((
∧n

i=1 fi,n−1 = fi,n) ∧ ` = nt ∧
∧n

i=1 oi ≤ 2)⇔ b
or without using gcc no loop,∧n

i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

(
∧n

i=1 fi,n−1 = fi,n ∧ nt =
∑n

i=1(ti =
i) ∧

∧n
i=1

∑
j∈[1,n],j 6=i(tj = i) ≤ 2) ⇔ b (part of

the restrictions checked in both reformulations)
bipartite ? set constraint
calendar Logic disjunction of conjunctions of arithmetic con-

straints
cardinality atleast PFD
cardinality atmost PFD
cardinality atmost partition PFD
change PFD,

Auto(1,2)
change continuity Conj conjunction of constraints of the form Auto(1,2),

Auto(1,2), Auto(2,2), Auto(2,2), Auto(2,2),
Auto(2,2), Auto(1,2), and Auto(1,2)

change pair PFD,
Auto(1,4)

change partition PFD

change vectors(nchange, 〈〈v〉m〉n , ctrs) PFD,
Auto(1,m)

circuit(〈k, s〉n) GenPat when n > 1: elem(〈1, t1〉 , 〈k, s〉n) ∧∧n−2
i=1 elem(〈ti, ti+1〉 , 〈k, s〉n) ∧

sort(〈t〉n−1 , 〈r〉n−1) ∧ (1 < r1 ∧ r1 <
r2 ∧ · · · ∧ rn−2 < rn−1 ∧ rn−1 = n) ⇔ b
(part of the restrictions checked)

circuit cluster ?
circular change PFD,

Auto(1,2)
clause and Auto(0,0)
clause or Auto(0,0)
clique ? set constraint
colored matrix PFD
coloured cumulative GenPat similar to cumulative but uses nvalue instead

of sum ctr
coloured cumulatives GenPat similar to cumulative but uses nvalue instead

of sum ctr
common PFD
common interval PFD
common modulo PFD
common partition PFD
compare and count(〈u〉n , 〈v〉n , cp, ct , `) Logic (u1 cp v1 ⇔ b1) ∧ · · · ∧ (un cp vn ⇔ bn) ∧ (b1 +

· · ·+ bn = s) ∧ (s ct `)⇔ b
cond lex cost Auto(0,0)
cond lex greater Conj conjunction of constraints of the form Auto(0,0),

Auto(0,0), and >
cond lex greatereq Conj conjunction of constraints of the form Auto(0,0),

Auto(0,0), and ≥

12

Global Constraint Categories Comment
cond lex less Conj conjunction of constraints of the form Auto(0,0),

Auto(0,0), and <
cond lex lesseq Conj conjunction of constraints of the form Auto(0,0),

Auto(0,0), and ≤
connect points ?
connected ? set constraint
consecutive groups of ones Auto(0,0)
consecutive values(〈v〉n) Sort sort(〈v〉n , 〈s〉n)∧(s2−s1 ≤ 1∧· · ·∧sn−1−sn ≤

1)⇔ b
contains sboxes QLogic
correspondence(〈f ,p, t〉n) GenPat (

∧n
i=1 element(pi, 〈t〉n , vi)) ∧ (f1 = v1 ∧ · · · ∧

fn = vn)⇔ b
count Auto(1,1)
counts Auto(1,1)
coveredby sboxes QLogic
covers sboxes QLogic
crossing PFD
cumulative Logic see Section 3
cumulative convex ?
cumulative product GenPat similar to cumulative, but uses product ctr

instead of sum ctr
cumulative two d ?
cumulative with level of priority ?
cumulatives Logic similar to cumulative
cutset ?
cycle GenPat see Section 3
cycle card on path ?
cycle or accessibility ?
cycle resource ?
cyclic change PFD,

Auto(1,2)
cyclic change joker PFD,

Auto(1,2)
dag ? set constraint
decreasing Auto(0,2)
deepest valley Auto(1,2)
derangement(〈i, s〉n) Sort sort(〈s〉n , 〈t〉n)∧((s1 6= i1∧· · ·∧sn 6= in)∧(t1 <

t2 ∧ · · · ∧ tn−1 < tn))⇔ b
differ from at least k pos Auto(1,2)
diffn Logic see Section 3

diffn column(〈〈o, s, e〉m〉n , d) Logic (
∧n−1

i=1

∧n
j=i+1

∨m
k=1(si,k = 0 ∨ sj,k = 0 ∨ oi,k ≥

ej,k ∨ oj,k ≥ ei,k) ∧
∧n−1

i=1

∧n
j=i+1((ei,d ≤ oj,d ∨

ej,d ≤ oi,d) ∨ (oi,d = oj,d ∧ ei,d = ej,d)) ∧∧n
i=1

∧m
k=1(oi,k + si,k = ei,k))⇔ b

diffn include(〈〈o, s, e〉m〉n , d)) Logic (
∧n−1

i=1

∧n
j=i+1

∨m
k=1(si,k = 0 ∨ sj,k = 0 ∨ oi,k ≥

ej,k ∨ oj,k ≥ ei,k) ∧
∧n−1

i=1

∧n
j=i+1((ei,d ≤ oj,d ∨

ej,d ≤ oi,d) ∨ (oi,d ≤ oj,d ∧ ej,d ≤ ei,d) ∨ (oj,d ≤
oi,d ∧ ei,d ≤ ej,d)) ∧

∧n
i=1

∧m
k=1(oi,k + si,k =

ei,k))⇔ b
discrepancy PFD
disj ? set constraint

13

Global Constraint Categories Comment
disjoint(〈u〉m , 〈v〉n) GenPat Let 〈w〉p be the values that can be as-

signed to the variables of 〈u〉m and 〈v〉n:
global cardinality(〈u〉m , 〈w, c〉p) ∧
global cardinality(〈v〉n , 〈w,d〉p) ∧ ((c1 =
0 ∨ d1 = 0) ∧ · · · ∧ (cp = 0 ∨ dp = 0))⇔ b

disjoint sboxes QLogic
disjoint tasks(〈o,d, e〉m , 〈o′,d′, e′〉n) Logic ((

∧m
i=1

∧n
j=1(ei ≤ o′j)∨(e′j ≤ oi))∧(

∧m
i=1 oi+di =

ei) ∧ (
∧n

i=1 o
′
i + d′i = e′i))⇔ b

disjunctive Sort see Section 3

disjunctive or same end(〈o,d〉n) Logic (
∧n−1

i=1

∧n
j=i+1(di = 0 ∨ dj = 0 ∨ oi + di ≤ oj ∨

oj + dj ≤ oi ∨ oi + di = oj + dj))⇔ b

disjunctive or same start(〈o,d〉n) Logic (
∧n−1

i=1

∧n
j=i+1(di = 0 ∨ dj = 0 ∨ oi + di ≤ oj ∨

oj + dj ≤ oi ∨ oi = oj))⇔ b
distance PFD
distance between PFD
distance change PFD,

Auto(1,4)
divisible(q, d) RIC q = d · k ⇔ b
divisible or(c, d) Logic (c mod d = 0 ∨ d mod c = 0)⇔ b
dom reachability ? set constraint
domain(〈v〉n , `, u) Logic ((v1 ≥ ` ∧ v1 ≤ u) ∧ · · · ∧ (vn ≥ ` ∧ vn ≤ u))⇔ b
domain constraint Auto(0,2)
elem(〈i, u〉 , 〈k,v〉n) PFD,

Auto(0,3)
elem from to Auto(0,4)
element PFD,

Auto(0,3)
see Section 3

element greatereq Auto(0,2)
element lesseq Auto(0,2)
element matrix Auto(0,3)
element product(y, 〈t〉n , x, z) PFD also GenPat: element(y, 〈t〉n , v)∧u = v ·x∧z =

u⇔ b
element sparse Auto(0,2)
elementn(ind , 〈t〉n , 〈w〉m) Auto(0,0) also GenPat: element(ind , 〈t〉n , v1) ∧ · · · ∧

element(ind + m − 1, 〈t〉n , vm) ∧ (w1 = v1 ∧
· · · ∧ wm = vm)⇔ b

elements PFD
elements alldifferent(〈i,v〉n , 〈ti, tv〉n) GenPat

∧n
k=1 elem(〈ik, vk〉 , 〈ti, tv〉n)∧sort(〈i〉n , 〈s〉n)∧

(s1 < s2 ∧ · · · ∧ sn−1 < sn)⇔ b
elements sparse(〈k,v〉n , 〈ind,val〉m , d) Logic (

∧n
i=1(

∨m
j=1(ki = ind j ∧ vi = val j)) ∨ (ki /∈

〈ind〉m ∧ vi = d))⇔ b
eq PFD, RIC
eq cst PFD, RIC
eq set RSC set constraint
equal sboxes QLogic
equivalent PFD,

Auto(0,0)
exactly PFD,

Auto(1,1)
gcd PFD
geost QLogic
geost time QLogic
geq RIC

14

Global Constraint Categories Comment
geq cst RIC
global cardinality (gcc) PFD see Section 3
gcc low up(〈x〉n , 〈v, l,u〉m) GenPat gcc(〈x〉n , 〈vi, oi〉mi=1)∧ (`1 ≤ o1 ∧ o1 ≤ u1 ∧ · · · ∧

`m ≤ om ∧ om ≤ um)⇔ b
gcc low up no loop(lc, uc, 〈x〉n , 〈v, l,u〉m) GenPat gcc no loop(c, 〈x〉n , 〈vi, oi〉mi=1) ∧ (lc ≤ c ∧ c ≤

uc ∧ `1 ≤ o1 ∧ o1 ≤ u1 ∧ · · · ∧ `m ≤ om ∧ om ≤
um)⇔ b

gcc no loop PFD
global cardinality with costs PFD see Section 3
global contiguity Auto(0,0) see Section 4

golomb(〈v〉n) GenPat (
∧n

i=2

∧i−1
j=1 d (i−1)·(i−2)

2 +j
= vi − vj) ∧

sort(〈d〉m , 〈s〉m) ∧ (v1 < v2 ∧ · · · ∧ vn−1 <
vn∧0 < s1∧s1 < s2∧· · ·∧sm−1 < sm)⇔ b, where

m = (n)·(n−1)
2 and where v1 < v2∧· · ·∧vn−1 < vn

is redundant
graph crossing PFD
graph isomorphism ? set constraint
group Conj conjunction of constraints of the form Auto(1,0),

Auto(2,0), Auto(2,0), Auto(2,0), Auto(2,0), and
Auto(1,0)

group skip isolated item Conj conjunction of constraints of the form Auto(1,0),
Auto(2,0), Auto(2,0), and Auto(1,0)

gt RIC
highest peak Auto(1,2)
imply PFD,

Auto(0,0)
in Auto(0,1)
in interval Auto(0,1) also reified by in interval reified
in interval reified reifies in interval
in intervals(v, 〈l,u〉n) Logic ((v ≥ `1 ∧ v ≤ u1) ∨ · · · ∨ (v ≥ `n ∧ v ≤ un))⇔ b

in relation(〈v〉m , 〈〈t〉m〉n) Logic (∨ni=1(v1 = ti,1 ∧ · · · ∧ vm = ti,m))⇔ b
in same partition Auto(0,2)
in set RSC set constraint
incomparable(〈u〉n , 〈v〉n) Sort sort(〈u〉n , 〈r〉n)∧ sort(〈v〉n , 〈s〉n)∧ ((r1 > s1∨

· · · ∨ rn > sn) ∧ (s1 > r1 ∨ · · · ∨ sn > rn))⇔ b
increasing Auto(0,2) see Section 4
increasing global cardinality Auto(0,0)
increasing nvalue Auto(0,0)
increasing nvalue chain ?
increasing sum(〈v〉n , s) Conj conjunction of one single constraint,

sum ctr(〈v〉n ,=, s) ⇔ b (note that the fact
that 〈v〉n is increasing is part of the restrictions)

indexed sum(〈k,w〉m , 〈ind, sum〉n) GenPat
∧n

i=1(si =
∑m

j=1(ind i = kj) ·wj) ∧ (
∧n

i=1 sumi =

si ∧
∧m

j=1 kj ∈ 〈ind〉n)⇔ b

inflexion Auto(1,2)
inside sboxes QLogic
int value precede Auto(0,0)
int value precede chain Auto(0,1)

interval and count(a, 〈c〉m , 〈o, col〉n , s) Logic
∧`

k=1

∧n
t=1 bk,t ⇔ ((k − 1) · s ≤ ot ∧ ot < k · s ∧

col t ∈ 〈c〉m) ∧ (
∧`

k=1

∑n
t=1 bk,t ≤ a) ⇔ b, with

` =
⌊
max(o)+s

s

⌋

15

Global Constraint Categories Comment
interval and sum(s, 〈o,h〉n , `) Logic

∧m
k=1

∧n
t=1 bk,t ⇔ ((k − 1) · s ≤ ot ∧ ot < k ·

s) ∧ (
∧m

k=1

∑n
t=1 bk,t · ht ≤ `) ⇔ b with m =

bmax(o)+s
s c

inverse(〈i, s,p〉n) PFD inverse(〈i, s,q〉n)∧ (p1 = q1∧· · ·∧pn = qn)⇔ b
inverse offset PFD
inverse set ? set constraint
inverse within range ?
ith pos different from 0 Auto(2,1)

k alldifferent(〈〈v〉mn〉n) Conj conjunction of n alldifferent constraints
k cut set constraint

k disjoint(〈〈v〉mn〉n) GenPat Let 〈w〉p be the values that can be as-
signed to the variables of v1, . . . ,vn:
(
∧n

k=1 gcc(〈vk〉mk , 〈wi, ci,k〉pi=1)) ∧
(
∧p

i=1

∑n
k=1(ci,k > 0) ≤ 1)⇔ b

k same(〈〈v〉m〉n) Sort (
∧n

i=1 sort(〈vi〉m , 〈si〉m)) ∧ (
∧n−1

i=1

∧m
j=1 si,j =

si+1,j)⇔ b
k same interval Sort similar to k same
k same modulo Sort similar to k same
k same partition Sort similar to k same
k used by Sort similar to k same (introduce unrestricted vari-

ables)
k used by interval Sort similar to k same (introduce unrestricted vari-

ables)
k used by modulo Sort similar to k same (introduce unrestricted vari-

ables)
k used by partition Sort similar to k same (introduce unrestricted vari-

ables)
length first sequence Auto(1,2)
length last sequence Auto(1,2)
leq RIC
leq cst RIC
lex2 Conj conjunction of lex lesseq constraints
lex alldifferent Conj conjunction of lex different constraints
lex between Auto(0,1)
lex chain less Conj conjunction of lex less constraints
lex chain lesseq Conj conjunction of lex lesseq constraints
lex different Auto(0,2)
lex equal Auto(0,2)
lex greater Auto(0,2)
lex greatereq Auto(0,2)
lex less Auto(0,2)
lex lesseq Auto(0,2)
lex lesseq allperm(〈u〉n , 〈v〉n) GenPat sort(〈v〉n , 〈s〉n)∧(lex lesseq(〈u〉n , 〈s〉n)⇔ b)
link set to booleans ? set constraint
longest change PFD,

Auto(2,2)
lt RIC
map PFD
max index(imax , 〈i,v〉n) GenPat maximum(max , 〈v〉n) ∧

elem(〈imax , val〉 , 〈i,v〉n) ∧ (max = val ⇔ b)
max n PFD
max nvalue PFD
max size set of consecutive var PFD

16

Global Constraint Categories Comment
maximum PFD,

Auto(0,2)
maximum modulo PFD
meet sboxes QLogic
min index(imin, 〈i,v〉n) GenPat minimum(min, 〈v〉n) ∧

elem(〈imin, val〉 , 〈i,v〉n) ∧ (min = val ⇔ b)
min n PFD
min nvalue PFD
min size set of consecutive var PFD
minimum PFD,

Auto(0,2)
minimum except 0 PFD,

Auto(0,2)
minimum greater than Auto(0,3)
minimum modulo PFD
minimum weight alldifferent GenPat see Section 3
multi global contiguity Conj conjunction of global contiguity

multi inter distance(〈v〉n , `, d) Sort sort(〈v〉n , 〈s〉n) ∧ (
∧n−`

i=1 si + d ≤ si+`)⇔ b
nand PFD,

Auto(0,0)
nclass PFD
neq RIC
neq cst RIC
nequivalence PFD
next element Auto(0,4)
next greater element(u, v, 〈var〉n) Logic (var1 < var2 ∧ . . .∧ varn−1 < varn ∧

∨
i∈[1,n] v =

var i ∧ (i = 1∨ var i−1 ≤ u))⇔ b, note that u < v
is part of the restrictions

ninterval PFD
no peak Auto(0,2)
no valley Auto(0,2)
non overlap sboxes QLogic
nor PFD,

Auto(0,0)
not all equal Auto(0,2)
not in Auto(0,1)
npair PFD
nset of consecutive values PFD
nvalue PFD see Section 3
nvalue on intersection PFD
nvalues(〈v〉n , relop, `) GenPat nvalue(nv , 〈v〉n) ∧ (nv relop `)⇔ b
nvalues except 0(〈v〉n , relop, `) GenPat nvalue(nv , 〈v〉n) ∧ among(z, 〈v〉n , 0) ∧ (nv −

(z > 0) relop `)⇔ b
nvector PFD

nvectors(〈〈v〉m〉n , relop, `) GenPat nvector(nv , 〈〈v〉m〉n) ∧ (nv relop `)⇔ b
nvisible from end PFD
nvisible from start PFD
open alldifferent ? set constraint
open among ? set constraint
open atleast ? set constraint
open atmost ? set constraint
open global cardinality ? set constraint
open global cardinality low up ? set constraint

17

Global Constraint Categories Comment
open maximum Auto(0,3)
open minimum Auto(0,3)
opposite sign Logic x · y ≤ 0⇔ b
or PFD,

Auto(0,0)
orchard PFD

ordered atleast nvector(a, 〈〈v〉m〉n) Conj conjunction of atleast nvector(a, 〈〈v〉m〉n)
and lex chain lesseq(〈〈v〉m〉n)

ordered atmost nvector(a, 〈〈v〉m〉n) Conj conjunction of atmost nvector(a, 〈〈v〉m〉n)
and lex chain lesseq(〈〈v〉m〉n)

ordered gcc(〈v〉n , 〈val,omax〉m) Conj
∧m

i=1 among low up(0, omax i, 〈v〉n , 〈val j〉ij=1)

ordered nvector(nv , 〈〈v〉m〉n) Conj conjunction of nvector(nv , 〈〈v〉m〉n) and
lex chain lesseq(〈〈v〉m〉n)

orth link ori siz end(〈o, s, e〉n) PFD (f1 = o1 + s1 ∧ · · · ∧ fn = on + sn) ∧ (e1 =
f1 ∧ · · · ∧ en = fn)⇔ b

orth on the ground(〈o, s, e〉n , vd) Logic ovd = 1⇔ b
orth on top of orth QLogic
orths are connected ?
overlap sboxes QLogic
path(np, 〈k, t〉n) GenPat

∧n
i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

gcc no loop(`, 〈t〉n , 〈i, oi〉ni=1) ∧
((
∧n

i=1 fi,n−1 = fi,n)∧ ` = np ∧
∧n

i=1 oi ≤ 1)⇔ b
or without using gcc no loop,∧n

i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

(
∧n

i=1 fi,n−1 = fi,n ∧ np =
∑n

i=1(ti =
i) ∧

∧n
i=1

∑
j∈[1,n],j 6=i(tj = i) ≤ 1) ⇔ b (part of

the restrictions checked in both reformulations)
path from to ? set constraint
pattern Auto(0,0)
peak Auto(1,2)
period PFD
period except 0 PFD
period vectors PFD
permutation(〈v〉n) Sort sort(〈v〉n , 〈s〉n) ∧ (s1 = 1 ∧ · · · ∧ sn = n) ⇔ b

(restrictions checked)
place in pyramid QLogic
polyomino ?
power PFD
precedence Logic (o1 + d1 ≤ o2 ∧ · · · ∧ on−1 + dn−1 ≤ on)⇔ b
product ctr RIC
proper forest ? set constraint
range ctr RIC

relaxed sliding sum(`,m, o, u, s, 〈v〉n) Logic (
∑n−s+1

i=1 (
∑i+s−1

j=i vj ∈ [o, u]) ∈ [`,m])⇔ b

remainder PFD
roots ? set constraint
same(〈u〉n , 〈v〉n) Sort sort(〈u〉n , 〈r〉n) ∧ sort(〈v〉n , 〈s〉n) ∧ (r1 = s1 ∧

· · · ∧ rn = sn)⇔ b
same and gcc(〈x〉n , 〈y〉n , 〈v,o〉m) GenPat gcc(〈x〉n , 〈v,p〉m) ∧ gcc(〈y〉n , 〈v,q〉m) ∧ (o1 =

p1 ∧ · · · ∧ om = pm ∧ o1 = q1 ∧ · · · ∧ om = qm)⇔ b

18

Global Constraint Categories Comment
same and gcc low up(〈x〉n , 〈y〉n , 〈v, l,u〉m) GenPat gcc(〈x〉n , 〈v,p〉m) ∧ gcc(〈y〉n , 〈v,q〉m) ∧ (p1 ∈

[`1, u1]∧· · ·∧pm ∈ [`m, um]∧p1 = q1∧· · ·∧pm =
qm)⇔ b

same intersection(〈u〉m , 〈v〉n) GenPat Let 〈w〉p be the values that can be assigned to
variables of u and v: gcc(〈u〉m , 〈wi, ci〉pi=1) ∧
gcc(〈v〉n , 〈wi, di〉pi=1) ∧ (

∧p
i=1 ci = di ∨ ci =

0 ∨ di = 0)⇔ b
same interval Sort similar to same
same modulo Sort similar to same
same partition Sort similar to same
same sign(v1, v2) Logic ((v1 ≥ 0 ∧ v2 ≥ 0) ∨ (v1 ≤ 0 ∧ v2 ≤ 0))⇔ b
scalar product(〈t〉n , ctr , v) GenPat scalar product(〈t〉n ,=, s) ∧ (s ctr v)⇔ b
sequence folding Auto(0,2)
set value precede ? set constraint
shift ?
sign of PFD
size max seq alldifferent PFD
size max starting seq alldifferent PFD
sliding card skip0 Auto(3,3)

sliding distribution(s, 〈x〉n , 〈v, l,u〉m) GenPat
∧n−s+1

i=1 gcc(〈xj〉i+s−1
j=i , 〈vj , oi,j〉mj=1) ∧

(
∧n−s+1

i=1

∧m
j=1 oi,j ∈ [`j , uj])⇔ b

sliding sum(`, u, s, 〈v〉n) GenPat
∧n−s+1

i=1 (vi + · · · + vi+s−1 = sumi) ∧
(
∧n−s+1

i=1 sumi ∈ [`, u])⇔ b
sliding time window ?
sliding time window from start ?
sliding time window sum ?
smooth PFD,

Auto(1,2)
soft all equal max var(n, 〈v〉m) GenPat Let 〈w〉p be the values that can be assigned

to variables or v: gcc(〈v〉m , 〈wi, oi〉pi=1) ∧
maximum(max , 〈o〉p) ∧ (n ≤ m−max)⇔ b

soft all equal min ctr(n, 〈v〉m) Logic (n ≤
∑

i∈[1,m],j∈[1,m],i6=j(vi = vj))⇔ b

soft all equal min var(n, 〈v〉m) GenPat Let 〈w〉p be the values that can be assigned
to variables or v: gcc(〈v〉m , 〈wi, oi〉pi=1) ∧
maximum(max , 〈o〉p) ∧ (n ≥ m−max)⇔ b

soft alldifferent ctr(c, 〈v〉n) Logic (c ≥
∑n−1

i=1

∑n
j=i+1(vi 6= vj))⇔ b

soft alldifferent var(c, 〈v〉n) GenPat nvalue(m, 〈v〉n) ∧ (c ≥ n−m)⇔ b
soft cumulative ?
soft same interval var ?
soft same modulo var ?
soft same partition var ?
soft same var ?
soft used by interval var ?
soft used by modulo var ?
soft used by partition var ?
soft used by var ?
some equal(〈v〉n) Sort sort(〈v〉n , 〈s〉n)∧(s1 = s2∨· · ·∨sn−1 = sn)⇔ b
sort PFD see Section 3
sort permutation(〈f〉n , 〈p〉n , 〈t〉n) GenPat sort(〈f〉n , 〈sf〉n) ∧

(
∧n

i=1 element(pi, 〈t〉n , vi)) ∧ (sf 1 =
t1 ∧ · · · ∧ sf n = tn ∧ v1 = f1 ∧ · · · ∧ vn = fn)⇔ b

stable compatibility ?

19

Global Constraint Categories Comment
stage element PFD,

Auto(0,2)
stretch circuit ?
stretch path Auto(0,0)
stretch path partition Auto(0,0)
strict lex2 Conj conjunction of lex less constraints
strictly decreasing Auto(0,2)
strictly increasing Auto(0,2)
strongly connected ? set constraint
subgraph isomorphism ? set constraint
sum ?
sum ctr RIC
sum cubes ctr GenPat
sum free ? set constraint
sum of increments(〈v〉n , `) Logic (v1 +

∑n
i=2 max(vi − vi−1, 0) ≤ `)⇔ b

sum of weights of distinct values PFD
sum set ? set constraint
sum squares ctr GenPat
symmetric ? set constraint
symmetric alldifferent(〈k, s〉n) GenPat sort(〈s〉n , 〈r〉n) ∧∧n

i=1(elem(〈i,next i〉 , 〈k, s〉n) ∧
elem(〈next i,mext i〉 , 〈k, s〉n)) ∧ (r1 <
r2 ∧ · · · ∧ rn−1 < rn ∧ next1 6= 1 ∧ · · · ∧ nextn 6=
n ∧ mext1 = 1 ∧ · · · ∧ mextn = n) ⇔ b, where
sort(〈s〉n , 〈r〉n) and r1 < r2 ∧ · · · ∧ rn−1 < rn
are redundant (part of the restrictions checked)

symmetric alldiff except 0(〈k, s〉n) GenPat sort(〈s〉n , 〈r〉n) ∧∧n
i=1(elem(〈i,next i〉 , 〈k, s〉n) ∧ ((next i =

0 ∧ ni = i) ∨ (next i 6= 0 ∧ ni =
next i)) ∧ elem(〈ni,mext i〉 , 〈k, s〉n)) ∧ ((r1 =
0∨r1 < r2)∧· · ·∧(rn−1 = 0∨rn−1 < rn)∧next1 6=
1 ∧ · · · ∧ nextn 6= n ∧ ((mext1 = 0 ∧ next1 =
0) ∨ mext1 = 1) ∧ · · · ∧ ((mextn = 0 ∧ nextn =
0) ∨ mextn = n)) ⇔ b (part of the restrictions
checked)

symmetric cardinality ? set constraint
symmetric gcc ? set constraint
temporal path ?
tour ? set constraint
track ?
tree(nt , 〈k, t〉n) GenPat

∧n
i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

gcc no loop(`, 〈t〉n , 〈i, oi〉ni=1) ∧
((
∧n

i=1 fi,n−1 = fi,n) ∧ ` = nt)⇔ b
or without using gcc no loop,∧n

i=1(elem(〈i, fi,1〉 , 〈k, t〉n) ∧∧n−1
j=1 elem(〈fi,j , fi,j+1〉 , 〈k, t〉n)) ∧

(
∧n

i=1 fi,n−1 = fi,n ∧ nt =
∑n

i=1(ti = i)) ⇔ b
(part of the restrictions checked in both reformu-
lations)

tree range ?
tree resource ?

20

Global Constraint Categories Comment
twin(〈x〉n , 〈y〉n) GenPat nvalue(nx, 〈x〉n) ∧ nvalue(ny, 〈y〉n) ∧

nvector(nxy, 〈xi, yi〉ni=1) ∧ (nx = ny ∧ nx =
nxy ∧ ny = nxy) ⇔ b, where ny = nxy is
redundant.

two layer edge crossing PFD
two orth are in contact Auto(0,6)

QLogic
two orth column QLogic
two orth do not overlap Auto(0,6)

QLogic
two orth include QLogic
used by Sort similar to same (introduce unrestricted variables)
used by interval Sort similar to same (introduce unrestricted variables)
used by modulo Sort similar to same (introduce unrestricted variables)
used by partition Sort similar to same (introduce unrestricted variables)
uses(〈u〉m , 〈v〉n) GenPat Let 〈w〉p be the values that can be as-

signed to the variables of 〈u〉m and 〈v〉n:
gcc(〈u〉m , 〈wi, oi〉pi=1) ∧ gcc(〈v〉n , 〈wi, qi〉pi=1) ∧
((q1 = 0 ∨ o1 > 0) ∧ · · · ∧ (qp = 0 ∨ op > 0))⇔ b

valley Auto(1,2)
vec eq tuple(〈v〉n , 〈t〉n) Logic (v1 = t1 ∧ · · · ∧ vn = tn)⇔ b
visible ?
weighted partial alldiff ?
xor PFD,

Auto(0,0)

21

	Introduction
	How to Derive Reified Global Constraints
	Reification of Core Global Constraints
	Categories Used in Reifying Constraints
	Conclusion
	Classification of Global Constraints w.r.t. Reification

