SICS

An extension to the Android
access control framework

Master’s Thesis

Qing Huang

Supervisor: Ludwig Seitz, SICS
Examiner: Nahid Shahmehri, IDA

CS U
&
S

“2,
’ 2
5 <
|9/ ~
- S
) &
s J 5 S
o S
NG gty

Linkdpings universitet

October 2011

Abstract

Several nice hardware functionalities located at the low level of operating system on
mobile phones could be utilized in a better way if they are available to application
developers. With their help, developers are able to bring overall user experience
to a new level in terms of developing novel applications. For instance, one of those
hardware functionalities, SIM-card authentication is able to offer stronger and
more convenient way of authentication when compared to the traditional approach.
Replacing the username-password combination with the SIM-card authentication,
users are freed from memorizing passwords. However, since normally those kinds
of functionalities are locked up at the low level, they are only accessible by a few
users who have been given privileged access rights. To let the normal applications
be benefiting as well, they need to be made accessible at the application level. On
the one hand, as we see the benefit it will bring to us, there is a clear intention
to open it up, however, on the other hand, there is also a limitation resulting
from their security-critical nature that needs to be placed when accessing which
is restricting the access to trusted third parties.

Our investigation is based on the Android platform. The problem that we have
discovered is the existing security mechanism in Android is not able to satisfy every
regards of requirements we mentioned above when exposing SIM-card authentica-
tion functionality. Hence, our requirement on enhancing the access control model
of Android comes naturally. In order to better suit the needs, we proposed a so-
lution White lists & Domains (WITDOM) to improve its current situation in the
thesis. The proposed solution is an extension to the existing access control model
in Android that allows alternative ways to specify access controls therefore com-
plementing the existing Android security mechanisms. We have both designed
and implemented the solution and the result shows that with the service that we
provided, critical functionalities, such as APIs for the low-level hardware function-
ality can retain the same level of protection however in the meanwhile, with more
flexible protection mechanism.

Acknowledgments

I would like to say many thanks to my supervisors Ludwig and Christian at SICS,
for everything, this great thesis opportunity, their full support and the endless
patience on me.

I would also like to thank my supervisor and examiner Nahid at Linkopings
universitet for her valuable inputs and feedbacks.

In the end, I want to give the deepest gratitude to my family and friends.
Thank them all for always staying with me.

Contents

Introductions
1.1 Motivations e e
1.2 Methods e

1.3 Project goals
1.4 The thesisoutline.

State-of-the-art analysis

2.1 Access control basics
2.1.1 Discretionary access control
2.1.2 Mandatory access control
2.1.3 Role based access control
2.1.4 Attribute base access control

Background of the Android security

3.1 Android platform
3.1.1 Android Architecture L.
3.1.2 Components of the Android application
3.1.3 Configurations of Android applications

3.2 The Android security
3.2.1 Linux kernel oL
3.2.2 Android applications signings
3.2.3 Android permissions
3.2.4 Android protection levels

3.3 Related work

3.3.1 Saint
332 CRePE
333 Apex. . ..

Requirements of Android Access controls

4.1 Problems and security requirements
4.1.1 Malicious Applications
4.1.2 Issues with security-sensitive APIs

4.2 Stakeholder of interests L.
4.2.1 Original Device Manufacturers
4.2.2 Mobileusers

ENEEN B oINS |

10
10
11
11

13
13
13
15
16
18
18
18
19
20
21
21
22
23

Contents

4.2.3 Application developers L.
4.2.4 Mobile network operators
4.3 Initialideas oo oo
4.3.1 Security domainso
4.3.2 The list of third parties
4.3.3 Usability 0.
44 Goals

5 The Extension design of Android access controls

5.1 Access control extension architecture
5.1.1 PackageParser
5.1.2 PackageManagerService
5.1.3 Applications installation steps.
52 WITDOM design« .. v i oo
5.2.1 Targetusers.
5.2.2 The white List
5.2.3 The protection domain
5.2.4 The domain manager
5.2.5 The service hook in Voice Dialer

6 Implementations and testings

6.1 WITDOM implementation
6.1.1 The development environment
6.1.2 The Class diagram
6.1.3 The sequence diagram
6.1.4 Implementations of classes

6.2 The WITDOM testing
6.2.1 The unit testing
6.2.2 The system testing
6.2.3 The compatibility test suite

7 Conclusions

7.1 Discussions e
7.2 Limitations e
7.3 Futureworks

Bibliography

A Android tools

A.1 Android Debug Bridge
A2 Emulator
A.3 Dalvik Debug Monitor Server
A.4 Android Interface Definition Language

B A Confusion on Signatures and Certificates in Android

41

B |
Lo 41
o 42
... 43
... 45
... 48
... 48
... 48
.... 48

51

... bl
B
B)

55

57

A Y
A Y
R Y
A Y

58

Acronyms

ABAC
AC
ADB
AIDL
API
CTS
DAC
DDMS
DVM

IPC
JVM
LBAC
MAC
MIDP
ODM
os

PC

PKI
RBAC
SATSA
SDK
SIM-card
SICS
SWiN
URI
UTPD

Attribute base access control

Access control

Android Debug Bridge

Android Interface Definition Language
Application Programming Interface
Compatibility test suite

Discretionary access control

Dalvik Debug Monitor Server

Dalvik virtual machine

Identifier

Inter Procedure Communication

Java virtual machine

Lattice based access control
Mandatory access control

Mobile Information Device Profile
Original Device Manufacturers
Operating System

Personal Computer

Public Key Infrastructure

Role based access control

Security and Trust Services API for J2ME
Software development kit

Subscriber identification module card
Swedish Institute of Computer Science
Social Networking Wireless Secure Identification
Uniform Resource Identifier

Untrusted Third Party Domain

WITDOM White lists & Domains

XML

Extensible Markup Language

2

Contents

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

4.1

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

Android System Architecture [8] 14
AndroidManifest.xml [4] Lo 17
permission declaration [8] Lo 19
permission requesting [8] 20
Saint Policy [14] o 21
CRePE Architecture [3] 23
Use case diagram for the Subscriber identification module card

(SIM-card) authentication 27
WITDOM extension architecture 34
Methods calling flow of the application installation 35
The configuration file of white lists 37
Protection domaino Lo 37
The configuration file of protection domains 38
WITDOM class diagram 42
WITDOM sequence diagram 43
Initialization of WITDOM 49

Testing WITDOM on the example application 49

Contents 3

List of Tables

6.1 Domain Managero o 45
6.2 Domain 46
6.3 White list
6.4 Send Configuration data 47

Chapter 1

Introductions

The security issues of mobile networks gain increasing concerns recently. This is
partly caused by mobile malwares which are more written targeting our smart
phones, and partly due to the access requests to our personal data by many social
networking applications which leads to the privacy deficiency. In order to ad-
dress these security problems, a project called Social Networking Wireless Secure
Identification (SWiN) ! has been carried out at Swedish Institute of Computer Sci-
ence (SICS), in cooperation with Sony Ericsson and Ericsson. The project focuses
on three aspects of security issues in mobile networks: authentication protocols,
access controls in Android and privacy considerations.

This thesis is one part of the SWiN project, concentrating on the access models
of the Android platform.

1.1 Motivations

Many hardware functionalities provide nice features, however, they are at this
time only accessible by hardware functionalities providers: manufacturers and a
very few privileged users, for example, the phone operators. Our manufacturers
have the intention to open them up at the application level since they have seen
the benefit it could bring to their third parties. For instance, the SIM-card au-
thentication as one of this kind of hardware functionalities could be used in the
novel mobile application to replace the username-password combination. As a
return, it offers us a much stronger and more convenient ways of authentication.
Specifically, when using this approach the users no longer need to remember pass-
words, and therefore relief the burden on users. In the context of SWiN project,
this SIM-card authentication is to be integrated into a novel secure identification
application which requires a stronger user authentication method.

Apart from the advantages, the functions that the SIM-card API exposes are
security critical, therefore the access should be limited to a number of trusted third
parties. In conclusion, the SIM-card authentication should be made available at

Thttps://www.sics.se/projects/swin

6 Introductions

the application level. In the meanwhile it requires to be exposed in a controlled
way so that only certain trusted third parties are allowed to use.

Since Android 2 is the platform that the SIM-card authentication functionality
will be exported to, we have been studying on its security mechanism to see how
this Application Programming Interface (API) could be exposed in accord with
our requirements. What we have discovered is the Android platform is not able to
offer a good way to solve this problem so far. More detailed information on why
Android is not good for exposing the SIM-card authentication has been discussed
in Chapter 4.

Another reason for us to look into the Android security is that Android phones
have once suffered from malwares attacks. More than 50 malicious applications
have been found in the Android market and the most popular one has been down-
loaded for approximately 200,000 times. Although Google solved this problem by
adding security patches to its latest release, we saw the necessity of improving the
security of the Android platform.

As we have identified the problem of exposing sensitive functionalities in the
Android platform, it seems natural for us to investigate more on the Android secu-
rity and modify its security mechanism in a way that better suits our requirements.

1.2 Methods

The method that we have adopted regarding to understanding the Android security
mechanism is primarily based on the literature review and the code browsing.

We started off from the literature reviews. First, we have learned some fun-
damental concepts of access controls. Then we looked into several classic access
control models. Last, we have studied on the related works.

With the help of the related work, we get a general idea of where the security
mechanism is hard coded in the Android source code. From there, we take the
package manager service as the starting point, which handles all applications’
lifetime activities. We pay a special attention to the application installation logics
since Android uses the static permissions granting approach and all permissions
are granted at the install-time.

Based on the understanding of the existing Android security, we give a solution
which allows alternative ways to deal with the APIs that are protected by a specific
type of permissions in Android. This is further explained in Chapter 2. We get the
input of our idea from a variety of sources, including Mobile Information Device
Profile (MIDP) protection domain, as well as related works. We have introduced
protection domains and white lists to Android. To find the detailed information
of our solution, please read the Chapter 5.

As to the implementation, the main resources we have used are the online
materials. Android is an open source project, there are many public tutorials and
open technical documentations available. The places we visit the most are Android

2 Android is the mobile platform developed by Google, see more in 3.1

1.3 Project goals 7

homepage ? and Google security discussion groups 4. We have found that there
are also many other technical blogs very helpful.

For the testing, the approach is to verify each part of functionality works
properly once being implemented, and the system-level testing has been performed
after the integration of all components.

1.3 Project goals

In our thesis, we have set up the following goals based on our requirements. Our
general goal is to enhance the access control model in Android, and specifically,
we are going to fulfill it from the following several aspects.

e Modify the existing access controls in Android in order to adapt the require-
ments of exposing security-critical hardware functionalities.

e Increase the flexibility of the Android access control model.

e Ensure the access is limited to a number of trusted third parties.

1.4 The thesis outline

Chapter 2 gives the theoretical background of access controls and presents the
findings of our study on related works.

Chapter 3 provides an insight of the Android security.

Chapter 4 presents the security requirements on the Android access control mod-
els that are both from the manufacturers and identified by ourselves.

Chapter 5 shows the architecture of our design. There are descriptions on what
kind of role each component is playing in the system, as well as the expla-
nation on how they are integrated into the Android platform and how they
interact with each other.

Chapter 6 presents the implementation details from the code point of view. The
results from the testing are later showed and discussed.

Chapter 7 is an overall discussion based on the results and findings from the
thesis. We have especially explored the opportunities for future works.

Shttp://www.android.com/
4http://groups.google.com/group/android-security-discuss?pli=1

Chapter 2

State-of-the-art analysis

In this chapter, the background information to the thesis is discussed. We begin
with presenting Access control (AC) concepts including a few well-known access
control models, and then we move to the Android security. The security mechanism
of Android is discussed from the Linux kernel to the application framework level.

2.1 Access control basics

Access controls [1, 18] are security policy enforcements at the authorization point
of system administrations. They are implemented as part of the system security to
ensure the access rights of legal users, in the meanwhile protect system resources
from unauthorized access. Security policies are the core of an access control system,
which are set by a security manager as a means to accomplish system security goals.
The policy is used to describe who can access what kind of resources through which
type of operations. It assists the system manager to make decisions when receiving
an access request from a user. To define a security policy, there are three parts we
need to specify.

Subjects

Entities that request to access system resources. Subjects are often human beings
and sometimes could be system processes running on behalf of computer users.
Objects

They are passively accessed by subjects. Typical objects are files, directories and
hardware resources.

Operations

They are actions performed on objects by subjects. Take accessing a file for an
example, operations are usually read, write and execute.

10 State-of-the-art analysis

The access controls can be implemented at different levels of the computer
system. At each level, there are specific system resources need to be protected.

Hardware level

When talking about the AC at the hardware level, it usually relates to the memory
address access. The access is governed by the hardware functionalities.

Operating System level

AC at the operating system level addresses the protection to files and pipelines as
they abstract the computer hardware and wrap them up as accessible interfaces
at this level.

Middleware level

The AC at middleware level controls the access from application to application,
as well as the access from application to system resources. For example, an appli-
cation should obtain a permission from the system before using its APIs.

Application level

They are internal AC mechanisms of individual applications defined by developers
themselves. In this case, the access control is enforced within an application and
can be designed to enforce either fine-grained or coarse-grained access controls,
and which is totally up to application authors.

There are several well-known access control models, which have been evolved
over times. They are recognized as industry practise that developers could follow
in terms of implementing their own access control system in their applications.
Here we are going to look at four of those.

2.1.1 Discretionary access control

One of the most important characteristics of this Discretionary access control
(DAC) [10] model is that subjects who is given a permission, at the same time
automatically become the permission owner. Because of this, anyone who has
been granted certain permissions is able to grant them to other subjects. The
limitation is obvious: permission distributions are not centrally controlled and it
makes permission revocation almost impossible.

2.1.2 Mandatory access control

In contrast to DAC, in the Mandatory access control (MAC) [2, 16] system, there
is a security administrator who sets the access control policies, the user however
cannot override or change them. All the access requests are checked compulsorily
according to those policies, therefore, they are mandatory.

Regarding the policy, Subjects and objects are given labels to describe their
levels of security. Subjects are labeled with the security clearance whereas objects

2.1 Access control basics 11

are labeled with the security classification. Because of the use of security labels,
MAC is also known as Lattice based access control (LBAC).

2.1.3 Role based access control

Roles in the Role based access control (RBAC)[5, 23, 19], are users with a group
of permissions. The associated permissions define what the user is capable of.
Permissions can be seen as tuples of objects and operations, where objects specify
which part of system resource that can be accessed and operations describe what
kind of actions are allowed to perform.

To distinguish from Linux groups which are collections of users, roles in RBAC
are collections of permissions. The advantage of RBAC is we can create pre-
packaged sets of permissions based on the requirements of a specific job function,
independently of the specific subject holding that function. It can thus simplify
the management of access rights.

The subject is assigned roles however is not identified by a particular role. It is
able to activate a specific role which allows it to use the associated permissions of
this role. Moreover, a subject is not restricted to have a single role; instead it can
have multiple roles, each of which entitles the user with a distinct job function.

2.1.4 Attribute base access control

Attribute base access control (ABAC) [6, 22] uses attributes to specify conditions
to be fulfilled when the access is requested. ABAC is finer-grained AC model
because various and detailed access senarios are able to be described by specifying
attributes fields for them, for instance names and job titles of subjects, types of
resources, the environment within which the access is taking place and so on so
forth.

Chapter 3

Background of the Android
security

3.1 Android platform

Android is an open source platform, designed for handset devices. They are widely
spread in the market today and found mostly in mobile phones and tablets. The
development of Android platform called Android Open Source Project is led by
Google since 2007. Due to Android’s open nature and rich features, manufacturers
are able to tailor this platform to their needs in a quick and easy way. The same
reason also makes Android the most popular mobile Operating System (OS). A
survey of mobile platforms market share early in 2011 [17] indicates that the largest
market share is contributed by Android phones.

There are many other reasons for Android becoming the NO.1 mobile plat-
form. From the manufacturers’ point of view, they are able to produce mobile
devices with spending little efforts on customizations by utilizing rich features of-
fered in Android. As a return, Android phones have been marketing as mainstream
phones by many manufacturers which boost the development of Android applica-
tions. From the developers’ point of view, Google provides well-documented APIs
and online tutorials, which makes Android very developer-friendly and easy to
start with. Besides, the freedom and equality philosophy of Android encourages
developers to create and publish more applications in the Android market [7].

3.1.1 Android Architecture

Android is not just a mobile OS, it is a software stack including the middleware
and a number of key applications. Figure 3.1 gives an overview of the Android
architecture. As we can see from the figure, Android is base on the Linux kernel.
It uses several native libraries and employs the Dalvik virtual machine (DVM)
for its applications’ runtime environment. The middleware are written in Java
providing development APIs and the system service. Key applications allow user
to use basic phone functionalities.

13

14 Background of the Android security

Applications

‘ Home ‘ ‘ Contacts ‘ ‘ Phone ‘ ‘ Browser ‘ ‘ ‘

Application Framework

Activity Window Content View
Manager Manager Providers System
Package Telephony Resource Location Notification
Manager Manager Manager Manager Manager
Libraries Android Runtime
Surface Media
‘ Manager ‘ ‘ Framework ‘ ‘ SQlite ‘ Core Libraries
‘ OpenGL|ES ‘ ‘ FreeType ‘ ‘ WebKit ‘ Dalvik Virtual
Machine
‘ SGL ‘ ‘ SsL ‘ ‘ libc ‘
Linux Kernel
Display Camera Flash Memory Binder (IPC)
Driver Driver Driver Driver
Keypad . Audio Power
Driver WiFi Driver Drivers Management

Figure 3.1. Android System Architecture [§]

The underlying Android OS is base on Linux kernel 2.6. It is located at the
bottom of the system delegating calls to hardware resources.

On top of the Linux kernel are native libraries in use. A variety of libraries are
included, from the Surface Manager to libc, written in multiple languages. Among
them, some of them have been tailored to better suit resource-restricted devices.

Android runtime uses Dalvik virtual machine (DVM) instead of Java virtual
machine (JVM) to handle the process management. JVM requires heavy compu-
tation will have serious impact on system performance. To solve this low memory
constraits, DVM has been specially designed to replace it for the Android plat-
form. Process isolations that a vitual machine offers are viewed as one of security
enforcements points in the Android platform. Further discussion on this part can
be found in the section 3.2.1.

The application framework defines the system service and developer APIs. The
system service mediates the access to a variety of low-level functionalities while
the framework APIs wrap up the system functionalities in components and make
them reusable. Android defines its own static permissions at this level which is
used to govern the access between application components. More information of
Android permissions are provided in the section 3.2.3.

3.1 Android platform 15

All installed applications are placed in the Android application layer. A wide
range of applications can be written by using developer APIs or reusable com-
ponents provided by other applications. Originally, Android has already included
several applications with basic functionalities such as making phone calls and man-
aging contacts. However, more space is left for developers to fill in. Developers are
encouraged to take full advantage of Android’s features when writing their own
applications.

3.1.2 Components of the Android application

An Android application is made up of several types of components. We list some
keys components and focus on the security related parts. More information can
be found in the online Android developer guide [9].

Activities

Activities provide visible screens that mobile users can interact with. An activity
is also responsible for monitoring and reacting to the operations that a user have
performed on the screen.

The life cycle of an activity includes several states. It begins from onCreate ()
and ends at the time when onDestroy() is called. After an activity has been cre-
ated, onStart () is the point that the activity becomes visible to users. onResume ()
also shows a state the activity is visible, however different from onStart (), it re-
stores a previous state. onPause() represents a state that the current activity
is placed in the background, it is active and ready to be brought back into fo-
cus at any time. Though the activity at the state of onStop() is still alive, it is
disattached from the window manager and can no longer be restored.

The activity which is started at the application launch time is called the main
activity. An application can have a series of activities and one activity is capable
of creating another one. When a new activity is started, the old one won’t be
killed; instead, its state is pushed into the stack. The old activity will be restored
by retrieving its state and regain the focus if the user navigates back.

Services

Services work quite similar to activities, the only difference is that the service
usually runs in the background and performs a long term task; As a result, it
doesn’t provide any graphic interfaces.

Services can be started in two different ways. Calling the method, startServic
e (), allows us to run an independent task, the service quits automatically when the
task is finished. The other way to start a service is through application bindings.
A bound service is subjected to an application, thus the application has to decide
when to active it and when to kill it.

16 Background of the Android security

Content providers

Content providers work as the database for the application. The data in content
providers can be shared across applications but only when the access is allowed.
The application is also able to use the public content providers managed by Google.
When storing data to the content provider, the user needs to specify the name of
the data by following the Uniform Resource Identifier (URI) scheme so that the
data can be identified and retrieved by name.

Broadcast receivers

Registering a broadcast receiver lets our application listen to a particular state of
either the system or other applications. They are especially useful when we want
to activate some service at a specific point. Supposing we want our application to
get started as soon as the phone is finished with initialization. If we register for
receiving the broadcast of the phone boots completed, we will be notified at that
specific point and we can then ask the system to launch the application for us.

The notification message sent between is called intent in Android. It is serial-
ized when it is sent. The message consists of the data together with the operation
that will be performed. Intent filters are used to filter out unwanted intents so
that users are informed by interested ones only.

3.1.3 Configurations of Android applications

The AndroidManifest.xml file is the configuration file of the Android application.
It specifies the components that the application owns and external libraries it
uses. As to the Android permissions, it declares permissions it requests as well
as permissions that are defined to protect its own components. The structure of
AndroidManifest.xml is shown in figure 3.2.

3.1 Android platform 17

LAl IesSL MNLNS aniareld= LLps/ f SUnemnas . alaroid. GOy apey Ces s anaoogia
package="com.example.android.wikticnary”
android:versionCode="1"
android:versionllame="1.0">
«<application android:icon="@drawable/app icon™ android:label="@string/app_name"”
android:description="@3string/app descrip™>

<!-- Browser-like Actiwvity to navigate dictionary definitions -->
<activity
android:name=".Lockupictivicy"™
android:theme="Fstyle/LoockupThems"
android: launchMode="singleTop"
android:configChanges="crientation|keyboarddidden">

<intent-filter>
<action android:name="android.intent.action.MRIN™ />
<category android:name="android.intent.category.LAUNCHER™ />
</intent-filter>

<intent-filter>
<action android:name="zandroid.intent.action.VIEW" />
<category android:name="andrcid.intent.category.DEFRULT™ />
<category android:name="android.intent.category.BROWSAELE™ />
<data android:scheme="wiktionary" android:host="lcokup™ />
</intent-filter>

<intent-filter>
<action android:name="android.intent.action.3EARCH™ />
<category android:name="android.intent.category.DEFRULT™ />
</intent-filter>

<meta-data android:name="android.app.searchable” android:resource="@xml/searchable” />
</activity>

<!-- Broadcast Receiwver that will process AppWidget updates ——>
<receiver android:name=".WordWidget" android:label="@string/widget_name">
<intent-filter>
<action android:name="android.appwidget.action.APFWIDGET UFDATE" />
</intent-filter>
<meta-data android:name="andrcid.appwidget.provider”
android: resource="@xml/widget_word™ />
</receivers

<!l-- Service to perform web API queries -->
<gervice android:name=".WordWidgetsUpdatedervice” />

</application>
<meta-data android:name="android.app.default searchable"” android:value=".Lookuplctivity" />

<uses-permission android:name="android.permissicn.INTERNEI" />
<ugeg-3dk android:minSdkVersion="3" android:targetSdkVersion="4" />

< /manifraty

Figure 3.2. AndroidManifest.xml [4]

18 Background of the Android security

3.2 The Android security

The Android security lies both in the Linux kernel and in the application frame-
work. The security inherited from Linux is the user ID. Along with this, at the
framework level, a mandatory access control mechanism is enforced by Android
permissions to control access between components.

3.2.1 Linux kernel

Different from Linux where users are people who login the system [11, 20, 21],
users however correspond to individual applications in Android. Each Android
application is assigned a distinct Linux user Identifier (ID) when it is installed.
Based on its identity, the system allocates a unique process for it to run within.
More importantly, the user ID of an application is used to distinguish itself from
others and stays valid throughout the lifetime of this application.

For the runtime environment, Android employs Dalvik virtual machine (DVM)
instead of JVM for the reason that DVM is more lightweight and has low mem-
ory requirements. The Dalvik virtual machine (DVM) is developed for resource-
restricted devices such as mobile phones.

DVM provides most of functionalities that JVM does. It offers process isolation
and allows multiple instances running at the same time. The difference is that
DVM runs executable file in dex format. However the Android application is
written in Java and compiled by the Java compiler, to run in an instance of DVM,
the system needs an additional step to translate the compiled Android program to
dex executable file. A tool called dx in Android Software development kit (SDK)
is dedicated for this.

The DVM also has contributions to the Android security. The code isolation
it provides can minimize the damage that is potentially caused by a compromised
application. Even if a malware is mistakenly installed in the system, its capability
is limited within the process, therefore, preventing it from taking over control the
whole system.

For a large scale application, it might not be practical to pack everything in
one package, Android offers a flexibility to allow different packages running in the
same process, but the exception is only given to two packages, and the condition
is that two packages should be signed by the same key. After being verified, a
sharedUserId is given to both of them, which determines a shared process for
them to run. The sharedUserId is related to one type of permissions in Android
and we will revisit them in section 3.2.4.

3.2.2 Android applications signings

Android requires every application to be signed. The main purpose of application
signing is to distinguish applications from one to another. For individual develop-
ers, they always do the signning with their own private keys. The private keys are
supposed to stay secret and known only to their owners. After a signed applicaiton

3.2 The Android security 19

is installed on the phone, the system is able to use its signature information to
distinguish it from other application.

3.2.3 Android permissions

Permissions are the core concepts in the Android security. One thing we need
to notice is that Android permissions are completely different from Linux file
permissions. Existing in the system in forms of strings, they have been used widely
to control the access from one application component to another. Permissions are
involved in quite a few places.

All permissions are granted at install-time. In order to be grant a permission,
it should be requested in the Android manifest file when specifying properties for
an application. the system then evaluates it and makes a final decision on whether
to grant or deny.

After the application has been lauched, permission checks are enforced before
the actual access take place. For instance, an online game can never really be
connected to the internet if it is found missing a internet connection permission.

The system has provided developers more than 60 built-in permissions. They
are defined in the form of android.Manifest.permission.X, where X is the name
of a particular permission. In addition to the built-in permissions, developers
are also allowed to create their own permissions (called dynamic permissions in
Android) through permission declaration in AndroidManifest.xml.

<permission> is the place where developers are able to define their permissions
for protecting their application-specific APIs or components. The name of per-
mission needs to be globally unique and descriptive so that other components are
able to know and request it by name. The picture 3.3 shows parameters associated
with a permission.

L

—m

<permission android:description="string r
android:icon="drawable resour

android:label="st

"

android:name=" st q
android:permissionGroup="string"
android:protectionlevel=["normal

"signature” | "signatureOrSystem"] />

" | "dangerocus" |

Figure 3.3. permission declaration [§]

<use-permission> lets the developer to request a permission so they get access
to certain functionalities in the system. It could either be a built-in permission
or a dynamic permission. By default, an application has no permission associated
with it, thus all permissions should be requested explicitly. The figure 3.4 shows
an example of how we request a permission in the manifest file.

20 Background of the Android security

<manifest xmlns:android="http://schemas.android.com/apk/res/android”
package="com.android. app.myapp” >
<uses-permission android:name="android.permission.RECEIVE SM5" />
</manifest>

Figure 3.4. permission requesting [8]

3.2.4 Android protection levels

Android has four protection levels. The protection level is a parameter of a per-
mission and needs to be specified when defining our own permissions. FEach level
of protection enforces a different security policy. From weak to strong, we have
normal, dangerous, signature, and signatureOrsystem protection levels.

Normal

Normal permissions are the default setting, providing the weakest protections.
They are often used to protect less security-critical functionalities. If the protection
level is not specified, the permission is assumed to be normal. When a normal
permission is requested, the system grants it without asking users. However, the
users are able to check some of the granted permissions in its application properties
if he/she wishes.

Dangerous

Dangerous permissions are the ones decided by phone users. Permissions at this
level might ask for accessing the user privacy or certain hardware service. An
example for dangerous permissions is asking for accessing some functionalities
cost money. When an application requests a dangerous permission, the system
shows the permission information in a screen to users and users need to accept all
permissions if they want to install the application on their phones.

Signature

This protection is evaluated and decided by the system without the users’ in-
volvement. To be granted a signature permission, the requesting application to be
signed by the same key as the application that the permission protects. To explain
it in another way, the condition for being granted the access between two packages
which used signature permissions is those two packages need to be signed by the
same key. The sharedUserld is discussed in the section 3.2.1.

SignatureOrSystem

SignatureOrSystem permissions have two conditions,satisfy either one of them, the
access is granted. One of the conditions requires the package resides in the system

3.3 Related work 21

image while the other one requires the accessing package to be signed by the same
key as a package resides in the system image.

Google uses a static permission approach for its security. In Android, all per-
missions are requested and granted at install-time. Once being granted, they
cannot be changed and will be valid throughout the lifetime of this application.
The granted permissions can be checked by the system before the actual access
takes place or can be explicitly called by developers.

3.3 Related work

We have found related works in three scientific papers. All of them have modified
and extended the Android access control model, however focusing on different
factors and taking different approaches.

3.3.1 Saint

Machigar Ongtang et al. [14] have observed that smart phones become more
common nowadays, the mobile platforms are however lack of security in many
ways. After giving considerations on a few typical mobile phone scenarios, they
have gathered a list of security requirements that are mobile phone specific. Con-
sequently, they propose a framework called Saint, based on the Android mobile
platform. What Saint provides can be summarized as two parts: first is the re-
finement of the install-time permission checks and second is the dynamic access
control enforcement that governs the runtime behaviors of applications.

Saint defines a set of policies, from different abstraction levels of the Android
OS, as supplimentary security policies to the original ones. See Saint policy tree
in figure 3.5.

(1.) Permission
Granting Palicy

(2.) Interaction Policy
(Run-time)

(1.1)Protection-level (1.2) Signature- (1.3) Application (2.1) Permission- (2.2) Signature- (2.3) Application (2.4) Context-based
based Palicy based Policy configuration based Access based Policy configuration Policy
based Palicy Cantrol Policy based Policy

(Install-time)

[|

- Normal Set of signatures on Set of configuration Permission that | | Set of signatures Set of configuration | Phone's context:
- Dangerous the application - Other requested protects component || on the opponent of the opponent Location, time,
- Signature - Default allow permissions VS those held by application - Held permissions Bluetooth state,
- Signature or - Default deny - Application version the accessing - Default allow - Application Version || connected devices,
system Define set of except - efc application - Default deny - efc. data connection,
signatures Define set of data/call state,
except signatures battery, etc.

Figure 3.5. Saint Policy [14]

For the install-time policy, the modifications and integrations occurred mainly
in the following two parts.

22 Background of the Android security

1. The signature based policy is modified to allow the client to define a set of
except keys. The except keys may have their attributes been set to either
default allow or default deny. At permission granting point, the signature
of an application is checked against the key lists, if its key can be found
in the default allow list, all permissions are granted. In the contrary, the
permissions are always denied if the signing key is in the default deny list.
When the key is found belong to none of the lists, the application then needs
to go through the standard permission checks.

2. Configuration policy which is the newly added enforcement imposes the se-
curity checks on other properties of an application, such as version numbers
or user-defined permissions.

As to the run-time policy, it consists of four parts.

1. Modified Permission based policies, used to control the access via Inter Pro-
cedure Communication (IPC)s (Inter-procedure communication).

2. Signature based policies at runtime.
3. The application configuration based policy.
4. The context-based policy.

In Saint, two types of policies are defined for the IPC security. The access
policy controls over whether the callee can receive or initiate an IPC. The expose
policy verifies whether or not the callee is legal to receive the IPC. To establish a
successful IPC, access conditions on both sides should be satisfied.

Context-based policy describes the access control decision is made dynamically
when the context of the mobile phone changes. The system is able to detect the
switches of phone states, such as the location, the current time, Bluetooth etc.
Permissions are granted or revoked based on that information. For example, the
camera should be disabled when an employee’s phone has been detected in the
company building.

3.3.2 CRePE

CrePE [3] presents a concept of a context sensitive security for Android. The key
idea is to use the current state of the phone, including its location, time, and
temperature and so on as the supporting information to make decisions. Different
from other electronic devices, the high mobility characteristic of our phones makes
the context of mobile phones vary from time to time. The author argues that the
context needs to be considered as an important attributes when defining security
policies.

Unlike Saint, CRePE is user-centric, it is up to the users to define what kind
of security policies should be applied to their phones when the context switches.
The context are described by several attributes like the time and location as we
mentioned before. Besides the security policy definition, the user is able to activate
and deactivate policies. At the time of enforcing the CRePE security, the state of

3.3 Related work 23

phone is discovered at runtime so that the system can enable a specific policy for
it.

The CRePE security is integrated into the Android platform by hooking the
service to permission checks. Some existing code has been modified to include the
CRePE components. See its architecture in figure3.6 for an overview.

User Context/Third party
A
M"mn | U Applications
'__F___v_______l
I Usernteractar C
! I
y u.z2
I CRePE A2 . - c2 u |
I PermissionChec ker olltyManager Contextinteractar
3 U3 Cca3
I M.1 v I
A3 M.2 ActionPerfarmer I
|
CRePE System]
e e b c— e ———————— — —

Y

Andraid Permission . .
Check Android Middleware

Linux Kernel

Figure 3.6. CRePE Architecture [3]

3.3.3 Apex

The authors have seen the limitations in the Android security that the users have
no choice but to accept all requested permissions if they wish to use an application.
They think using dangerous permissions are risky because many applications tend
to ask for more permissions than it needs, and this could be even more dangerous
if being made used of by a malicious application. In order to have a finer-grained
permission granting mechanism to applications, they insert their Apex [12] security
service to Android.

Apex has two core features. The first one is user-friendliness which is evident in
the user interface they have implemented. It lets the user decide which permissions
are allowed and which one should be denied. The other is runtime constraints,
which enables dynamical granting and revoking permissions.

Although Apex framework has modifications and extensions in a number of
places of the original Android code, another point worthy to mention is Apex is
backwards compatible with the existing Android security.

24 Background of the Android security

Apart from the modification at the middleware level, Apex has extended the
application installer to let phone users specify security rules. Fach rule states the
condition of granting a permission and is stored in the policy repository. The
repository is consulted when permissions are requested.

Chapter 4

Requirements of Android
Access controls

This chapter describes the requirements gathered both from the Original Device
Manufacturers (ODM) side as well as the ones identified by ourselves. The discus-
sion starts with a problem that our ODM is currently facing. Then, we analyze
interests of different stakeholders. In the end of this chapter, we state goals that
we are aiming for.

4.1 Problems and security requirements

4.1.1 Malicious Applications

Android has previously been affected by malicious applications. The news from
BBC [13] shows that more than 50 apps have been found malicious in the An-
droid market and they might have been downloaded for up to 200,000 times.
Google eventually solved this problem by providing tools to remove the malware
and adding security patches to their latest OS version. The incident shows that
Android is potentially vulnerable in the complex mobile environment.

4.1.2 Issues with security-sensitive APIs

In addition to the malware threats, ODMs discovered the inflexible security design
of Android when they intend to make security critical APIs available to developers
at the application level. One example of them is the SIM-card authentication
API. This API exposes the hardware functionalities and needs to be handled
more carefully. It is initially made only available to handset manufacturers and
the mobile phone operators. Operators are considered as privileged users and are
given access to low-level functionalities.

Considering novel mobile applications such as mobile social networks could
benefit from this SIM-card authentication API as well, ODMs intend to open it

25

26 Requirements of Android Access controls

up but only to a limited number of third party users. However, there are following
security concerns that need to be solved beforehand.

e Android treats every application equally and they can be published freely
on the market, which also leaves a hole for malwares.

e Four levels of protections, normal, dangerous, signature and signature or
system in Android are not very well designed and make them inflexible to
use in some occasions. There are gaps between need to be filled .

Permissions at dangerous level require users to confirm on every requested
permissions, causing a problem by putting too much security responsibilities
on users. Since there might be some users who simply want the application
works on their phone, and would consequently accept all permission requests
without knowing what these permissions really can do. An even worse situa-
tion is that some malwares might take advantage of it to exploit the system.
For the SIM-card authentication, any kind of deficiencies are not tolerant.

Hence the dangerous permission is inadequate to protect security-critical
APIs.

The signature permission offers stronger protection than the dangerous per-
mission due to more security constraints it has. The system makes decisions
for mobile users instead of leting the user take the control. However, using
the signature permission in our case turns out to be very inflexible because
the condition of being granted a signature permission requires two packages
signed by the same key. This is the problem identified by our ODM.

We use a simple scenario to demonstrate how the SIM-card authentication is
used when it is protecte by a signature permission. The SIM-card authenti-
cation API is developed and provided by our manufacturer. There is a third
party application which implements this API. In order to be installed suc-
cessfully, this third party application needs to be signed by the ODM instead
of the developer since this API checks the application has the same signature.
This creates a problem for ODMs to approve and sign every third party ap-
plications if they implement this API. Signing for a third party application
is obvious cumbersome and risky. Therefore, using signature permissions are
also unable to full satisfy requirements from ODM.

As our ODM have seen many problems when applying Android permissions
to sensitive functionalities. They think it is still not a good time to open them
up at the application level and a solution to enhance the existing Android
security need to be made.

4.2 Stakeholder of interests

Based on the problems we have observed, we sketched a use case diagram to help
identify the requirements. See the diagram in figure 4.1. The scenario is described
below from different stakeholders’ point of view.

4.2 Stakeholder of interests 27

Provide SIM-card
authenticaiton AP

S

Identify mohile: users i [
7 1 Oo/bd
,,’1{ A G5y,
& 2 T~
Mohile operator A k4 a
n I c
w L, o
& / 2 Verily the trusted 3rd
v ! ¥ party providers
v / ¥
s 1
! 1
/ |
/ oDM
Authenticate mobile user
Protect sacurity-
sensitive APls
Application
developers
Pravide Andraid)
r:‘;pﬁcagm = = —<<USES>> — — — — use Android apps
User

Figure 4.1. Use case diagram for the SIM-card authentication

4.2.1 Original Device Manufacturers

The ODM is the developer and provider of security sensitive API, such as the
SIM-card authentication API. They have the intention to make these API available
at application level while at the same time, limit the access to certain trusted third
parties, to prevent them from being misused.

The ODM is supposed to decide who is allowed to access the security-critical
API and who is not. Their responsibility also includes verifying and authorizing
a third party user.

4.2.2 Mobile users

As the owner of the mobile device, users should be able to know what is going on
in his/her phone. For the granted permissions, regardless of the protection level
of permissions, they should be kept in a central pool where users can keep track of
the information of the granted permissions whenever they desire to. Though now
in Android, users can go to the setting and view the properties of the installed
applications, the traceable permissions just include the normal and dangerous
permissions. Permissions that are decided by the system like the signature and
signatuerOrsystem permissions, however are never shown.

4.2.3 Application developers

Application developers are direct users of security-sensitive APIs. The SIM-card
authentication is one of those functionalities that developers can choose to imple-

28 Requirements of Android Access controls

ment in their novel mobile applications. Replacing the traditional authentication
approach, i.e. the username-password combination with the SIM-card authentica-
tion can give us a stronger way of authentication. Through the user point of view,
they would also benefit from this since they do not need to remember passwords
any more.

4.2.4 Mobile network operators

The fourth category of stakeholders is the mobile network operators. Originally,
they are the only users who have been given the privileged access to the SIM-card
authentication API from the low level. We can say they are are ultimate users
who have been given the maximum access rights.

Other than being a user of some sensitive hardware functionalities, they are
the potential providers of APIs which expose network functionalities, and in this
case, they are in the equivalent position of ODMs.

Those are not the only reasons to make them important. As the phone opera-
tor, they are administrator of mobile networks where the authentication actually
takes place.

4.3 Initial ideas

Before we present our ideas, we want to give some background information on
MIDP [15] since that is where our idea initiates. MIDP is the development tool kit
of Java ME . With its help, developers are able to implement mobile applications
running on Java platform.

Being shipped with MIDP, there is an optional API called Security and Trust
Services API for J2ME (SATSA) being offered to developers as an interface to
use the SIM-card authentication hardware functionality. It is up to evelopers
to choose whether to implement or not depending on their needs. As an good
example,SATSA makes the SIM-card authentication API available at application
level, we see a possibility to do this for the Android platform as well.

The mechanism of granting permissions in MIDP works as follows: Each appli-
cation is bound to a protection domain at install-time. The application is granted
with the associated permissions of its domain. Any permissions beyond the domain
permissions are denied. The advantage of doing this is the system can restrict the
behavior of the application in a predicable way, preventing the application from
gaining some privileged permissions, therefore protecting the system from being
potentially exploited by malwares.

Unfortunately, we cannot directly apply the security domain of MIDP to An-
droid. The main reason is that MIDP is dedicated for developing mobile appli-
cations on the Java mobile platform whereas Android is totally different from it.
Although one may argue they have many in common since both of them use Java,
we should also notice that the differences are larger. Android is not fully written
in Java, only the framework layer is implemented in Java. Besides, it includes

1Java Platform, Micro Edition

4.3 Initial ideas 29

several native libraries written in other languages. Android provides a whole set
of APIs to developers, independent of Java platform. Most important, an Android
application is zipped in an apk file other than a jar file for Java applications. All
of these differences prevent us from reusing the security domain component from
MIDP. However, since MIDP describes the API for the SIM-card based authen-
tication, we gained insights about the ODM requirements from this profile and
could bring some of their ideas to our design.

By studying the mechanism of MIDP and brainstorming, we have some initial
ideas of the protection domains for our design, and they are listed and explained
below.

4.3.1 Security domains
What are protection domains?

e Security domains are associated with a collection of permissions that allow
us to carry out some application behaviors.

e The behavior can be described as a group of operations.

e The application should be assigned to a specific protection domain at the
install-time.

e The application can be granted with the requested permissions if they belong
to its domain permissions.

e If the application asks for a permission that do not belong to its domain
permissions, the request is denied.

In conclusion, in order to be granted with the access right, the requested per-
missions of an application should always be a subset of its domain permissions.
How the protection domain works?

e The protection domain assignments happen at the application install-time.
Every application should be appointed to a specific protection domain.

e Once an application is bound to a specific domain, it won’t be able to change
unless the application is uninstalled.

e If an application found belongs to several different domains, we assign it to
a merged protection domain which is associated with permissions from all
found domains.

4.3.2 The list of third parties

The list of third parties is referred when we need to determine which protection
domain the installing application goes to.

30

Requirements of Android Access controls

e The white list is used to keep track of our trusted third parties. It describes

who are allowed to access the sensitive device APIs.

The target users of the third parties list are device manufacturers and phone
operators. In order to let them manage the list, a configuration interface
needs to be provided to them.

The white list needs to use a distinct attribute of the application which al-
lows the system to distinguish applications. Our initial thought is to use the
certificate information of the application, since the application signing mech-
anism has already been used in the system for identifying the application,
and it could be reused here for the same purpose.

4.3.3 Usability

e An explicit requirement from our ODM is the modified Android platform

should stay backwards compatible. The backwards compatibility ensures
that an application can be installed successful on an Android phone regard-
less of its version. As for our case, we want our solution works not only on a
specific version of Android but also on other versions. Hence, the backwards
compatibility is an important goal for us to achieve.

As we have already discussed before, a configuration interface should be
provided to our ODMs and operators so that they are able to maintain the
third parties who have been given the access rights to their sensitive APIs.

4.4 Goals

The ideal solution shall fulfill the following goals.

e We provide an alternative way of dealing with the signature permission in

Android. The new approach should be flexible and allow the ODM keep using
signature permissions to protect their sensitive hardware functionalities.

Third party developers who write applications that use the device API should
be able to sign their applications with the own developer keys. When their
applications are installed on the Android phone, the system should be able to
identify they are trusted by our ODMs or operators, therefore, being granted
the privileged access to signature protected APIs.

Provide a configuration interface to sensitive functionalities providers, in
our case, they are ODMs and phone operators. The configuration interface
should allow them to include new trusted third parties and disable the ex-
isting ones. Our ODMSs could have several sensitive APIs exposed, but they
might want only one of them to be accessible by a particular third party.
In this case, we let ODMs to define the specific APIs that each third party
could access.

4.4 Goals 31

In summary, the general goal for us is to enhance the existing Android secu-
rity model and keep the modified Android OS staying backwards compatible.
The given solution complements the existing security mechanism and offers
alternative and flexible ways of dealing with signature protected functional-
ities.

Chapter 5

The Extension design of
Android access controls

This chapter presents the design points of security extensions based on the latest
release of the Android OS: Android 3.2. Our extended access control solution
has introduced protection domains and white lists to the Android OS. In our
design, we keep the original static permissions granting mechanism. Evaluating
and granting all permissions at the applications’ install-time.

We begin with an overview of the high level architecture of WITDOM. In
order to make it easier to understand how our WITDOM service is integrated into
Android, we give some descriptions to the relevant packages of Android. After
that, we explain what modifications that have been made in them and why. Our
WITDOM components are described in the end.

5.1 Access control extension architecture

Our raw idea has already been presented in the chapter 4. We want to introduce
the white lists and protection domains to the Android so we name our solution
WITDOM which stands for WIhIte lists and protection DOMains for Android.

The architecture of WITDOM is based on the current access control mechanism
of the Android platform. With respect to the requirements, it is designed in a way
open for extending and backwards compatible. The WITDOM service consists of
three parts, and they are DomainManager, Domain, Whitelist respectively.

WITDOM complements the access control mode of Android. We use the pro-
tection domain to restrict the behavior of applications and consult the white list
to see which protection domain one application should be assigned to.

The domain binding is hooked into the package installation routine. Specifi-
cally, it evaluates the requested permissions from the installing application before
the regular Android permission checks. In the Android source code, the applica-
tion installation is handled by a method called installNewPackageLi which is
located in the class called PackageManagerService.

33

34 The Extension design of Android access controls

We use the service hook to direct the installing application to our WITDOM
service after it has been parsed by the package manager. Once we bound the
application to a specific domain, it is returned to the package manager. The
package manager continues installing the application till the point the Android
permissions checks are called. We trap the application to our WITDOM service
again, using the domain permissions to evaluate the requested permissions then
making decisions based on the evaluation results.

Android app VoiceDialer
PackageManagerService DomainManager Domain
TTPD (Trusted
Initiate witdom

3rd party Domain)
installNewPackageLi

Assign domains UTTPD
(Untrusted 3rd
Parmission chacking Evaluale domains party D.omam)
White List
witdom
Android middleware

Figure 5.1. WITDOM extension architecture

WITDOM structure is illustrated in figure 5.1, showing how different compo-
nents interact with each other and how WITDOM is integrated into the Android
OS. The packages labeled with WITDOM are the extension we have designed for
Android. The rest parts belong to the original Android OS where some modifi-
cations are made to accommodate the WITDOM service. The WITDOM service
resides in the framework layer of Android which is written in Java, therefore, we
naturally use Java in our implementation.

Since the design is not independent from other Android packages and methods,
we will first go through the existing classes that are interested to our WITDOM
service.

For each Android application, there is an AndroidManifest.xml used to de-
scribe package properties, so that when it is installed, the system could know
how to allocate system resources, assign process, link components as well as other
handling for this application. More importantly, this is also the place where per-
missions are declared, the part we are most interested in.

5.1 Access control extension architecture 35

5.1.1 PackageParser

The information located in AndroidManifest file is parsed at the application
install-time and the system service PackageParse is dedicated to extracting this
information. The package parsing happens before the real package installation
and the parsing steps are described in the section 5.1.3.

5.1.2 PackageManagerService

PackageManagerService manages the lifecycle of an application, from being in-
stalled to being removed. One thing we need to pay attention is that permission
granting only happens at the application install-time, permission checks however
can called at several places during the application runtime. More discussion is
provided in the next section.

5.1.3 Applications installation steps

The figure 5.2 shows the method calling flow when installing a new package.

PackageManagerService
. processPendingInstall(...)
i 1lPack: -
[installPackage ()] Runnable
InstallParams run(...) ‘
PackageHandler \"7/
‘F - startCopy(...)
L y =
sendﬂessage (. * !
- installPackageLI(...)
{hand.leReturnCcde(. L)
e —"
handlemessage([installNewPackageLI(...)]
L [updateSettingsLI(...)]
dnHandleMes aage (. + !
{ grantPermissionsLP(...) J‘—[updatePermissionsLP(...)]

Figure 5.2. Methods calling flow of the application installation

1. The PackageManagerService gets a request of installing an application from
the user.

2. The PackageManagerService creates an instance of the Package to store all
data read from the new application. The package parsing is taken care of
by PackageParser including extracting the source code of the application as
well as parsing the configuration information from the AndroidManifest.xml

36 The Extension design of Android access controls

3. When the PackageParser has been called to parse the Package object, it
extracts information of the AndroidManifest file and stores them to the
corresponding parameters.

4. When the PackageManagerService gains back the populated package in-
stance, the actual installation begins. The installation starts with checking
the disk space which ensures there is enough storage for the application, and
then the package is examined to see whether it is a new one or an update.

5. The PackageManagerService also needs to assess the requested permissions,
and decisions are made by calling the Android permission checks which eval-
uates the permissions according to Android security policies.

6. After being granted with the requested permissions, the executable file is
copied to the system. An instance of DVM is created to host the running
process of this application. Till this point, the installation is finalized.

5.2 WITDOM design

The WITDOM service comprises three main parts: the white list, protection do-
mains and the domain manager. Each component is detailed described below.

5.2.1 Target users

The target users of the WITDOM service are ODMs and phone operators. The
WITDOM service is designed to control the access to security critical functionalities
at the application level that are provided by ODMs and phone operators, thus they
are our target users.

5.2.2 The white List

The white list is used by the system when it needs to decide a specific protection
domain for the installing application. It associates the unique application infor-
mation to protection domains so when we look up the list, we are able to know
which trusted third parties are allowed to be given the access to certain sensitive
functionalities. The unique information of the application we use here is the cer-
tificate. Certificates are chosen for two reasons. Firstly, the certificate contains a
public key that can be used to verify the identity of application authors. Secondly,
it contains the information of the certificate issuer which can be used to verify
those non-self-signed applications.

The white lists are assumed to be managed statically by ODMs, mobile oper-
ators or other security critical functionalities providers. The configuration is done
through the Extensible Markup Language (XML) files that have been placed in a
built-in Android application. The structure of the white list is shown in the figure
5.3.

At the install-time of an application, its protection domain assignment is made
base on the result of the white list lookup. The WITDOM service will first find

5.2 WITDOM design 37

<whitelists>
<whitelist name="0DM WHITELIST">
<owner domain="Original Device Manumfactuorers Domain":>
<certificate>MIIDgICCAPKgAWIBAGIES+BgtzANBgkghkiGIwWOBAQUFADCBIIE. </certificate>
</owner>
</whitelist»

<whitelist name="MNO WHITELIST">
<owner name="Mobile Network Operators Domain">
</owner>
</whitelist>
</whitelists>

Figure 5.3. The configuration file of white lists

its certificate and compare it to the white list. When the corresponding domain
has been found, we assign the application to it. If none protection domain can be
found, our service then extracts its issuer certificate and does the same white lists
lookup. If we still cannot find a protection domain for this application, we assign
it to the untrusted domain which is associated with no permissions.

Please notice that we might end up in domain conflicts since the certificate
of an application can be allowed in several different protection domains. To deal
with this conflict, we combine all found domains together. The merged domain is
associated with permissions from all found protection domains.

5.2.3 The protection domain

A protection domain is associated with a set of permissions which draws the bound-
ary of operations that the application is allowed to perform.

App U1 The application can
num; Paummm only be granted with
' Permission A permissions it asked
Untrusted Third Party Domain Permission B for.
App U2 Ea s No additional
Request: Permission permission from its
ABC domain will be given.

Permission A

App T3 Permission B
ey e vy Trusted Third Party Domain Permission D
ABC Permission C

Permission E

Figure 5.4. Protection domain

One thing we should notice here is the protection domain that we defined for
our WITDOM service is different from the security domains in MIDP. The security

38 The Extension design of Android access controls

domain in MIDP defines that when an application is assigned to a protection do-
main, it automatically gets all permissions associated with the domain. However,
our protection domain does not grant additional permissions than the applications
request for. The associated permissions are only used to evaluate if the application
is requesting any permission beyond its domain.

The WITDOM service works as an alternative way to the signature permis-
sion checks. We made this design choice since we want to change the inflexible
mechanism while at the same time keep the system as original as possible.

We also choose to keep the static permission approach in our design since this
approach is enough to fulfill our requirements. However, our design is open for
extending, the dynamical permission granting will not be difficult to implement if
we find it is needed.

The protection domain is also managed through a XML configuration file, and
an example of its structure is shown in the figure 5.5.

<domains>
<domain name = "Untrusted Third Party Domain">
</domain>
<domain name = "Trosted Third Party Domain">

cpermission>Manifest.permi=sion. INTERNET</permis=sion>
<permission>Manifest.permission.CALL_PHONE(ipermission>
</domain>
<domain name = "Original Device Manmnmfacturers Domain">
<permission>Manifest.permission.SEND_ﬁMS(!permission>
<permission>Manifest.permission.CALQ_PHONE(ipermission>
<permission>Manifest.permission.RECEIUE_ﬁMS(!perEiSSiGn>

</domain>
<domain name = "Mobkile Network Operators Domain">
<permissiony</permission>»
</domain>
</domains>

Figure 5.5. The configuration file of protection domains

5.2.4 The domain manager

The domain manager handles logics of protection domain binding and the permis-
sion evaluation. Instead of talking to domain or white list directly,
PackageManagerService delegates the application to the domain manager. The
Domain Manager mediates the collaborations between the Whitelist and Domains.
In addtion, the initialization of the white list and protection domain is also handled
by the Domain Manager.

At the time that the phone boots completed, the configuration data is sent to
the Domain Manager. The Domain Manager is woken up at this point. It starts to
initialize white lists and protection domain and then gets into the standby mode
when the initialization is finished.

5.2 WITDOM design 39

At the applications’ install-time, the Domain Manager finds out and assigns the
installing application to a specific protection domain by looking up its certificate
in the white list.

At the time for evaluating the requested permissions, the Domain Manager
checks the requested permissions of the installing application against its protection
domain permissions. The access rights are granted if the requested permissions is
a subset of domain permissions, otherwise, the access is denied.

5.2.5 The service hook in Voice Dialer

The two configuration files for the white list and protection domain are placed
in the resource folder of a built-in Android application: Voice Dialer.The parsing
of data is handled by a internal XML parser called Xmlpullparser provided by
Android.

Voice Dialer is the application that is activated at phone startup time. It has
registered to receive the boots complete broadcast so that it knows when to lauch.
In order to make sure that on application can bypass our WITDOM security checks,
we need to wake up our service at the same time so we place a service hook in
this application. The modified Voice Dialer will not only start its own service but
also wake up the Domain Manager for us when it is notified the phone’s booting
process is finished.

Chapter 6

Implementations and
testings

In this chapter, we look at the WITDOM from the code point of view. The classes
design is explained with the help of the class diagram. The work flow is then
illustrated by using a sequence diagram. We will see the implementation details of
each WITDOM components and how they are functioning as a system. The second
part of this chapter is the discussion on the results from the tests that have been
performed on the WITDOM service.

6.1 WITDOM implementation

We have provided our service interface via the Android Interface Definition Lan-
guage (AIDL) to enable the communication between the class: SendConfigData
and the DomainManager. This is done by registering our service into the service
manager.

In the description of the WITDOM design, we have already introduced the
three key components. The DomainManager resides at server side, handling the
domain assignment for all packages and evaluating the requested permissions at
installation time. The Protection Domian and White list store security policies
for the DomainManager to consult and they are configurable through XML files.
The service hook: SendWitdomService is placed in a built-in Android application:
Voice Dialer, taking care of parsing and sending the configuration data to the
DomainManager.

6.1.1 The development environment

The implementation is made on the open master of Android source, and the version
number is Android 3.2. Our WITDOM solution extends the framework of Android,
which is written in Java. Hence we naturally choose Java for our implementation.

41

42 Implementations and testings

6.1.2 The Class diagram

The figure6.1 illustrates how those classes interact and collaborate with each other.

Domain
-mParmissions
-miame
+clons()
+getNamef()
+setName()
DomainManager +gatPermissions()
+addPermission()
+HashMap<WhiteList> +removePermission()
PackageManagerService +HashMap=<Domian>
+mSell
+mDomainManager -DomainManager()
+getinstance()
+installPackageLi() +H$‘QHAP§mQﬂm$\ﬂ(J
+evaluateDomian(-
+convertSigtoCert() WhiteList
+readWhiteListXmi()
+readDomainXmi() :\gx‘;z'r-‘le""y
+addCertificate()
+removeCertificata()
+HookupCertificates()
+lookupPublicKeys()

Android Service

Voice Dialer

SendWitdomService

+mDomianManager

+onCreate()
+readWhitelistsFromXmi()
+raadDoaminsFromXmi()

Figure 6.1. WITDOM class diagram

6.1 WITDOM implementation 43

6.1.3 The sequence diagram

The sequence diagram below depicts the domain assignment mechanism; it shows
how control flows from module to module when a new package is binding to a
specific domain.

Pacl Mana .
ervice SendWitdomService DomainManager WhiteList Domain
[
[
1. Parse data		

L
| [| |
| 2. Send Config data J-I |
| 3. initiate white list, add entry |
| |
| I 4. Return white lists |
M I . : 1
| 5. initiate dl:tmI in, add entry
|
| —
7. Install Zi package 6. Return |dnma|ns
T
I ———— |
8. extract the package’s cerlificate
I |
: 9. look up Pkg's ceritificate
I
I 10. return its domain name
11: Bind pacnge o domain |
12. permission checks :
y
13. Evaluate its reqdesled permissions

- ——

T
| i | i
| | |

Figure 6.2. WITDOM sequence diagram

44

Implementations and testings

At the phone startup time

1.

SendWitdomService parses the configuration data of white lists and domains
from a XML interface.

. SendWitdomService gets the instance of Domain Manager, and send the

parsed data to it.

Upon receiving the data of the white list, we store them in form of Whitelist
object which we have defined beforehand.

DomainManager adds the new Whitelist to the white lists pool.

. Upon receiving the data of domains, we store them in form of Domain object

which we have defined beforehand.

DomainManager adds the new Domain to the domains pool.

At the application install-time

1.
2.

We get an application installation request from the user.
The certification information is extracted from the package.

DomainManager searches through the white list pool and determine which
domain the package belongs to.

Get the name of the corresponding domain.
DomainManager binds the package to the domain we have found.

PackageManager continues with other installation steps as well as checks the
requested permission.

6.1 WITDOM implementation 45

6.1.4 Implementations of classes
Domain Manager

DomainManager handles the logics of domain assignment and evaluation.

Domain Assignment When a package asks for installation, DomainManager
determines a specific domain for the package by checking up its certificate. The
certificate is compared to the white list. Despite the case that the certificate is
found belong to a particular domain, there are two other possibilities we need to
take into consider.

e When the certificate is not found in the white list, we bind the package to
Untrusted Third Party Domain (UTPD).

e When the certificate is found belong to more than one domain, we create a
new domain which is the union of all found domains.

Domain evaluations Domain evaluation takes places at the permission checks
and it applies only to Signature permissions. In another word, other types of
permissions won’t be affected and are taken care by the regular Android permission
checks. At the permission check point, if a signature permission fails the standard
checks, we evaluate it against its domain permissions. Regrant the permission to
the package when it passed the doamin checks.

] Domain Manager \

Variables Description

mWhitelists A white list pool which stores all white lists configured
in the XML file at client app.

mDomains A domain pool which stores all domains defined in the
XML file at client app.

Methods Description

assignApptoDomain | It binds a given package to a specific domain by com-
paring the certificate it contains to the white list.
evaluateDomain It checks if a package belongs to a domain, and returns
a boolean value.

convertSigtoCert | It retrieves the certificate from the signature of package.

initWhitelist It receives white list data sent from the client side and
stores it to mWhitelists.
initDomain It receives the domain information sent from client side

and stores it to mDomains.

Table 6.1. Domain Manager

46

Implementations and testings

Domains

Domain is the object class that defines the elements it consists of as well as the

configuration methods.

’ Domain ‘

Variables Description

mName It is the name of domain.

mPermissions They are permissions that the domain is associated with.

Methods Description

addPermission It adds a permission to the domain.

removePermission | It removes a permission from the domain.

getPermissions It returns all the permissions that are bound to this
domain.

comparePermission | It checks if the provided permission can be found in the
domain permission list.

White lists

Table 6.2. Domain

White list is also an object class. Similar to Domain, it includes several attributes
which are specified by member parameters and a few configuration methods.

White list
Variables Description
mName It is the name of white list.
mCertificates They are certificates that the domain has.
Methods Description
addCertificate It adds a certificate to the white list.
removeCertificate | It removes a certificate from the white list.
lookupCertificate | It searches through the certificate list of the white list,
if the given certificate can be found, return true, else
otherwise.

Table 6.3. White list

6.1 WITDOM implementation 47

SendWitdomService

SendWitdomService. java, as one of the core parts of our WITDOM service, is
placed at the client side. It takes care of for parsing and sending the domain
and white lists data. It has been added to one of the start-up applications, Voice
Dailer. This choice is made due to the following considerations.

e We need to instantiate the domain and white list at the booting time. With
registering for receiving the broadcast of boots complete, our service is au-
tomatically activated when the phone is finished with booting.

e All the operations should be done in the background, and it is not necessary
to interact with the user, therefore, we think to extend the service class is
more appropriate than subclassing the Android activity, though choosing
either of them can fulfill our needs.

SendWitdomService

Methods

Description

onCreate It overrides unimplemented methods since this class
extends the Android activity. It defines the behavior
of this class when it is initialized. In our case, we
call two methods: readWhitelistFromXml and read-
DomainFromXml to extract the data from configu-
ration file.

readWhitelistFromXml | It parses whitelist.xml and send it to
DomainManager.

readDomainFromXml It parses domain.xml and send it to DomainManager.

Table 6.4. Send Configuration data

48 Implementations and testings

6.2 The WITDOM testing

In order to ensure that our implementation can fulfill the requirements have been
identified, we performed a set of tests on our implementation. The primary test
approaches we have adopted for our implementation are the unit test and the
system testing.

To assist developers testing their applications, Android provides a couple of
useful development tools. They have been also used in our implementation and
testing. For more information on the Android development tools, please refer to
the appendix A.

6.2.1 The unit testing

The unit test is often used to verify each building block of code functions as it is
supposed to be. We have performed unit tests on all WITDOM components, and
the result shows that our implementation functions correctly.

6.2.2 The system testing

In addition to unit tests, we run the system test to verify that our implementation
can be well integrated into the original Android platform and work correctly. The
system test helps us verify the collaborations between components. To test the
WITDOM service, we choose two sample applications and set the pre-condition for
them. We assign them to different white lists and see how their permissions are
finally granted.

We have run tests on signature permissions of the sample application and the
result shows that WITDOM service can provide an effective way to deal with the
inflexibility of signature permissions, which is in line with our goals. Screenshots
from our testing results are shown below. Figure 6.3 shows the initiliazation of
domains and white lists at the boot-time. Figure 6.4 shows requested permissions
of an exmaple application are granted or denied accordingly by checking them
against the WITDOM policy.

6.2.3 The compatibility test suite

The Compatibility test suite (CTS) is provided by Google and used to test the
backwards compatibility of the modified Android platform. The backward com-
patibility is mentioned as a requirement when we had a discussion with ODMs.
But our WITDOM service cannot pass the test at this point. This is the only re-
quirement that we cannot fulfill so far. To enable the communication between the
system service and the Android application, we have added our own interfaces and
modified the system service which violate the backwards compatibility. However,
we will keep investigating on this and find a way to solve the problem.

In general, we are satisfied with the testing results. We have realized all functional
requirements and we also see a few things we could work on and they are described
in the chapter 7.

6.2 The WITDOM testing 49

10-16 09:55:39.432: DEBUG/SendWitdomService (296): service being started...

10-16 09:55:39.432: DEBUG/SendWitdomService(296): sendConfigData(): get R.xml resource
10-16 09:55:39.462: DEBUG/SendWitdomService (296): sendConfigData(): get parser

10-16 09:55:39.472: DEBUG/SendWitdomService (296): name: LPD WHITELIST

10-16 : DEBUG/SendWitdomService (296): owner: Least Privilege Domain

10-16 09:55:39.472: DEBUG/DomainManager (68): initWhiteList: LPD WHITELIST

10-16 09:55:39.502: DEBUG/SendWitdomService (296): name: ODM WHITELIST

10-16 09:55:39.502: DEBUG/SendWitdomService(296): owner: Original Device Manufacturers Domain
10-16 09:55:39.512: DEBUG/DomainManager (68): initWhiteList: ODM WHITELIST

10-16 09:55:39.532: DEBUG/SendWitdomService(296): name: MNO WHITELIST

10-16 09:55:39.532: DEBUG/SendWitdomService (296): owner: Mobile Network Operators Domain
10-16 09:55:39.542: DEBUG/DomainManager (68): initWhiteList: MNG WHITELIST

10-16 09:55:39.552: DEBUG/SendWitdomService(296): name: TTP_WHITELIST

10-16 09:55:39.552: DEBUG/SendWitdomService(296): owner: Trusted Third Party Domain
10-16 09:55:39.552: DEBUG/DomainManager (68): initWhiteList: TTP_WHITELIST

10-16 09:55:39.582: DEBUG/SendWitdomService(296): finished with sending whitelist data

10-16 09:55:39.582: DEBUG/SendWitdomService(296): sendConfigData(): get R.xml resource

10-16 09:55:39.582: DEBUG/SendWitdomService (296): sendConfigData(): get parser

10-16 09:55:39.592: DEBUG/DomainManager (68): initDomain: Untrusted Third Party Domain

10-16 09:55:39.592: DEBUG/DomainManager (68): initDomain: Least Privilege Domain

10-16 09:55:39.602: DEBUG/SendWitdomService (296): name: Trusted Third Party Domain

10-16 09:55:39.642: DEBUG/DomainManager (68): initDomain: Criginal Device Manufacturers Domain

10-16 09:55:39.662: DEBUG/DomainManager (68): initDomain: Mobile Network Operators Domain
10-16 09:55:39.662: DEBUG/SendWitdomService (296): finished sending domains xml data

Figure 6.3. Initialization of WITDOM

10-16 10:36:38.973: INFO/WhiteList: Certificate(68): The certificate is found in ODM_WHITELIST
10-16 10:36:38.973: INFO/WhiteList: Certificate (68): The certificate is found in TTP_WHITELIST
10-16 10:36:38.983: DEBUG/DomainManager (68): Merged domain: 0:MergedDomain:net.jimblackler.newswidget has been

successfully added to mDomains

10-16 10:36:38.983: INFO/PackageManager (68): net.jimblackler.newswidget is assigned to:
O:MergedDomain:net.jimblackler.newswidget

10-16 10:36:40.023: DEBUG/PackageManager (68): New package installed in /data/app/net.jimblackler.newswidget-1.apk
10-16 10:36:40.033: DEBUG/PackageManager (68): WITDOM is activated. Perm = android.permission.INTERNET;Domain =
0:MergedDomain:net.jimblackler.newswidget from package: net.jimblackler.newswidget

10-16 10:36:40.033: DEBUG/DomainManager (68): checkDomainPermission, domain =
0:MergedDomain:net.jimblackler.newsawidget

10-16 10:36:40.043: DEBUG/PackageManager (68):! android.permizsion.INTERNET i= denied by itz domain

10-16 10:36:40.043: WARN/PackageManager (68): Not granting permission android.permission.INTERNET to package
net.jimblackler.newswidget (protectionLevel=1 flags=0xbe44

10-16 10:36:40.043: DEBUG/PackageManager (68): WITDOM is activated. Perm =
android.permission.WRITE EXTERNAL STORAGE: Domain = 0:MergedDomain:net.jimblackler.newswidget from package:
net.jimblackler.newswidget

10-16 10:36:40.043: DEBUG/DomainManager (68): checkDomainPermission, domain =
0:MergedDomain:net.jimblackler.newswidget

10-16 10:36:40.053: DEBUG/PackageManager (68): android.permission.WRITE_EXTERNAL STCRAGE is denied by its domain
10-16 10:36:40.053: WARN/PackageManager (68): Not granting permission android.permission.WRITE_EXTERNAL STCRAGE to
package net.jimblackler.newswidget (protectionLevel=1 flags=0xbed4

10-16 10:36:40.053: DEBUG/PackageManager (68): WITDOM is activated. Perm = android.permission.READ PHONE_STATE;
Domain = 0:MergedDomain:net.jimblackler.newswidget from package: net.jimblackler.newswidget

10-16 10:36:40.053: DEBUG/DomainManager (68): checkDomainPermission, domain =
0:MergedDomain:net.jinblackler.newswidget

10-16 10:36:40.053: DEBUG/PackageManager (68): android.permission.READ PHONE_STATE is denied by its domain
10-16 10:36:40.053: WARN/PackageManager (68): Not granting permission android.permission.READ PHONE STATE to
package net.jimblackler.newswidget (protectionLevel=1 flags=0xbe44

Figure 6.4. Testing WITDOM on the example application

Chapter 7

Conclusions

This chapter states the experience we learned throughout the processes of the
thesis work, both positive and negative. They are shown at a phase basis. Other
than that, we perform an evaluation on the result to see to what extend our
solution can fulfill the requirements. In the end, we go through our solution again
and explore the possibility for our future work.

7.1 Discussions

We have discovered the Android platform developers mixed up the concepts of
signatures and certificates when studying the source code. For more information,
please see the appendix B.

The general impressions that we get from Android are:

e The Android OS has a huge code base. It includes hundreds of classes, many
having up to 10,000 lines of code. To find the right point to start with is not
an easy task as most of the internal code is not well documented. Thus, a
lot of efforts has been put in order to understand the code.

e The security in Android is ill-patched work. The code for the access control
is spread out into the Android source code. It is really difficult to get an
overview of the Android security.

We have encountered some problems when we need to give an appropriate
solution to the requirements. We are facing very specific requirements and there
is almost no previous experience that we can relate to. By looking into the access
control model in other mobile platforms, the protection domain in MIDP has come
into our sight. Getting an insight of protection domains, we think this could be a
suitable solution for our problems.

At the stage of the design, there is less problems came out. We think this is due
to we have well defined requirements and a approved solution. Our understanding
of the existing Android access controls allows us to easily find a point to start

51

52 Conclusions

with. Some minor changes are made to the initial design when we come into the
implementation details. But for the main ideas, they stay the same.

The result of our thesis shows that our WITDOM service complements the
existing security mechanism in Android and is able to provide a more flexible way
when dealing with the functionalities protected by signature permissions. We see
our WITDOM service can fullfil our requirements except for the requirement on
backwards compatibility. In general, we are satisfied with the result. However,
we also see some improvements we could make in the future. We start with the
limitations.

7.2 Limitations

In our WITDOM service, we keep using the static permission approach from An-
droid. Applications are assigned to protection domains when they are installed.
Decisions for whether or not granting certain requested permissions are also made
at the install-time. We also see the solution to enable the dynamic access control
in the beginning, but we still stick to the static approach for two reasons. One is
the static permissions keeps the access control mechanism simple. As the Android
platform is used in resource-restricted devices, we don’t want to introduce compli-
cated mechanism to the system. This is also consistent with Google’s philosophy
for the Android development. The second reason is the changes that we can make
on the static permission granting approach are enough to suit our requirements.
Therefore, we don’t need a dynamic permission approach for our case.

At this point, our WITDOM service handles all permission in the background.
To trace whether the requested permissions are granted or denied are only available
in the system log and they are not visible in the user interface.

The configuration interfaces we have exposed to ODMs and phone manufac-
turers are placed in a built-in native Android application. They need to share
the application with other parts of functionalities. Concerning on the important
information those two configuration files contain, better protections for them are
expected. Hence, it is necessary to improve this part.

As we have mentioned in the testing section 6.2.3, the WITDOM service a prob-
lem to pass CTS !, which is used to validate the modified system stay backwards
compatible. However, that is the only requirement we cannot fulfill by now and
we need more time on investigating the problem.

7.3 Future works

From the limitations that we have identified, we think the following parts worthy
working on in the future.

e In terms of providing better user experiences, a user interface which lets the
phone users to keep track of the granted permissions could be provided.

LCompatibility Test Suite

7.3 Future works 53

e To protect the configuration data from being potentially hacked, an dedi-
cated Android application for handling the configuration data needs to be
developed.

e The backwards compatibility is another part we want to work on. More
investigations on this are required and a solution should be given.

Bibliography

[1]

2]

Ross Anderson. Security Engineering - A Guide to Building Dependable
Distributed Systems. Wiley, 2 edition, January 2001.

D. Elliott Bell and Leonard J. LaPaluda. Secure computer systems: Mathe-
matical foundations. Technical Report ESD-TR-278 vol. 1, The Mitre Corp.,
Bedford, MA, 1973.

Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: context-
related policy enforcement for android. In Proceedings of the 13th inter-
national conference on Information security, ISC’10, pages 331-345, Berlin,
Heidelberg, 2011. Springer-Verlag.

epfl sync. Scala toolchain for eclipse.
http://developer.android.com/guide/index.html, June 2010.

David Ferraiolo and Richard Kuhn. Role Based Access Control. In Proceed-
ings of the 15th NIST-NCSC National Computer Security Conference, pages
554-563, Baltimore, Maryland, USA, October 1992. NIST.

Simon Godik and Tim Moses. eXtensible Access Control Markup Lan-
guage (XACML). Standard, Organization for the Advancement of Struc-
tured Information Standards (OASIS), February 2003. http://www.oasis-
open.org/committees/xacml.

Google. Android market. http://market.android.com, July 2011.

Google. Android security and permissions.
http://developer.android.com/guide/topics/security /security.html, July
2011.

Google. The developer’s guide. http://www.assembla.com/code/scala-
eclipse-toolchain /git /nodes/docs/android-examples/android-
sdk/Wiktionary/AndroidManifest.xml?rev={2fdb3144d0225487cafc7d628adf
64889772db4, July 2011.

Butler Lampson. Protection. In Proceedings of the 5th Princeton Conference
on Information Sciences and Systems, Princeton, 1971. Reprinted in ACM
Operating Systems Rev., volume 8, 1, pages 18-24, 1974.

%)

56

Bibliography

[11]

[15]

[16]

[17]

18]

Matt Welsh Matthias Kalle Dalheimer. Running Linux, Fifth Edition.
O’Reilly Media, 2 edition, December 2005. Print ISBN:978-0-596-00760-7
ISBN 10:0-596-00760-4.

Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending
android permission model and enforcement with user-defined runtime con-
straints. In Proceedings of the 5th ACM Symposium on Information, Com-
puter and Communications Security, ASTACCS ’10, pages 328-332, New
York, NY, USA, 2010. ACM.

BBC News. Android hit by rogue app malware.
http://www.bbc.co.uk/news/technology-12633923, March 2011.

Machigar Ongtang, Stephen Mclaughlin, William Enck, and Patrick Mc-
daniel. Semantically rich application-centric security in android. In Annual
Computer Security Applications Conference, ASTACCS 10, 2009.

Oracle. Mobile information device profile (midp); jsr 118.
http://www.oracle.com/technetwork/java/index-jsp-138820.html, 2005.

Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based
access control to enforce mandatory and discretionary access control policies.
ACM Trans. Inf. Syst. Secur., 3:85-106, May 2000.

Don Reisinger. Gartner: Android leads, windows phone lags in q1.
http://news.cnet.com/8301-135063 — 20064223 — 17.html, May2011.

Pierangela Samarati and Sabrina de Capitani di Vimercati. Access con-
trol: Policies, models, and mechanisms. In FOUNDATIONS OF SECU-
RITY ANALYSIS AND DESIGN (TUTORIAL LECTURES, pages 137-196.
Springer Verlag, 2001.

R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. Computer, 29(2):38 —47, feb 1996.

Tan Shields. Learn linux, 101: Manage file permissions and ownership, Novem-
ber 2010.

C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman. Linux
security modules: general security support for the linux kernel. In Founda-
tions of Intrusion Tolerant Systems, 2003 [Organically Assured and Survivable
Information Systems], pages 213 — 226, 2003.

E. Yuan and J. Tong. Attributed based access control (abac) for web services.
In Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International
Conference on, pages 2 vol. (xxxiii+856), july 2005.

Gaoshou Zhai and Yaodong Li. Analysis and study of security mechanisms in-
side linux kernel. In Security Technology, 2008. SECTECH ’08. International
Conference on, pages 58 —61, December 2008.

Appendix A

Android tools

There are several Android development tools which are useful and they have been
used intensively during our implementation.

A.1 Android Debug Bridge

Android Debug Bridge (ADB) is a command line tool. It can connect and switch
between multiple emulators. We use this tool to install and remove applications.

A.2 Emulator

Emulator simulates Android on Personal Computer (PC) so that developers can
view how their applications behave on real phones.

A.3 Dalvik Debug Monitor Server

Dalvik Debug Monitor Server (DDMS) generates the system and applications logs
when Android is running, as well as profiles the resource occupation during a
given time slot. It also contains detailed information on each running process and
threads.

A.4 Android Interface Definition Language

AIDLs are IDLs in Android enables the IPC, which could bridge the communica-
tion between the client and the service.

o7

Appendix B

A Confusion on Signatures
and Certificates in Android

When studying the code of the Android OS, we have found there is a confusion
between signatures and certificates. Although both of them are concepts from
Public Key Infrastructure (PKI), however, they mean totally different.

The signature is a piece of encrypted information. It is used to validate whether
or not the received content is tampered during the message transmission while the
certificate gives a proof to the user’s identity.

In Android, we have found that certificates are stored in a variable called signa-
ture, which apparently, does not conform to its definition. Signatures are actually
only used when the certificates are loaded. This might lead to misunderstandings
of the code.

Since we need to handle certificates in WITDOM, a function, convertSigtoCert
is created to convert the so-called signature in Android.

58

