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Abstract
Active learning techniques were employed for classification

of dialogue acts over two dialogue corpora, the English human-
human Switchboard corpus and the Spanish human-machine
Dihana corpus. It is shown clearly that active learning improves
on a baseline obtained through a passive learning approach to
tagging the same data sets. An error reduction of 7% was ob-
tained on Switchboard, while a factor 5 reduction in the amount
of labeled data needed for classification was achieved on Dihana.

The passive Support Vector Machine learner used as baseline
in itself significantly improves the state of the art in dialogue act
classification on both corpora. On Switchboard it gives a 31%
error reduction compared to the previously best reported result.

Index Terms: dialogue acts, active learning, SVMs

1. Introduction
The paper describes a study on applying active learning tech-
niques to the task of automatically labelling dialogue acts. A
dialogue act is a semantic unit expressing the communicative in-
tention of a dialogue participant (human or machine). Correctly
classifying the dialogue turns can improve the performance of
dialogue managers, speech recognisers, and other systems. A
range of machine learning approaches have thus been used for
the task; mainly supervised techniques having in common that
they at random select a subset of the unannotated data to query.

In contrast, the present paper investigates the use of active
learning for dialogue act tagging. Active learning is also a super-
vised machine learning technique, but one in which the learner
is in control of the data subset used for learning. That control is
utilized to ask an oracle (e.g., a human with extensive knowledge
of the domain at hand) about the labels of the instances for which
the model learned so far makes the most unreliable predictions.
The active learning process takes as input a set of labeled exam-
ples, as well as a larger set of unlabeled examples, and produces
a classifier and a relatively small set of newly labeled data. The
overall goal is to create as good a classifier as possible, without
having to annotate more data than necessary.

The next section introduces the active learning technique.
Then Section 3 gives a brief overview of the dialogue corpora
employed for the experiments. Section 4 first describes the exper-
imental setup, then shows results from experiments using active
learning and compare them to results reached using a regular
(passive) learning strategy. Finally, in Section 5 conclusions are
drawn and possible future directions suggested.

2. Active Learning
The aim of active learning is to keep the manual annotation effort
at a minimum. Essentially, it is about making use of what is
already known in order to find out what is new and informative.

The learner should only ask the oracle for advice where the
training utility of the result of such a query is high. Active
learning is an iterative process which starts with a small set of
labeled data and a large set of unlabeled data. In each iteration,
a base learner configuration is used to train a classifier on all
the labeled data available. The classifier is then applied to the
unlabeled data, and the most informative instances in that data
are selected and handed over to the oracle for manual annotation.
The manually labeled instances are added to the training data
and the process starts over again, with a slightly larger set of
training data. At some point, the active learning is terminated
and a final classifier is obtained by applying the base learner
configuration to all training data available at that point.

The active learning paradigm can utilize a range of machine
learning strategies for the base learner. When it is necessary
to distinguish between “ordinary” machine learning and active
learning, the former is sometimes referred to as passive learning
or learning by random sampling from the available set of labeled
training data. An active learner is considered superior to its
passive counterpart if it generates a learning curve which is
steeper and dominates (lays above) the learning curve generated
by the passive learner. Theoretically, if the data set is separable,
an active learner would be able to reduce the distance between
the guess and the true threshold at an exponential rate, while a
passive learner only would be able to do it at a linear rate [1]. In
practical applications, and with non-separable data, things are
not as clear, though. It has even been claimed that active learning
is not beneficial at all in dialogue act classification [2]. However,
that hypothesis is clearly falsified by the results below.

The overall properties of active learning have been addressed
by several authors, e.g., [3] and [1]. For a literature survey of
active learning in general see [4], while [5] gives an overview of
its application to language processing. The utility of active learn-
ing for speech processing has been shown by several researchers,
e.g., within the EC/FP6 spoken language understanding project
LUNA (IST 33549) where an active learner only needed 30% of
the annotated data to reach the same performance level as a pas-
sive learner trained on the entire data set [6]. Actual experiments
with active learning helping humans annotate the LUNA corpus
with dialogue act tags using a Conditional Random Fields-based
classifier showed a factor 3 speed-up in the average time to
annotate a dialogue with the support of the classifier [7].

3. Data Sets
In the present experiments to validate the use of active learning
for dialogue act tagging, two annotated dialogue corpora were
used, the English human-human telephone speech Switchboard
corpus and the Spanish human-machine Dihana corpus. Both
these corpora have previously been used for training dialogue
act classifiers, but with passive, supervised learning approaches.
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3.1. The Switchboard corpus

Switchboard [8] is a large multispeaker corpus of conversational
speech over telephone. The conversations are over a wide range
of topics and domains. The corpus contains some 2,500 con-
versations by 500 speakers of American English, with a set of
longer dialogues with more than 1 hour each of speech from 50
of the speakers, and many shorter dialogues of about 5 minutes
each from the others. The recordings are accompanied by a time-
aligned word-by-word transcription. The experiments in this
paper used a subset of the transcribed corpus containing 224,000
utterances from 1,155 of the shorter conversations tagged with
dialogue acts from the SWBD-DAMSL tagset [9]; a subset of the
corpus also used in many previous dialogue act tagging experi-
ments (e.g., [10] and [11]). The original SWBD-DAMSL tagset
contains 226 classes, but these can be clustered into 44 dialogue
act types [9] . The most-frequent label assignment baseline then
is 36% (for the category <STATEMENT-NON-OPINION>).

The label set used (and whether some labels are merged
or ignored) makes it difficult to compare dialogue act tagging
approaches applied to a specific corpus. Previous experiments
on Switchboard have tended to reduce the number of classes by
merging and/or filtering, commonly to 42 classes after merging
the two tags ‘%’ and ‘%-’ (<UNINTERPRETABLE> and <ABAN-
DONED>), and filtering out the ‘+’ (<SEGMENT>) tag [10]. The
segment class makes up about 8% of the corpus and is problem-
atic since it indicates overlapping speech. The tagging accuracy
for it can be as low as 47.66% [11]. Two common approaches
to treating this have been to remove all utterances tagged ‘+’ or
to ignore the tag by merging an utterance tagged ‘+’ with the
preceding utterance by the same speaker; in both cases reducing
the corpus size (to about 205,000 utterances). In contrast, all 44
classes of dialogue acts in the clustered SWBD-DAMSL tagset
were used in the experiments reported in this paper.

3.2. The Dihana corpus

The Dihana corpus [13] consists of spontaneous speech human-
computer (wizard-of-Oz) telephone dialogues in Spanish about
train timetable information and fares. The corpus consists of
900 dialogues with 225 users and about 5.5 hours of user speech,
with a vocabulary of 823 words (48,243 words in total). There
are 9,179 user and 13,829 wizard utterances which have all been
manually annotated with dialogue acts. The dialogue act anno-
tation scheme used for Dihana is based on three levels. Level 1
corresponds to the speaker’s intention (speech act), Level 2 repre-
sents the implicit information referred to in Level 1, and Level 3
contains the specific data provided in the utterance. Using these
levels and distinguishing between user and system labels, there
are 248 different labels (153 for the user, 95 for the system).
Combining only Level 1 and 2, there are 72 labels (45 user, 27
system), and 16 labels (7 user, 9 system) with only Level 1.

4. Active Learning Experiments
Dialogue act classification using active learning was evaluated
over the Switchboard and Dihana corpora, and compared to
passive learning for the same task. The classifiers were imple-
mented in MALLET, a freely available Java library of a range
of machine learning methods.1 MALLET was used for feature
extraction and as framework for running experiments, while the
actual training utilized the open source LIBLINEAR package2

1http://mallet.cs.umass.edu
2http://www.csie.ntu.edu.tw/∼cjlin/liblinear

for which a java wrapper was written. LIBLINEAR is a C++
library for large-scale linear classification which supports logis-
tic regression and linear Support Vector Machines (SVMs). All
learning experiments utilized an L2-regularized linear SVM.

4.1. Training data encoding and selection

Previous approaches to dialogue act tagging have used a range of
features, most commonly lexical ones deduced from the words
of the utterance to classify, and information about the dialogue
context (the preceding and/or succeeding utterances with corre-
sponding dialogue acts). For the present experiments, the fol-
lowing features were used to represent each instance: Word uni-,
bi-, and trigrams of the instance; utterance initial / final word
uni-, bi-, tri- and 4-grams; presence of wh-words (‘what’ | ‘why’
| ‘where’ | ‘which’ | ‘who’ | ‘how’), exclamation marks (‘!’),
or question marks (‘?’). For Switchboard, additional features
were extracted from the transcription to encode the presence of
<info>, <<info>>, +, --, { ... }, and [ ... ] transcription
codes. (Note that it might be difficult to extract these latter fea-
tures automatically in a real system.) Context was modeled by
adding the full set of features of the previous utterances, con-
catenating each feature with the utterance offset, to the current
instance. Since the dialogue acts following the learning instance
are not taken into account, the classification can be done on-the-
fly, so that the classifier would be applicable to run a dialogue
manager in a real-time application setting.

In order to ensure annotation consistency and to allow for
faster experiments, the human oracle was simulated in the active
learning experiments; the unlabeled data was actively selected
from a set of pre-labeled data instead of manually inspected
by a human annotator on-the-fly. Note that this is to the dis-
advantage of the active learning model, since in a larger set
of unlabeled data there can be more informative instances that
might be ignored by selecting from a pre-labeled data set. The
active learning set-ups utilized a [−1, 0] context-window only,
including in the learning process the feature representation of
the current instance and of the instance immediately preceding
it. A single (rather than committee-based) learner was trained
on batches of data: at each iteration a small set of annotated data
instances was added to the training set available to the learner.
The minimal-distance-to-hyperplane heuristic [14] was used to
select the instances to be annotated by the oracle, namely the
instances closest to decision boundaries (i.e., those balancing
between two or more classes).

4.2. Active Learning on Switchboard

Figure 1 shows the results of using active learning on Switch-
board, for the first 20,000 instances (about 10% of the actual
data set of 210,000 dialogue acts). The horizontal line at the
top of the figure indicates the maximum accuracy which can be
obtained using passive learning on the entire corpus. The other
two curves show how the dialogue act tagging results improve
as more annotated training data is added, in the case of active
(upper, dashed curve) and passive learning (lower, filled curve).
The graphs are averages of the values obtained after ten runs over
the data set for each learning strategy (10-fold cross validation).

The batch size in the experiments shown in the graph was
set to 100, that is, at each iteration the training data set available
to the learner was augmented by 100 samples. Thus the active
learning curve in itself consists of 200 learning experiments
making up the samples at different learning points. The amount
of data available to the learner at the start of the first iteration,
the seed size, was also set to 100.



Figure 1: Switchboard learning curves (accuracy vs number of
instances in the training set); maximum obtainable by passive
learning on the entire corpus (horizontal line), active learning
(upper curve), and passive learning (lower curve).

As can be seen in Figure 1, the active learning curve dom-
inates the passive curve throughout; fairly constantly with a
difference of about 2% of accuracy, equivalent to an error re-
duction of around 7% for most of the portion of the curves seen
in the figure (upward from about 4,000 training instances). In
contrast to previous experiments on Switchboard, all 44 dialogue
act classes (i.e., without class merging and/or filtering) have been
used in the experiments reported here.

Notably, the passive learning baseline used here for Switch-
board with just a [−1, 0] context-window (bigram), is above the
state-of-the-art: using only the representation of the previous
utterance as context it reaches a value in these experiments of
76.26% (with a standard deviation of 0.27) on the full 44-class
tagset. This dialogue act tagging accuracy can be improved to
77.85% (±0.26) by adding one more previous utterance to the
context (thus looking at trigrams). The previously best reported
compatible dialogue act classification results on Switchboard
was 65.68%, using a decision tree classifier (J4.8, an implemen-
tation of the C4.5 algorithm) on a 43-class tagset, including the
<SEGMENT> (‘+’) class, but merging the <UNINTERPRETABLE>
and <ABANDONED> classes [11]. With the equivalent setting,
our SVM classifier returned an accuracy of 76.34% (±0.25) on
the [−1, 0] context thus achieving an error reduction of 31.06%.

By removing all the ‘+’ utterances, Verbree et al. (2006)
increased the overall accuracy to 70.26% [11]. For this 42-
class case the SVM classifier gave a 76.50% (±0.17) average
accuracy, with a [−2, 0] context. Previously, a 3-gram model
has been used to achieve 71.0% accuracy, but also after remov-
ing all the problematic ‘+’ utterances [10]. This has later been
improved to 80.72% accuracy, but then by merging the state-
ment classes <STATEMENT-OPINION> and <STATEMENT-NON-
OPINION> (raising the most-frequent label baseline), and in-
cluding the ‘+’ utterances but merging them with the previous
utterance by the same speaker, ignoring the ‘+’ class itself [12].

4.3. Active Learning on Dihana

Applying the same technique to the Dihana corpus, Figure 2
also shows three graphs: one for passive learning (filled), one
for active learning (dashed), and one at the top of the figure
indicating the maximum accuracy which can be obtained when
applying passive learning to the entire corpus. Since the Dihana

Figure 2: Dihana learning curves; maximum (horizontal line),
active learning (upper curve), and passive learning (lower).

corpus is smaller than Switchboard, the graphs here show almost
the entire data set (20,000 of the 23,000 utterances). Just as in
the Switchboard case, the seed size on the Dihana corpus was set
to 100. However, since the Dihana corpus is much smaller than
Switchboard, the batch size was set to 50 (rather than 100). The
active learning curve thus shows the results of 400 iterations.

Again active learning clearly out-performs the passive case:
already after having used about 20% of the data (4,000 instances),
the active learner has reached the maximum level obtained by
the passive learner on the entire corpus, achieving a factor 5
reduction in the amount of labelled data needed for the classifi-
cation; improving on a factor 4 reduction quoted previously [15].
There is a slight indication that the active learner peaks at a level
a bit higher than the passive case, but then falls back in line with
it. This is consistent with previous results that an SVM trained
on a well-chosen (by active learning) subset of the data often
performs better than one trained on the entire corpus [14].

The fact that Dihana is human-machine dialogue (while
Switchboard is human-human) explains why dialogue act classi-
fication based on the previous dialogue act is more successful for
Dihana. Both since the Dihana dialogues are more deterministic,
and since a machine (or a human ‘wizard’ imitating machine
behaviour) generates fairly similar text for the same dialogue
act, while humans generate sparser data. In general, dialogue act
classification on the Dihana corpus is a much easier task than
classification on Switchboard. Recall that the Dihana tags are
representing three different levels of information. Classifying
the utterances using tags from the first two levels with a con-
text of only the previous utterance, the passive learner baseline
reaches a 91.61% accuracy (±0.60), while extending the context
to [−3, 0] increases accuracy to 94.08% (±0.36). For Level 3
this context gives 90.97% (±0.60) 10-fold average accuracy.
Just like in the Switchboard case, the passive learning baseline
for Dihana is highly competitive as compared to the state-of-the-
art. The previous best dialogue act tagging results on this corpus
used trigram HMMs to reach 93.4% accuracy on Level 2 labels
and 89.7% on Level 3 (with 5-fold cross-validation) [16].

4.4. Batch vs instance-based learning

As noted above, the active learning experiments reported in this
paper were run over batches of data, rather than single instances.
That is, rather than just adding a single new instance to the
training set available to the learner at each iteration, a small set



(a batch) of annotated data instances was added. For the smaller
Dihana corpus the batch size was set to 50, while it was set to
100 for Switchboard. These batch-sizes seemed fairly good for
both corpora, even though experiments with larger batch sizes
(up to 1000 instances) were also run.

Batch-based learning has the effect of speeding up the train-
ing process, since fewer iterations are needed. However, it also
can produce sub-optimal classifiers, since it is never entirely
clear how a whole batch of new instances shall be optimally
selected (in particular without interfering with each other). The
peak value of 76.26% for Switchboard is for a batch-based run
over the data set; however, an instance-based run over the data
indicates that even higher accuracy can be reached with this
strategy, peaking at 76.50% (with 10-fold cross-validation).

4.5. Structured vs unstructured learning

The dialogue act classification experiments used Support Vector
Machines as the underlying strategy. However, active learning
as an approach is in itself fairly independent of the machine
learning algorithm used for the learning, and it would be inter-
esting to see whether using structured prediction models would
improve the results, in particular on the more deterministic Di-
hana corpus. A small experiment with a structured perceptron
on part of the Dihana corpus indicated that a structured model
would give better results on that corpus than those obtained by an
unstructured model (95.6% vs. 94.1% mean accuracy and 51.0%
vs. 34.0% mean exact match, wrt. 10-fold cross validation).
However, similar experiments on Switchboard showed no clear
benefit. This is in line with previous work on comparing regular
and structural SVM on two corpora (Loqui and Enron) which
has showed that the structural SVM can give some improvement
over the regular SVM, but that this is corpus dependent [17].

5. Conclusions and future work
The paper has evaluated the use of active learning for dialogue
act classification over two corpora and compared it to passive
learning. The passive learning baseline used here in itself sig-
nificantly improve the current state of the art in dialogue act
classification on Switchboard: the passive Support Vector Ma-
chine learner reaches a peak value of 77.85% average accuracy
(10-fold cross-validated), while the best reported, compatible
result on Switchboard was 65.68% [11]. Still, Figures 1 and 2
show clearly that the active learning case further improves on the
passive one. For the Switchboard corpus, the active learner was
consistently about 2% better than the passive, giving an error
reduction of around 7%; while for the Dihana corpus the active
learner only needed about 20% of the available data to reach the
maximum level obtained by the passive learner when trained on
the entire corpus, thus achieving a factor of 5 reduction in the
amount of manually labeled data needed for the classification.

This was achieved even though the hyper-parameters of the
learning algorithm were not optimized. A possible candidate
for optimisation is the SVM cost parameter, c, which controls
the trade off between training errors and model complexity; it
creates a soft margin allowing for some classifications errors.
The lower the cost of misclassifications, the more flexible and
general the model, and faster the training, but with more training
errors. Contrastively, larger c values make the classifier more
rigid and similar to a hard-margin SVM, and the training slower.
Initial experiments both on Switchboard and Dihana indicate that
the results can be improved by optimizing it; lower c values do
not only lead to faster training, but also to better classification.
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