
A GPU-Enabled Solver for Time-Constrained
Linear Sum Assignment Problems

Roberto Roverso ∗†, Amgad Naiem∗‡, Mohammed El-Beltagy∗‡, Sameh El-Ansary∗§ and Seif Haridi†
∗Peerialism Inc., Sweden

†KTH-Royal Institute of Technology, Sweden
‡Cairo University, Egypt
‡Nile University, Egypt

{roberto,amgad,mohammed,sameh}@peerialism.com haridi@kth.se

Abstract—This paper deals with solving large instances of
the Linear Sum Assignment Problems (LSAPs) under real-
time constraints, using Graphical Processing Units (GPUs). The
motivating scenario is an industrial application for P2P live
streaming that is moderated by a central tracker that is pe-
riodically solving LSAP instances to optimize the connectivity of
thousands of peers. However, our findings are generic enough to
be applied in other contexts. Our main contribution is a parallel
version of a heuristic algorithm called Deep Greedy Switching
(DGS) on GPUs using the CUDA programming language. DGS
sacrifices absolute optimality in favor of a substantial speedup
in comparison to classical LSAP solvers like the Hungarian
and auctioning methods. We show the modifications needed to
parallelize the DGS algorithm and the performance gains of our
approach compared to a sequential CPU-based implementation
of DGS and a mixed CPU/GPU–based implementation of it.

I. INTRODUCTION

In order to deal with hard combinatorial optimization prob-

lems in a time-constrained environments where the time to

compute a solution is bounded by the characteristics of the

system, it is often necessary to sacrifice optimality in order to

meet the imposed deadlines.

In our experience, we have dealt with a large scale peer-

to-peer live-streaming platform where the task of assigning

n senders to n receivers is carried out by a centralized

optimization engine. The problem of assigning peers to one-

another is modeled as a linear sum assignment problems
(LSAP). However, due to the scale of the p2p system, the

computational overhead of minimizing the cost of assigning

n jobs (receivers) to n agents (senders) is usually quite high

because of the size of the problem i.e. the number peers in the

system. We have seen our implementation of classical LSAP

solvers take several hours to provide an optimal solution to a

problem of this magnitude.

In the context of our live streaming application we could

afford only a few seconds for the optimization process to

terminate. It was also of great importance for us not to sacrifice

optimality too much in the pursuit of a viable and timely

solution to our problem.

We therefore resorted to design a fast heuristic near-optimal

solver for LSAP which is also amenable to parallelization in

such a way that can make use of the massive computational

potential of modern Graphic Processing Units.

After a number of iterations and structured evaluation of

different ideas for a heuristic optimizer, we found a simple and

effective heuristic which we called Deep Greedy Switching [1]

(DGS). It was shown to work extremely well on the instances

of LSAP we were interested in, and we never observed it

deviate from the optimal solution by more than 0.6%, (c.f. [1,

p. 5]). Seeing that DGS has great parallelization potential, we

modified and adapted it to be run on any parallel architecture

and consequently also on GPUs.

In this work, we chose the CUDA [2] as a GPU pro-

gramming language to implement the solver. CUDA is a

sufficiently general C-like language which allows for execution

of any kind of user-defined algorithms on the highly parallel

architecture of NVIDIA GPUs.

GPU programming has become increasingly popular in the

scientific community during the last few years. However, the

task of developing whatsoever mathematical process in a GPU-

specific language still involves a fair amount of effort in

understanding the hardware architecture of the target platform.

CUDA is no exception, one must still understand the basics

of the functioning of NVIDIA GPUs and be acquainted with

a number of best practices to be able to achieve best per-

formance. Considered that, in this paper we’ll provide a short

introduction to CUDA in Section II, for a better understanding

of its advantages, best practices and limitations, which will

later justify our design choices in Section V. We will then

describe the DGS heuristic in Section III and the result of

adapting the algorithm to be run on GPUs compared to other

implementations of the same DGS in Section VI.

II. GPUS AND THE CUDA LANGUAGE

Graphical Processing Units are mainly accelerators for

graphical applications, such as games and 3D modeling soft-

ware, which make use of the OpenGL and DirectX program-

ming interfaces. Given the parallel nature of those applica-

tions, GPUs have hence been architected as massive parallel

machines. In the last years however, GPUs have stopped being

exclusively fixed-function devices to become flexible parallel

processors accessible through programming languages [2][3].

In fact, modern GPUs as NVIDIA Tesla [4] and GTX are fun-

damentally fully programmable many-core chips, each one of

them having a large number of parallel processors. Multicore

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

chips are called Streaming Multiprocessors (SMs) and their

number can vary from one, for low-end GPUs, to as many as

thirty. A single SM contains in turn 8 scalar Scalar Processors

(SPs), each equipped with a set of registers, and 16KB on-chip

memory called Shared Memory. The latter memory has very

low access latency, high bandwidth and, if used in the right

fashion, can provide substantial performance gains compared

to off-chip memory, called Global Memory. Global Memory is

usually of the DDR3 or DDR5 type and it is fully addressable

by each SP. Off-chip memory is much slower compared to

Shared Memory but much more abundant.

We chose CUDA as GPU Computing language for imple-

menting our solver because it best accomplishes a trade-off

between ease-of-use and required knowledge of the hardware

platform’s architecture. Other GPU specific languages, such

as AMD’s Stream [5] and Kronos’ OpenCL standard [3] look

promising but fall short of CUDA either for the lack of support

and documentation or for the quality of the development

platform in terms of stability of the provided tools, such as

compilers and debuggers.

To ease the task of implementing parallel algorithms, CUDA

provides a sufficient degree of abstraction from the GPU

architecture. Yet, one must still understand the basics of the

functioning of NVIDIA GPUs to be able to fully utilize the

power of the language. The CUDA programming imposes

that the application to be organized in a sequential part
running on a host, usually the machine’s CPU, and parallel

parts called kernels that execute code on a parallel device,

i.e. the GPU(s). Kernels are blocks of instructions which are

executed across a number of parallel threads. Those threads

are logically organized by CUDA in a grid whose sub-parts

are the thread blocks. A thread block is a set of threads

which can synchronize themselves across the thread block

exclusively using barrier synchronization. Every block can

access an amount of Shared Memory which is exclusive

for its group of threads. The number of blocks and the

number of threads for each block are specified when launching

the kernel. The blocks are therefore a way for CUDA to

abstract the physical architecture of Scalar Multiprocessors

and Processor away from the programmer. Management of

Global and Shared Memory must be enforced explicitly by the

programmer through primitives provided by CUDA. Although

Global memory is sufficient to run any CUDA program, it is

advisable to use Shared Memory in order to obtain efficient

cooperation and communication between threads in a block. It

is particularly advantageous to let threads in a block load data

from global memory to shared on-chip memory, execute the

the kernel instructions and later copy the result back in global

memory.

III. DGS HEURISTIC

In this paper we are interested in considering the classical

assignment problem of finding the optimal assignment of n
agents to n jobs, where there is a certain benefit aij given when

assigning agent i to job j. The optimal assignment of agents

to jobs is the one that yields the maximum total benefit given

that each agent can only be assigned to only one job and same

for each job. The assignment problem is formally described

as an Integer Linear Programming Problem as follows

max
n∑

i=1

n∑

j=1

aijxij

n∑

i=1

xij = 1 ∀j ∈ {1 . . . n}

n∑

j=1

xij = 1 ∀i ∈ {1 . . . n}

xij ∈ {0, 1} ∀i, j ∈ {1 . . . n}
As the LSAP is common to many applications and domains,

a number of algorithms has been developed specifically to

solve it, exploiting some of its characteristics. The most popu-

lar algorithms for solving the LSAP are the Hungarian method

[6] and the auction algorithm [7]. The auction algorithm

has been shown to be very effective in practice, for most

instances of the assignment problem. The algorithm works

like an auction where there is a price for each job that is

set to zero at the beginning of the algorithm and all agents

starts unassigned as well. At each iteration, unassigned agents

bid simultaneously on their “best” jobs which causes the jobs’

prices to rise accordingly. The algorithm keeps iterating until

all agents are assigned.

We found that the auction algorithm falls short of our

needs as we have a dynamic systems that deal with large

instances of the assignment problem where a solution the

needs to be found in limited time for it to be of practical use.

We hence designed a novel heuristic approach called Deep
Greedy Switching (DGS) [1] to address our challenge. The

DGS algorithm, shown in Algorithm 1, starts with a random

initial solution, and then keeps moving to better solutions by

examining a restricted 2-exchange neighborhood. The DGS

approach can be described briefly in the following four steps:

A. Initial Solution

An initial solution can simply be found by getting a random

solution, where each agent is assigned to a random job

regardless of how good this assignment is, in terms of the

benefit added by the aij value. An alternative way of finding

an initial solution is to have each agent find the best possible

job from the set of available jobs, and then this job is removed

from the set of available jobs. In our experiments we have

seen that different initial solutions approaches do not affect

the quality of the final solution, nor does it affect the speed.

B. Difference Evaluation

This is where we search for better solutions and it is

considered the most important part of the DGS approach and

the most expensive in terms of computational time. In this

step, starting from a given solution σ, each agent tries to find

the best solution from the neighborhood of the solution σ. The

neighborhood of σ for each agent are the solutions that involve

the change of the assignment for the agent doing the difference

evaluation, noticing that only solutions that are better than the

current solution σ are taken into consideration. The difference

or the improvement in the objective function between the new

solution and the current solution σ is recorded as well. This

is called agent difference evaluation (ADE).
The same is done for each job using job difference evaluation
(JDE).

C. Sorting Differences

In this step, we sort the solutions in the neighborhood N by

the difference in objective function from the current solution

σ in descending order such that the best solution is in the

beginning.

D. Switching

This is the core of the DGS approach where we go from one

solution to a better one. We choose the first solution from the

sorted neighborhood N and we replace the current solution

with this solution. Of course according to how we search for

solutions, the solutions we select from will contain a restricted

2-exchange solutions involving switches between only two

agents and two jobs. Hence after we apply the 2-exchange

by switching the assignment of these two agents and jobs, we

remove any solutions that was added by any of the two agents

and two jobs involved in this switch and we also re-evaluate

the differences for them. Finally we repeat the switching step

until the neighborhood N is empty.

The DGS approach then keeps on repeating the last three

steps until there is no change in the solution when doing the

repetition.

The algorithm defines σ : J → I , where J is the set of jobs

and I is the set of agents, as an assignment mapping such that

σ(j) = i means that job j is assigned to agent i. Similarly

another assignment mapping τ : I → J is for mapping jobs to

agent where τ(i) = j means that agent i is assigned to job j.

There is also an assignment mapping function to construct τ
from σ defined as τ = M(σ) and the objective function value

of an assignment σ is given by f(σ).
The algorithm also defines a function called

SWITCH(i, j, σ) that gives the neighbor of the solution

σ where the assignment of agent i is replaced by j or in

other words a 2-exchange between i and σ(j). Hence the

algorithm defines the best switch for agent i and the value

of the difference in the objective function for this switch as

follows

ji = arg max
j=1,...,n,j �=τ(i)

f(SWITCH(i, j, σ))− f(σ),

and

δi = max
j=1,...,n,j �=τ(i)

f(SWITCH(i, j, σ))− f(σ).

Same is done for each job but they are named ij and δj

respectively. Using these terminology, the algorithm can be

formally described as follows

ALGORITHM DGS (σ, f)

repeat
σstart ← σ, τ = M(σ), δ ← ∅, δ ← ∅
ADE(i, f, τ, σ, NA, δ) ∀i ∈ I
JDE(j, f, τ, σ,NJ, δ) ∀j ∈ J
while ∃δi > 0 ∨ ∃δj > 0 do

i∗ ← arg maxi=1...n δi, j∗ ← arg maxj=1...n δj

if δi∗ > δj∗ then
σ′ ← SWITCH(i∗, ji∗ , σ), τ ′ ← M(σ′)
agents← {i∗, σ′(τ(i∗))},
jobs← {τ(i∗), τ ′(i∗)}

else
σ′ ← SWITCH(ij∗ , j∗, σ)
agents← {σ(j∗), σ′(j∗))},
jobs← {j∗, τ(σ′(j∗))}

if f(σ′) > f(σ) then
σ ← σ′, τ = M(σ)
ADE(j, f, τ, σ,NA, δ) ∀i ∈ agents
JDE(j, f, τ, σ,NJ, δ) ∀j ∈ jobs

until f(σstart) = f(σ′);
output σ′

Algorithm 1: DGS algorithm

ALGORITHM ADE (i, f, τ, σ, NA, δ)

j ← τ(i), σ∗
i ← σ

foreach j′ ∈ {J | j′ 	= j} do
i′ ← σ(j′)
σ′

i ← σ, σ′
i(j) = i′, σ′

i(j
′) = i

if f(σ′
i) > f(σ∗

i) then
σ∗

i ← σ′
i

if σ∗
i 	= σ then
NAi ← σ∗

i

δi ← f(σ∗
i)− f(σ)
Algorithm 2: ADE algorithm

IV. EVALUATION

While explaining the process of realization of the CUDA

solver in the next section, we also show results of the impact

of the various steps that we went through to implement it and

enhance its performance. The experimental setup for the tests

consists of a consumer machine with a 2.4Ghz Core 2 Duo

processor equipped with 4GB of DDR3 RAM and a NVIDIA

GTX 295 graphic card with 1GB of DDR5 on-board memory.

The NVIDIA GTX 295 is currently NVIDIA’s top-of-the-line

consumer video card and boasts a total number of 30 Scalar

Multiprocessors and 240 Processors, 8 for each SM, which

run at a clock rate of 1.24 GHz. In the experiments, we use

a thread block size of t = 256 when executing kernels which

do not make use of Shared Memory, and t = 16 in the case

they do.

Concerning the DGS input scenario, we use dense instances

of the GEOM type defined by Bus and Tvrdık[8], and gen-

erated as follows: first we generate n points randomly in a

2D graph square of dimensions [0, C]× [0, C], then each aij

value is set as the Euclidean distance between points i and j

from the generated n points. We define the problem size to be

equal to the number of agents/jobs. For the sake of simplicity,

we use problem sizes which are multiple of the thread block

size.

Note that each of the following experiments is the result of

averaging a number of runs executed using differently seeded

instances of the GEOM input problem.

V. THE DGS CUDA SOLVER

The first prototype of the DGS solver was implemented

in the Java language. However, its performance did not meet

the demands of our target real-time peer-to-peer system. We

therefore ported the same algorithm to pure C language in

the hope that we obtain better performance. The outcome of

this effort was the first production implementation of the DGS

which was sufficiently fast to handle problem sizes of 5000
peers. In order to improve the solver for handling a larger

amount of clients, we went through the process of profiling

the various parts of the algorithm’s implementation. The result

of this analysis showed that the Difference Evaluation phase of

the algorithm III-B was undoubtedly the most computationally

expensive, around 70% of the total computational time needed

by the solver. Luckily, all JDE and ADE evaluations for

agents and jobs can be done in parallel as they are completely

orthogonal and they do not need to be executed in a sequential

fashion. Hence, our first action point was therefore to im-

plement a CUDA kernel which would execute the ADE/JDE

algorithm on the GPU.

We developed two versions of the JDE/ADE kernel: the

first which runs exclusively on the GPU’s Global memory

and a second which makes use of the GPU’s Shared memory

to obtain better performance. For ease of exposition we will

only discuss ADE going forward. This is without any loss of

generality as everything that applies to ADE also applies to

JDE, with the proviso the talk of jobs instead of agents.

A. Difference Evaluation on Global Memory

As mentioned earlier, Global memory is fully addressable

by any thread running on the GPU and no special operation is

needed to access data on it. Therefore, in the first version

of the kernel, we decided to simply upload the full Ai,j
matrix to the GPU memory together with the current agent

to job assignments and all the data we needed to run the

ADE algorithm on the GPU. Then we let the GPU spawn a

thread for each of the agents involved. Consequently, thread cti
associated with agent i will then execute the ADE algorithm

only for agent i by evaluating all possible 2-exchanges. The

agent-to-thread allocation on the GPU is trivial and is made

by assigning the thread identifier cti to agent i.

B. Difference Evaluation on Shared Memory

The second version of the Difference Evaluation kernel

makes use of Shared Memory and assigns one thread to every

2-exchange evaluation between agent i and job j. That implies

that the number of created threads equals the number of cells

of the Ai,j matrix. Each thread ti,j then proceeds to load

in shared memory the data which is needed for the single

evaluation between agent i and job j. Once the 2-exchange

evaluation is computed, every thread cti,j stores the resulting

value in a matrix located in global memory in position (i,j).

After that, another small kernel is executed which causes a

thread for each row i of the resulting matrix to find the best

2-exchange value along that same row for all indexes j. The

outcome of this operation represents the best 2-exchange value

for agent i. In Figure 1, we compare the results obtained by

running the two aforementioned Shared Memory GPU kernel

implementations and its Global Memory counterpart against

the pure C implementation of the Difference Evaluation for

different problem sizes. For evaluation purpose, we used a

CUDA-enabled version of the DGS where only the Difference

Evaluation part of the algorithm runs on the GPU and can be

evaluated separately from the all other parts.

Fig. 1. Computational time comparison between Difference Evaluation’s
implementations

As we can see, there’s a dramatic improvement when pass-

ing from the CPU implementation of the difference evaluation

to both GPU implementations, of which the Shared Memory

version behaves consistently better than the Global Memory

one. Furthermore, the trend for increasing problem sizes is

linear for both GPU versions of the Difference Evaluation,

opposed to the exponential growth of the CPU version curve.

C. Switching

Considering the Switching part of the DGS algorithm

described in Subsection III-D we found out that in many

cases the computational load necessary to apply the best 2-

exchanges is fairly high. Figure 2 shows the relative impact

of the Switching part of the algorithm with respect to the total

time of execution of the DGS solver for increasing problem

sizes using a fixed input scenario for an implementation where

only the Difference Evaluation phase is executed on the GPU.

As we can see, the load, shown in light grey, can be as

prominent as 70% of the total load imposed by the solver.

In order to improve performance on this section of the solver,

we modified the Switching algorithm so that part of the best

2-exchanges computed in the Difference Evaluation section

might be applied concurrently. The modified DGS algorithm is

shown in Algorithm 3. In order to execute part of the switches

in parallel, we need to identity which possible exchanges are

not conflicting. For that, we designed a function called CC,

shown in Algorithm 4, which detects which of the possible 2-

exchanges are conflicting. Once the non-conflicted exchanges

are determined by CC, we identify the corresponding agents

and jobs and we apply their switches in a parallel fashion.

After all the aforementioned switches are applied, we proceed

to re-evaluate the differences for the agents and jobs whose

possible 2-exchanges were not-conflicting, for there might

be a possible improvements for those when evaluating their

differences. At the next iteration of the DGS algorithm,

conflicted two-exchanges may be resolved and applied in

the parallel section of the algorithm. In order to execute the

parallel Switching phase on the GPU, we simply let the GPU

spawn a number of threads which is equal to the number of

non-conflicting 2-exchanges and let them perform the switch.

This modification not only implies the Switching phase to

be executed on the GPU, but it makes also possible for the

solver to be run completely on it. As a direct consequence,

the number of memory transfers between host and device are

reduced dramatically. In fact, now only the input and output

of the solver are transferred from/to the GPU.

Fig. 2. Relative computational load of the various parts of the DGS solver.

VI. GENERAL RESULTS

In Figure 3 we show the results obtained by comparing three

different implementations of the DGS heuristic: a pure C im-

plementation labeled “All CPU DGS”, the “DGS Mixed DGS”

implementation, where only the Difference Evaluation and the

Sorting sections of the algorithm are executed on the GPU

using Shared Memory, and the “GPU DGS” implementation,

where all three main parts of the DGS including the Switching

are executed on the GPU. As we can observe, the gain in

performance when considering the “GPU DGS” compared to

the two other implementations is paramount. There are two

fundamental reasons for that. The first is the speed-up obtained

by applying all non-conflicting 2-exchanges in parallel.

The second reason is a direct consequence of the fact that

most of the operations are executed directly on the GPU and

few host–device operations are needed. Such operations, e.g.

memory transfers, can be expensive and certainly contribute to

the absolute time needed for the solver to reach an outcome. In

fact, it’s interesting to observe that the total termination time

ALGORITHM DGS (σ, f)

repeat
σstart ← σ, τ = M(σ), δ ← ∅, δ ← ∅
start parallel ∀i ∈ I , ∀j ∈ J � Difference
Evaluation Phase starts
ADE(i, f, τ, σ, NA, δ)
JDE(j, f, τ, σ,NJ, δ)
stop parallel � Difference Evaluation
Phase ends
while ∃δi > 0∨∃δj > 0 do � Switching phase

CRC(I, J, NA,NJ,C) δi ← 0 ∀i ∈ I ,

δn+j ← 0 ∀j ∈ J
δi ← {δi | i /∈ C} ∀i ∈ I
δn+j ← {δj | σ(j) /∈ C} ∀j ∈ J
start parallel ∀δt > 0
if t ≤ n then

i← t, σ′ ← SWITCH(i, ji, σ)
else

j ← (t− n), σ′ ← SWITCH(ij , j, σ)
if f(σ′) > f(σ) then

σ ← σ′, τ = M(σ)
stop parallel
start parallel
∀i ∈ {I | i /∈ C},∀j ∈ {J | σ(j) /∈ C}
ADE(i, f, τ, σ, NA, δ)
JDE(j, f, τ, σ,NJ, δ)
stop parallel

until f(σstart) = f(σ′)
output σ′

Algorithm 3: Parallel DGS

ALGORITHM CC (I, NA, C)

CR ← ∅, C ← ∅
foreach i ∈ {I | NAi 	= 0} do

σ ← NAi

i′ ← σ(ji)
if i ∈ CR or i′ ∈ CR then

C ← {C, i}
else

CR ← {CR, i, i′}
foreach j ∈ {J | NJj 	= 0} do

σ ← NJj

i← σ(j)
if i ∈ CR or ij ∈ CR then

C ← {C, i}
else

CR ← {CR, i, ij}
Algorithm 4: Check Conflicts

needed for big problem size is less than the total time needed

for executing just the ADE/JDE phase, as shown in Figure 1,

where multiple memory transfers occur at every iteration of

the algorithm.

Fig. 3. Computational time comparison between DGS’s implementations.

VII. CONCLUSION & FUTURE WORK

In this paper we presented the realization of a GPU-

enabled solver based on the Deep Greedy Switching heuristic

algorithm and implemented using the CUDA programming

language. We detailed the process of implementation and en-

hancement of the two main parts of the algorithm: Difference

Evaluation and Switching, and we provided results showing

the impact of each iteration on the performance of the solver.

In particular, we showed how parallelizing some parts of the

solver with CUDA can lead to substantial speed–ups. We

also suggested a modification to the DGS algorithm, in the

Switching section, which enables the solver to be executed

totally on GPU. In the last part of the paper, we also show

the performance of the final version of the solver compared

to a pure C language DGS implementation and to an auction

algorithm implementation on GPUs, concluding that the time

needed for the DGS solver to reach an outcome is one order

of magnitude lower compared to the “C” implementation for

big scenarios.

For future work, we would like to formally analyze the

modified version of the DGS algorithm to theoretically assess

its lower bound on optimality. We would also like to see

our solver applied in different contexts and explore possible

applications involving LSAP that have yet to be investigated

due to computational limitations.

REFERENCES

[1] A. Naiem and M. El-Beltagy, “Deep greedy switching: A fast and simple
approach for linear assignment problems,” in 7th International Conference
of Numerical Analysis and Applied Mathematics, 2009.

[2] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick,
S. Morton, E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing
experiences with cuda,” Micro, IEEE, vol. 28, no. 4, pp. 13–27, 2008.
[Online]. Available: http://dx.doi.org/10.1109/MM.2008.57

[3] K. Group. Opencl: The open standard for parallel programming of het-
erogeneous systems. [Online]. Available: http://www.khronos.org/opencl/

[4] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia
tesla: A unified graphics and computing architecture,” Micro,
IEEE, vol. 28, no. 2, pp. 39–55, May 2008. [Online]. Available:
http://dx.doi.org/10.1109/MM.2008.31

[5] A. Bayoumi, M. Chu, Y. Hanafy, P. Harrell, and G. Refai-Ahmed,
“Scientific and engineering computing using ati stream technology,”
Computing in Science and Engineering, vol. 11, pp. 92–97, 2009.

[6] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[7] D. Bertsekas, “The auction algorithm: A distributed relaxation method for
the assignment problem,” Annals of Operations Research, vol. 14, no. 1,
pp. 105–123, 1988.

[8] L. Bus and P. Tvrdık, “Distributed Memory Auction Algorithms for the
Linear Assignment Problem,” in Proceedings of 14th IASTED Interna-
tional Conference of Parallel and Distributed Computing and Systems,
2002, pp. 137–142.

