
1

On The Feasibility Of Centrally-Coordinated
Peer-To-Peer Live Streaming

Roberto Roverso1,2 Amgad Naiem1,3 Mohammed Reda1,3 Mohammed El-Beltagy1,3 Sameh El-Ansary1,4

Nils Franzen1 Seif Haridi2
1 Peerialism Inc., Sweden, 2 KTH-Royal Institute of Technology, Sweden,

3 Cairo University, Egypt, 4 Nile University, Egypt
{roberto, amgad, sameh, mohammed}@peerialism.com

Abstract—In this paper we present an exploration of

central coordination as a way of managing P2P live stream-

ing overlays. The main point is to show the elements needed

to construct a system with that approach. A key element

in the feasibility of this approach is a near real-time

optimization engine for peer selection. Peer organization

in a way that enables high bandwidth utilization plus

optimized peer selection based on multiple utility factors

make it possible to achieve large source bandwidth savings

and provide high quality of user experience. The benefits

of our approach are also seen most when NAT constraints

come into play.

I. INTRODUCTION

Peer-To-Peer live streaming (P2P IPTV) is a chal-
lenging problem that has attracted the focus of many
academic and industrial research communities. Debates
have been going on about two rival approaches: mesh-
pull and tree-push [1]. Hybrid [2] and best-of-both-
worlds mesh-push [3] have also been investigated. That
said, some still see that despite current deployments and
reported successes, P2P IPTV is still at its early stages
[4]. In this paper, we report our experience with a third
approach to P2P IPTV where a central entity plays a
bigger role in overlay structuring. Central entities in P2P
systems are a taboo from a P2P purist’s perspective,
but are major components of prominent P2P systems
such as the tracker in Bittorrent. Previous works [5]
aimed to make Bittorrent’s tracker or the seed more
intelligent [6]. Central coordination in our case could be
perceived as an attempt to take tracker’s role to the limit.
The main challenge we faced was to design an efficient
optimization engine which can provide decisions in a
very short period of time, or else the outcome might be
of no value. If the overlay network changes considerably
due to peer dynamics while the optimization engine is
running, then connectivity recommendation of the engine
might even be detrimental to the system’s performance.
Our main contribution is that we show that a system
employing such an approach is feasible and that the
required central computing resources are not by any

means prohibitive. Subparts of this system have been
published before as generic components such as the idea
of our optimization engine [7] and its parallelization on
GPUs [8] as well as our NAT connectivity [9], but this
is the first time we describe how these subparts work
together.

II. SYSTEM ARCHITECTURE

The main entities in the system are: i) Clients (peers)
who want to watch the live stream and are normally
behind home or corporate NAT gateways, ii) Streaming
source connected to the streaming server but otherwise
exactly like any normal peer, iii) The tracker which
centrally coordinates the system, iv) The optimization
engine which has a snapshot of the overlay and handles
joins, failures and restructuring of the overlay, v) Con-
nectivity server, to facilitate connection establishment
between peers behind NAT, vi) Bandwidth measurement
server that peers use to get an approximate guess of their
upload capacity.

A typical scenario for a client is as follows: The
client contacts the bandwidth measurement server to
estimate its upload capacity and then requests a video
stream from the tracker providing information about its
upload bandwidth. The tracker forwards the request to
the optimization engine which selects providing peers
for the requesting client. The tracker notifies both the
requesting and the providing peers involved in the op-
eration. The providing peers will then start to push the
stream to the requesting peer after using the connectivity
server to traverse NAT gateways if needed. Periodically,
the optimization engine restructures the overlay and
reconfiguration orders are sent to the clients.

III. TERMINOLOGY: SEATS & PERSONS

We assume that a stream is divided into a number of
stripes. For instance, if the stream rate is 1 Mbps, and
we used 4 stripes, each stripe would be a sub-stream of
256 Kbps. Given a peer with an upload capacity of 1.5
Mbps, we say that this peer has 6 “seats” because it
can upload to other peers 6 stripes simultaneously. Each

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Fig. 1. Overlay before reconfiguration Fig. 2. Overlay after reconfiguration

client will have to find a seat for the 4 stripes, so we say
that he has to feed 4 “persons”. That is, we discretize the
upload capacity to units called seats and the download
capacity to units called persons. It is the task of each of
the client to request seats for each of his persons. Such
division of bandwidth into persons and seats is made so
that the optimization engine can have a simple model of
the bandwidth/download capacities of the peers.

IV. OVERLAY STRUCTURE

Basic peer Joins. Peers with different number of seats
join the network in an arbitrary order. The most basic
join mechanism is to start by seating the peers on the
source seats until, eventually, all the source seats are
occupied. At this stage, we say that the first row is full
and the seats of the joined peers form a second row.
New joiners are seated at the second row until it is full
and in their turn they form a third row and so forth.
Naturally, the order of joins matters. The extreme worst
case would be that a number of peers, all with zero
seats, come and occupy the first row with no second row
created. The extreme best case would be that peers with
large number of seats join before the peers with less
seats. In reality, we get some order that is somewhere
between the two extremes. The tracker periodically runs
a reconfiguration process and tries to bring the overlay
into the best possible state.

Reconfiguration phase 1: row construction. The
process starts by sorting all the peers according to their
seat count in descending order. The peers with high seat
count are seated at the first row and the process continues
as above. This leads to maximum upload bandwidth
utilization and minimum number of rows, which directly
translates into smaller playback delays. At this stage,
we are sure that every row can provide enough seats
for the rows below, and the problem now reduces to

the assignment of persons of every row to seats of the
row above. At this point, even a random assignment
between peers can be carried out because an important
part of the decision process has been done already by
sorting the peers and compacting the rows. We explain
next, how a more optimized assignment is achieved.
To avoid confusion, we stress that this reorganization
happens first at the tracker internal snapshot of the
overlay, then a batch of messages is sent out to rewire
the peer connections. In Figure 1, Figure 2 we show an
example of the overlay before and after reconfiguration
respectively.

Reconf. phase 2: happiness matrix. The different as-
signment combinations between persons and seats form
columns and rows of a matrix respectively. This matrix
we call the “Happiness Matrix” A(i, j), which represents
all possible interconnections between peers in two con-
secutive rows and whose values express the worthiness of
such connections. A “Happiness Value” aij in the matrix
is a weighted sum of all characteristics observed and/or
expected from a certain connection between person i and
seat j. The weighted characteristics for this happiness
value are: a) Inter-peer delay, peers with lower delay are
favored, b) Stickiness, connections that already exist are
favored to minimize interruptions, c) Buffers matching,
seats with buffers who have data that is useful to the
persons are favoured, where usefulness is proportional
to how much the seat of the uploading peer is more
advanced in the sub-stream compared to the person of
the downloading peer, d) NAT Compatibility, defines
the probability of a connection to succeed between two
peers. A value is given accordingly such that higher value
means a higher probability of connection. We elaborate
on NAT issues hereunder shortly, e) ISP Friendliness,
peers in the same autonomous system (AS) are favored.

3

In fact, we have an engine which computes the hop count
between ASs and the smaller distance is favored.

The resulting value can be considered as a grade for
a certain combination. If many uploaders are available
for a certain peer to download from, the one with
highest grade of all the uploading peers will be chosen.
Which means that, for a certain person A, a seat B
will be selected which is expected to provide the best
performance in the future transfer between A and B.
Such mechanism of assigning persons to seats has been
modelled as a Linear Sum Assignment Problem. The
task of solving the optimization problem is carried out
by the Optimization Engine. Once a result is produced,
the tracker notifies the peers so that the new transfers
can be established.

There are two sensible steps in this process: the calcu-
lation of the “Happiness” values and the actual solving
of the Optimization Problem. In the first case, it’s trivial
to understand that the choice of the happiness values
will directly impact the performance of the system. For
instance, one of the parameters in the calculation of
the Happiness values is the Stickiness and the value
chosen might result in more stable system but the overall
bandwidth utilization might be affected, since the system
will give higher priority to the preservation of successful
connections than to load balancing. Thus a careful cal-
culation of the values of the A(i,j) matrix is developed as
the choice of weights of different characteristics affecting
the happiness value.

Reconf. Phase 3: Solving the assignment problem.

The last step in the Optimization process is the actual
solving of the linear optimization problem between pairs
of rows to assign seats to persons. In fact, the com-
putation associated with it might take a long time to
execute, since the number of potential peer combina-
tions is typically quite large. In the presence of high
churn, disruptions in the network which happen as the
optimization is taking place might totally change the
validity of the initial information which the ongoing
computation is based upon. This will cause the results
of the calculation to be of limited or no value. It’s
therefore vital for the calculation to happen as fast
as possible to avoid such situations. For this purpose,
initially we used the Auction algorithm [10] to solve
the optimization problem, which is known to be one of
the fastest algorithms for solving complex Linear Sum
Assignment Problem (LSAP). However its performance
fell very short of our needs given the size of the problems
to be solved. Consequently, we have developed a new
heuristic solver based on a local-search approach called
Deep Greedy Switching (DGS) which has been published
in [7]. It sacrifices very little in terms of optimality, for a

huge gain in the running time of the algorithm over other
methods. The DGS algorithm provides no guarantees for
attaining an optimal solution, but in practice we have
seen it deviate by less than 0.6% from the solutions
reported by the auction algorithm. Such a minor sacrifice
in optimality is acceptable in our system where speed is
the most important factor as an optimal solution that is
delivered too late is practically useless. Compared with
the auction algorithm, DGS has the added advantage
that it starts out with an initial assignment and keeps
improving that assignment during the course of its
execution. The auction algorithm, however, attains full
assignment only at termination. Hence, if a deadline has
been reached where an assignment must be produced,
DGS can be interrupted to get the best assignment
solution it has attained so far. We were also able to
parallelize the DGS heuristic on commodity GPUs [8]
and solve instances of 10, 000 peers overlays in less than
3 seconds.

Churn. Beyond the basic join described above we
use some other techniques. For instance, in each row
we reserve some slack seats for future use. This helps
us, during the peer joins and failures. During the join
process we try to put a peer not at the last available
row as described in the basic join above, instead we
try to predict which row the peer will be at should a
reconfiguration take place. This results in peers with high
seat count ending up closer to the root of the tree even
if they came late. Moreover, it reduces the possibility of
disruption caused by reconfiguration as we place a new
peer in its deserved row directly. If for any reason the
reserved seats were all occupied we revert to basic join.
If that also did not help, due to lack of seats in the last
rows, we reserve what we call fallback source seats, and
if these were also totally occupied, we have one final
strategy which is a waiting list where the peer has to
wait until the next reconfiguration to be admitted to the
network when some seats later become available. For
failures, the person facing the failure of his providing
seat will try to fallback to the slack seats of the row
above. If there is not enough slack, the slack of a higher
row are attempted. In a sense, handling a failure is like
a partial join process but not necessarily for all persons
of a peer. Churn usually reduces the optimality of the
overlay and reconfigurations take care of bringing it back
in shape.

NAT Heuristic. With NAT in the picture, the effective

upload capacity of a row, is determined by the com-
patibility of the NAT types of the peers in it with the
ones in the row below. For instance, a client behind a
very restrictive NAT can have a huge upload capacity but
effectively it is much less because it can only be used

4

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 50 100 150 200 250 300

In
iti

a
l B

u
ff
e
ri
n
g
 T

im
e
 (

se
c)

Source Seats

Row Construction with NAT
Row Construction + Optimization with NAT

Row Construction without NAT
Row Construction + Optimization without NAT

Fig. 3. Initial buffering time

 1

 10

 100

 50 100 150 200 250 300

P
la

yb
a
ck

 B
u
ff
e
ri
n
g
 T

im
e
 (

se
c)

Source Seats

Row Construction with NAT
Row Construction + Optimization with NAT

Row Construction without NAT
Row Construction + Optimization without NAT

Fig. 4. Playback Delays

to upload to a limited subset of peers. In our previous
work entitled “NATCracker”[9], we described a rigorous
classification of the various behaviors of NAT gateways
beyond the traditional classification of only four types.
We have also provided an analysis of which traversal
strategy should be used to connect peers to each other
according to their types. In this context, we make use
of this model to find an optimal placement of peers
in rows in order to satisfy the download demands of
as many peers as possible while maximizing pairwise
connectivity between them. In order to achieve such
trade-off, we formulated a heuristic based on the max-
flow approach[11], where s is the source of the flow
(our streaming server) and t is a virtual sink node
collecting all spare capacity in the network. The heuristic
works as follows: first, we carry out row construction
as previously described. For each row r, we aggregate
peers in sets N r

t according to their NAT type t. Each
set N r

t is considered as a virtual node in the max-flow
network. Each virtual node has a cumulative capacity
of uNr

t
number of seats, i.e. the sum of all seats for

the peers in the set. Then, we establish edges between
a set N r

ti in the current row and all sets N r+1
tj in the

row below it, such that ti is compatible with tj . The
aforementioned process is carried out for all the rows in
the tree. When this placement process is completed, we
execute a standard max-flow algorithm to push as much
flow as possible from the source s to the sink t through
the virtual nodes. After that, we proceed to switch peers
between rows according to their outbound and inbound
flow. For instance, we choose the set N r

tl with the least
flow in a row and we identify which has the weakest
upload bandwidth in it. We then swap this peer with
the one in the row below which has the biggest upload
capacity but whose NAT type tc is different from tl.
We then run the max-flow algorithm again. The process
is repeated multiple times until each row has enough

bandwidth capacity to provide for the row below it given
the connectivity constraints in place between provider
and receiver peers.

V. SIMULATION RESULTS

We present a simulation of our system over a discrete-
event simulator. It is worth mentioning here that we tried
to make sure we model bandwidth accurately[12]. In
addition NAT semantics with real-word probability of
connection establishment and type encountering proba-
bility are also simulated based on the NATcracker work
[9]. We simulate 1000 peers watching a 30 minutes
stream. Half of the network is there when the stream
starts and the rest join with average rate of 2 peers per
second. One tenth of the network fails during the stream
playback. The streaming rate in 600 Kbps divided into
two stripes. The seat distribution is 10% : 10 seats,
40% : 2 seats, 40% : 1 seat and 10% : 0 seats. We
also have to stress that the scalability of our simulation
is not limited by the optimization engine but rather by
the simulator’s modelling of peer bandwidth allocation
and deallocation. The simulation is done as follows,
we measure the performance of our approach with and
without optimization after row construction. However,
we consider the NAT heuristic as part of the optimization
process. Then we repeat the experiment by solving an
easier problem where peers are not behind NAT. The idea
is to show how much the optimization contributes to user
experience and show that when one solves the problem
in a network where peers are behind NAT, the problem
is much harder. Additionally, we want to see how much
of the problem is solved by row construction alone and
how much depends on the optimized assignment.

Initial buffering time. This is the time before stream
playback starts. As shown in Figure 3, in the absence of
NAT constraints, and as long as a peer can find available
seats, playback can start immediately. Therefore opti-
mization is not the key element. However, with NAT

5

 82

 84

 86

 88

 90

 92

 94

 96

 98

 50 100 150 200 250 300

S
a

vi
n

g
s

(%
)

Source Seats

Row Construction with NAT
Row Construction + Optimization with NAT

Row Construction without NAT
Row Construction + Optimization without NAT

Fig. 5. Savings

constraints, a peer might find available seats but can not
use them because the seat and the person NAT types
might not be compatible. Thus, persons will be randomly
assigned to NAT-incompatible seats, the connection will
fail, and the person will try rejoining until, eventually,
getting admitted. That’s why maximizing the probability
of successful connection plays a very significant role and
that is something that optimized assignment provides
and in its absence, the initial buffering time is higher
by orders of magnitude. The number of source seats can
drastically affect the results as well, because in general it
is a last resort for peers with severely constrained NATs.
When enough source seats are provided, the optimization
process can bring the initial buffering time of a network
with NAT constraints to one without NAT constraints.
However, in all cases, we varied the source bandwidth
between 10 and 100 Mbps.

Playback delay. This is the sum of the time periods
where playback is paused due to the buffers running out
of content. As shown in Figure 4, with or without NAT
constraints, in the lack of optimization, the performance
lags by at least one order of magnitude. We also see that
even in the presence of NAT constraints and with some
extra help of source seats. the optimization can bring the
user experience to one that is close the experience of a
network without NAT constraints.

Source bandwidth savings. In Figure 5 we can
clearly see a trade-off between savings, i.e. client up-
loaded stream vs. all uploaded, and quality of experience.
However, with a user experience where we have around
2.5 seconds of initial playback delay and 2 seconds of
playback delay, the savings are at around 85%. More
importantly one can see that row construction is the
primary driver of savings not optimized assignment.

VI. SCALABILITY DISCUSSION & CONCLUSION

We have reported in this paper our experience with
tackling the problem of P2P live streaming using central
coordination. We were able to provide a feasible solution
by using a heuristic linear sum assignment problem

solver capable after parallelization on commodity GPUs
to handle 10, 000 peers overlay in less than 3 seconds.
The merits of the solution is high bandwidth source
savings due to high bandwidth utilization of the peers,
low initial buffering time and playback delays. The main
point of our approach compared to other decentralized
approaches is that we let a central entity help the peers
in the peer selection process, avoiding with that, the
trial and error process for discovering the best overlay
configuration. Beyond the scale of 10, 000, one can
partition the network into multiple trackers. Another
approach is to manage a backbone of nodes using central
coordination and let a group of swarming peers stream
from each backbone node. The approach is generic
enough to be modified for other problems. For future
work, we are considering replica placement in distributed
storage as well as a NAT traversal facilitator for generic
overlays.

REFERENCES

[1] F. Picconi and L. Massoulie, “Is there a future for mesh-based
live video streaming?” in Peer-to-Peer Computing , 2008. P2P

’08. Eighth International Conference on, 2008.
[2] F. Wang, Y. Xiong, and J. Liu, “mtreebone: A hybrid tree/mesh

overlay for application-layer live video multicast,” in ICDCS

’07, Washington, DC, USA.
[3] R. J. Lobb, A. P. Couto da Silva, E. Leonardi, M. Mellia, and

M. Meo, “Adaptive overlay topology for mesh-based p2p-tv
systems,” in NOSSDAV ’09, 2009.

[4] X. Hei, Y. Liu, and K. W. Ross, “Iptv over p2p streaming net-
works: the mesh-pull approach,” in Communications Magazine,

IEEE, March 2009.
[5] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyz-

ing and improving a bittorrent networks performance mecha-
nisms,” in IEEE INFOCOM 2006.

[6] F. Esposito, I. Matta, P. Michiardi, N. Mitsutake, and D. Carra,
“Seed scheduling for peer-to-peer networks,” in 8th IEEE Inter-

national Symposium on Network Computing and Applications.
[7] A. Naiem and M. El-Beltagy, “Deep greedy switching: A fast

and simple approach for linear assignment problems,” in 7th

International Conference of Numerical Analysis and Applied

Mathematics, 2009.
[8] R. Roverso, A. Naiem, M. El-Beltagy, S. El-Ansary, and

S. Haridi, “A gpu-enabled solver for time-constrained linear
sum assignment problems,” in Informatics and Systems (IN-

FOS), 2010 The 7th International Conference on, 2010.
[9] R. Roverso, S. El-Ansary, and S. Haridi, “Natcracker: Nat com-

binations matter,” Computer Communications and Networks,

International Conference on, vol. 0, pp. 1–7, 2009.
[10] D. Bertsekas, “The auction algorithm: A distributed relaxation

method for the assignment problem,” Annals of Operations

Research, vol. 14, no. 1, pp. 105–123, 1988.
[11] A. V. Goldberg and R. E. Tarjan, “A new approach to the

maximum flow problem,” in STOC ’86: Proceedings of the

eighteenth annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1986, pp. 136–146.

[12] R. Roverso, M. Al-Aggan, A. Naiem, A. Dahlstrom, S. El-
Ansary, M. El-Beltagy, and S. Haridi, “Myp2pworld: Highly
reproducible application-level emulation of p2p systems,” in
Decentralized Self Management for Grid, P2P, User Communi-

ties workshop, SASO 2008, 2008.

