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Abstract—We present a statistical approach to distributed
detection of local latency shifts in networked systems. For this
purpose, response delay measurements are performed between
neighbouring nodes via probing. The expected probe response
delay on each connection is statistically modelled via parameter
estimation. Adaptation to drifting delays is accounted for by
the use of overlapping models, such that previous models are
partially used as input to future models. Based on the symmetric
Kullback-Leibler divergence metric, latency shifts can be detected
by comparing the estimated parameters of the current and
previous models. In order to reduce the number of detection
alarms, thresholds for divergence and convergence are used.

The method that we propose can be applied to many types
of statistical distributions, and requires only constant memory
compared to e.g., sliding window techniques and decay functions.
Therefore, the method is applicable in various kinds of network
equipment with limited capacity, such as sensor networks, mobile
ad hoc networks etc. We have investigated the behaviour of
the method for different model parameters. Further, we have
tested the detection performance in network simulations, for
both gradual and abrupt shifts in the probe response delay. The
results indicate that over 90% of the shifts can be detected.
Undetected shifts are mainly the effects of long convergence
processes triggered by previous shifts. The overall performance
depends on the characteristics of the shifts and the configuration
of the model parameters.

Index Terms—change detection; adaptive monitoring; dis-
tributed probing; statistical modelling;

I. INTRODUCTION

In networked systems, change detection is a difficult prob-
lem, as user behaviour, equipment and link quality varies over
time [1]. Detection of temporal changes is often motivated by
the interest of performing early or preventive actions to fault
symptoms and anomalous behaviour (such as re-configuration
of equipment), to maintain quality of service. Further, adap-
tation to various aspects of varying network behaviour is of
particular interest, as it can be used to autonomously configure
algorithm parameters, thereby reducing configuration efforts
and improving algorithm performance [2].

In this paper, we address the problem of distributed change
detection and long-term adaptation to observed link delays.
Although we here focus on link delays, the method can be
applied to other types of signals, such as packet loss, traffic
load etc. The distributed approach is here based on statistical
modelling of probe response delays measured between nodes

(Figure 1). For each connection a statistical model is cre-
ated via parameter estimation. Adaptation to changes in the
expected probe response delay is done by using overlapping
statistical models, such that older data is gradually forgotten
as new data arrive. Changes are detected by comparing the
underlying statistics of the current and previous models.

Essentially, the method offers reliable change detection with
high certainty, as the statistical properties makes it less sensi-
tive to outliers. Furthermore, the memory demands are small
compared to other methods. In addition, the method is flexible
as it can model signals based on different types of statistical
distributions, without requiring rigorous modifications.

We have investigated the behaviour of the method when
varying different parameters, such as the decay factor and the
model size. In addition, we have tested the detection perfor-
mance for different types of changes in network simulations.
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Fig. 1: Principal adaptation behaviour per node connection.

A. Related work

The simplest approach to long-term adaptation and change
detection is the use of sliding windows, in which only recent
data points are considered, and used for comparisons over
time [3]. In turn, there are different methods for processing
the data inside the windows, such as sketching (pairs of key-
signal values) [4], buckets [5] or, statistics [6]–[8]. For the
purpose of adjusting the importance of data points over time,
decay functions are commonly applied to the data stream, as
an alternative to simply discarding data out of scope [9].

The main drawback of both sliding window techniques
and decay functions is that storage of data points is often
required. In the worst case, space for the entire data stream
is needed for exact tracking over time [9]. However, the
memory demands can be significantly reduced from O(N) to



O(log2 N) when using e.g. aggregation techniques [5], [9]. In
contrast to aforementioned methods, our statistical approach
only requires a constant amount of memory, as data points are
summed over time and used for parameter estimation.

Our work relates somewhat to the approach described by
Hajji [10], who proposes a finite mixture model for network
traffic. Changes are detected by observing the log-likelihood
ratio of model estimates. For adaptation purposes, the author
makes use of an exponential decay factor. In our method,
data is modelled using overlapping statistical models that are
continuously created and discarded over time. Instead of decay
factors, prior knowledge from previous models is used as input
to new models. This way, the robustness between models is
increased, subsequently reducing the risk of false alarms while
adaptation to new data is achieved.

B. Contribution

We offer an alternative method to adaptively learn new mod-
els developing over time, that also can be used to detect short-
term and long-term shifts. This is done by using overlapping
models, each learning the distribution for a limited part of the
data stream. The key idea is that rather than applying decay
functions or discarding data out of scope, older observations
are successively accounted for by using previous models as
prior input to future models. In effect, older observations
are gradually forgotten as models are created and discarded.
Moreover, the approach is flexible in the sense that it can
be used with various types of statistical distributions of the
observed data. Finally, the method is a simple alternative to
other, more complex methods (e.g., [7], [8]), as it is memory-
efficient and requires few user parameters.

II. STATISTICAL MODEL

The statistical model that we use is based on the probability
density function P (t) of probe response delays, which is the
type of distribution that matches the characteristics of the data.
We assume that the probe response delays can be modelled as
a Gamma distribution,

P (t;α,β) = t
(β−1) e−t/α

αβΓ(β)
, (1)

where α and β are the scale and shape parameters, re-
spectively. This model of interarrival times is motivated by
the assumption that the probe response delays are sums of
exponential transmission delays, caused by the queueing times
in processing nodes. The assumption is supported by previous
work [11], [12] and empirical network latency tests [2].

A. Parameter estimation

From observed probe response delays, the Gamma param-
eters α and β are estimated based on the method of moments
approach. For this purpose, the parameters are estimated from
the first and second sample moments s1 = 1

n

�
i ∆ti and

s2 = 1
n

�
i ∆t2i (e.g. [13], [14]). Given that αβ = s1 and

α2β(β + 1) = s2, the estimates α∗ and β∗ are

α
∗ =

s2 − s21

s1
, β

∗ =
s21

s2 − s21

(2)

These estimations are frequently performed in each node. The
method of moments is mainly used for the benefit of compu-
tational efficiency, since the capacity of the nodes in practice
may vary. Therefore we also accept the loss of precision in the
parameter estimates, compared to when using more advanced
methods such as maximum likelihood estimations. Note, that
the parameter estimation requires only constant memory to
store the sums, which makes it an attractive method for use
in network equipment with limited memory capacity.

B. Overlapping models

Long-term network development is here accounted for by
having each node modelling probe response delays as over-
lapping Gamma distributions. Observed data in the previous
model is here partially summarised and used as prior input
to the next model, such that older data successively decay
while the sensitivity to new data points is reduced (Figure 2).
The average of the T first samples of the observed data in the
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Fig. 2: Parameter estimation using overlapping models, with model
size N and decay factor T .

current model is used as prior input to a new model (including
the prior from the previous model). In order to take the priors
into account, the moment estimations are modified to

s
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2
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,

(3)
such that the impact of earlier observations is gradually
reduced as new models are created.

In general, the sensitivity to new data and the decay rate are
trade-offs between the model size N and the decay factor T

(see section IV). This means that the adaptation time and the
robustness between models can be adjusted by varying these
model parameters. By using prior input between models, a
robust transition (less sensitive to new data) from one model
to another is achieved, increasing the detection reliability.

III. DETECTING LATENCY SHIFTS

In order to detect latency shifts, the current estimated model
Θ∗

i (αi,βi) is frequently compared to the previous model
Θ∗

i−1(αi−1,βi−1) (Figure 2) using the symmetric Kullback-
Leibler (KL) divergence D(Θ∗

i ,Θ
∗
i−1) as a metric,

D(Θ∗
i ,Θ

∗
i−1) = DKL(Θ

∗
i ||Θ∗

i−1) +DKL(Θ
∗
i−1||Θ∗

i ), (4)



where DKL(Θ∗
i ||Θ∗

j ) is the divergence (or relative entropy)
for Gamma distributions [15]:

DKL(Θ
∗
i ||Θ∗

j ) = ψ(βi)(βi − βj)− βi+

log
Γ(βj)

Γ(βi)
+ βj log

αj

αi
+

αiβi

αj
. (5)

The divergence metric is used for measuring the symmet-
ric difference between current and previous models without
regarding one of the models as ’true’, which is commonly
the case when measuring the divergence asymmetrically. The
symmetric divergence is an effective and robust metric for
change detection, and provides an intuitive interpretation of
the difference between models.

Changes in the observed latency on the link are detected
when the D(Θ∗

i ,Θ
∗
i−1) is higher than a divergence threshold

ηdiv . Until convergence, D(Θ∗
i ,Θ

∗
i−1) can vary heavily around

ηdiv which may cause several alarms for the duration of
a shift. In order to reduce the amount of repeated reports,
a convergence threshold ηconv << ηdiv is used. When
D(Θ∗

i ,Θ
∗
i−1) < ηconv , latency shifts can again be reported.

IV. EXPERIMENTS

As explained in section II-B, the sensitivity to new obser-
vations is a trade-off between model size and decay rate. The
characteristics of the temporal development (such as gradual,
abrupt etc.) are also significant factors to take into account
when setting the model parameters. We have performed two
experiments, in which model sensitivity and detection perfor-
mance are investigated. In the first experiment, we tested the
behaviour of the method for linear development while varying
the model size and decay rate. In the second experiment,
the detection performances for temporary stepwise shifts and
linear changes were tested in network simulations. The results
are presented in section V.

A. Model sensitivity and detection delay

In this experiment, we tested the impact on the sensitivity
and detection delay for varying model size N and decay
factor T between models, when the underlying structure of
the observed probe response delays started to drift. The drift
was produced by linearly varying the α and β parameters for
simulated probe response delays, during a limited time period.

In the experiment, a probing mechanism immediately sent
a new probe upon the reception of a probe response. Probe
response delays ∆t were randomly drawn from a Gamma
distribution with parameters Θ(α = 2.5 × 10−3,β = 44).
After a certain time point tstart, the parameters were linearly
increased with simulation time t, such that Θi+1 = Θ+k(ti−
tstart) with the rate of change k = 10−4. The effect of this
parameter manipulation is that the simulated probe response
delays start to drift in both mean and variance. The parameters
drifted during a time period of 7200 time units, after which
the Gamma parameters were set to the latest linear increment
and were kept stationary until the end of the simulation. The
simulation ended when D(Θ∗

i ,Θ
∗
i−1) < ηconv , i.e., when the

estimated parameters Θ∗ were fully adapted to the new regime.

The experiments were performed for the model parameters
N = {1, 3, 5, 7} × 103, decay factor T = {10, . . . , 750} and
thresholds ηdiv = 5× 10−3 and ηconv = 10−5.

B. Performance in network simulations

Based on network simulations in OMNeT++ [16], we tested
the detection performance of stepwise and linear changes in
the Θ parameters used for modelling simulated probe response
delays. Further, we used the Abilene core network topology
from 2003, consisting of 11 nodes and 14 symmetric links.
In the simulation, each node modelled each connection by
probing adjacent nodes in a fully distributed manner. When-
ever D(Θ∗

i ,Θ
∗
i−1) > ηdiv , the detected shift was centrally

logged and reported the adjacent node, in order to reduce the
number of alarms. No further reports were sent or logged until
D(Θ∗

i ,Θ
∗
i−1) < ηconv .

In two separate experiments, the detection performance
was tested for linear latency shifts (as described in previous
experiment) and temporary stepwise shifts. The rate k of
linear development was randomly selected in the interval of
±5 × 10−7 and ±1 × 10−3 for the α and β parameters.
Furthermore, the scale and shape were allowed to vary in
the interval of [10−4, 10] and [5, 100], respectively, in order
to limit the simulated probe response delays to a reasonable
level. In the case of stepwise shifts, the scale parameter α

was temporarily multiplied by a random factor in the interval
[1.5, 10], for a random duration. The model parameters were
set to N = 500 and T = 75 with thresholds ηdiv = 1.5×10−2

and ηconv = 10−7. Simulated probe response delays (in
milliseconds) were set symmetrically based on randomly
drawn parameter values from a Gaussian distribution, with
{µ = 2.5 × 10−3, σ = 5 × 10−4} for parameter α and
{µ = 30, σ = 6} for parameter β. Moreover, a symmetric
drop rate on each link was randomly set based on a Gaussian
distribution with µ = 2.5 × 10−2 and σ = 5 × 10−3. The
detection performance was tested for the increasing number
of expected shift events λ = {1, . . . , 5} drawn from a Poisson
distribution. The experiments were performed for a duration
of 16 days of simulated time. The shifts were triggered on
uniformly selected links in each period of 24h. The duration
of each event varied randomly from 1h up to 4h.

The probing intervals τ = cF (l)−1
cdf were autonomously

adjusted for each connection based on the inverted cumulative
density function of F (∆t) =

�∆t
0 P (t)dt (see eq. 1), the

fraction l = 0.9 and cost c = 105. This allows for probing
intervals that are adapted to local network behaviour, which
can reduce the link load caused by probing [2].

V. RESULTS

We here examine the results from the two experiments
described in the previous section. The performance rates are
based on data extracted from simulation logs. For statistical
significance, the results are shown as the average of 40 runs.

A. Model sensitivity and detection delay

Two aspects of the model behaviour are examined. First,
we investigate the sensitivity between models for varying



model parameters in terms of the average divergence, mea-
sured throughout the simulation. Second, we investigate the
detection delay in terms of the number of samples.

We observe in Figure 3, that the average divergence in-
creases with the decay factor. Naturally, higher degrees of
decay increase the overall divergence between the models.
Further, the divergence varies increasingly between the av-
eraged measurements as less data is preserved. In practice,
this kind of variation or noise can complicate configuration
of the thresholds ηdiv and ηconv , possibly leading to increased
alarm rates or greater amounts of undetected shifts. The results
indicate that the sensitivity to new data points is mainly deter-
mined by the decay factor T , rather than the model size N .
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Fig. 3: Average divergence for different values of model size N
and decay factor T .

In Figure 4, we see that the number of samples needed
to detect drift for a fixed value of ηdiv , decreases as the
decay factor T increases. The less information that is kept,
the more noise occurs in the detection model, consequently
leading to shorter detection time and possibly increased alarm
rates. Further, we see that the detection delay varies with the
model size, such that small models require fewer samples
for detection than larger models. The results suggest that the
number of samples required to detect changes is a trade-off
between the degree of decay and model size.

The combined results in Figures 3 and 4, indicate that with a
small decay factor, the statistical model is more robust to new
data points. In effect, more data points are required to increase
the certainty about a detected shift. By fine-tuning the model
parameters, the detection performance of the investigated types
of temporal development can be improved.

B. Performance in network simulations

We here use the detection rate for stepwise and linear
shifts, respectively, to measure the performance relative the
total number of events. Further, we have measured the rate of
additional alarms relative the total number of reported shifts,
and the number of spurious alarms relative the total number of
alarms. The rate of additional alarms shows to which degree
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Fig. 4: Detection delay in terms of samples for varying model
parameters N and T , using the detection threshold ηdiv = 5×10−3.

detected shifts are reported. Additional reports can occur from
dropped reports between neighbouring nodes, coincidental
detection between two nodes or, noisy convergence due to
e.g., short intervals between events on one connection. The
rate of spurious alarms is based on the number of alarms
not related to any event (i.e., no event has yet been triggered
on a certain link). Spurious alarms can occur as an effect of
sensitive models and low detection thresholds.
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Fig. 5: Performance rates for detection of linearly increasing and
decreasing changes.

We see in Figures 5 and 6 that the detection rates decrease
with the number of expected events. At most 85.3% of the
linear shifts (Figure 5) and 91.1% of the stepwise shifts (Fig-
ure 6) can be detected. Moreover, we observe for both types
of temporal development, that the rate of additional alarms
is relatively constant. In combination with the detection rate,
the smaller amount of additional alarms (Figure 6) indicates
that the detection of stepwise shifts is somewhat more robust
compared to the detection of linear shifts (Figure 5). An exam-
ination of the data logs reveals that additional alarms mainly
arise as an effect of shifts with complicated convergence, such
that the divergence metric varies heavily between the ηdiv and



0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expected events

R
at

e

 

 Detected Additional alarms Spurious alarms

Fig. 6: Performance rates for detection of temporary stepwise
changes obtained from network simulations.

ηconv thresholds. In the specific case of stepwise shifts, alarms
are also raised as the response delay is shifted back to normal.
As such alarms are triggered for the same event, these are
here accounted for as additional alarms. In practice, adjusting
the model parameters by observing the rate and duration of
shifts can improve the detection performance and reduce the
amount of additional alarms. Moreover, the rates of spurious
alarms are in both cases relatively low, which means that links
free from latency shifts occasionally report a spurious alarm.
Again, adjusting the detection threshold can help reduce the
amount of such alarms.

The results indicate that the performance varies for different
types of temporal development, when using the same con-
figuration of model parameters. Thus, the model parameters
can be adjusted to a certain type of temporal development for
improved performance.

VI. CONCLUSION AND FUTURE WORK

We have presented an approach to change detection and
adaptation of long-term temporal development of latency
shifts, based on comparisons between overlapping statistical
models. The models successively adapt to long-term changes,
while early observations are gradually forgotten. The sym-
metric Kullback-Leibler divergence metric used for measuring
changes between the models, allows for memory-efficient and
reliable detection of signal shifts.

The performance of the method has been investigated for
different types of temporal development. The results show that
a majority of latency shifts can be detected. Some changes
can remain undetected on a link if another shift starts before
the model has converged from a previous shift. Further, the
detection delay and model sensitivity to new data points are
trade-offs between model size and decay rate. In general, it is
indicated from the results that the overall performance can be
improved by parameter adjustment and by taking the type of
temporal development into account.

The main benefit of using the proposed method is that it
requires constant memory compared to other methods, such

as sliding windows and decay functions. This clearly reduces
the memory demands of the network equipment, and allows
for usage in various types of networks, in which the memory
capacity is limited. We have here focused on detecting latency
shifts based on Gamma distributions, but the approach can
also be used for modelling signals with underlying structures
matching other types of statistical distributions.

Future work includes the investigation of probabilistic di-
vergence and convergence thresholds, for the purposes of im-
proving detection performance and simplifying configuration.
The thresholds that we currently use are difficult to set, and
require some prior knowledge about the characteristics of the
monitored signal in order to obtain a robust detection. Finally,
we aim to test the detection performance using real-world
network measurements as input.
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