
Making Wireless Sensor Network Simulators Cooperate

Qian Li
Swedish Institute of Computer

Science
qian@sics.se

Fredrik Österlind
Swedish Institute of Computer

Science
fros@sics.se

Thiemo Voigt
Swedish Institute of Computer

Science
thiemo@sics.se

Stefan Fischer
Institute of Telematics
University of Lübeck
fischer@itm.uni-

luebeck.de

Dennis Pfisterer
Institute of Telematics
University of Lübeck
pfisterer@itm.uni-

luebeck.de

ABSTRACT

The development and testing of wireless sensor networks is
a cumbersome and tedious task. Therefore, a number of
simulators, testbeds and other tools have been developed.
Unfortunately, these tools are not able to cooperate since
they have not been designed with cooperation in mind. In
this paper, we present an approach to make simulation tools
cooperate that is based on a common input and output for-
mat. Using the recently developed WiseML format, we show
that our approach is a viable solution for making simulators
cooperate.

Categories and Subject Descriptors

I.6 [Simulation and Modeling]: Miscellaneous

General Terms

Performance, Measurement

Keywords

Simulators, Cooperation, Wireless Sensor Networks

1. INTRODUCTION
Simulators are indispensable tools to support the devel-

opment and testing of wireless sensor networks. Simulations
are commonly used for rapid prototyping which is otherwise
very difficult due the restricted interaction possibilities with
this type of embedded systems. Simulators are also used
for the evaluation of new network protocols and algorithms
and enable repeatability because they are independent of the
physical world and its impact on the objects. Moreover, sim-
ulations enable nonintrusive debugging at the desired level
of detail.

There exists a large number of wireless network simula-
tors for different purposes. Some simulators are mostly used

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PE-WASUN’10, October 17–18, 2010, Bodrum, Turkey.
Copyright 2010 ACM 978-1-4503-0276-0/10/10 ...$10.00.

for the development and testing of algorithms. These sim-
ulators have different foci. Shawn’s [10] focus is simulation
speed, whereas Nettopo’s [7] focus is on routing and visual-
ization. Other simulators target prototyping of application
and system software development and evaluation. This type
of simulators are usually operating system specific and sim-
ulate deployable code. TOSSIM simulates TinyOS code [11]
and COOJA was originally developed to simulate networks
of Contiki nodes [12]. There are also emulators for specific
microprocessors and sensor boards such as Avrora [14] and
MSPSim [5]. Another type of simulators are what we call
environment simulators. These simulators simulate the en-
vironment where sensor networks are deployed and include
for example fire simulators [9] or simulators that simulate
mobility patterns such as BonnMotion [1].

For successful WSN development cooperation not only be-
tween testbeds and simulators but also between simulators
is required. For example, to evaluate the performance of a
routing algorithm in a forest fire scenario, we would like to
use both a fire simulator and a simulator that simulates the
application and the routing protocol. However, simulators
are usually not designed with cooperation in mind. Fur-
thermore, they are difficult to combine since they are often
written in different programming languages and use different
formats for configuration and output.

In previous work, we have discussed several approaches
to make wireless sensor network simulators cooperate [15].
In this paper, we detail this discussion and report on the
evaluation of an approach for cooperation that we call com-
mon input and output format. We have implemented this
approach by supporting the WiseML format specified by the
WISEBED project [2] in the COOJA simulator and in the
Shawn simulator [10]. Our experience from the implemen-
tation of WiseML support in COOJA shows that extend-
ing existing simulators to support the proposed approach
is straightforward. In addition, our experimental results
demonstrate that this approach indeed is a viable solution
to make simulators cooperate.

There have been other approaches to combine different
simulators or simulators and testbed. E.g., Sridharan et
al.[13] combined a structural simulator with TOSSIM. Fire-
SenseTB [9] integrates a fire simulator with a WSN testbed.
Those approaches are similar to ours but are not based on
a standard such as WiseML.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11435014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. APPROACHES TO MAKE WSN SIMU-

LATORS COOPERATE
To ease the development of non-trivial WSNs applications,

existing WSN tools must cooperate. We envision a scenario
where all existing WSN simulators, testbeds, and environ-
ment simulators can exchange information easily with little
time and space overhead. To achieve this goal, effective
methods must be investigated to integrate existing WSN
tools.

According to the tightness of the integration, integra-
tion approaches can be classified into tight integration
and loose integration. Tight integration refers to join-
ing existing simulators’ source codes tightly and locally to
form a new, combined simulator. Successful examples are
COOJA [12] that incorporates the emulators MSPsim [5]
and Avrora [14] and MiXiM, an integration of four simu-
lators [6]. However, tight integration can only be applied
to simulators written in the same programming language,
which limits the number and type of simulators that can
be integrated. Moreover, this type of integration is a time-
consuming effort [15].

Loose integration employs a medium to bridge the dif-
ferences among different WSN tools. The most common
medium is a common configuration file supported by each
WSN tool. Another form of loose integration is to com-
bine WSN tools over the Internet using e.g. sockets or Web
services. Using configuration files, there are basically two
approaches. The first is to use a universal format that is un-
derstood by all WSN simulators. Abdolrazaghi [4] explored
this approach. We have, however, earlier argued that this
is not feasible because the number of configuration parame-
ters to be included is numerous [15]. Another reason is that
simulators are specific, and in some simulators, it is not pos-
sible to change parameters that are easy to change in other
simulators. For instance, in MSPSim [5] – an instruction-
level emulator for Tmote Sky mote types – it is not possible
to run the CPU at a speed of 100 MHz since MSP430 pro-
cessors do not run at this speed. Instead, we have argued
that using common input scenarios and output formats is
useful [15]. In the next section, we discuss this approach in
more detail.

Furthermore, we can distinguish between online and of-
fline integration. The latter method takes output from one
tool and uses it as input for the other tool. This way, at most
one simulator or testbed is executed at a time. A simula-
tor or testbed must wait until the whole data set required
is generated by another tool. The online approach allows
multiple WSN tools to run simultaneously and to consume
the data generated by other tools while this data is being
produced.

3. THE COMMON INPUT AND OUTPUT FOR-

MAT APPROACH
In this section, we briefly present the common input and

output format approach.

simulator−simulator−

WiseML
simulator

WiseML

specific input specific output

Figure 1: The common input and output approach

Figure 1 presents an high-level overview demonstrating
the fact that we have some simulator-specific input and out-
put as well as some common input and output.

In earlier work we have discussed several simulation en-
vironment parameters and simulation results that can be
specified in a common format for several simulators [15].
These include topology descriptions, node movement, sensor
readings, communication models, radio noise, and node fail-
ures. Obviously, the description of node movement can be
regarded as an extension of the topology description. Also
radio noise is a specific form of sensor reading. Regarding
the example of the fire scenario, the sensor readings, the
number of failed (destroyed by fire) nodes etc. provided by
an environment simulator are useful input for a WSN simu-
lation with focus on routing.

There are a number of interesting output parameters that
would make simulation results more comparable include en-
ergy consumption, number of transmitted or received pack-
ets and channel utilization over both time and space. Based
on these and other statistics interesting information can be
inferred, e.g. preferred routing paths. Another important
issue is that by having common output formats, the same
tools can be used to process the simulation results.

4. WISEML: A FORMAT FOR COMMON

INPUT AND OUTPUT
A format for common input and output should be easy

to use, flexible and extensible, it should be supported by
major programming languages and platform independent.
WiseML [3] WIreless SEnsor network Markup Language)
meets all these requirements. WiseML is an XML (eXtensi-
ble Markup Language) based language confined by WiseML
schema [3] that inherits the properties of XML.

A configuration file written in WiseML is called a WiseML
file. The WiseML schema defines that a WiseML file should
contain both input and output data common to most of the
existing WSN simulators. A WiseML file usually consists of
three sections: the setup section (input), the scenario section
(input), and the trace section (output). The setup section
contains the static information relating to the simulation as
a whole (e.g., the duration of a simulation, the coordinate
type of a WSN), the node properties (e.g., position, node
type), as well as link properties (e.g., encrypted, rssi). The
scenario section specifies the dynamic changes of the nodes’
and links’ properties during the simulation. It describes,
for example, at which time a node or a link fails and at
which time a node moves. Unlike the first two sections, the
trace section is used to store simulation results. It records
e.g. sensor readings and topology changes in chronological
order.

4.1 WiseML Support for the COOJA Simula-
tor

To add WiseML support for COOJA, we divide COOJA’s
native CSC configuration file into a WiseML file and a COOJA
file. The COOJA file contains COOJA specific information
such as plugins and interfaces. The WiseML file stores the
common input and output data, for example, node types
and node positions. The implementation of WisemlCooja
comprises three modules: the loading model that converts
the WiseML format into COOJA’s native format, the saving
model that converts COOJA’s native format into WiseML

format, and the scenario generation model that converts
COOJA’s log information into WiseML.

5. EVALUATION
In this section we show cooperation between tools that is

enabled by WiseML as common input and output format.

5.1 WSNGE and COOJA
WSNGE is a flexible and extensible WSN simulator focus-

ing on user-friendliness, multiple protocols simulation, and
online simulation reconfiguration. WSNGE released its sup-
port to WiseML 2.0 and posted an exported setup-only con-
figuration file on its website [8].

Figure 2: WiseML defined network topology being
loaded into WSNGE (a) and COOJA (b)

The WiseML file contains 6 sensor nodes interconnected
by 17 links. Figure 2 (a) (copied from WSNGE’s website)
illustrates the network’s topology generated by WSNGE, (b)
is the screenshot of COOJA after it successfully loads the
WSNGE generated WiseML file. As we can see, the nodes
are in the same positions. After assigning each sensor node
a node type and an application, we can start a COOJA
simulation. If we want to reload the simulation in the future,
we can save it as either in COOJA’s native configuration
format or in the WiseML format.

5.2 BonnMotion, COOJA and Shawn
In this section, we demonstrate how Shawn loads a WiseML

file exported by COOJA. This WiseML file contains node
movements originally created via BonnMotion and via WiseML
loaded into COOJA. BonnMotion [1] is an open-source Java
software that creates and analyzes mobility scenarios. Here
we have used BonnMotion to generate a mobility pattern
that follows a Random-Waypoint model.

Figure 3 presents the screenshots captured from both
shawn and COOJA when they are simulating with the same
configuration file generated by COOJA. This configuration
file contains the node movement scenario generated by Bon-
nMotion. The network topologies at simulated second 0, 30,
and 60 are shown in Figure 3 (a), (b), and (c), respectively.
Since Shawn and COOJA use different coordinates to visual-
ize network topologies, the screenshots generated by Shawn
are flipped vertically for ease of comparison.

5.3 Testbed output to enhance simulations
In this section, we demonstrate how output information

from a testbed can be used as input to a simulator and this
way make simulations more realistic.

The first testbed consists of one sink node and three sens-
ing nodes that sense the temperature every second. The
values are logged and converted to a WiseML format tem-
perature scenario after the completion of the experiment.

Figure 3: Network topology changes over time for
Shawn (top) and COOJA (bottom). The network
topology at simulated second 0 (a), after 30 s (b)
and 60 s(c).

The sensing nodes broadcast packets at a rate that depends
on the current temperature. If nodes sense a temperature
≤ 25 degrees Celcius, they transmit two packets per second
and if the temperature is between 25 and 27 degrees nodes
transmit four packets per second. Otherwise, they transmit
eight packets per second. The nodes transmit packets at the
rate until the second has past and new temperature values
are sensed. The sink counts the packets it receives every
second.

Figure 4: Output from a testbed makes simulations
more realistic

Figure 4 depicts the average number of packets per second
received by the sink node over time. Each value in the graph
is obtained by averaging over 20 packet yields. The straight
line at the bottom of the graph is generated by COOJA
without temperature scenario. Here, COOJA’s low default
temperature that is taken and hence nodes transmit packets
at the lowest rate. As a result, the sink always receives the
same number of packets per second and the graph shows a
straight line. The testbed curve and the COOJA with tem-
perature scenario curve almost always overlap which shows
that by supporting WiseML, testbeds can gather real life
scenarios for WSN simulators to realize more realistic sim-
ulations. The setup only WiseML file corresponding to this
experiment is 2.4 KB, the testbed produced temperature
scenario is 8.1 KB.

A typical use-case for simulations is optimizing applica-
tions before they are deployed on hardware. Hence, a fre-
quent task is to model a real-world environment. Apart from
topology, this includes communication aspects, i.e., choos-
ing the best communication model and parameters such

that it provides a good approximation of real data transmis-
sions. Using Shawn, a frequently used model is the so-called
stochastic communication model which honors the fact that
the probability of a successful reception diminishes with in-
creasing distance. It defines two distances r1 and r2 with
r1 < r2. For 0 < d < r1 a constant probability pmax is
assumed while for d > r2 no communication is possible. For
r1 ≤ d ≤ r2, the packet reception probability decreases lin-
early from pmax to 0. We have derived parameterizations for
this model from a set of measurements in different scenarios
(e.g., indoor, outdoor, different antennae and heights above
the ground).

While this model already improves the realism of Shawn
simulations, it is still a substantial abstraction from real-
ity. The real packet delivery ratio over distance may vary
for each pair of nodes depending on the actual environment
(e.g., walls that impede communication or different heights
above ground). To better approximate reality for a given
deployment, measurements from this deployment could be
used to parameterize a communication model for each pair
of nodes individually. Therefore, we implemented a com-
munication model for Shawn which accepts packet delivery
probabilities for each link between two nodes. To parame-
terize this model, we measured the packet delivery ratio for
each individual link in a testbed of 21 iSense sensor nodes
and logged the data to a WiseML file. From this file, packet
delivery probabilities for each unidirectional link are calcu-
lated and written to a Shawn configuration file.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

c
k

e
t

D
e

li
v
e

ry
 R

a
ti

o

0,0

0,1

0,2

0,3

0,0 5,0 10,0 15,0 20,0 25,0 30,0

P
a

c
k

Distance [m]

Figure 5: Packet delivery ratio measured a testbed
of 21 nodes stored in WiseML and visualized

Figure 5 visualizes the measurements from the WiseML
file for the 21 nodes. It is obvious that the stochastic model
can only provide a very rough approximation of the pre-
vailing packet delivery ratios in the real testbed - which is
especially true in indoor deployments. Using WiseML traces
to better parameterize models of simulators is hence an im-
portant means to improve the realism of simulations and to
adapt the simulator to the ambient conditions of a real de-
ployment. Obviously, this approach is not limited to Shawn
but can easily be extended to other simulators.

5.4 Micro-benchmarks
We have measured the code size of the WisemlCooja im-

plementation as the size of an application reveals, to some
extent, the complexity of a system. WisemlCooja consists
of seven classes thereof five Graphical User Interface han-
dlers. The size of WisemlCooja is 137.6 KB with the main
class WisemlProcessor.java 82.9 KB, accounting for approx-
imately 62 percent of the total size. We have also measured
the times it takes to load, generate and save scenarios as well

as exporting scenarios to and from COOJA on a standard
PC. Most of these operations are quite fast. For example,
it takes around three seconds to generate a scenario for 800
simulated sensor nodes. In summary, our results show that
the time and space complexity is low and would not prevent
users from using our implementation.

6. CONCLUSIONS
For successful WSN development cooperation not only be-

tween testbeds and simulators but also between simulators
is desirable. We have presented an approach that we call
common input and output format. We have exemplified
this approach with the WiseML format implemented for the
COOJA and Shawn simulators. Our experiments demon-
strate that this approach indeed is suitable for making sim-
ulators cooperate.

Acknowledgments This work was partially supported
by the European Commission under contract numbers IST-
2008-224460 (WISEBED) and FP7-2007-2-224053 (CONET).

7. REFERENCES
[1] Bonnmotion. Manual. 2009.
[2] Wisebed - wireless sensor network testbeds.

http://www.wisebed.eu.
[3] Deliverable D4.1: First set of well-designed simulations,

experiments and possible benchmarks. Technical report,
The WISEBED project group, 2009.
http://www.wisebed.eu.

[4] A. Abdolrazaghi. Unifying wireless sensor network
simulators. Master’s thesis, KTH Stockholm, 2009.

[5] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and
T. Voigt. Mspsim – an extensible simulator for
MSP430-equipped sensor boards. In EWSN 2007,
Poster/Demo session, Delft, The Netherlands, Jan. 2007.

[6] A. K. et al. Simulating Wireless and Mobile Networks in
OMNeT++: The MiXiM Vision. In International
OMNeT++ Developers Workshop, Marseille, France, Mar.
2008.

[7] L. S. et al. NetTopo: Beyond simulator and visualizer for
wireless sensor networks. In FGCN 2008, Hainan, China,
Dec. 2008.

[8] M. Karagiannis, I. Chatzigiannakis, and J. Rolim.
WSNGE: A platform for simulating complex wireless sensor
networks supporting rich network visualization and online
interactivity. In Spring Simulation Multiconference, 2009.

[9] B. Kosucu, K. Irgan, G. Kucuk, and S. Baydere.
FireSenseTB: A wireless sensor networks testbed for forest
fire detection. In IWCMC, 2009.

[10] A. Kröller, D. Pfisterer, C. Buschmann, S. P. Fekete, and
S. Fischer. Shawn: A new approach to simulating wireless
sensor networks. In DASD’05, 2005.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
accurate and scalable simulation of entire tinyos
applications. In ACM SenSys, 2003.

[12] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and
T. Voigt. Cross-level sensor network simulation with
COOJA. In IEEE SenseApp, Tampa, USA, Nov. 2006.

[13] A. Sridharan, M. Zuniga, and B. Krishnamachari.
Integrating environment simulators with network
simulators. Technical report, Department of Electrical
Engineering Systems, Univ. of Southern California, 2004.

[14] B. Titzer, D. Lee, and J. Palsberg. Avrora: scalable sensor
network simulation with precise timing. In ACM/IEEE
IPSN, Apr. 2005.

[15] T. Voigt, J. Eriksson, F. Österlind, R. Sauter,
N. Aschenbruck, P. J. Marrón, V. Reynolds, L. Shu,
O. Visser, A. Koubaa, and A. Köpke. Towards comparable
simulations of cooperating objects and wireless sensor
networks. In WSNPerf, 2009.

