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Sensor networks have diverse structures and generally employ proprietary protocols
to gather useful information about the physical world. This diversity generates
problems to interact with these sensors since custom APIs are needed which are
tedious, error prone and have steep learning curve. In this thesis, | present RESThing,
a lightweight REST framework for wireless sensor networks to ease the process of
interacting with these sensors by making them accessible over the Web. | evaluate the
system and show that it is feasible to support widely used and standard Web
protocols in wireless sensor networks. Being able to integrate these tiny devices
seamlessly into the global information medium, we can achieve the Web of Things.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are used for various areas sugivisonmental moni-
toring [32], building automation [49], habitat tracking [30, 35] and healbe [9] applica-
tions. These networks typically consist of many embedded devicesaef@srsensor nodes
and these devices are kept resource constrained to minimize the ovetallTgpically,
each of these nodes consists of a small microprocessor, a transaainenber of sensors
and is usually battery powered. Having minimal resources, many challepgesr and
special care should have taken to use the resources as efficientlgsbl@@nd handle
these challenges.

Various different types of applications are the consumers of sensbsdave need easy
and feasible mechanisms to access WSNs. And as sensor networks n@yg|i@he idea
is to integrate sensors into the Web and making them accessible over thetntern

1.1 Motivation and Problem Statement

Sensors are devices that let us monitor and react to the physical wantdex&mple, as
its name implies, a temperature sensor can give us the temperature of themevitat is
in. But how do we collect this useful information? We need sensor nodesmonunicate
and collaborate with each other which is realized via wireless sensor hatwidowever,
currently most WSNs are based on specialized software and hardisgiems and due
to performance reasons, custom protocols and APIs are used whidffiaient but also
tedious, error prone and have steep learning curve. These nataglamechanisms are
limiting accessibility and interoperability of the sensors which means they arblalddang
the emergence of new type of applications that can improve our lives iy stagge of daily
life.

We need uniform and easy mechanisms to access these devices forahef sakr-
operability and indeed integrating these devices into the Internet wouldnhppoovide
it but also yield many other opportunities the Internet provides. The idemmfecting
these tiny things to the Internet is mentioned as the Internet of Things amdekists two
main ways to establish this purpose. One way is to employ gateways, whichag@dn-
verters between protocols of the Internet and custom protocols useel wirtless sensor
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Figure 1.1: Connecting wireless sensor networks to the Internet dirdetliPvenabled
sensors.

networks. The other way is having end-to-end communication using IFezh#tiings,

as shown in Figure 1.1. Especially with IPv6, we have enough addrasg $p identify

all of these things. The work in this thesis is about the latter approach; elingniin
need of an Application Layer Gateway whose job is to convert betweedathiformats to
custom ones. For that matter, | focus on using proven and widely-taedasds (HTTP,
TCPI/IP, etc) directly on sensor nodes hence not needing protocatision. Clients will

be able to interact with the sensor nodes just as they do with traditional wedrseut

there in the Internet. They may not even be aware of the fact that thexeessing a very
resource-constrained device.

First step of this task, namely network layer interoperability is already aetligging
IP protocol in sensor nodes [18, 22]. Previously, TCP and IP wemnsidered unsuitable
for wireless sensor networks believing that TCP and IP are very heagit, but they are
proven to work well with sensor domain [18, 22]. The next step is to pegigblication
level interoperability. For this concern, we need to attack the problem asathe way IP
made viable for sensor nodes; we need to make higher level protocolBiTiER viable.
The importance of HTTP is that it is the most important requirement on the widng &f/eb
of Things.

This thesis offers a solution to integrate sensors into the Web using the pesoip
REST, the architectural model of the Web. | also analyze the costs of R&84d ful princi-
ples over WSNs and identify the ways to minimize the costs by certain desigrestaid



optimizations to prove that HTTP is viable in sensor networks. | use Tmote Stesi¥?]
as the platform and have achieved completion times in terms of hundred millisetmnd
RESTful Web services to collect sensor data.

The motivation for this work is the idea to access sensors using standdrdodle
such as browsers, feed readers, etc. Tiny devices have the capabigyembedded into
the physical world, therefore, if we can integrate these devices into theadV¥eige amount
of data about physical world will be available. So, combining it with the s#ipitous
nature of the Web, new types of applications, beyond the ones that aé@aey familiar,
are very possible to appear.

Increasing popularity of Web Mashup applications [56] shows us thgtdhe be the
driving force of generating applications using real world data. A WelsiMa is a web
application that gathers data from different external sources (uséillg) to offer new
services. Mashup applications are very popular lately since new applisaiim be gener-
ated easily by using existing applications and since already existing resaneused, fast
development is possible. By putting physical objects in the picture, masknpsse real
world data in real time hence generating a new bunch of useful applicatiahsnay not
be predictable by now. Example mashup applications involving physicaltdiasalready
started to appear such as the ones appearing in the work of Guinardifand 7].

In this work, sensor, node, and mote words are often used to desa@ibimtembedded
devices related to the study, however the concepts are equally applicabtadtors as well,
i.e. itis possible to access actuators over the Web and control the behai/real world
objects. Moreover, actuators may coexist with monitoring applications, or lester by
working together, i.e. they can act upon the conditions in the environmehtasuHVAC
(heating, ventilating, and air conditioning) systems.

1.2 Internet Of Things and Web Of Things

Even though sometimes Web and Internet terms are used as if they mean thinisgme
in reality their meanings are quite different. Internet is the network of comptsvorks
realized by IP protocol, whereas Web is a set of resources that anected to each other
by hyperlinks. These resources are uniquely addressed by URlaca@essed via HTTP
protocol over the Internet. There exist Internet applications whicmar@art of the Web
such as emails.

Internet of Things means connecting the computers on the Internet gaidalobjects
(sensors and actuators) to have the opportunity of monitoring and realénghysical
world events. But, | believe that is not enough, on top of it we should tizeéNeb of
Things in which physical things are accessed using standard Web nigrakarfror exam-
ple; sensors should have URIs and their readings should be accessibteese URIs. Erik
Wilde has written a technical report [55] which describes the Web of Bhamgl its vision
very well.



1.3 RESTful Sensor Network Applications

Showing that RESTful Web services are viable for WSNs does not medhiag alone if
we do not have reasonable use cases. For example; how can we selisct readings in a
RESTful way? | provide an overview of the Web communication model ancridbeshow
it differs from typical sensor application problems.

The Web architecture depends on a client-server model so clients hastéveyapull
the content instead of getting it pushed to them. However, for a typicaliqgaiysorld
monitoring application, we need to have some form of asynchronism feraeeasons:

1. To access the updated readings instantly, i.e. the sensors asyniiy@send updates
in real-time rather than as responses to synchronous service calls.

2. To be able to support time-consuming operations which do not retwhs@sme-
diately, such as tasks running in background continuously and sereiotis when
they are available.

3. To utilize bandwidth usage, i.e. nodes communicate only when new dataraxisis
than being polled periodically.

The Web has a synchronous communication model only. A client opensiaciion to
a server, makes a request, the server responds to the request aodrtbetion is finalized
(see Figure 1.2). This is a very simplified view, there exist some other poititsidiscus-
sion such as persistent connections and Ajax [53]. Ajax is a web progitag technique
for creating more interactive and faster web applications with a mechanislataftrade
without doing a full page refresh. Although, both Ajax and persistennheotions have
advantages, actually they still use the same synchronous interaction nidiebo Also,
working on a domain of devices having extremely small resources, petsistenections
do not seem to be a good selection since the devices do not have enauginynie handle
many persistent connections. It can be feasible if the sensor will onlypeected with
a single application though, but this would be a serious limitation for most apphsatio
There are also other protocols than HTTP which has better real time bekacioas Ex-
tensible Messaging and Presence Protocol (XMPP) [48], howeveonoeen here is HTTP
since it is the main transport protocol of the Web.

In Section 7.1.1 | offer a RESTful approach to solve typical sensolicgtion prob-
lems.

1.4 Method

This study is experimental, it includes both implementation as well as measurements to
evaluate the system considering performance and energy-efficieeywe implemented
lightweight HTTP Server, REST Engine and Logger modules on Contikedisssmodified

and ported a simple XML parser to Contiki. | have performed many optimizatiortee

code and carried out various evaluations. The measurements areod@og/er consump-

tion and completion time in order to quantify the performance of the system. Mameo
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Figure 1.2: Synchronous communication model of the Web

results of different methods and optimizations are provided to compare thérachieve
the best result.

1.5 Limitations

This thesis focuses on RESTful Web services and their underlyinggmistand standards
(HTTP, TCP, XML) over WSNs. Although security is very important, due tedsplexity
that it would bring on the work level as well as on the code size level, Bgcealated issues
are not discussed or implemented in this thesis. Moreover, network lagidower layers
are not the main concern of this work. That is why the routing between tisosaodes
is out of scope in this thesis. The only exception is the work | perform orCN&yer, i.e.
tuning X-MAC [13] for better TCP communication.

1.6 Alternative Approaches

This thesis is about integrating WSNs to the World Wide Web. For that purpbage de-
cided to build and evaluate a framework following Representational Statsférgd REST)
principles since REST is the software architecture style underlying the Wdidd Web.
There exist many other technologies to build Web applications, most notalli? $@sed
Web services. There appear two main problems with SOAP-based Weabeserfirstly,



they use the Web as a transport medium instead of integrating to it, and Bedbeg
are heavier and more complex than RESTful Web services in terms of mdmaogyvidth
and computation requirements especially due to SOAP layer and constamtingiyS-*
stack. Related to that matter, we can also talk about traditional distributed matékesuch
as DCOM, CORBA which have the same disadvantages of SOAP-basedanigbes in
our context. Moreover, they have an extra disadvantage; they doanktkrough firewalls
or proxy web servers since HTTP is not employed.

Another approach would be to employ translation gateways, which workragters
between protocols of the Internet and custom protocols used in the wirsdesor net-
works. Main advantage of this method is efficiency; using optimal protocsI$\SNs
would definitely be more efficient. However, this approach has dravayackranslation
gateway is always required in between sensor network and the Intantkinteroperabil-
ity between sensors would be very limited due to the custom protocol, namelylid lwe
very hard to combine different platforms in the same network. Also, pa&resnce shows
us that protocol gateways are very complex to design, manage and depsiges other
problems are also possible due to conversion such as inconsistent r@uiSgtransport
and network recovery techniques [22]. So the question here is ex¢raend for having
maximum interoperability acceptable or not? | prove that it is reasonablerandging in
Section 6.

1.7 Scientific Contributions

This thesis contains two scientific contributions. Firstly, | show the feasibilitysifig
RESTful Web services on IP-based multi-hop low-power sensor nksiayr employing a
number of optimizations. These optimizations include programming techniquebiévac
small code and data memory usage, MAC layer optimizations to improve throughpe
conserving power as well as HTTP mechanisms to save bandwidth. Ttattksse op-
timizations, it is possible to achieve completion times in terms of hundred milliseconds
for RESTful Web services with a power consumption of just several milliw&escondly,

| evaluate the performance of the work, prove that it is reasonable laodcampare it
with SOAP-based Web services. My evaluations show that RESTfubapproutperforms
SOAP based technique, namely for a typical actuator example of controliDgREST-
ful approach is 58.9% more energy efficient and responds 4.7 timestfzmteSOAP-based
approach. Furthermore, | perform evaluations for RESTful Welises over IPv6 and ac-
cording to my evaluations, in average IPv6 has 42.4% more overheadP®hhndunterparts
in terms of completion time.

1.8 Thesis Structure

This thesis is structured as follows. Chapter 2 describes the backgodune work and
explains concepts related to this thesis, namely an overview of Web seaviddése under-
lying technologies/standards are given. Related work also exists in tipgechafter that,



| present design of the system in Chapter 3 and analyze how to make Ha@IE wn Chap-
ter 4. In Chapter 5 implementation of the overall architecture is describe@hdpter 6,
evaluations are given and interpreted. | conclude in the last chapteilyf-in Appendix A
| present the code API.






Chapter 2

Background

Wireless sensor networks consist of sensor nodes that monitor physiaditions. IEEE
802.15.4 is a standard used in these networks addressing physicalfahthlers. There
appears power saving MAC protocols such as Low Power Probing)([49p and X-
MAC [13] aiming to conserve energy. The sensor nodes in these netamglsometimes re-
ferred as motes as well and Tmote Sky is one of the mote platforms commonlyMisey.
operating systems are present that are targeted to run on sensosucdes TinyOS [29]
and Contiki [19].

The Web is a distributed system of interlinked documents running over thendhte
HTTP, URI and XML are the basic Web technologies. REST is the underdyicigitecture
model of the Web. Web services are used to develop interoperable distrigjpiplications
usually using Web-related standards. Web services are generallpiga¢en two classes:
SOAP-based Web services and RESTful Web services. Shortly, $28&d Web services
employ Simple Object Access Protocol (SOAP) standard, however RE®WED services
employ REST principles so they are resource oriented and lighter sincertinkyn top of
HTTP directly.

2.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a type of wireless network consisfitegge number
of small embedded devices which are referred as sensor nodesgtéaniipped with sen-
sors (and/or actuators) and wireless communications devices (i.e. rawSodneer), these
nodes collaborate to sense their physical and environmental conditiohsasumotion,
temperature, smoke, light etc. This type of networks have many applicadan,aaome of
which can be counted as military applications, home automation, environment mugito
etc.

2.1.1 Mote

A mote, which is also known as a sensor node, is a wireless sensor deaticefresents
a node in a WSN. The main components of a mote are microcontroller, radiceneers

9



Figure 2.1: Tmote Sky Mote

external memory, power source and a number of sensors. Motes s& &ed monitor
physical assets of the environment using their sensors, processsitagathe microcon-
trollers and communicate with their neighbours in range using their transseRatteries
are usually the main power supply of the motes and radio transceiver iyufigamost
power consuming component of a typical sensor node. Regardingiakieemory, Flash
memories are mainly used due to their low cost per unit capacity. There ayediff@nent
motes are used in WSNs; Sun SPOT, MicaZ, Tmote Sky just to name a few.

2.1.2 Tmote Sky

For this thesis, the mote platform is chosen as Tmote Sky [42] which is shovigureR2.1.
It is an ultra low power IEEE 802.15.4 compliant wireless mote having the follpkéey
attributes:

— 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k InteFfiakh,
1MB External Flash)

— Integrated Humidity, Temperature, and Light sensors

— 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver having maximumasavdte
of 250kbps

2.1.3 IEEE 802.15.4

IEEE 802.15.4 is a standard that specifies the physical layer and medssammntrol for
low-power personal area networks (LOWPANS). Its main aim is to sugpog battery

life by offering limited capabilities; small frame sizes (the maximum frame length is 127
bytes), low bandwidth and transmit power.
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Figure 2.2: X-MAC: Sender transmits preambles until the receiver is aaadt¢hen trans-
mits actual data.

6LOWPAN

6LOWPAN [27] is an adaptation layer between MAC and network layer thaséd to
provide IPv6 support over IEEE 802.15.4 radio. Its aim is to enable lomepoperation
by compressing headers and hence saving bandwidth and power.

2.2 X-MAC

X-MAC [13] is a low power MAC protocol that uses a sequence of spoegambles to
wake up the receivers. Radio transceiver is the most energy conseamimgonent of a
typical sensor node and idle-listening constitutes the main part of totalyensage. X-
MAC addresses this problem; motes save energy by switching off the radib ohthe
time and hence reducing idle radio listening. Nodes wake up for a short tinegirtar
periods to listen for preambles. When a node wakes up and receivearalje addressed
to itself, it replies with an acknowledgement showing that it is awake. Upoept®n of
the acknowledgement from the receiver, sender transmits the wholetpack

2.3 Contiki

Contiki[19] is a lightweight open-source operating system, specificaligded for memory-
efficient networked embedded systems and wireless sensor netwiopkgvitles both full
IP networking and low-power radio communication mechanisms via three comationic
stacks: Rime [20], a lightweight layered communication stack that providags bammu-
nication primitives on top of which more complex protocols are buile, [18] is a minimal
fully RFC compliant TCP/IPv4 stack, andPv6 [23], is the world’s smallest fully RFC
compliant TCP/IPv6 stack.

Currently, Contiki has support for 3 different MAC layer protocolsnrely NULL-
MAC, X-MAC [13] and Low Power Probing (LPP) [45]. NULLMAC is theraplest MAC



protocol in which transceiver is always on, whereas X-MAC and LRPtlze power con-
serving protocols.

The X-MAC implementation that Contiki offers has two important parameterstwhic
are related to this thesis:

— On Time: How long the sensor keeps the radio switched on while listening éduestr
— Off Time: The duration between two listening times in which the radio is off

Contiki has an on-line power profiling mechanism [21] which is used to et@lpower
consumption in this thesis. It estimates the energy consumption by measuringatierd
each component is in various modes such as low-power mode, transmitting.

24 SLIP

The Serial Line Internet Protocol (SLIP) [47] is an encapsulation efltiernet Protocol
designed to operate through a serial connection. SLIP is a very simptepkthat frames
IP datagrams to send them over serial connections. Although it is mostlyetdsmw,
thanks to its small overhead, it is still used for connecting constrained efabeystems.

25 TCP

Transmission Control Protocol (TCP), described in RFC 793 [43], anaection-oriented
protocol; a connection is established and kept open during the datanggechatween each
endpoint. Endpoints are defined by IP address and TCP port nuniher pa

TCP is one of the main protocols of the Internet Protocol Suite (TCP/IRgslin the
transport layer and it is reliable; it guarantees data delivery and thi¢sawill be delivered
in the same order as they were sent. TCP also supports sophisticatedtammgad flow
control mechanisms via adaptive windowing techniques.

2.6  Web Architecture

The World Wide Web (WWW), abbreviated commonly as the Web, is very widsddu
with some other technologies such as e-mail, P2P, usenet, and IRC, it madéetinet
so much popular. Currently, most of the users of the Internet are hueiagd) but this
picture is changing with Web 2.0 since programmable web notion is getting mouéapop
each day. In another words, some of the clients of some web applicat®psogrammed
machines.

The aim of rest of this section is to describe REST and basic Web techroletggant
to this thesis; HTTP, URI, and XML.



<Sensor s>
<Sensor >
<Nane>t enper at ur e</ Nane>
<Val ue>25. 1</ Val ue>
</ Sensor >
</ Sensor s>

Figure 2.3: A simple XML document

2.6.1 URI

A Uniform Resource Identifier (URI) is a string that identifies a resowrtehe Internet.
It is described in RFC 3986 [10]. URI is one of the main components of the thahs
used to name and address all the piece of data that clients want to acomssURI labels
exactly one resource and every resource present on the Weblbastaine URI.

2.6.2 XML

Extensible Markup Language (XML) [12] is an open standard recometkhyg the World
Wide Web Consortium (W3C). XML is a markup language designed to tranhapd store
data in a plain text form. Its simple and flexible structure made it a very importahtege
format of data on the Web. An example XML document is given in Figure 2.3

In the context of the Web services, an XML parser is needed to proddisdocu-
ments and extract the information needed. Currently there exists two main Xavep
types; Simple API for XML (SAX), Document Object Model (DOM). SAX isa&r is an
event based parser; it parses the XML data into a series of eventastadpopened, closed
etc. Parser invokes the callback functions with corresponding everilts gding over the
document, in another words, it pushes events to the user. It is fasffanene but gener-
ally referred as hard to use since user has no control over the pafsngallbacks are set.
DOM parser generates a tree data structure from the XML data whichtea&travelled
to extract needed data. Using DOM parser is generally considered sk than using
SAX parsers but due to the overhead of extra data structure repirgstire document cre-
ated, it is much more greedy in memory usage than SAX parser. Theréfibieavailable
memory is very small or the XML document is very big, DOM parser is not algdmice.

Additional to DOM and SAX APIs, there also exist new parsing appraacheh as
Pull parsers. Pull parser resembles to SAX parser since it converdMhedocument
into a sequence of events, however as its name implies, users pull datahioparser
(instead of data getting pushed to the user) which makes it more flexible thép&aer.
Therefore, Pull parsers are mentioned as having the efficiency @d@aof SAX parsers
whereas being easier to use.



GET / HTTP/ 1.1

Host: www. sics. se

User-Agent: Mozilla/5.0 (X11; U, Linux i686; en-US; rv:1.9.0.10)
Gecko/ 2009042523 Uobuntu/8.10 (intrepid) Firefox/3.0.10

Accept: text/htm ,application/xhtm +xm, application/xm

;g=0.9,*/+*;0=0.8

Accept - Language: en-us, en; g=0.5

Accept - Encodi ng: gzi p, defl ate

Accept - Charset: |SO 8859-1,utf-8;q=0.7,*;q=0.7

Keep- Alive: 300

Connection: keep-alive

Figure 2.4: An example HTTP request

26.3 HTTP

HTTP (Hypertext Transfer Protocol) is an application layer protocedusy the World
Wide Web to access resources in a stateless and loosely coupled wak. islThe trans-
fer protocol that makes the Web work and it also helps the Web to scale Vinigees
such as stateless communication, caching, persistent connections. Thes siajoire and
ubiquitous nature of HTTP made it very popular for many types of distribapgdications.
HTTP/1.1, described in RFC 2616 [25], is the version of HTTP that is conyn@ed now.

HTTP works in a client/server fashion and uses URIs to access resoutn most
cases, HTTP uses TCP as the underlying transport protocol eveghtitasinot mandatory
to do so. A typical and simple interaction would be as follows; client establiaheSP
connection to the server (on port 80 as default), then the client seqasstanessage, server
processes the request and returns a response. The type of thresesmay vary depending
on the client requests and server capabilities, for example; HTML files ayammay be
returned for web browsers. An example HTTP request, the requast ltp my browser
when | visit www.sics.se, is provided in Figure 2.4. Cookie part is notgimesl for the
sake of simplicity.

Client requests consist of the request line (in the example: "GET / HTTP/tefjuest
headers and an optional entity body).

And the response of the server is given in Figure 2.5. Entity body whi¢txdes HTML
document of the web page is not written but instead just presented with [HJ&fa].

Server responses consist of a line for the status ("HTTP/1.1 200 Ol@ssthat the
operation is successful), response headers and entity body (usisibhathhas the repre-
sentation of the resource).

2.6.4 REST

Representational State Transfer (REST) is an architecture style dbfirfedy Fielding in
his PhD thesis [26]. It aims to design distributed networked applications GHIAdP as
application layer protocol and it is actually the architecture model of the Web.



HTTP/ 1.1 200 OK

Date: Fri, 12 Jun 2009 12:45:31 GVI

Server: Apache/2.2.6 (Unix)

X- Powered-By: PHP/5.2.4

Expires: Sun, 19 Nov 1978 05:00: 00 GMI
Last-Modified: Fri, 12 Jun 2009 12:45:31 GV
Cache-Control : store, no-cache, nust-revalidate
Cache-Control : post-check=0, pre-check=0
Connection: close

Tr ansf er - Encodi ng: chunked

Content-Type: text/htm; charset=utf-8

[ HTML Dat a]

Figure 2.5: Response of the server to the example request

The main abstraction of REST is the resources. Every resource shandd Rl and
using these URIs it is possible to link resources hence leading hypernitadipossible to
have different representations for the same resource which is acesrful concept, i.e. a
server can serve HTML content for human consumption and XML or J&DMNachines.

REST uses standard methods HTTP defines; i.e. GET is used as a saferapdtent
operation to access a resource, PUT is an idempotent operation tha gaedto create or
update a resource with a known URI, DELETE is idempotent as well andl toseemove
a resource and lastly POST is used for anything else. Although thereotxést HTTP
methods such as OPTIONS and HEAD, the four of the methods describgtieamost
popular ones. Moreover, a new HTTP method is about get into standang BATCH. It
allows clients to do a partial update on a resource hence enabling bandaidth And
as response statuses, HTTP has a well defined and rich set of sespmdes such as this
resource created or resource temporarily unavailable, etc.

Working over HTTP, REST has stateless communication which means sdoverst
keep application states of the clients, instead clients should send all mycstssa infor-
mation in requests. The only state in the servers are the resources. Stasdles is one
of the main reasons under the scalability of Web.

However, REST is not the silver bullet for everything. It is definitely net¢hre for all
type of applications; other architecture styles or specific technologies arégrm much
more better depending on the requirements of the problem. So the aim of thssithes
definitely not to claim that all types of wireless sensor network problem$eawlved by
employing REST principles but to show that it is possible to integrate phydipatts into
the Web using REST principles.

2.7 JSON

JavaScript Object Notation (JSON) [15] is a lightweight and languagepanient text
format to interchange data. The idea is to serialize data structures (nyrabesss, etc)



{"Sensors": {
“item: [
{"name": "Tenperature", "value": 26.1},
{"name": "Light", "value": 87}
]
H}

Figure 2.6: A simple JSON document

as JSON formatted strings. JSON offers a better solution than XML for sit Jesascript
environments since instead of parsing it as XML, it is directly fitted into the graata
structure. That advantage makes JSON an important player in Web 2.0aegippkc There
exists a JSON parser available almost in every language. An example J&Dheht is
provided in Figure 2.6

2.8 Remote Procedure Call

A remote procedure call can simply be described as a mechanism in whiitesipps are
able to make calls on remote machines transparently, i.e they appear asdéoeayse calls
to the users. The complexities are handled by the RPC libraries, suchvastoanthe calls
to a TCP connection between client proxy and server stubs and marshuahmayshalling
the parameters and return values. There exist many RPC systems cuisetigtill such
as CORBA and Java RMI.

2.9 Web Services

According to W3C: "A Web service is a software system designed to stipyieroperable
machine-to-machine interaction over a network. It has an interfaceildedén a machine-
processable format (specifically WSDL). Other systems interact with the 3&fvice in
a manner prescribed by its description using SOAP messages, typicallgyeahusing
HTTP with an XML serialization in conjunction with other Web-related standafi§]

2.9.1 SOAP-Based Web Services

In this thesis, Web services that employ WS-* stack are called SOAP-BEsbdervices.
Most people think of them when Web services are mentioned currently. tMaircom-

ponents of these Web services are SOAP [37] and Web Servicesifdiesctanguage
(WSDL) [14]. SOAP actually presents an envelope only but regardDgFSBased Web
services, it is used as a wrapper for RPC calls and WSDL is an XML layegica defining
interfaces. SOAP is designed as protocol independent, but in praittiseften imple-

mented on top of HTTP. This type of Web services are also called Big Welc8egror

WS-* Web services in the literature.



2.9.2 RESTful Web Services

In simplest terms, RESTful Web services mean to apply REST design priaitiptevelop
Web services. REST is the underlying architecture style of the Web, dgirpREST
principles means direct integration to the Web. Rather than focusing otidoscRESTful
Web services use Web resources as the main abstraction. RESTfulew®es book by
Richardson and Ruby is a very good source for the details of the siibict

RESTful Web services have many advantages that the Web offerex&aple:

— Standard and very well known data types are used to represent Batalifferent
types for representing same resource is possible depending on thenelgsl®. For
example; the result of some statistical data can be provided in HTML for human
beings whereas in excel for some programmed client to make calculations.

— Uniform interface is provided since standard HTTP methods are used
— True language independence

— Since HTTP is employed under, tunneling over firewalls is no problem
— Caching is possible to increase the performance

— HTTP is used as an application layer so all the features of HTTP standsrtharent
in RESTful Web services. Some of these features are; encryptiorgrdigdtion and
caching.

These advantages provided many popular Web 2.0 services to employfuR F&D
services such as Yahoo, Amazon, Flickr.

2.9.3 RESTful Web Services vs SOAP-Based Web Services

There exist many discussions about the comparisons of these two naticmas [41].

Certainly, both of the types have their advantages and disadvantagesttes them more
suitable over each other for different specific cases. However,ith@fathis thesis is to

make sensors a part of Web, that is why RESTful Web services arttem bption. Their

lighter nature is an extra advantage for our limited environments.

2.10 Related Work

There have been several work about building RESTful applicatiodsframneworks on
WSNs to date. To my best knowledge, my work is the first one to have IRosupp the
sensor nodes; the other work employ gateways on the border of setsarks especially
for IP-to-Custom Protocol mapping. | also provide evaluations reggridiie real system
performance. These two are the main points that my work adds to the prevookis
TinyREST [34], is developed as part of a Home Services Frameworkgols is to
generate a specific REST based approach for the framework rathgarthading a generic



framework that this thesis aim for. Other than IP support, the work alss dokinclude
multihop routing and reliability within WSN, both of which are supported in my wesk,
pecially reliability is inherently supported thanks to my approach of using atdridCP/IP.
A gateway connected to a base station is used to map the set of requestsQS T28)
messages and vice versa, which also performs some other tasks sialltifyg checks.
More recent researches about same subject focuses on the Weing$. T

Dickerson et al. [16] have vision of World Wide Sensor Web, in whichseemlata
streams are accessed over the Web such as Web feeds but in a mote saiydor sensors,
i.e with more capabilities (server-side filtering, streaming support and realtdates)
and in a more efficient way.

Guinard and Trifa have work emphasizing on application possibilities the WHtings
offers. In [17], they present real mashup applications using setadarand existing tools,
hence showing the opportunities that the Web of Things brings. My wdidrdifrom theirs
in the part of the problem | attack. Namely, | concentrate on lower detailsing&Kr TP
and RESTful Web services viable on IP enabled tiny networked deviceseas their work
mostly focuses on higher part; developing useful mashups using ther sievia from differ-
ent sensors. For that matter, the authors employ gateways to connieetsdevthe Internet.
| believe that their and my work complete each other for the vision of the Wé&hiofs.

SOAP-based Web services are out there and used successfullyjdiog &ime now.
That is why, when one mentions Web services, SOAP-based Web sefiritecome to
mind rather than RESTful ones. There exist several work about SBs#ded Web services
on sensors in literature and | also have a look on them to make performamgaigson
between their and my approach; using REST principles.

The first work | have found about realizing Web services on IP-enbdensors are the
works done by Othman et al. [28, 40]. The work are about providingrahedded Web
Service Framework for WSNs with an emphasis on sinkless model in whiclnkams
gateway is used and so applications are directly accessing the senssr fidgk authors
describe a prototype implementation usjnd® over TinyOS [29] for Telosb motes [42].
Simulation results of the work are provided in which it is shown that sinklessehias
a better lifetime due to lower energy consumption and network load. Althougmaire
idea of the work to be standard compliant Web service framework, it is notiomed why
they needed to implement a client side SOAP processor instead of usingedirgnown
lightweight client side APIs. Removal of optional SOAP sections, XML ngraess and
SOAP Headers, have high chance to be the reason since most of theA&lisnise them.
My work does not involve any client side tools since | offer true Web irgi#gn so standard
Web tools are possible to interact with my framework.

Microsoft research has done implementations and evaluations in their d4rkging
ulP as their TCP/IP stack. The paper has a similar aim to this thesis which is to show
that connecting the sensor networks to the Internet based on widelyepsedstandards
such as TCP/IP and it has a good job showing the overhead incurre€ByiF Also
the optimizations are suggested to reduce the overhead, however they seem very
practical to perform. For example; using persistent connections is aotigal at all for
constrained devices that will really interact with Web because of the stdtedbded to



be saved. For that purpose, their aim is to realize Web services onrisetsso spite
of the significant energy and bandwidth overhead. The authors luénevad to connect
sensors to the Internet using HTTP Binding with WSDL standard. Most efdétails
are not given but looking at the examples they have provided, the sybynmproduced
seems to be very specific (such as sensor providers generate W8Qio@dm too) and it
seems to be more like an REST-RPC hybrid rather than genuine SOAPWabesrvices.
Real SOAP handling part is done using an intermediary that intercepts the Bf@ssage
from the client, extract method name and parameters and send them to tlamtrekvsor
over HTTP directly. On the other hand, | have implemented a server sidd®$A to
compare it with my lightweight REST framework so my implementation do not require
any protocol/data converter in between. In their work, the authors hehieved to have
just 23.09 ms increase in the completion time for 40-byte respose data size sekicts
really promising. However, this evaluation ignores the latency incurreedpyast message
and overheads of opening and closing connections. In my work, | ddd®PHanalysis and
provide completion times of Web service calls with more realistic data sizes anel trat

it is still reasonable.

The SenseWeb project [31] offers an architecture whose aim is te Slemsor data
across the Internet. The work differs from ours in that a centralkeseand gateways are
required to access sensor data. Web services are used for havengbéefnd uniform
mechanism.

An important aspect for my work is to have small energy and bandwidtheusage
approach to reduce bandwidth and energy overheads is to comprdssglati&lin Web ser-
vices. One can find many researches on that matter in the literature as walbibdogra-
phy is present here [33]. Moreover, comparison between diffe@mpression techniques
are provided in [8]. However, first of all, compression XML data is nabanplete solu-
tion since it will only decrease the transmission and receiving power ogoisen but still
there is the part of the problem; processing and storing big XML files. diitiad, there is
this additional work of XML compression/decompression on the nodesHia@hwe need
ported compression software on sensor motes that will take extra exeaspade as well
as will increase the processing time and energy usage. On the otherusargia binary
representation may be a good solution since parsing, storing and transnagsie file
will be much more efficient however there is the issue of the standardizatid@. formed
the Efficient XML Interchange (EXI) [3] is announced very recentlyieh may solve all
these problems, but providing a very small parser for EXI may be a clgalliérst. Another
binary representation of XML is WAP Binary XML (WBXML) [36] . Itis aleay used by
some mobile devices such as phones.






Chapter 3

RESThing

| present RESThing, a lightweight RESTful framework designed for migroonstrained
sensor nodes. It offers interfaces and reusable components sdetf&bpers can de-
velop their RESTful applications easily. Sensor network programming © &ad error
prone [39]. Debugging is even harder. Therefore, my framewam&sthe burden of devel-
oping RESTful applications in WSNs.

The main challenge of developing software for sensor platforms is than@sbottle-
neck. Some of the underlying components, i.e. HTTP server, TCP/IPatackML parser
have high complexity which makes the job harder. First of all, it is not possibteuse
PC versions of these software into sensor platforms especially due to¢faeiy hature, so
clever design choices and careful implementation/refactoring shouldrm d®emoving
non-mandatory features is a must, however special care should beddkave a standard
compliant software for the sake of interoperability.

| provide the details of the components of the system in the following section.

3.1 Architecture Detalls

Keeping the challenges given above in mind, | have tried to build the softrgaedficient
and small as possible. The data structures are designed and usedyiefieent way such
as sharing the buffers for different purposes. Moreover, theesysonsists of a modular
structure to ease the process of reusing and replacing parts of tharsoftw

No client side support is provided in my software since there is no neecit€tian use
standard web tools to communicate with my REST framework. For example | lsaek u
curl [2] and restlet [6] for testing and evaluations.

Software architecture of RESThing is shown in Figure 3.1. It consistsTaiHServer,
REST Engine, SAX based XML parser and Logger modules. Develgparadd a number
of RESTful Web services on the REST engine as symbolized by RWSeTresnothing
but realization of REST resource concept actually. RESThing ofiersasay interface to
create resources since they are the main abstractions of RESTful Wedese

The detalils of individual components are provided in the following sections.
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RWS#1|* * * [RWS#n|

| REST Engine | XML
Parser

Logger

HTTP Server

ulP (TCP/IP Stack)

Contiki

Figure 3.1: Architecture of RESThing

3.1.1 HTTP Server

HTTP server is a small footprinted server to handle the incoming and outhdimg traffic.

It provides interface to perform certain HTTP related stuff such asssiieg request details
(headers, entity body, URL path), constructing an HTTP responseNatt.only REST
Engine but also SOAP Engine works on top of it. A basic SOAP Engine hasdmveloped
to see its feasibility and compare it with RESTful architecture. SOAP Enginesisrithed
in Section 3.2.

3.1.2 XML Parser

Due to data and code memory limitations, a small and memory efficient parserdischee
Simple XML parser [7] is found to be best candidate so it is ported to Contiks very
small in code size and being a non-validating SAX based parser makes it gneffior
cient. Some new functionalities such as XML generation and a basic nareespaaort are
added. The parser is used by SOAP engine as well as user applicadnSOAP-based
and RESTful Web services). SOAP engine needs it to parse incoming $@4&sages and
extract related data.

3.1.3 Logger

Visibility of wireless sensor network applications are lower than traditiongliegitions due
to the inherent properties of WSNs [54]. Due to that reason, | see Igdngis an increased
importance to monitor the events taking place. Thatis why | also designediadaggdule
in my framework. It offers three severity levels; Error, Info and DgbAny level include



levels preceding it , i.e. when Info level is defined, Error messageprareed as well.
Basic mode just prints the strings whereas there is also a persistent modesaves the
log messages in flash memory (using Coffee File System [52]) periodicadlyon8 can
execute certain operations for a long time and then gather the results frdlasthenemory
later.

3.2 SOAP Engine

| also provide a minimal SOAP processing engine for fulfilling SOAP-basebt ¥érvice
calls. It reuses the HTTP server and XML parser components. Engisepthe SOAP
message using the XML parser, extract the method information and execiieeih. the
response SOAP message is built using the XML parser






Chapter 4

Making HTTP Viable for Wireless
Sensor Networks

IP-enabled sensor nodes made it possible to use protocols relying archPas HTTP
in wireless sensor networks. Supporting HTTP in sensor nodes bringg atkvantages,
mainly direct integration to the Web. However, these advantages do notfoorfinee and
challenges need to be handled to have HTTP protocol running on seodes. Limited
resources in sensor nodes requires HTTP implementations to be small irsizedand
conserve memory. Using TCP as the transport protocol brings some hadlenges; con-
nection setup and acknowledgments causes extra latency and bandwigith Regarding
HTTP, stateless model helps sensor nodes to conserve memory howaweidtext-based
and maximum packet size supported in the domain is small for a text-basedginetoch
may cause segmentation into several packets. HTTP offers many mechandméSNs
can benefit from some of them such as Conditional HTTP GET, Delta Emg:0Range
Headers to have better performance.

The challenges appearing are due to the resource limitation in tiny embeddedkesl
devices. So first of all, | have developed a minimal and small footprinted”Hgérver for
Tmote Sky motes over Contiki in the context of this thesis.

Reliable nature of TCP increases the latency significantly, i.e. 3-way $laaking
mechanism to establish the connection and ACKs. Persistent connectiorentave the
overhead incurred by 3-way hand-shaking but it is only applicable eéciip cases, such
as only a single application is interacting with the sensor. Also Delayed ACK ojgtiiniz
implemented in most of the TCP/IP stacks have a negative effect for ouridaua to
small request and response sizes. These overheads of TCP oy &Salready studied
and evaluated by Nissanka et al. in [44]. Header compression mechdonisitSP and/or
IP may alleviate the problems by increasing throughput and decreasingylatenc

Additional negative effects related to TCP are possible especially due to nhirema
sources. For example; TCP/IP stacks available in sensor nodes masnhdmal buffers
so TCP window size may be very limited such as a single packet size. This thakstu-
ation worse since throughput reduces further, also Delayed ACK situg¢its worse since
every packet sent experiences 200ms delay. This situation shoulschdlethdy increasing

25



the input/output buffer size of the TCP/IP stack in the sensors. Howase,side note,
I did not experience Delayed ACK problem in my measurements. Althouglultawot
find any documentation, it seems that TCP/IP stack in Ubuntu 9.04 has sameffemart
Delayed ACK optimization maybe relying on the previous traffic. Lastly, oneéstang
point is; although slow start behaviour of TCP is a problem for genéiatt $ived HTTP
traffic in the Internet, it does not necessarily affects WSNs due to veayl §CP window.

Yet another big challenge is to conserve power while achieving reaksocaimpletion
times. For that matter, | analyze TCP over X-MAC and present Sessiareaf*MAC;
an optimized version of X-MAC protocol that is aware of TCP behavioumckeoroviding
improved completion times. | analyze TCP over X-MAC and describe Sessiane X-
MAC in Section 4.1.

Stateless nature of HTTP is a big advantage for our limited nodes since nbagien
plication state needed to be kept in already limited memories, however it is a sed ba
protocol and maximum packet size supported by 802.15.4 is only 127 bitek will also
include TCP, IP and MAC layer headers. Therefore, data may needdedmented into
several packets which will bring extra latency. So, messages transmittetivadn should
be as compact as possible, i.e. unnecessary and long HTTP heaulddstshavoided by
the clients. Moreover, certain other optimizations should be used to alleviatkahenges
due to the characteristics of sensor networks. This thesis focuseslaing everything
using standard methods for the sake of interoperability, hence curmnté@hniques are
considered, for example, HTTP standard has a perfect cachingusgwehich is one of
the main reasons that World Wide Web scales that good. The mechanisniscarsédd in
Section 4.2, only with their usages relevant to our topic.

4.1 Session-aware X-MAC: A TCP Friendly X-MAC

When interacting with wireless sensor networks, getting good completion timest is n
enough, you need to also do it in an energy efficient way. For thatogerpl use X-
MAC [13] as MAC layer protocol. Although X-MAC is being used efficientlytiypical
WSN applications for some time now, to my knowledge there is no study abdigir-per
mance of X-MAC as a lower layer for TCP traffic and how to make it suit bé&dténe TCP
connections, so | make my own tests to see the results. X-MAC turns offdieetrasave
energy and this behaviour is causing significant delays in the TCP comrtianga

In a typical TCP communication, there is continuous traffic in both directiotiktha
connection is closed. This is mainly because TCP is a reliable communicatiorcqiroto
ACKs are transmitted in the opposite direction of the data delivery. This meanbdth
packets and their corresponding ACKs suffer from the wake-up time ietpbg X-MAC.
The problem is more clear in our resource limited domain since the TCP/IP stack u
namely xIP, has a TCP window for just one packet, so each packet has to kd &xk
continue the rest of the transmission.

The problem may be alleviated by letting the radio stay on for a while after a mote
sends a packet to the client, i.e. until the ACK is received. By this way, st ika ACKs
destined to the sensor node do not suffer from wake-up delay. Howéis does not solve



the problem completely since the packets still may experience delays so a oaragth
solution is required such as letting the radio be on for the entire communication.

| present Session-aware X-MAC which is a TCP aware X-MAC deweatiSession-
aware X-MAC lets the radio be switched on during a TCP connection; pigdietween
the periods of SYN packet reception and FIN packet transmission. dhism decreases
the delays significantly since the only packet that suffers from wakeelgy is the first
SYN packet.

Evaluation comparing Session-aware X-MAC with original X-MAC can benfib in
Section 6.

4.2 HTTP Optimizations

42.1 Conditional HTTP GET

In this section, | focus on Conditional HTTP GET, an existing HTTP optimizati@th-
anism, since | foresee that it is an important mechanism to connect WSNs Wethe
efficiently. First | give details about it and then describe how it is appliemlimdomain.

Conditional HTTP GET is designed to save time and bandwidth by employingrcerta
response (Last-Modified and ETag) and request headers (Iffidd®bince and If-None-
Match). The idea is if the data is not changed after the last time client fetch#ukit,
server can notify client by 304 (Not Modified) status and do not sendalee again hence
saving bandwidth and time. But how does that work? Every time a servds shata,
it includes Last-Modified (last time the data was changed) and/or ETageémpaque
string symbolizing a specific version of data) and when the client asksdaaime resource
later it provides these information in If-Modified-Since and If-None-Mdteaders, hence
allowing the server to make a decision whether the resource has changetl df it is
changed, a response code of 200 (OK) and the new data in the entitystgmtved, or else
304 (Not Modified) is returned only, then the client uses its cached dataiikg the fact
that the underlying data hasn’'t changed since the first request.

The Last-Modified header field indicates the date and time at which the ceswais
last modified. This creates a problem for wireless sensor networksyticer®nization of
the date and time is needed. Either the clock of the mote should be synchrdoizegl
installation or only ETag header should be used. The latter seems like a lohtterrsto
for the sake of easiness. ETag is an opaque string so it is very flexitderfeer to choose
a representation for it, usually some version system or checksum is erdpleyegh. The
only problem using ETag alone is that it is only HTTP1.1 compliant which is noiga
problem since almost all clients support it nowadays.

An example for the scenario in Section 7.1.1 is as follows: Sensor will fulfillréhe
quests with ETag header.:

HTTP/ 1.1 200 K
Server: Conti ki

Cont ent - Type: text/xm
ETag: vl

[Entity Body]



And client will provide the same string retrieved from server in ETag inthldfe-
Match:

CET /tenperature HITP/ 1.1
Host: www. exanpl e. com
| f-None-Match: vl

And if the content is not changed, sensor will not transmit Entity Body éeawing
bandwidth. Status 304 (Not Modified) is returned:

HTTP/ 1.1 304 Not Modified
Server: Conti ki

Cont ent - Type: text/xm
ETag: vl

4.2.2 Delta Encoding

Delta Encoding in HTTP is defined by RFC 3229 [38]. Using delta encodatber than
the whole document, the client can ask for a difference against his/mecopy from the
server. The server knows which version client has with the If-Noné&zMaeader. An
example request is copied below for clarity.

GET /foo.html HTTP/1.1
| f - None- Mat ch: v2
A-IM diffe

The main idea is that the server knows the differences of at least tha rersions of
a resource presentation. The main challenge for sensor networksitsnlagtbe a little bit
complicated to keep the differences.

4.2.3 Range Header

By using Range Header (that is defined in RFC 2616 [25]), client ctairobnly a part of
aresource representation. So in case of a situation that only part aiténescheeded and it
is known in advance, this mechanism can be employed. An example of gettifigstid
bytes:

GET /foo HTTP/ 1.1
Host: www. exanpl e. com
Range: byt es=0-31

4.2.4 Other HTTP Optimizations

There exist more subjects related to this subject that are expected to leethauHTTP
standard in a very near future. These are prefer header [50h pethod [24] and batched
HTTP requests [51].

PATCH method allows you to do a partial update on a resource which saadsvizith
since instead of sending the whole data over the network, only a set njefare sent.
Server will apply the changes to the resource and tell user what happée challenge
here for a sensor node would be to recognize and handle the changs {oe. diff).



Prefer header allows the clients to describe the format of responstémoime type of
content) they wants to receive. In relevance to our case, for examptéighemay prefer
that the server not include an entity in the response to a successfabtesijjuce the status
code may be enough (i.e. 204 No Content or 304 Not Modified, etc). Meelieés header
proves that Web is not only for human beings anymore, browsers inussl content to
show it to the users but machines do not necessarily need contentrieqadists.

Batched HTTP allows multiple requests to be sent altogether over a persistent
nection without waiting for individual responses. Requests can be bethpdtent and
non-idempotent. Batched HTTP requests can decrease latency andrmimG® packets
transmitted.






Chapter 5

Implementation

| have implemented HTTP Server, REST Engine and Logger modules fr@ttsavhile
Simple XML parser [7] is refactored and ported to Contiki environment. talremopti-
mizations and limitations exist in these modules to make them small and efficientrenoug
for sensor motes. For example, HTTP server only saves the headiets avh specified
beforehand by the developer and unnecessary features of SimplePé#er is stripped
whereas XML creation support and a basic hamespace support id. ddutgger is imple-
mented using C Macros so that configuring it would be done in compile time etficidt

is possible to remove the logging support during compile time in which case logstate

are expanded to nothing.

While implementing RESThing, | have taken the constraints imposed by low-eost s
sor nodes into account to achieve a small footprint solution. | use C asdlgeamming
language. C offers a good control over memory and also Contiki Alekage C interfaces,
so | believe it is the most suitable choice for the context of this thesis eveglitibis not
particularly thought as a Web application friendly language. | implement ttle asing
Tmote Sky motes, however since it does not use any low level details of thephatitam,
it is possible to extend it easily to other Contiki ported platforms in the future.

Static memory allocation is prioritized over dynamic allocation for the sake of rigyab
and dynamic memory allocation is used as less as possible since on a mensirgined
system it may make the heap fragmented. All programs share the samesagfthes so
having a fragmented heap would cause unpredictable problems. Sd speei@ken while
allocating memory from heap; it is only done where efficiency is importantfandhort
periods. Needed memory is allocated as a whole to minimize the fragmentation. To be
able to respond to maximum number of clients at the same time, data structured relate
to connection state are allocated on heap. Also, XML parser uses heapryngunimg
parsing. Itis necessary since number of elements and their length iglictabde so having
static memory assigned is not only inefficient but also inflexible.

WS-* stack is very big to fit in sensor nodes so my SOAP Engine is very ligihtraple-
mentation lacks many features. Also, a very limited validation of provided SOARRages
are provided. SOAP Engine is used to evaluate bandwidth and memoryermgnits and
compare it with my REST framework.
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Module Code Size (ROM)| RAM Usage (Static)
HTTP Server 3976 72
REST Engine 692 4
XML Parser 5260 4
Logger (Basic) 34 2
Logger (Persistent 710 20
SOAP Engine 2354 36

Table 5.1: Memory footprint of the modules.

The details of the implementation of modules regarding memory usage is given in Ta
ble 5.1. Dynamic memory usage is not given since it depends on the usegseitid
XML documents to be parsed. More precisely, user can decide conmestéite settings
(i.e. request and response buffer sizes, number of headers tmdledh@tc) which affect
the dynamic memory usage and also XML parser uses dynamic memory allocatibe f
sake of efficiency.

Although this thesis has emphasis on layers above network layer, to geidapgo-
formance, | had to get my hands dirty in the lower layers as well. Due to anmtémn
interference between timer handling of X-MAC and SLIP, | end up havimgliable be-
haviour, i.e. quite different completion times, in my evaluations. As describ8ddtion 6,
the connection between router and the computer is established using SiclPhakically
encapsulates the IP packets in both directions. However, | have expetipacket losses
over serial line which increased the completion time significantly. Mainly, théleno
was because of the timer handling of X-MAC was creating a big burdengateway and
gateway was missing some part of data causing the checksum to fail amyléadher
retransmissions. The solution for that problem is simply let the radio be amdber all
the time since router is already connected to computer which means it has ana@ygh
power so do not need to be battery friendly. Having the router whose imdlways on
provides not only consistent but also slightly improved completion times. | dallpite-
emption interference tweaking as Preemption Interference Fix (PIF)\vahaage its effect
in Section 6.



Chapter 6

Evaluation

In the first part of this section, | evaluate X-MAC optimizations | have penfed to have
better TCP behaviour. This is especially important since later evaluatiordoaesusing
these optimizations.

Next, | evaluate RESTful Web services in terms of power consumption@mgletion
time using two different MAC level protocols, namely X-MAC and NULLMACshow
that realizing RESTful Web services is possible and reasonable everpavitbr saving
MAC protocols.

Then, | evaluate SOAP-based Web services. The main goal is to comparestlits
with RESTful Web services to prove that although it is possible to servePskssed Web
services on these tiny embedded devices, it has much more complexity thafuRBSb
services in terms of communication costs as well as memory requirements. étotiney
aim of this comparison is definitely not to find out which one is better. Thest akeady
a lot of discussions about that topic.

| also estimate the battery life of sensor nodes running Web services usimpgwrer
consumption data obtained. The estimation is useful to see how long a typisal sede
that serves Web services can stand.

Lastly, | estimate and present energy consumption on byte level especiake tthe
cost of TCP overhead on byte level.

6.1 Experimental Setup and Details

The experimental setup, shown in Figure 6.1, consists of a testbed of Tikyotedbes and
a desktop computer running Ubuntu Linux. One mote is used as a routeotireats the
sensor IP network and the desktop computer. The motes run Contiki estiogesystem
and useulP TCP/IP stack. Router sensor is connected to desktop computer viecabia
and to deliver/receive packets to/from router, SLIP and TUN are.u3&dN simulates
layer 3 (network layer) devices and is used for routing, whereas Slu&ed to encapsulate
IP packets transported in between. Although SLIP is obsolete now, it is gglilar for
networked embedded devices thanks to its small overhead. Lastly, RES{fiests are
done using curl [2].
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Figure 6.1: Experimental Setup

The only exception for the above setting is the completion time measurement using
IPv6. In that measurement)Pv6 TCP/IP stack is employed and TAN is used rather than
TUN. The sensor node marked as router in Figure 6.1 is actually usedradge,acting
as a link layer interface for the Linux host, in this setting. SICSlowpan heamiepression
implementation of the 6LOWPAN adaption layer is used by Contiki over IPvBgiac

X-MAC is used with two different configurations in these evaluations. Maial gs
to compare the power consumption and completion times of these settings amdthienc
provide input about their feasibility. Differently configured X-MACs ¢abeled as X-MAC
and X-MAC2. The only changed parameter is the Off Time parameter whadepts the

period of keeping the radio off until waking up to listen for the strobes. ddwdigurations
are:

- X-MAC

e On Time: 1/200s
e Off Time: 1/4s

- X-MAC2

e On Time: 1/200s
e Off Time: 1/2s

The testbed setup is intentionally simple to avoid irrelevant network effeascdtfigured
routing tables are used on every node in all experiments to avoid anyseffiea dynamic
routing protocol to influence the measurements.

6.2 Completion Time Improvement for TCP Connections over
X-MAC

To measure the effects of the optimizations done on X-MAC usage, | mecsumgetion
times and power consumption both for original and optimized versions foetisos node.
| perform two optimizations, namely Session-aware X-MAC and Preemptienfémence
Fix, to have a better and more reliable TCP behaviour over X-MAC. Sessiamne X-MAC
is described in Section 4.1 and Preemption Interference Fix (PIF) is egdlairSection 5.
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Figure 6.2: Preemption Interference Fix provides more stable completion tintes a
Session-aware X-MAC decreases completion times significantly.

Sensors Web service, shown in Table 6.1, is used to obtain completion timgmaed
consumption which can be found in Figures 6.2 and 6.3 respectively. Xc2/&ettings are
used in the evaluation. Web services are called 5 times in 4 sets. Powengiitsuis
measured for each set (5 Web services are called in 60 secondsjesdand represented
with their standard deviation. Measurements using Session-aware X-Ns&Greludes
Preemption Interference Fix.

Regarding completion times, it is seen that Preemption Interference Fix leadetier
able results than original X-MAC. Original version has 4 spikes at 8tth, I46th and 17th
calls. With Preemption Interference Fix, X-MAC has more stable results sipikes do
not exist. There are only small fluctuations which are normal and caysdifférence in
X-MAC timing to switch on the radio. Also it is clearly seen that completion times are
improved slightly.

Session-aware X-MAC outperforms original X-MAC in terms of completion times
There are only small fluctuations, i.e. 1st, 8th and 16th calls are luckier tleaotllers
since they are roughly synchronized with the radio wake up period.

Regarding power consumption, Preemption Interference Fix decreases consump-

tion for the sensor node significantly since the router keeps the radio sditmh all the
time, sensor node does not need to send a lot of preambles to wake theuppatel there-
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Figure 6.3: Preemption Interference Fix has much more smaller powerroptisu for
1-hop away node than original X-MAC. Session-aware X-MAC usesreoergy for the
sake of better responsiveness.

fore power consumption decreases thanks to less data transmission in tetalorginal
X-MAC has bigger standard deviation than Preemption Interference Fovireipconsump-
tion which is expected due to the spikes.

Session-aware X-MAC consumes more power than when we employ Preerméo
ference Fix alone. This behaviour is normal since Session-aware X-kb&ps the radio
switched on throughout the whole TCP connection. However, thinking étkey with the
great increase in the responsiveness of the system, power consuimptiease is reason-
able.

6.3 Power Consumption and Completion Times of RESTful Sen-
sor Networks

| evaluate serving RESTful Web services on Tmote Sky motes in terms ofrpansump-
tion and completion time. My evaluation confirms that it is reasonable to realize REST
Web services on wireless sensor networks even though there exisficaignoverhead
resulting from TCP/IP and the verbose nature of HTTP and XML staisdard

Different RESTful Web service calls are analyzed to monitor the effédifterent
data sizes over power consumption and completion time and results from bd&kC<and
NULLMAC protocol is provided for comparison, especially to prove théhwhe help of
certain optimizations, it is possible to get good completion times using batteryreomgse
MAC protocols.

The details of these services are provided in Table 6.1.

Among the RESTful Web services chosen, Dummy service is chosen adl axanaple



Web Service| Request Size (bytes)Response Size (bytes)Total Size (bytes
Dummy 84 48 132
LED Control 89 52 141
Light 79 135 214
Temperature 85 141 226
Sensors 81 324 405

Table 6.1: Details of RESTful Web services. Sizes do not include TCHaavel layer
header sizes.
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Figure 6.4: Completion times of Web services on sensor node.

whereas Sensors service has the biggest response and total data size

Moreover, among the possible HTTP level optimizations described in ChépGon-
ditional GET is applied to Sensors and Temperature Web services to shefietig/eness
of standard optimization techniques.

Completion Time

Completion times are obtained using builttimn me command of bash shell to measure
the interval between issuing the Web service call via curl tool [2] and ggtitia response.
Figure 6.4 shows the results of the measurements of the single-hop who caratesmwith
the router using radio communication. The results are promising in the sehsedghasts
can be fulfilled within a second using a power conserving MAC protocol.

Figure 6.5 shows completion time measurements of Web service calls to the router.
This measurement is interesting since we have the chance to see ovditieacbmnection
between Desktop computer and the router (overhead of serial line,&dHUN). Addi-
tionally, by comparing it with Figure 6.4 it is possible to see the overhead ofingjahe
request over radio interface.

| also measure completion times of Web services using NULLMAC which does no
conserve power and X-MAC2 which is more power conservative th&mAG setup used
above. The result can be seen in Figure 6.6 which is obtained by calling ®oséf-
vices mentioned in the figure. As expected NULLMAC gives better resultesirdoes
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Figure 6.5: Completion times of Web services on router sensor node. Conatianis
done over serial line, therefore no radio communication overhead exists.
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Figure 6.6: Completion times using different MAC protocols. NULLMAC penis the
best because it does not switch off the radio.

not switch off the radio at all, however employing Session-aware X-MAG Rreemption
Interference Fix optimizations, the difference between NULLMAC and R@Vis small
enough. On the other hand, X-MAC2 has doubled Off Time so the completios tinee
bigger.

Lastly, | measure completion times over IPv6. NULLMAC is used as MAC ptacd
results are given in Figure 6.7. The results prove that IPv6 offesoredle performance
over wireless sensor networks.

Power Consumption

| evaluate power consumption of sensor motes that serve RESTful \Wabese Services
are called 5 times in 60 seconds period and power consumption is trackgddsitiki’s
power profiler [21]. Figure 6.8 shows power measurements of Welicssrealls over 1-
hop away neighbour. To have more insight about where the energiuallgspent, | also
provide the parts of the power consumption for Sensors service in Fégire
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Figure 6.7: Completion times of Web services over IPv6 using NULLMAC.
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Figure 6.8: The cost of calling Web services in terms of power consumpXeMAC is
used as the MAC protocol.

Furthermore, Figure 6.10 shows the power usage of NULLMAC, X-MAG 4-MAC2
for two Web services as well as for a idle status in 60 seconds periodn Wdde is idle,
X-MAC2 conserves power better than X-MAC since it keeps the radio beitoff longer.
This also explains the measurement of Sensors Web service. Howeeeinteresting
observation is that X-MAC seems to save power more than X-MAC2 duringrby Web
service. This is a consequence of Session-aware X-MAC which kbepadio on during
TCP connection. Having less completion times, transmissions/receptions takiées
with X-MAC and idle energy consumption can not suppress it for that el@mp

The bottom line of MAC protocol analysis is that the one suitable for the marpbould
be chosen. For nodes connected to power supply all the time, NULLMAChaalye best
solution of course, however depending on the trade-off betweenrpaiieation and la-
tency, settings of X-MAC should be played with to find the optimal settings fop#ntc-
ular problems.



Power Consumption (Node) in Pieces

Power Consumption (mW)
o = N w » (6] [} ~ fe¢]

=t ==
CPU Transmit Listen Total

Figure 6.9: Power consumption of CPU, transmission, listening and their sum.

Power Consumption (Node) Other MAC

NULLMAC —
XMAC @ w
XMAC2

Dummy Sensors Idle

50

40

30

20

Power Consumption (mW)

10 +

Figure 6.10: Power consumption compared with different MAC protocols.

Evaluation of Conditional GET

Conditional GET is a caching technigue in which the client gets the contentifsacache
if data is not changed. The details are described in Section 4.2.1. | evélicaglow that
standard web optimizations which made Web scalable as it is today are likelyceeslior
WSNs too. Two Web service examples, Sensors and Temperature fien6l4, are ana-
lyzed using Conditional GET and compared with the original results. Detalleafached
versions is in Table 6.2. Figure 6.11 provides completion times and powenrogtion
measurements. X-MAC is used for the evaluations. The results are givabla 6.3.
Cached versions have a little bit bigger request data size because oftthdegag
header they transmit, whereas they have significantly smaller responsizaataince they

Web Service| Request Size Response Size Total Size
Temperature 91 55 146
Sensors 87 55 142

Table 6.2: Details of Web services employing Conditional GET.



Web Service| Data Size DecreasePower Saveg Completion Time Decreasge
Temperature 35.4% 24.0% 31.8%
Sensors 64.9% 33.1% 53.3%

Table 6.3: Performance improvement provided by Conditional GET.
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Figure 6.11: Conditional GET improves responses and power consunsgiaficantly.

do not include any data content. As it is seen, the response sizes fadhedcversions
are same for both services since the same data is transfered, namely drégdees which
happens to be the same for these examples. This also explains why the campieti®
are roughly same. Also, as expected, cached Sensors Web senfaengebetter for sav-
ing power as well as decreasing completion time (in percentage) than Tempesarvice
which is consistent to the bandwidth saves.

Results in a Multi-hop Network

In order to evaluate the effect of multi-nop communication for sensor nktWeb services,
| measure completion times of a set of Web services over a multi-hop netwode the
Session-aware X-MAC on every hop of the network. Figure 6.12 shbesneasured
completion times, with a varied humber of hops. The results show that delagaddny
relaying RESTful requests in a wireless sensor network is quite relalsomaen in a multi-
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Figure 6.13: Power consumption of a bystander node, an endpoint awodi@ relay node
in a multihop network.

hop network.

Figure 6.13 shows the power consumption of three nodes in the multi-hop nketwo
The figure shows the power consumption of a bystander node (ningenwy Web service
nor relaying it), an endpoint node (actually serving the Web service)) aarelayer node
(Web service is served by the next hop node). The Sensors Welbese&swised for all
measurements. The results show that the power consumption increasesldsrthat are
either endpoints or relay nodes. Relay nodes have a slightly higher pomeumption
because the session-aware MAC protocol enables duty cycling some tanéafsession
has been closed by the endpoint node.



Web Service| Request Size Response Size Total Size
LED Control 576 498 1074

Table 6.4: Details of SOAP-based Web service
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Figure 6.14: RESTful Web service outperforms SOAP-based Weliceerv power con-
sumption as well as completion time.

6.4 RESTful Web Services vs SOAP-Based Web Services

I show that having SOAP-based Web services in sensor motes is alsbl@asih the
prototype | developed and the evaluations given. However, SOA&dBARD services use
verbose SOAP messages over HTTP which makes these Web servicemtessable than
RESTful Web services for wireless sensor networks. The two maiomeder that are:

— Verbose SOAP messages cause extra latency and transmission/receptorupo
age.

— Memory space required for SOAP implementation and execution is much moer high
both in data and instruction memory.

As a side note, my aim here is to compare overhead of REST approach with SO
rather than claiming REST approach is better than SOAP. To do the compdrisave
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selected LED Control RESTful Web service (given in Table 6.1) and imphéeceit as a
SOAP-based Web service. The details of the SOAP-based Web semyieerisn Table 6.4.

| evaluate LED Control as a SOAP-based Web service to compare it withEBG R
counterpart. csoap [1] is used as the client library to make SOAP-Basbds¥vice calls
and X-MAC is used as MAC layer protocol. Cost of both Web services mgef power
consumption and completion time are given in Figure 6.14. As it is expectedPS@8ed
Web service consumes much more energy, especially for communicationevieigvthe
increase of processing power usage due to parse and processh@ASf messages are
ignorable when compared to power usage of radio. This is due to the &qidtver con-
sumption of CPU is significantly smaller than the consumption of transceiver ipieaty
sensor node. Regarding completion times, RESTful Web service outpsr®DAP-based
one as expected.

6.5 Battery Lifetime

| estimate battery lifetime of a sensor node serving a typical sensor monit@iviges
Temperature service in Table 6.1. | assume to have two AA batteries off2fing/att-
hours each and X-MAC2 setting is used. Then, estimate battery life of tle®rsande
depending on the number of calls is as in Figure 6.15.

6.6 Energy Consumption on Byte Level

| measure energy consumption and calculate throughput/power and/{hoaeghput to
find out energy consumption on byte level. | call various sized Web ssaind Figure 6.16
presents the results. As expected, number of bytes for unit energases when data size
of the Web service increases since TCP overheads (especially tionnestablishment
and closing) are less dominant for bigger data sizes. However, the maxiacket size
supported by 802.15.4 is only 127 bytes which means that even for big idata $CP
header, IP header and ACKs have almost same overhead, so theygtastable quickly.
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unit energy increases.






Chapter 7

Conclusions and Future Work

Currently, the Internet has limited capability of monitoring and acting on thewesdt.
Both network layer and application layer interoperability are needed betWé&Ns and
networked objects in the Internet to solve this problem. Emergence ofdBleshsmart
objects has already solved the former issue by using IP as the networkAagkthis thesis
focuses on solving the latter issue; employing RESTful Web services dNsW& pro-
vide an interoperable application layer. Up to now, diverse structurssnfor nodes and
the non-standard protocols used were the biggest obstacles in frionegfating wireless
sensor networks into the Web. Standard and widely used protocols esedheTypically,
employing HTTP and XML, RESTful Web services is a very good optiortliat matter.
Overheads introduced, especially due to the verbose nature of HTAT'RMh specifica-
tions, are reasonable compared to the advantages gained using them, tdalizing Web
services on sensor nodes is feasible since both HTTP and XML aremaslirk proven and
highly used specifications which means that they increase interoperabditgkability of
the wireless sensor networks. Being quite light and simple, RESTful Welzee is a good
candidate to be an important part of Future Internet for wireless saps@orks integration
because of the exact reasons the Web flourished. So, REST aratditetytie seems to be
an important candidate to connect sensor nodes to each other and ttethetion the way
of achieving the Web of Things. Extending the Web with WSNs enables memiging
and easily developed applications.

In the vision of the Web of Things, this thesis presents a RESTful Web seavahi-
tecture for sensor networks that allow direct integration between the WebPRabased
sensor networks. | provide an extensive performance evaluatioredystem, showing
sub-second completion time of RESTful Web service requests to low-memsor nodes
in both single-hop and multi-hop networks.

7.1 Future Work

Security was not a concern in this thesis. Only plain HTTP requests adeniseh means
that eavesdropping between the clients and the servers are possillg.HISPS would
solve this problem by securing communication on transport level, so anstiteyehal-
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lenge for future work would be the addition of HTTPS on these tiny devices.

Some improvements for the XML parsing is possible. Currently, | use a abidating
SAX parser, so an idea would be to add validation support in future basedschema.
However, that may complicate the parser too much for a memory limited environ@ent.
the other hand, according to my experience writing SAX-based codesetemore harder
and complicated than equivalent DOM-based codes. Due to efficieasgme | mentioned
before, it is very hard to use a DOM parser in sensor nodes, howepérmenting/porting
pull parsers and compare it with SAX counterpart would be a good clgallefPull parsers
are well-known for their efficiency as well as easy usage. Besidegha@naspect is ex-
changing a more compact form of XML to save bandwidth and hence eiresignificant
amounts. EXI seems to be very promising to allow efficient interchange of Bdiuments
and an open source Java implementation named EXIficient [4] exists. [Pavglan EXI
parser for sensor platforms would make it possible to exchange compéicd&cuments
in an interoperable way.

This thesis focused mainly on using XML as representation of data hoWw&@N is
getting popular more and more each day in Web 2.0 applications which makeghttavo
look into in future such as implementing/porting a small JSON parser for nodes.

Caching in HTTP is one of the main reasons that made the Web very scalahtd- T
tional web servers implement some set of caching elements to make it work witlethis
and proxies. So an interesting future work would be to search for theappsoaches to
make caching as efficient as possible for tiny servers in WSNs.

A very important work area would be to analyze how well RESTful apginea can
encounter typical sensor application problems. For that matter, | prasenanalyze a
RESTful approach to solve typical real world monitoring problems in the viofig sec-
tions. | leave the implementation and evaluation of the work as future work.

7.1.1 Solving Asynchronous Real World Problems in a RESTful W

Typical sensor network applications usually benefit from asynclu®behaviour. | believe
it is feasible for wireless sensor networks to have the illusion of asyn@moby splitting
the operation into two or more synchronous requests as described irTFE5first request
creates the operation while the subsequent ones are used to get infdrmgdhe result of
the operation.

Suppose for example, we want to create a task in which temperature values rgad
in 30 minutes intervals. Then we can create a new task resource by POST:

POST /task?type=t enperature;peri od=30 HTTP/ 1.1
Host: www. exanpl e. com

The sensor accepts the request, creates a temperature monitoring tisk.alfong
time running task, sensor can return 202 (Accepted) status code immediatelyfycthat
the operation is created:

HTTP/ 1.1 202 Accepted
Location: http://ww. exanpl e.conitask/id123
[Entity Body]



Now the sensor created a new task as a resource and returned its that slient can
make GET requests to this particular URI and see the current state of the task

GET /task/idl23 HITP/ 1.1
Host: www. exanpl e. com

In our particular example, this may return the last number of readings, ondlseup-
to-date reading, or even something more complicated such as the collectiompef&tures
from the nearby sensors. The returned representation may be XNIIN &6 something
else depending on the client’s request and sensors’ capabilities.

Later client can cancel the task by using DELETE method of HTTP:

DELETE /task/id123 HTTP/ 1.1
Host: www. exanpl e. com

7.1.2 Discussion

In this section, | analyze the idea about how well it solves the real worldtororg prob-
lems stated in Section 1.3. This approach solves the second problem, timergoms
operations, without any extra support. For example, the process dfacdiection in
a wireless sensor network can be quite time consuming and keeping thectonropen
may not be a good idea. However, the above mechanism fits very wellrdRagéhe first
and third problems -immediate access to new readings and network utilizati@ctigsly-
still client needs to poll the resource constantly to access newly updaimchdavever us-
ing optimizations, it can be made very feasible. One optimization example is thasdand
client side caching mechanism named Conditional GET that saves bandwiiklereEase
the effect of intermediate pollings when the result did not change, i.e. wderaperature
reading for our particular example, or operation still in progress. Almibsif she major
web tools support it already. Details of Conditional GET and how it carske in scenario

here can be found in Chapter 4.
This approach is very flexible since a lot of different usages ardljessspecially by
using the power of URIs. For example; Collect both light and temperature:

/task/light;tenperature
Collect light values between given periods:

/task?type=light ?start=18. 30; end=21. 30 or /task?type=light/18.30-21.30






Appendix A

Code API

A.1 TYPE DEFINITIONS

#ifndef bool
#define bool unsigned char
#endif /*bool*/

#ifndef true
#define true 1
#endif /*true*/

#ifndef false
#define false 0
#endif /*false*/

Type definitions

A2 HTTP-COMMON

#define STATEEWAITING 0
#define STATE_.OUTPUT 1

current state of the request, waiting: handling request, output: sendasganse

#define LINE_FEED_.CHAR "\ n’
#define CARRIAGE_.RETURN.CHAR "\’

definitions of the line ending characters

| extern constchar* httpString

needed for web services giving all path (http://172.16.79.0/servicetdl)igh
instead relative (/services/lightl) in HTTP request. Ex: Restlet lib. does it
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extern const char* httpGetString
extern constchar* httpHeadString
extern const char* httpPostString
extern const char* httpPutString
extern constchar* httpDeleteString

HTTP method strings

extern constchar* spaceString
extern constchar* httpvl.1;

extern const char* lineEnd

extern const char* contiki;

extern constchar* close

extern const char* headerDelimiter

Various other strings

extern constchar* HTTP_.HEADER_NAME _CONTENT_TYPE;
extern constchar* HTTP_.HEADER_NAME _CONTENT_LENGTH,;
extern const char* HTTP_.HEADER_NAME _LOCATION;

extern constchar* HTTP_.HEADER_NAME _CONNECTION
extern const char* HTTP_.HEADER_NAME _SERVER

extern constchar* HTTP_.HEADER_NAME _HOST,

extern const char* HTTP_.HEADER_NAME _IF_NONE_MATCH;
extern const char* HTTP_.HEADER_NAME _ETAG,;

header names

#define PORT 8080

#define RESPONSEBUFFER_SIZE 500

#define MAX _REQUESTHEADERS 6

#define MAX _RESPONSEHEADERS 6

#define REQUESTBUFFER_SIZE 1000

#define MAX _URL_MATCHED_ATTRS 4

#define INCOMING_DATA _BUFF_SIZE 102 /*100+2, 100 = max url len, 2 = space charx0™*/

Configuration parameters

typedef enum

{
NO_ERROR
/*Memory errors*/
MEMORY_ALLOC_ERR,
MEMORY_BOUNDARY_EXCEEDED
[*specific errors*/
XML _NOT_VALID,
SOAP_.MESSAGE.NOT_VALID,
URL_TOO_LONG,
URL_INVALID

} Error_t;

error definitions



typedef enum
{

TEXT_PLAIN, TEXT_XML, APPLICATION_XML,

APPLICATION_JSON APPLICATION_.-WWW_FORM, APPLICATION_ATOM_XML
} MediaTypet;

typedef enum
{
CLIENT_ERRORBAD _REQUEST = 400,
CLIENT_ERRORMETHOD_NOT_ALLOWED = 405,
CLIENT_ERRORNOT_ACCEPTABLE = 406,
CLIENT_ERROR.NOT_FOUND = 404,
CLIENT_ERROR REQUESTURI_TOO_LONG =
414,
CLIENT_ERROR.UNSUPPORTEDMEDIA _TYPE =
415,
NOT_MODIFIED = 304,
SERVER ERROR.INTERNAL = 500,

SERVER ERRORNOT_IMPLEMENTED = 501,

SERVER ERROR SERVICE.UNAVAILABLE =
503,

SUCCESSACCEPTED = 202,

SUCCESSCREATED = 201,

SUCCESSNO_CONTENT = 204,

SUCCESSOK = 200,

} StatusCods;

Media Types and Statuses (both copied from Restlet)

struct UserDatat
{
char* queryString
uintlé_t queryStringSize
uint8_t numOfAttrs
struct Attr_t
{
char* pattern
char* realValue
} attribute§ MAX _URL_MATCHED_ATTRS ];

char* postData
uintlé_t postDataSize

I

User Data type

struct Headert

{

char* name
char* value

I

Header type



struct Response
{
StatusCodg statusCodge
char* statusString
const char* url;
uint8_t numOfResponseHeaders
struct Headert headers MAX _RESPONSEHEADERS |;
uintl6_t responseBuffindex
char responseBuff§RESPONSEBUFFER SIZE];

1

Response type

typedef struct
{
struct psock sin sout /*Protosockets for incoming and outgoing communication*/
struct pt outputpt
char inputBufINCOMING_DATA _BUFF_SIZE]; /*to put incoming data in*/
char* resourceUr|
uint8_t state
HttpMethod t requestType/* GET, POST, etc */

struct Response responsg

char connBuffefREQUESTBUFFER SIZE];
uintl6.t connBuffUsedSize

uint8_t numOfRequestHeaders
struct Headert headers MAX _REQUESTHEADERS |;

struct UserDatat userData
} ConnectionState;

This structure contains information about the HTTP request.

| void http_commoninit_connectiofConnectionStatg* pConnectionStaje

Initializes the connection state by clearing out the data structures

A.3 HTTP-Server

| PROCESSNAME (httpdProcess

Declare process

] typedef bool (*ServiceCallback (ConnectionStatd* pConnectionStaje

Type definition of the service callback

| void http_serverset servicecallback ServiceCallback callbacl;

Setter of the service callback, this callback will be called in case of HTTP request.



bool http.serverget query variablg
ConnectionStaté* pConnectionState
const char *pcName
char* pcOutput
uintl6_t nOutputSizg

Returns query variable in the URL.
Returns true if the variable found, false otherwise.
Variable is put in the buffer provided.

bool http.serverget postvariablg
ConnectionStaté* pConnectionState
const char *pcName
char* pcOutput
uintl6.t nOutputSizg

Returns variable in the Post Data.
Returns true if the variable found, false otherwise.
Variable is put in the buffer provided.

const char* http_serverget req headervalug
ConnectionState* pConnectionStateconst char* pcHeaderNamg);

Returns the value of the header name provided. Return NULL if header does not exist.

| bool http.serverhandlereg headefconst char* pcHeaderNanje

Requests to save the header; only a number of headers will be saved
in buffer due to resource limitations.
Return true if the header will be saved, false otherwise.

bool http.serveradd res headef
ConnectionStatd* pConnectionState
const char* pcName
const char* pcValue
bool bCopyValug

Adds the header name and value provided to the response.

Name of the header should be hardcoded since it is accessed from code segment
(not copied to buffer) whereas value of the header can be copied

depending on the relevant parameter. This is needed since some values may be
generated dynamically (ex: e-tag value)

| HttpMethod t http_serverget http_methodConnectionState* pConnectionStaje

Getter method for the HTTP method (GET, POST, etc) of the request

] void http_serverset http_statugConnectionStatd* pConnectionStateStatusCode status;

Setter for the status code (200, 201, etc) of the response.

| char* http_server put.in_conn.buffeConnectionStaté¢* pConnectionStatechar* pcValue;

Puts the provided string in the connection buffer, used by a bunch of other functions
as well as rest module.

| char* http_serverget res buf(ConnectionStatg* pConnectionStaje

Return a pointer to the response buffer in case the user wants to have direct access.



Error_t http_servercopy.to_responsg
ConnectionStaté* pConnectionStateconst char* pcBuffer, uintl6.t nSizé;

Copy the provided buffer contents to the response buffer.

Error_t http_serverconcatenatestr_to_responsge
ConnectionStatd* pConnectionStateconst char* pcBuffer);

Copies the provided string to the end of the response buffer.

| const char* http_serverget post datgConnectionStaté* pConnectionStaje

Returns pointer to the Post Data buffer.

| void http_serverget baseurl(char* pcOud;

Generates base url (ex: " http://172.16.79.0:8080") and copies it into the buffer provided.

] const char* http_serverget relative_url(ConnectionState* pConnectionStaje

Returns the relative URL (ex: /temperature) of the resource accessed.

bool http serversetrepresentation
ConnectionStatd* pConnectionStateMediaTypet mediaTyp¢;

Set the header " Content-Type" to the given media type.

A4 REST

| PROCESSNAME (restWebServicesProcgss

Declare process

typedef void (*RestfulHandley (ConnectionStatd* pConnectionStaje
typedef bool (*RestfulPreHandlgr(ConnectionStaté* pConnectionStaje
typedef void (*RestfulPostHandlgr(ConnectionStatg* pConnectionStaje

Signature of handler functions*/

struct Resourcet
{
struct Resourcet *next /*points to next resource defined*/
HttpMethod t requestTypesToHandlé*handled HTTP methods*/
const char* pUrlPattern /*simple template of handled URLs
ex: “ftask{id}” id is parameterized*/
RestfulHandler handler/*handler function*/
RestfulPreHandler preHandjefto be called before handler, may perform initializations*/
RestfulPostHandler postHandlefto be called after handler, may perform finalizations (cleanup,
void* pUserData /*pointer to user specific data*/
I

typedef struct Resourcet Resourcet;

etc)*/

Data structure representing a resource in REST.



#define RESOURCHEnametypesToHandlgurl) \
void name##_handle(ConnectionState* pConnectionStaje \
Resourcet resource##name= { NULL, typesToHandlgurl, name##_handler NULL, NULL, NULL

Macro to define a Resource
Resources are statically defined for the sake of efficiency and better memory management.

| void restinit(void);

Initializes REST framework and starts HTTP process

| void restactivateresourcéResourcet* pResourcg

Resources wanted to be accessible should be activated with the following code.

| bool restinvoke_ restfulservicd ConnectionStatd* pConnectionStaje

To be called by HTTP server as a callback function when a new HTTP connection appears.
This function dispatches the corresponding RESTful service.

| bool restseturl(ConnectionStatd* pConnectionStateconst char* pcUrl);

Sets " Location" header

| char* rest get attributgConnectionStaté* pConnectionStateconst char* pcPatter

Returns the value of the attribute mapped to the template URL.
Ex: Template URL "/task/{id}" matches " /task/5" and so calling this function with
"id" pattern will return " 5" .

| void restsetuserdatgdResourcet* pResource void* pUserDaty

Setter method for user specific data.

| void* restget userdatdResourcet* pResourcg

Getter method for user specific data.

| void restset pre_handle(Resourcet* pResource RestfulPreHandler preHand)er

Sets the pre handler function of the Resource.
If set, this function will be called just before the original handler function.
Can be used to setup work before resource handling.

| void rest.set post handle(Resourcet* pResource RestfulPostHandler postHandier

Sets the post handler function of the Resource.
If set, this function will be called just after the original handler function.
Can be used to do cleanup (deallocate memory, etc) after resource handling.

A.5 SIMPLEXML

| typedef void *SimpleXmlIParser

The simple xml parser structure.
SimpleXmlParsers should be created and destroyed using the functions
simpleXmlCreateParser, simpleXmlDestoryParser.



typedef enum simple.xml_event {
FINISH_TAG, ADD_ATTRIBUTE, FINISH_ATTRIBUTES, ADD_CONTENT, ADD_SUBTAG
} SimpleXmlIEvent

Enumeration describing the event types that are sent to an SimpleXmlHandler
by an SimpleXmlParser.

see #SimpleXmlTagHandler

see #SimpleXmlParser

typedef struct simplexmlvalue buffer {
/* buffer data */
char* sBuffer;
/* size of the buffer */
long nSize
/* insert position in buffer */
long nPosition
} TSimpleXmlValueBuffer *SimpleXmlValueBuffer

Value buffer.
This structure resembles a string buffer that
grows automatically when inserting data.

struct TSimpleXmlValueBuffer
enum WriteState {OPENED.TAG,CLOSED.TAG};
typedef struct
{
SimpleXmlEvent state
TSimpleXmlValueBuffer xmlWriteBuffer
} XmlWriter;

Added for xml generation

typedef void (*SimpleXmlTagHandlér (
SimpleXmlParser parser
SimpleXmlEvent event
const char* uri,
const char* szName
const char** attr

);

Callback function to handle simple xml events.

The SimpleXmlTagHandler is invoked by a SimpleXmlParser

whenever one of the following event types occur:

FINISH_TAG
indicates that parsing of this tag has finished, szName contains the tag
name, szAttribute and szValue are NULL, the result of the handler is
ignored.

ADD_ATTRIBUTE
indicates that an attribute for this tag has been parsed, szName contains
the tag name, szAttribute the attribute name and szValue contains the
attribute contents, the result of the handler is ignored.

FINISH_ATTRIBUTES,
indicates that parsing of attributes for this tag is finished, szName
contains the tag name, szAttribute and szValue are NULL, the result of
the handler is ignored.



ADD_CONTENT
indicates that content of this tag has been parsed and should be added,
szName contains the tag name and szValue contains the data to add,
szAttribute is NULL and the result of the handler is ignored.

ADD_SUBTAG
indicates that a subtag has been parsed, szName contains the name of the
subtag read, szAttribute and szValue are NULL, the result of the handler
should either be NULL to indicate that this subtag is not of interest
and should be skipped a SimpleXmlTagHandler that is used for handling
the subtag.

see#SimpleXmlEvent

see #SimpleXmlParser

extern SimpleXmlParser simpleXmlCreateParser (
const char *sData, long nDataSize

);

Creates a new simple xml parser for the specified input data.

The input data may be parsed with simpleXmlParse and the parser returne
by this function as parameter.

Note: The parser will not copy the input data or in any way modify it.
However any modifications of the input data in a callback handler while
parsing will have an undefined result!

param sData the input data to pargeust no be NULLD.

param nDataSize the size of the input data buffer (sData) to parse (must
be greater than 0).

return the new simple xml parser or NULL if there is not enough memary o
the input data specified cannot be parsed

extern void simpleXmlDestroyParsef
SimpleXmlParser parser

);

Destroys the specified simple xml parser.
param parser the parser to destrogust have been created using
simpleXmlCreateParspr

extern int simpleXmlinitializeParser
SimpleXmlParser parserconst char *sData long nDataSize

);

Reinitializes the specified simple xml parser for parsing the specified
input data.

param parser the parser to initialize

param sData the input data to parse (must not be NULL).

param nDataSize the size of the input data buffatg to parse(must

be greater tharm).

return O if the parser could not be initialized; O if the parser was
initialized successfully and parsing may be started using simpleXmlParse.

] int simpleXmlParse (SimpleXmlParser parser, SimpleXmlTagHandler handle

Starts an initialized (or newly created) xml parser with the specified
document tag handler.

Note: This function may only be called once after creation or
initialization of a parser. To reuse the parser it has to be freshly



initialized (using simpleXmlinitializeParser) prior to calling the

function again.

param parser the parser to start

param handler the handler to use for the document tag.

return O if there was no errgrand error code> O if there was an error

| char* simpleXmlGetErrorDescriptio{SimpleXmlParser parsgr

Returns a description of the error that occured during parsing.
param parser the parséor which to get the error description
return an error description or NULL if there was no error during pargin

| long simpleXmlGetLineNumber (SimpleXmlParser parser);

Returns the line number of the current input line that the parser has.read
In case of an error this method will return the line number on which the
error was encountered after a call to simpleXmlParse.

If called from a handler during parsing this function will return the

current line number.

If called after a successfull simpleXmlParse run this function will return
the line number of the last line parsed in the xml data.

return the current input line number of the parser-et if it is unknown

#define SIMPLE_XML _USER ERROR 1000
#define SIMPLE_XML _USER ERROR XML _NOT_VALID 1001

Minimum value for a user abort.
see #simpleXmlParseAbort

| void simpleXmlParseAbor{SimpleXmlParser parseint nErrorCod¢;

Causes the simple xml parser to abort parsing of the input data.

This method may only be called from a tag handler.

The active simpleXmlParse run will be aborted and the simpleXmlParse
function will return with the specified error code.

param nErrorCode the error code with which to abhte error code must
be >= SIMPLE_XML _USER ERROR else the abort request is ignorgd

void* simpleXmlGetUserDat&impleXmlParser parsgr
int simpleXmlSetUserDa{&impleXmlParser parsewvoid* pDatg;

Added for getting user data

const char* simpleXmlGetAttrUr{size.t nNumber const char** attr);
const char* simpleXmlGetAttrNamésize.t nNumber const char** attr);
const char* simpleXmlGetAttrValu¢size .t nNumber const char** attr);
sizet simpleXmlGetNumOfAttréconst char** attr);

Attribute handlers

void simpleXmliStartDocumefXmlWriter* xmlWriter, char* buffer, unsigned short size);
void simpleXmliStartElemeKmIWriter* xmlWriter, constchar* ns constchar* name;
void simpleXmlAddAttributéXmIWriter* xmlWriter, constchar* ns

const char* name constchar* value);
void simpleXmICharacte(XmIWriter* xmlIWriter, const char* valug;
void simpleXmIEndElemefXmlIWriter* xmlIWriter, constchar* ns constchar* name;
void simpleXmIEndDocumeXmlWriter* xmlWriter);

Added for xml generation



A.6 LOGGER

| #ifdef LOG_ENABLED

Logging is enabled via LOGENABLED Macro

| enum eLevelL_NONE, L_ERR L_INFO, L_DBG};

Debug levels specifying how much information will be printed

| void logger helpefunsigned char level, constchar* func_.namg;

Helps the logger by printing log record number, log level etc.

#ifndef PERSISTENTLOG

#define basicloggel...) printf(__VA_ARGS..)
#else *PERSISTENILOG*/

void persistentlogge(char* fmt, ...);

#define basicloggel...) persistentlogge(__VA_ARGS_ )
#endif FPERSISTENILOG

Defines functions depending on whether persistent or basic logger isetkan

#define TOOLS_LOGGER(evel,...) \
do \
{\
logger helpeflevel,__func__); \
basiclogge(__VA_ARGS__); \
} while(0)

Main Logger Macro.
__func__ added by C99 standard and it is not a macro though;

the preprocessor does not know the name of the current function.



#define LOG_ERR(...) TOOLS LOGGERL_ERR, __VA_ARGS_.)

#if (LOG_ENABLED >= 2)
#define LOG_INFO(...) TOOLS LOGGERL_INFO, __VA_ARGS_ )
#if (LOG_ENABLED >= 3)
#define LOG_DBG(...) TOOLS LOGGERL_DBG, __VA_ARGS .)
#else
#define LOG_DBG(...)
#endif
#else
#define LOG_INFO(...)
#define LOG_DBG(. . .)
#endif

#else *LOG_ENABLED*/
#define LOG_ERR(...)
#define LOG_INFO(...)
#define LOG_DBG(. . .)

#endif /*LOG_ENABLED*/

Logger macro definitions

A.7 SOAP

typedef struct

{
char namg50];
char urn[50];

uint8_t numOfParams
#define MAX _PARAMS 8
struct Paramt
{

char namg20];

char valuq20];

char typd20];
} paramfVMAX _PARAMS];

char *action
} SoapMethodit;

Representation of a SOAP Method



typedef struct

char* faultcode
char* faultstring
char* faultactor
char* detait

} SoapFault;

Representation of a SOAP Fault

typedef struct

{
SoapMethodt method
SoapFaultt fault;

} SoapBodyt;

Representation of a SOAP Body

typedef struct

SoapBodyt body;
char* buffer,
} SoapEnvelops;

Representation of a SOAP Envelope

typedef struct

{

SoapEnvelopg eny,
}SoapContext;

Representation of a SOAP Context

| typedef void (*SoapHandlgr (SoapMethodt* request SoapMethodt* responsg

Signature of handler function

typedef struct

{
struct SoapWebService *next
const char* pUrl;
const char* pUrn;
const char* pMethodName
SoapHandler handler

} SoapWebService;

SOAP Web Service Data Structure

#define SOAP_.WEB_SERVICHEnameurl,urnmethod \
void name##_handle(SoapMethodt* request SoapMethodt* responsg \
SoapWebServicgé soapWebServicgt#name= { NULL, url, urn, method name##_handler }

Macro to define a SOAP-Based Web Service

[ void soapinit(void);

Initializes SOAP library and starts HTTP process

| void soapactivateservicd SoapWebService* pWebService);




Web services should be activated with the following code to be accessible

| bool soapinvoke servicd ConnectionStaté* pConnectionState);
To be called by HTTP server as a callback function when a new HTTP connection appears.
This function dispatches the corresponding Web service.

] void soapset methodnaméconst char *pcUrn, constchar *pcName SoapMethodt* pMethod);
Sets the name and urn of the method to be called over SOAP.

void soapadd parang
constchar *pcName const char *pcValue constchar *pcType SoapMethodt* pMethod;

Adds new parameter(name, value and type of it) in the SOAP Method.
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