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Abstract

RESTful Wireless Sensor Networks

Dogan Yazar

Sensor networks have diverse structures and generally employ proprietary protocols
to gather useful information about the physical world. This diversity generates
problems to interact with these sensors since custom APIs are needed which are
tedious, error prone and have steep learning curve. In this thesis, I present RESThing,
a lightweight REST framework for wireless sensor networks to ease the process of
interacting with these sensors by making them accessible over the Web. I evaluate the
system and show that it is feasible to support widely used and standard Web
protocols in wireless sensor networks. Being able to integrate these tiny devices
seamlessly into the global information medium, we can achieve the Web of Things.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are used for various areas such as environmental moni-
toring [32], building automation [49], habitat tracking [30, 35] and health-care [9] applica-
tions. These networks typically consist of many embedded devices referred as sensor nodes
and these devices are kept resource constrained to minimize the overall cost. Typically,
each of these nodes consists of a small microprocessor, a transceiver, a number of sensors
and is usually battery powered. Having minimal resources, many challengesappear and
special care should have taken to use the resources as efficiently as possible and handle
these challenges.

Various different types of applications are the consumers of sensor data so we need easy
and feasible mechanisms to access WSNs. And as sensor networks move to IP [5], one idea
is to integrate sensors into the Web and making them accessible over the Internet.

1.1 Motivation and Problem Statement

Sensors are devices that let us monitor and react to the physical world. For example, as
its name implies, a temperature sensor can give us the temperature of the environment it is
in. But how do we collect this useful information? We need sensor nodes tocommunicate
and collaborate with each other which is realized via wireless sensor networks. However,
currently most WSNs are based on specialized software and hardware platforms and due
to performance reasons, custom protocols and APIs are used which are efficient but also
tedious, error prone and have steep learning curve. These non-standard mechanisms are
limiting accessibility and interoperability of the sensors which means they are alsoblocking
the emergence of new type of applications that can improve our lives in every stage of daily
life.

We need uniform and easy mechanisms to access these devices for the sake of inter-
operability and indeed integrating these devices into the Internet would not only provide
it but also yield many other opportunities the Internet provides. The idea ofconnecting
these tiny things to the Internet is mentioned as the Internet of Things and there exists two
main ways to establish this purpose. One way is to employ gateways, which workas con-
verters between protocols of the Internet and custom protocols used in the wireless sensor
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Figure 1.1: Connecting wireless sensor networks to the Internet directly via IP enabled
sensors.

networks. The other way is having end-to-end communication using IP enabled things,
as shown in Figure 1.1. Especially with IPv6, we have enough address space to identify
all of these things. The work in this thesis is about the latter approach; eliminating the
need of an Application Layer Gateway whose job is to convert between standard formats to
custom ones. For that matter, I focus on using proven and widely-used standards (HTTP,
TCP/IP, etc) directly on sensor nodes hence not needing protocol conversion. Clients will
be able to interact with the sensor nodes just as they do with traditional web servers out
there in the Internet. They may not even be aware of the fact that they areaccessing a very
resource-constrained device.

First step of this task, namely network layer interoperability is already achieved using
IP protocol in sensor nodes [18, 22]. Previously, TCP and IP were considered unsuitable
for wireless sensor networks believing that TCP and IP are very heavyweight, but they are
proven to work well with sensor domain [18, 22]. The next step is to provide application
level interoperability. For this concern, we need to attack the problem as thesame way IP
made viable for sensor nodes; we need to make higher level protocols, i.e.HTTP viable.
The importance of HTTP is that it is the most important requirement on the way ofthe Web
of Things.

This thesis offers a solution to integrate sensors into the Web using the principles of
REST, the architectural model of the Web. I also analyze the costs of usingRESTful princi-
ples over WSNs and identify the ways to minimize the costs by certain design choices and



optimizations to prove that HTTP is viable in sensor networks. I use Tmote Sky motes [42]
as the platform and have achieved completion times in terms of hundred milliseconds for
RESTful Web services to collect sensor data.

The motivation for this work is the idea to access sensors using standard Web tools
such as browsers, feed readers, etc. Tiny devices have the capabilityto be embedded into
the physical world, therefore, if we can integrate these devices into the Web, a huge amount
of data about physical world will be available. So, combining it with the serendipitous
nature of the Web, new types of applications, beyond the ones that we arealready familiar,
are very possible to appear.

Increasing popularity of Web Mashup applications [56] shows us that they can be the
driving force of generating applications using real world data. A Web Mashup is a web
application that gathers data from different external sources (usuallyAPIs) to offer new
services. Mashup applications are very popular lately since new applications can be gener-
ated easily by using existing applications and since already existing resources are used, fast
development is possible. By putting physical objects in the picture, mashups can use real
world data in real time hence generating a new bunch of useful applicationsthat may not
be predictable by now. Example mashup applications involving physical object has already
started to appear such as the ones appearing in the work of Guinard and Trifa [17].

In this work, sensor, node, and mote words are often used to describe the tiny embedded
devices related to the study, however the concepts are equally applicable toactuators as well,
i.e. it is possible to access actuators over the Web and control the behaviour of real world
objects. Moreover, actuators may coexist with monitoring applications, or even better by
working together, i.e. they can act upon the conditions in the environment such as HVAC
(heating, ventilating, and air conditioning) systems.

1.2 Internet Of Things and Web Of Things

Even though sometimes Web and Internet terms are used as if they mean the samething,
in reality their meanings are quite different. Internet is the network of computer networks
realized by IP protocol, whereas Web is a set of resources that are connected to each other
by hyperlinks. These resources are uniquely addressed by URIs and accessed via HTTP
protocol over the Internet. There exist Internet applications which arenot part of the Web
such as emails.

Internet of Things means connecting the computers on the Internet and physical objects
(sensors and actuators) to have the opportunity of monitoring and reactingthe physical
world events. But, I believe that is not enough, on top of it we should havethe Web of
Things in which physical things are accessed using standard Web mechanisms. For exam-
ple; sensors should have URIs and their readings should be accessibleover these URIs. Erik
Wilde has written a technical report [55] which describes the Web of Things and its vision
very well.



1.3 RESTful Sensor Network Applications

Showing that RESTful Web services are viable for WSNs does not mean anything alone if
we do not have reasonable use cases. For example; how can we collectsensor readings in a
RESTful way? I provide an overview of the Web communication model and describe how
it differs from typical sensor application problems.

The Web architecture depends on a client-server model so clients have to actively pull
the content instead of getting it pushed to them. However, for a typical physical world
monitoring application, we need to have some form of asynchronism for several reasons:

1. To access the updated readings instantly, i.e. the sensors asynchronously send updates
in real-time rather than as responses to synchronous service calls.

2. To be able to support time-consuming operations which do not return results imme-
diately, such as tasks running in background continuously and sending results when
they are available.

3. To utilize bandwidth usage, i.e. nodes communicate only when new data existsrather
than being polled periodically.

The Web has a synchronous communication model only. A client opens a connection to
a server, makes a request, the server responds to the request and theconnection is finalized
(see Figure 1.2). This is a very simplified view, there exist some other points inthis discus-
sion such as persistent connections and Ajax [53]. Ajax is a web programming technique
for creating more interactive and faster web applications with a mechanism ofdata trade
without doing a full page refresh. Although, both Ajax and persistent connections have
advantages, actually they still use the same synchronous interaction model of Web. Also,
working on a domain of devices having extremely small resources, persistent connections
do not seem to be a good selection since the devices do not have enough memory to handle
many persistent connections. It can be feasible if the sensor will only be connected with
a single application though, but this would be a serious limitation for most applications.
There are also other protocols than HTTP which has better real time behavior such as Ex-
tensible Messaging and Presence Protocol (XMPP) [48], however my concern here is HTTP
since it is the main transport protocol of the Web.

In Section 7.1.1 I offer a RESTful approach to solve typical sensor application prob-
lems.

1.4 Method

This study is experimental, it includes both implementation as well as measurements to
evaluate the system considering performance and energy-efficiency.I have implemented
lightweight HTTP Server, REST Engine and Logger modules on Contiki as well as modified
and ported a simple XML parser to Contiki. I have performed many optimizations on the
code and carried out various evaluations. The measurements are done for power consump-
tion and completion time in order to quantify the performance of the system. Moreover,
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results of different methods and optimizations are provided to compare them and achieve
the best result.

1.5 Limitations

This thesis focuses on RESTful Web services and their underlying protocols and standards
(HTTP, TCP, XML) over WSNs. Although security is very important, due to itscomplexity
that it would bring on the work level as well as on the code size level, security related issues
are not discussed or implemented in this thesis. Moreover, network layer and lower layers
are not the main concern of this work. That is why the routing between the sensor nodes
is out of scope in this thesis. The only exception is the work I perform on MAC layer, i.e.
tuning X-MAC [13] for better TCP communication.

1.6 Alternative Approaches

This thesis is about integrating WSNs to the World Wide Web. For that purpose, I have de-
cided to build and evaluate a framework following Representational State Transfer (REST)
principles since REST is the software architecture style underlying the WorldWide Web.
There exist many other technologies to build Web applications, most notably SOAP-based
Web services. There appear two main problems with SOAP-based Web services; firstly,



they use the Web as a transport medium instead of integrating to it, and secondly, they
are heavier and more complex than RESTful Web services in terms of memory,bandwidth
and computation requirements especially due to SOAP layer and constantly growing WS-*
stack. Related to that matter, we can also talk about traditional distributed middlewares such
as DCOM, CORBA which have the same disadvantages of SOAP-based Webservices in
our context. Moreover, they have an extra disadvantage; they do not work through firewalls
or proxy web servers since HTTP is not employed.

Another approach would be to employ translation gateways, which work as converters
between protocols of the Internet and custom protocols used in the wireless sensor net-
works. Main advantage of this method is efficiency; using optimal protocols for WSNs
would definitely be more efficient. However, this approach has drawbacks; a translation
gateway is always required in between sensor network and the Internet,and interoperabil-
ity between sensors would be very limited due to the custom protocol, namely it would be
very hard to combine different platforms in the same network. Also, past experience shows
us that protocol gateways are very complex to design, manage and deploy, besides other
problems are also possible due to conversion such as inconsistent routing, QoS, transport
and network recovery techniques [22]. So the question here is extra overhead for having
maximum interoperability acceptable or not? I prove that it is reasonable and promising in
Section 6.

1.7 Scientific Contributions

This thesis contains two scientific contributions. Firstly, I show the feasibility ofusing
RESTful Web services on IP-based multi-hop low-power sensor networks by employing a
number of optimizations. These optimizations include programming techniques to achieve
small code and data memory usage, MAC layer optimizations to improve throughput while
conserving power as well as HTTP mechanisms to save bandwidth. Thanksto these op-
timizations, it is possible to achieve completion times in terms of hundred milliseconds
for RESTful Web services with a power consumption of just several milliwatts. Secondly,
I evaluate the performance of the work, prove that it is reasonable and also compare it
with SOAP-based Web services. My evaluations show that RESTful approach outperforms
SOAP based technique, namely for a typical actuator example of controlling LEDs, REST-
ful approach is 58.9% more energy efficient and responds 4.7 times faster than SOAP-based
approach. Furthermore, I perform evaluations for RESTful Web services over IPv6 and ac-
cording to my evaluations, in average IPv6 has 42.4% more overhead than IPv4 counterparts
in terms of completion time.

1.8 Thesis Structure

This thesis is structured as follows. Chapter 2 describes the backgroundof the work and
explains concepts related to this thesis, namely an overview of Web servicesand the under-
lying technologies/standards are given. Related work also exists in this chapter. After that,



I present design of the system in Chapter 3 and analyze how to make HTTP viable in Chap-
ter 4. In Chapter 5 implementation of the overall architecture is described. InChapter 6,
evaluations are given and interpreted. I conclude in the last chapter. Finally, in Appendix A
I present the code API.





Chapter 2

Background

Wireless sensor networks consist of sensor nodes that monitor physical conditions. IEEE
802.15.4 is a standard used in these networks addressing physical and MAC layers. There
appears power saving MAC protocols such as Low Power Probing (LPP) [45] and X-
MAC [13] aiming to conserve energy. The sensor nodes in these networks are sometimes re-
ferred as motes as well and Tmote Sky is one of the mote platforms commonly used.Many
operating systems are present that are targeted to run on sensor nodessuch as TinyOS [29]
and Contiki [19].

The Web is a distributed system of interlinked documents running over the Internet.
HTTP, URI and XML are the basic Web technologies. REST is the underlyingarchitecture
model of the Web. Web services are used to develop interoperable distributed applications
usually using Web-related standards. Web services are generally categorized in two classes:
SOAP-based Web services and RESTful Web services. Shortly, SOAP-based Web services
employ Simple Object Access Protocol (SOAP) standard, however RESTful Web services
employ REST principles so they are resource oriented and lighter since theywork on top of
HTTP directly.

2.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a type of wireless network consisting of large number
of small embedded devices which are referred as sensor nodes. Having equipped with sen-
sors (and/or actuators) and wireless communications devices (i.e. radio transceiver), these
nodes collaborate to sense their physical and environmental conditions such as motion,
temperature, smoke, light etc. This type of networks have many application areas, some of
which can be counted as military applications, home automation, environment monitoring,
etc.

2.1.1 Mote

A mote, which is also known as a sensor node, is a wireless sensor device that represents
a node in a WSN. The main components of a mote are microcontroller, radio transceiver,
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Figure 2.1: Tmote Sky Mote

external memory, power source and a number of sensors. Motes can sense and monitor
physical assets of the environment using their sensors, process data using the microcon-
trollers and communicate with their neighbours in range using their transceivers. Batteries
are usually the main power supply of the motes and radio transceiver is usually the most
power consuming component of a typical sensor node. Regarding external memory, Flash
memories are mainly used due to their low cost per unit capacity. There are many different
motes are used in WSNs; Sun SPOT, MicaZ, Tmote Sky just to name a few.

2.1.2 Tmote Sky

For this thesis, the mote platform is chosen as Tmote Sky [42] which is shown in Figure 2.1.
It is an ultra low power IEEE 802.15.4 compliant wireless mote having the following key
attributes:

– 8MHz Texas Instruments MSP430 microcontroller (10k RAM, 48k InternalFlash,
1MB External Flash)

– Integrated Humidity, Temperature, and Light sensors

– 2.4GHz IEEE 802.15.4 Chipcon Wireless Transceiver having maximum raw data rate
of 250kbps

2.1.3 IEEE 802.15.4

IEEE 802.15.4 is a standard that specifies the physical layer and media access control for
low-power personal area networks (LoWPANs). Its main aim is to support long battery
life by offering limited capabilities; small frame sizes (the maximum frame length is 127
bytes), low bandwidth and transmit power.
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6LoWPAN

6LoWPAN [27] is an adaptation layer between MAC and network layer that isused to
provide IPv6 support over IEEE 802.15.4 radio. Its aim is to enable low power operation
by compressing headers and hence saving bandwidth and power.

2.2 X-MAC

X-MAC [13] is a low power MAC protocol that uses a sequence of shortpreambles to
wake up the receivers. Radio transceiver is the most energy consumingcomponent of a
typical sensor node and idle-listening constitutes the main part of total energy usage. X-
MAC addresses this problem; motes save energy by switching off the radio most of the
time and hence reducing idle radio listening. Nodes wake up for a short time in regular
periods to listen for preambles. When a node wakes up and receives a preamble addressed
to itself, it replies with an acknowledgement showing that it is awake. Upon reception of
the acknowledgement from the receiver, sender transmits the whole packet.

2.3 Contiki

Contiki [19] is a lightweight open-source operating system, specifically designed for memory-
efficient networked embedded systems and wireless sensor networks. It provides both full
IP networking and low-power radio communication mechanisms via three communication
stacks: Rime [20], a lightweight layered communication stack that provides basic commu-
nication primitives on top of which more complex protocols are built,µIP [18] is a minimal
fully RFC compliant TCP/IPv4 stack, andµIPv6 [23], is the world’s smallest fully RFC
compliant TCP/IPv6 stack.

Currently, Contiki has support for 3 different MAC layer protocols, namely NULL-
MAC, X-MAC [13] and Low Power Probing (LPP) [45]. NULLMAC is the simplest MAC



protocol in which transceiver is always on, whereas X-MAC and LPP are the power con-
serving protocols.

The X-MAC implementation that Contiki offers has two important parameters which
are related to this thesis:

– On Time: How long the sensor keeps the radio switched on while listening for strobes

– Off Time: The duration between two listening times in which the radio is off

Contiki has an on-line power profiling mechanism [21] which is used to evaluate power
consumption in this thesis. It estimates the energy consumption by measuring the duration
each component is in various modes such as low-power mode, transmitting.

2.4 SLIP

The Serial Line Internet Protocol (SLIP) [47] is an encapsulation of the Internet Protocol
designed to operate through a serial connection. SLIP is a very simple protocol that frames
IP datagrams to send them over serial connections. Although it is mostly obsolete now,
thanks to its small overhead, it is still used for connecting constrained embedded systems.

2.5 TCP

Transmission Control Protocol (TCP), described in RFC 793 [43], is a connection-oriented
protocol; a connection is established and kept open during the data exchange between each
endpoint. Endpoints are defined by IP address and TCP port number pair.

TCP is one of the main protocols of the Internet Protocol Suite (TCP/IP). Itlies in the
transport layer and it is reliable; it guarantees data delivery and that packets will be delivered
in the same order as they were sent. TCP also supports sophisticated congestion and flow
control mechanisms via adaptive windowing techniques.

2.6 Web Architecture

The World Wide Web (WWW), abbreviated commonly as the Web, is very widely used,
with some other technologies such as e-mail, P2P, usenet, and IRC, it made theInternet
so much popular. Currently, most of the users of the Internet are human beings, but this
picture is changing with Web 2.0 since programmable web notion is getting more popular
each day. In another words, some of the clients of some web applications are programmed
machines.

The aim of rest of this section is to describe REST and basic Web technologies relevant
to this thesis; HTTP, URI, and XML.



<Sensors>
<Sensor>

<Name>temperature</Name>
<Value>25.1</Value>

</Sensor>
</Sensors>

Figure 2.3: A simple XML document

2.6.1 URI

A Uniform Resource Identifier (URI) is a string that identifies a resourceon the Internet.
It is described in RFC 3986 [10]. URI is one of the main components of the Webthat is
used to name and address all the piece of data that clients want to access. Every URI labels
exactly one resource and every resource present on the Web has atleast one URI.

2.6.2 XML

Extensible Markup Language (XML) [12] is an open standard recommended by the World
Wide Web Consortium (W3C). XML is a markup language designed to transport and store
data in a plain text form. Its simple and flexible structure made it a very important exchange
format of data on the Web. An example XML document is given in Figure 2.3

In the context of the Web services, an XML parser is needed to processXML docu-
ments and extract the information needed. Currently there exists two main XML parser
types; Simple API for XML (SAX), Document Object Model (DOM). SAX parser is an
event based parser; it parses the XML data into a series of events suchas tag opened, closed
etc. Parser invokes the callback functions with corresponding events while going over the
document, in another words, it pushes events to the user. It is fast and efficient but gener-
ally referred as hard to use since user has no control over the parsingafter callbacks are set.
DOM parser generates a tree data structure from the XML data which can later be travelled
to extract needed data. Using DOM parser is generally considered to be easier than using
SAX parsers but due to the overhead of extra data structure representing the document cre-
ated, it is much more greedy in memory usage than SAX parser. Therefore,if the available
memory is very small or the XML document is very big, DOM parser is not a good choice.

Additional to DOM and SAX APIs, there also exist new parsing approaches such as
Pull parsers. Pull parser resembles to SAX parser since it converts theXML document
into a sequence of events, however as its name implies, users pull data fromthe parser
(instead of data getting pushed to the user) which makes it more flexible than SAX parser.
Therefore, Pull parsers are mentioned as having the efficiency advantage of SAX parsers
whereas being easier to use.



GET / HTTP/1.1
Host: www.sics.se
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.0.10)
Gecko/2009042523 Ubuntu/8.10 (intrepid) Firefox/3.0.10
Accept: text/html,application/xhtml+xml,application/xml
;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

Figure 2.4: An example HTTP request

2.6.3 HTTP

HTTP (Hypertext Transfer Protocol) is an application layer protocol used by the World
Wide Web to access resources in a stateless and loosely coupled way. HTTP is the trans-
fer protocol that makes the Web work and it also helps the Web to scale via techniques
such as stateless communication, caching, persistent connections. The simple, mature and
ubiquitous nature of HTTP made it very popular for many types of distributedapplications.
HTTP/1.1, described in RFC 2616 [25], is the version of HTTP that is commonly used now.

HTTP works in a client/server fashion and uses URIs to access resources. In most
cases, HTTP uses TCP as the underlying transport protocol even though it is not mandatory
to do so. A typical and simple interaction would be as follows; client establishesa TCP
connection to the server (on port 80 as default), then the client sends request message, server
processes the request and returns a response. The type of the responses may vary depending
on the client requests and server capabilities, for example; HTML files or images may be
returned for web browsers. An example HTTP request, the request done by my browser
when I visit www.sics.se, is provided in Figure 2.4. Cookie part is not presented for the
sake of simplicity.

Client requests consist of the request line (in the example: ”GET / HTTP/1.1”), request
headers and an optional entity body).

And the response of the server is given in Figure 2.5. Entity body which includes HTML
document of the web page is not written but instead just presented with [HTML Data].

Server responses consist of a line for the status (”HTTP/1.1 200 OK” states that the
operation is successful), response headers and entity body (usually this part has the repre-
sentation of the resource).

2.6.4 REST

Representational State Transfer (REST) is an architecture style definedby Roy Fielding in
his PhD thesis [26]. It aims to design distributed networked applications usingHTTP as
application layer protocol and it is actually the architecture model of the Web.



HTTP/1.1 200 OK
Date: Fri, 12 Jun 2009 12:45:31 GMT
Server: Apache/2.2.6 (Unix)
X-Powered-By: PHP/5.2.4
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Fri, 12 Jun 2009 12:45:31 GMT
Cache-Control: store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8
[HTML Data]

Figure 2.5: Response of the server to the example request

The main abstraction of REST is the resources. Every resource should have URI and
using these URIs it is possible to link resources hence leading hypermedia.It is possible to
have different representations for the same resource which is a very powerful concept, i.e. a
server can serve HTML content for human consumption and XML or JSONfor machines.

REST uses standard methods HTTP defines; i.e. GET is used as a safe andidempotent
operation to access a resource, PUT is an idempotent operation that can be used to create or
update a resource with a known URI, DELETE is idempotent as well and used to remove
a resource and lastly POST is used for anything else. Although there existother HTTP
methods such as OPTIONS and HEAD, the four of the methods described are the most
popular ones. Moreover, a new HTTP method is about get into standard soon; PATCH. It
allows clients to do a partial update on a resource hence enabling bandwidthsave. And
as response statuses, HTTP has a well defined and rich set of response codes such as this
resource created or resource temporarily unavailable, etc.

Working over HTTP, REST has stateless communication which means serversdo not
keep application states of the clients, instead clients should send all necessary state infor-
mation in requests. The only state in the servers are the resources. Stateless nature is one
of the main reasons under the scalability of Web.

However, REST is not the silver bullet for everything. It is definitely not the cure for all
type of applications; other architecture styles or specific technologies may perform much
more better depending on the requirements of the problem. So the aim of this thesis is
definitely not to claim that all types of wireless sensor network problems canbe solved by
employing REST principles but to show that it is possible to integrate physical objects into
the Web using REST principles.

2.7 JSON

JavaScript Object Notation (JSON) [15] is a lightweight and language independent text
format to interchange data. The idea is to serialize data structures (numbers, arrays, etc)



{"Sensors": {
"item": [

{"name": "Temperature", "value": 26.1},
{"name": "Light", "value": 87}

]
}}

Figure 2.6: A simple JSON document

as JSON formatted strings. JSON offers a better solution than XML for at least Javascript
environments since instead of parsing it as XML, it is directly fitted into the proper data
structure. That advantage makes JSON an important player in Web 2.0 applications. There
exists a JSON parser available almost in every language. An example JSON document is
provided in Figure 2.6

2.8 Remote Procedure Call

A remote procedure call can simply be described as a mechanism in which applications are
able to make calls on remote machines transparently, i.e they appear as local procedure calls
to the users. The complexities are handled by the RPC libraries, such as converting the calls
to a TCP connection between client proxy and server stubs and marshalling/demarshalling
the parameters and return values. There exist many RPC systems currentlyused still such
as CORBA and Java RMI.

2.9 Web Services

According to W3C: ”A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web service in
a manner prescribed by its description using SOAP messages, typically conveyed using
HTTP with an XML serialization in conjunction with other Web-related standards.” [11]

2.9.1 SOAP-Based Web Services

In this thesis, Web services that employ WS-* stack are called SOAP-BasedWeb services.
Most people think of them when Web services are mentioned currently. Maintwo com-
ponents of these Web services are SOAP [37] and Web Services Description Language
(WSDL) [14]. SOAP actually presents an envelope only but regarding SOAP-Based Web
services, it is used as a wrapper for RPC calls and WSDL is an XML language for defining
interfaces. SOAP is designed as protocol independent, but in practice,it is often imple-
mented on top of HTTP. This type of Web services are also called Big Web Services or
WS-* Web services in the literature.



2.9.2 RESTful Web Services

In simplest terms, RESTful Web services mean to apply REST design principles to develop
Web services. REST is the underlying architecture style of the Web, so applying REST
principles means direct integration to the Web. Rather than focusing on functions, RESTful
Web services use Web resources as the main abstraction. RESTful Web services book by
Richardson and Ruby is a very good source for the details of the subject[46].

RESTful Web services have many advantages that the Web offers. Forexample:

– Standard and very well known data types are used to represent data, also different
types for representing same resource is possible depending on the clientneeds. For
example; the result of some statistical data can be provided in HTML for human
beings whereas in excel for some programmed client to make calculations.

– Uniform interface is provided since standard HTTP methods are used

– True language independence

– Since HTTP is employed under, tunneling over firewalls is no problem

– Caching is possible to increase the performance

– HTTP is used as an application layer so all the features of HTTP standard are inherent
in RESTful Web services. Some of these features are; encryption, authentication and
caching.

These advantages provided many popular Web 2.0 services to employ RESTful Web
services such as Yahoo, Amazon, Flickr.

2.9.3 RESTful Web Services vs SOAP-Based Web Services

There exist many discussions about the comparisons of these two notions such as [41].
Certainly, both of the types have their advantages and disadvantages thatmakes them more
suitable over each other for different specific cases. However, the aim of this thesis is to
make sensors a part of Web, that is why RESTful Web services are a better option. Their
lighter nature is an extra advantage for our limited environments.

2.10 Related Work

There have been several work about building RESTful applications and frameworks on
WSNs to date. To my best knowledge, my work is the first one to have IP support on the
sensor nodes; the other work employ gateways on the border of sensornetworks especially
for IP-to-Custom Protocol mapping. I also provide evaluations regarding the real system
performance. These two are the main points that my work adds to the previouswork.

TinyREST [34], is developed as part of a Home Services Framework. Itsgoal is to
generate a specific REST based approach for the framework rather than providing a generic



framework that this thesis aim for. Other than IP support, the work also does not include
multihop routing and reliability within WSN, both of which are supported in my work,es-
pecially reliability is inherently supported thanks to my approach of using standard TCP/IP.
A gateway connected to a base station is used to map the set of requests to TinyOS [29]
messages and vice versa, which also performs some other tasks such as validity checks.
More recent researches about same subject focuses on the Web of Things.

Dickerson et al. [16] have vision of World Wide Sensor Web, in which sensor data
streams are accessed over the Web such as Web feeds but in a more suitable way for sensors,
i.e with more capabilities (server-side filtering, streaming support and real-timeupdates)
and in a more efficient way.

Guinard and Trifa have work emphasizing on application possibilities the Web of Things
offers. In [17], they present real mashup applications using sensordata and existing tools,
hence showing the opportunities that the Web of Things brings. My work differs from theirs
in the part of the problem I attack. Namely, I concentrate on lower details; making HTTP
and RESTful Web services viable on IP enabled tiny networked devices whereas their work
mostly focuses on higher part; developing useful mashups using the sensor data from differ-
ent sensors. For that matter, the authors employ gateways to connect devices to the Internet.
I believe that their and my work complete each other for the vision of the Web ofThings.

SOAP-based Web services are out there and used successfully for along time now.
That is why, when one mentions Web services, SOAP-based Web services first come to
mind rather than RESTful ones. There exist several work about SOAP-Based Web services
on sensors in literature and I also have a look on them to make performance comparison
between their and my approach; using REST principles.

The first work I have found about realizing Web services on IP-enabled sensors are the
works done by Othman et al. [28, 40]. The work are about providing anembedded Web
Service Framework for WSNs with an emphasis on sinkless model in which no sink or
gateway is used and so applications are directly accessing the sensor nodes. The authors
describe a prototype implementation usingµIP over TinyOS [29] for Telosb motes [42].
Simulation results of the work are provided in which it is shown that sinkless model has
a better lifetime due to lower energy consumption and network load. Although themain
idea of the work to be standard compliant Web service framework, it is not mentioned why
they needed to implement a client side SOAP processor instead of using any well known
lightweight client side APIs. Removal of optional SOAP sections, XML namespaces and
SOAP Headers, have high chance to be the reason since most of the clientAPIs use them.
My work does not involve any client side tools since I offer true Web integration so standard
Web tools are possible to interact with my framework.

Microsoft research has done implementations and evaluations in their work [44] using
µIP as their TCP/IP stack. The paper has a similar aim to this thesis which is to show
that connecting the sensor networks to the Internet based on widely-usedopen standards
such as TCP/IP and it has a good job showing the overhead incurred by TCP/IP. Also
the optimizations are suggested to reduce the overhead, however they do not seem very
practical to perform. For example; using persistent connections is not practical at all for
constrained devices that will really interact with Web because of the state that needed to



be saved. For that purpose, their aim is to realize Web services on sensornets in spite
of the significant energy and bandwidth overhead. The authors have achieved to connect
sensors to the Internet using HTTP Binding with WSDL standard. Most of the details
are not given but looking at the examples they have provided, the systemthey produced
seems to be very specific (such as sensor providers generate WSDL and code too) and it
seems to be more like an REST-RPC hybrid rather than genuine SOAP-basedWeb services.
Real SOAP handling part is done using an intermediary that intercepts the SOAP message
from the client, extract method name and parameters and send them to the relevant sensor
over HTTP directly. On the other hand, I have implemented a server side SOAP API to
compare it with my lightweight REST framework so my implementation do not require
any protocol/data converter in between. In their work, the authors have achieved to have
just 23.09 ms increase in the completion time for 40-byte respose data size whichseems
really promising. However, this evaluation ignores the latency incurred by request message
and overheads of opening and closing connections. In my work, I add HTTP analysis and
provide completion times of Web service calls with more realistic data sizes and prove that
it is still reasonable.

The SenseWeb project [31] offers an architecture whose aim is to share sensor data
across the Internet. The work differs from ours in that a central server and gateways are
required to access sensor data. Web services are used for having a flexible and uniform
mechanism.

An important aspect for my work is to have small energy and bandwidth usage. One
approach to reduce bandwidth and energy overheads is to compress XML data in Web ser-
vices. One can find many researches on that matter in the literature as well, i.e.a bibliogra-
phy is present here [33]. Moreover, comparison between differentcompression techniques
are provided in [8]. However, first of all, compression XML data is not acomplete solu-
tion since it will only decrease the transmission and receiving power consumption but still
there is the part of the problem; processing and storing big XML files. In addition, there is
this additional work of XML compression/decompression on the nodes for which we need
ported compression software on sensor motes that will take extra extra code space as well
as will increase the processing time and energy usage. On the other hand,using a binary
representation may be a good solution since parsing, storing and transmission of the file
will be much more efficient however there is the issue of the standardization.W3C formed
the Efficient XML Interchange (EXI) [3] is announced very recently which may solve all
these problems, but providing a very small parser for EXI may be a challenge first. Another
binary representation of XML is WAP Binary XML (WBXML) [36] . It is already used by
some mobile devices such as phones.





Chapter 3

RESThing

I present RESThing, a lightweight RESTful framework designed for memory-constrained
sensor nodes. It offers interfaces and reusable components so thatdevelopers can de-
velop their RESTful applications easily. Sensor network programming is hard and error
prone [39]. Debugging is even harder. Therefore, my framework eases the burden of devel-
oping RESTful applications in WSNs.

The main challenge of developing software for sensor platforms is the resource bottle-
neck. Some of the underlying components, i.e. HTTP server, TCP/IP stackand XML parser
have high complexity which makes the job harder. First of all, it is not possibleto reuse
PC versions of these software into sensor platforms especially due to their heavy nature, so
clever design choices and careful implementation/refactoring should be done. Removing
non-mandatory features is a must, however special care should be takento have a standard
compliant software for the sake of interoperability.

I provide the details of the components of the system in the following section.

3.1 Architecture Details

Keeping the challenges given above in mind, I have tried to build the softwareas efficient
and small as possible. The data structures are designed and used in a very efficient way such
as sharing the buffers for different purposes. Moreover, the system consists of a modular
structure to ease the process of reusing and replacing parts of the software.

No client side support is provided in my software since there is no need. Clients can use
standard web tools to communicate with my REST framework. For example I have used
curl [2] and restlet [6] for testing and evaluations.

Software architecture of RESThing is shown in Figure 3.1. It consists of HTTP Server,
REST Engine, SAX based XML parser and Logger modules. Developerscan add a number
of RESTful Web services on the REST engine as symbolized by RWS. These are nothing
but realization of REST resource concept actually. RESThing offers an easy interface to
create resources since they are the main abstractions of RESTful Web services.

The details of individual components are provided in the following sections.
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Figure 3.1: Architecture of RESThing

3.1.1 HTTP Server

HTTP server is a small footprinted server to handle the incoming and outgoingHTTP traffic.
It provides interface to perform certain HTTP related stuff such as accessing request details
(headers, entity body, URL path), constructing an HTTP response etc.Not only REST
Engine but also SOAP Engine works on top of it. A basic SOAP Engine has been developed
to see its feasibility and compare it with RESTful architecture. SOAP Engine is described
in Section 3.2.

3.1.2 XML Parser

Due to data and code memory limitations, a small and memory efficient parser is needed.
Simple XML parser [7] is found to be best candidate so it is ported to Contiki. It is very
small in code size and being a non-validating SAX based parser makes it memory effi-
cient. Some new functionalities such as XML generation and a basic namespace support are
added. The parser is used by SOAP engine as well as user applications (both SOAP-based
and RESTful Web services). SOAP engine needs it to parse incoming SOAP messages and
extract related data.

3.1.3 Logger

Visibility of wireless sensor network applications are lower than traditional applications due
to the inherent properties of WSNs [54]. Due to that reason, I see logging has an increased
importance to monitor the events taking place. That is why I also designed a logging module
in my framework. It offers three severity levels; Error, Info and Debug. Any level include



levels preceding it , i.e. when Info level is defined, Error messages areprinted as well.
Basic mode just prints the strings whereas there is also a persistent mode which saves the
log messages in flash memory (using Coffee File System [52]) periodically. So one can
execute certain operations for a long time and then gather the results from theflash memory
later.

3.2 SOAP Engine

I also provide a minimal SOAP processing engine for fulfilling SOAP-based Web service
calls. It reuses the HTTP server and XML parser components. Engine parses the SOAP
message using the XML parser, extract the method information and execute it.Then the
response SOAP message is built using the XML parser





Chapter 4

Making HTTP Viable for Wireless
Sensor Networks

IP-enabled sensor nodes made it possible to use protocols relying on IP such as HTTP
in wireless sensor networks. Supporting HTTP in sensor nodes brings many advantages,
mainly direct integration to the Web. However, these advantages do not comefor free and
challenges need to be handled to have HTTP protocol running on sensornodes. Limited
resources in sensor nodes requires HTTP implementations to be small in codesize and
conserve memory. Using TCP as the transport protocol brings some more challenges; con-
nection setup and acknowledgments causes extra latency and bandwidth usage. Regarding
HTTP, stateless model helps sensor nodes to conserve memory however HTTP is text-based
and maximum packet size supported in the domain is small for a text-based protocol which
may cause segmentation into several packets. HTTP offers many mechanismsand WSNs
can benefit from some of them such as Conditional HTTP GET, Delta Encoding, Range
Headers to have better performance.

The challenges appearing are due to the resource limitation in tiny embedded networked
devices. So first of all, I have developed a minimal and small footprinted HTTP server for
Tmote Sky motes over Contiki in the context of this thesis.

Reliable nature of TCP increases the latency significantly, i.e. 3-way hand-shaking
mechanism to establish the connection and ACKs. Persistent connections can remove the
overhead incurred by 3-way hand-shaking but it is only applicable to specific cases, such
as only a single application is interacting with the sensor. Also Delayed ACK optimization
implemented in most of the TCP/IP stacks have a negative effect for our domain due to
small request and response sizes. These overheads of TCP over WSNs are already studied
and evaluated by Nissanka et al. in [44]. Header compression mechanismsfor TCP and/or
IP may alleviate the problems by increasing throughput and decreasing latency.

Additional negative effects related to TCP are possible especially due to minimal re-
sources. For example; TCP/IP stacks available in sensor nodes must have minimal buffers
so TCP window size may be very limited such as a single packet size. This makesthe situ-
ation worse since throughput reduces further, also Delayed ACK situation gets worse since
every packet sent experiences 200ms delay. This situation should be handled by increasing
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the input/output buffer size of the TCP/IP stack in the sensors. However,as a side note,
I did not experience Delayed ACK problem in my measurements. Although I could not
find any documentation, it seems that TCP/IP stack in Ubuntu 9.04 has some form of smart
Delayed ACK optimization maybe relying on the previous traffic. Lastly, one interesting
point is; although slow start behaviour of TCP is a problem for general short lived HTTP
traffic in the Internet, it does not necessarily affects WSNs due to very small TCP window.

Yet another big challenge is to conserve power while achieving reasonable completion
times. For that matter, I analyze TCP over X-MAC and present Session-aware X-MAC;
an optimized version of X-MAC protocol that is aware of TCP behaviour hence providing
improved completion times. I analyze TCP over X-MAC and describe Session-aware X-
MAC in Section 4.1.

Stateless nature of HTTP is a big advantage for our limited nodes since no client ap-
plication state needed to be kept in already limited memories, however it is a text based
protocol and maximum packet size supported by 802.15.4 is only 127 bytes which will also
include TCP, IP and MAC layer headers. Therefore, data may need to besegmented into
several packets which will bring extra latency. So, messages transmitted in between should
be as compact as possible, i.e. unnecessary and long HTTP headers should be avoided by
the clients. Moreover, certain other optimizations should be used to alleviate thechallenges
due to the characteristics of sensor networks. This thesis focuses on realizing everything
using standard methods for the sake of interoperability, hence current Web techniques are
considered, for example, HTTP standard has a perfect caching structure which is one of
the main reasons that World Wide Web scales that good. The mechanisms are discussed in
Section 4.2, only with their usages relevant to our topic.

4.1 Session-aware X-MAC: A TCP Friendly X-MAC

When interacting with wireless sensor networks, getting good completion times is not
enough, you need to also do it in an energy efficient way. For that purpose, I use X-
MAC [13] as MAC layer protocol. Although X-MAC is being used efficiently intypical
WSN applications for some time now, to my knowledge there is no study about perfor-
mance of X-MAC as a lower layer for TCP traffic and how to make it suit betterto the TCP
connections, so I make my own tests to see the results. X-MAC turns off the radio to save
energy and this behaviour is causing significant delays in the TCP communications.

In a typical TCP communication, there is continuous traffic in both directions until the
connection is closed. This is mainly because TCP is a reliable communication protocol;
ACKs are transmitted in the opposite direction of the data delivery. This means that both
packets and their corresponding ACKs suffer from the wake-up time imposed by X-MAC.
The problem is more clear in our resource limited domain since the TCP/IP stack used,
namelyµIP, has a TCP window for just one packet, so each packet has to be acked to
continue the rest of the transmission.

The problem may be alleviated by letting the radio stay on for a while after a mote
sends a packet to the client, i.e. until the ACK is received. By this way, at least the ACKs
destined to the sensor node do not suffer from wake-up delay. However, this does not solve



the problem completely since the packets still may experience delays so a more thorough
solution is required such as letting the radio be on for the entire communication.

I present Session-aware X-MAC which is a TCP aware X-MAC derivative. Session-
aware X-MAC lets the radio be switched on during a TCP connection; precisely between
the periods of SYN packet reception and FIN packet transmission. This solution decreases
the delays significantly since the only packet that suffers from wake-updelay is the first
SYN packet.

Evaluation comparing Session-aware X-MAC with original X-MAC can be found in
Section 6.

4.2 HTTP Optimizations

4.2.1 Conditional HTTP GET

In this section, I focus on Conditional HTTP GET, an existing HTTP optimizationmech-
anism, since I foresee that it is an important mechanism to connect WSNs to theWeb
efficiently. First I give details about it and then describe how it is applied inour domain.

Conditional HTTP GET is designed to save time and bandwidth by employing certain
response (Last-Modified and ETag) and request headers (If-Modified-Since and If-None-
Match). The idea is if the data is not changed after the last time client fetched it,the
server can notify client by 304 (Not Modified) status and do not send thedata again hence
saving bandwidth and time. But how does that work? Every time a server sends data,
it includes Last-Modified (last time the data was changed) and/or ETag headers (opaque
string symbolizing a specific version of data) and when the client asks for the same resource
later it provides these information in If-Modified-Since and If-None-Match headers, hence
allowing the server to make a decision whether the resource has changed or not. If it is
changed, a response code of 200 (OK) and the new data in the entity-body is served, or else
304 (Not Modified) is returned only, then the client uses its cached data knowing the fact
that the underlying data hasn’t changed since the first request.

The Last-Modified header field indicates the date and time at which the resource was
last modified. This creates a problem for wireless sensor networks; the synchronization of
the date and time is needed. Either the clock of the mote should be synchronizedduring
installation or only ETag header should be used. The latter seems like a better solution to
for the sake of easiness. ETag is an opaque string so it is very flexible for server to choose
a representation for it, usually some version system or checksum is employed though. The
only problem using ETag alone is that it is only HTTP1.1 compliant which is not abig
problem since almost all clients support it nowadays.

An example for the scenario in Section 7.1.1 is as follows: Sensor will fulfill there-
quests with ETag header.:

HTTP/1.1 200 OK
Server: Contiki
Content-Type: text/xml
ETag: v1
[Entity Body]



And client will provide the same string retrieved from server in ETag into If-None-
Match:

GET /temperature HTTP/1.1
Host: www.example.com
If-None-Match: v1

And if the content is not changed, sensor will not transmit Entity Body hence saving
bandwidth. Status 304 (Not Modified) is returned:

HTTP/1.1 304 Not Modified
Server: Contiki
Content-Type: text/xml
ETag: v1

4.2.2 Delta Encoding

Delta Encoding in HTTP is defined by RFC 3229 [38]. Using delta encoding,rather than
the whole document, the client can ask for a difference against his/her own copy from the
server. The server knows which version client has with the If-None-Match header. An
example request is copied below for clarity.

GET /foo.html HTTP/1.1
If-None-Match: v2
A-IM: diffe

The main idea is that the server knows the differences of at least the recent versions of
a resource presentation. The main challenge for sensor networks is thatit may be a little bit
complicated to keep the differences.

4.2.3 Range Header

By using Range Header (that is defined in RFC 2616 [25]), client can obtain only a part of
a resource representation. So in case of a situation that only part of the data is needed and it
is known in advance, this mechanism can be employed. An example of getting thefirst 31
bytes:

GET /foo HTTP/1.1
Host: www.example.com
Range: bytes=0-31

4.2.4 Other HTTP Optimizations

There exist more subjects related to this subject that are expected to be included in HTTP
standard in a very near future. These are prefer header [50], patch method [24] and batched
HTTP requests [51].

PATCH method allows you to do a partial update on a resource which saves bandwidth
since instead of sending the whole data over the network, only a set of changes are sent.
Server will apply the changes to the resource and tell user what happens. The challenge
here for a sensor node would be to recognize and handle the change format (i.e. diff).



Prefer header allows the clients to describe the format of response (notthe mime type of
content) they wants to receive. In relevance to our case, for example theclient may prefer
that the server not include an entity in the response to a successful request since the status
code may be enough (i.e. 204 No Content or 304 Not Modified, etc). I believe this header
proves that Web is not only for human beings anymore, browsers indeedneed content to
show it to the users but machines do not necessarily need content for allrequests.

Batched HTTP allows multiple requests to be sent altogether over a persistentcon-
nection without waiting for individual responses. Requests can be both idempotent and
non-idempotent. Batched HTTP requests can decrease latency and number of TCP packets
transmitted.





Chapter 5

Implementation

I have implemented HTTP Server, REST Engine and Logger modules from scratch while
Simple XML parser [7] is refactored and ported to Contiki environment. Certain opti-
mizations and limitations exist in these modules to make them small and efficient enough
for sensor motes. For example, HTTP server only saves the headers which are specified
beforehand by the developer and unnecessary features of Simple XMLParser is stripped
whereas XML creation support and a basic namespace support is added. Logger is imple-
mented using C Macros so that configuring it would be done in compile time efficiently. It
is possible to remove the logging support during compile time in which case log statements
are expanded to nothing.

While implementing RESThing, I have taken the constraints imposed by low-cost sen-
sor nodes into account to achieve a small footprint solution. I use C as the programming
language. C offers a good control over memory and also Contiki APIs provide C interfaces,
so I believe it is the most suitable choice for the context of this thesis even though it is not
particularly thought as a Web application friendly language. I implement the code using
Tmote Sky motes, however since it does not use any low level details of the moteplatform,
it is possible to extend it easily to other Contiki ported platforms in the future.

Static memory allocation is prioritized over dynamic allocation for the sake of reliability
and dynamic memory allocation is used as less as possible since on a memory-constrained
system it may make the heap fragmented. All programs share the same address space so
having a fragmented heap would cause unpredictable problems. So special care taken while
allocating memory from heap; it is only done where efficiency is important andfor short
periods. Needed memory is allocated as a whole to minimize the fragmentation. To be
able to respond to maximum number of clients at the same time, data structures related
to connection state are allocated on heap. Also, XML parser uses heap memory during
parsing. It is necessary since number of elements and their length is unpredictable so having
static memory assigned is not only inefficient but also inflexible.

WS-* stack is very big to fit in sensor nodes so my SOAP Engine is very light and imple-
mentation lacks many features. Also, a very limited validation of provided SOAP messages
are provided. SOAP Engine is used to evaluate bandwidth and memory requirements and
compare it with my REST framework.
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Module Code Size (ROM) RAM Usage (Static)
HTTP Server 3976 72
REST Engine 692 4
XML Parser 5260 4

Logger (Basic) 34 2
Logger (Persistent) 710 20

SOAP Engine 2354 36

Table 5.1: Memory footprint of the modules.

The details of the implementation of modules regarding memory usage is given in Ta-
ble 5.1. Dynamic memory usage is not given since it depends on the user settings and
XML documents to be parsed. More precisely, user can decide connection state settings
(i.e. request and response buffer sizes, number of headers to be handled etc) which affect
the dynamic memory usage and also XML parser uses dynamic memory allocation for the
sake of efficiency.

Although this thesis has emphasis on layers above network layer, to get a good per-
formance, I had to get my hands dirty in the lower layers as well. Due to a preemption
interference between timer handling of X-MAC and SLIP, I end up having unreliable be-
haviour, i.e. quite different completion times, in my evaluations. As described inSection 6,
the connection between router and the computer is established using SLIP which basically
encapsulates the IP packets in both directions. However, I have experienced packet losses
over serial line which increased the completion time significantly. Mainly, the problem
was because of the timer handling of X-MAC was creating a big burden overgateway and
gateway was missing some part of data causing the checksum to fail and leading further
retransmissions. The solution for that problem is simply let the radio be on forrouter all
the time since router is already connected to computer which means it has always enough
power so do not need to be battery friendly. Having the router whose radio is always on
provides not only consistent but also slightly improved completion times. I call this pre-
emption interference tweaking as Preemption Interference Fix (PIF) and evaluate its effect
in Section 6.



Chapter 6

Evaluation

In the first part of this section, I evaluate X-MAC optimizations I have performed to have
better TCP behaviour. This is especially important since later evaluations aredone using
these optimizations.

Next, I evaluate RESTful Web services in terms of power consumption and completion
time using two different MAC level protocols, namely X-MAC and NULLMAC. Ishow
that realizing RESTful Web services is possible and reasonable even withpower saving
MAC protocols.

Then, I evaluate SOAP-based Web services. The main goal is to compare the results
with RESTful Web services to prove that although it is possible to serve SOAP-based Web
services on these tiny embedded devices, it has much more complexity than RESTful Web
services in terms of communication costs as well as memory requirements. However, the
aim of this comparison is definitely not to find out which one is better. There exist already
a lot of discussions about that topic.

I also estimate the battery life of sensor nodes running Web services using the power
consumption data obtained. The estimation is useful to see how long a typical sensor node
that serves Web services can stand.

Lastly, I estimate and present energy consumption on byte level especially tosee the
cost of TCP overhead on byte level.

6.1 Experimental Setup and Details

The experimental setup, shown in Figure 6.1, consists of a testbed of Tmote Sky motes and
a desktop computer running Ubuntu Linux. One mote is used as a router that connects the
sensor IP network and the desktop computer. The motes run Contiki as operating system
and useµIP TCP/IP stack. Router sensor is connected to desktop computer via serial cable
and to deliver/receive packets to/from router, SLIP and TUN are used. TUN simulates
layer 3 (network layer) devices and is used for routing, whereas SLIPis used to encapsulate
IP packets transported in between. Although SLIP is obsolete now, it is still popular for
networked embedded devices thanks to its small overhead. Lastly, RESTful requests are
done using curl [2].
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Node 1
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Figure 6.1: Experimental Setup

The only exception for the above setting is the completion time measurement using
IPv6. In that measurement,µIPv6 TCP/IP stack is employed and TAN is used rather than
TUN. The sensor node marked as router in Figure 6.1 is actually used as a bridge, acting
as a link layer interface for the Linux host, in this setting. SICSlowpan header compression
implementation of the 6LoWPAN adaption layer is used by Contiki over IPv6 packets.

X-MAC is used with two different configurations in these evaluations. Main goal is
to compare the power consumption and completion times of these settings and hence to
provide input about their feasibility. Differently configured X-MACs arelabeled as X-MAC
and X-MAC2. The only changed parameter is the Off Time parameter which presents the
period of keeping the radio off until waking up to listen for the strobes. Theconfigurations
are:

– X-MAC

• On Time: 1/200s

• Off Time: 1/4s

– X-MAC2

• On Time: 1/200s

• Off Time: 1/2s

The testbed setup is intentionally simple to avoid irrelevant network effects. Pre-configured
routing tables are used on every node in all experiments to avoid any effects of a dynamic
routing protocol to influence the measurements.

6.2 Completion Time Improvement for TCP Connections over
X-MAC

To measure the effects of the optimizations done on X-MAC usage, I measurecompletion
times and power consumption both for original and optimized versions for the sensor node.
I perform two optimizations, namely Session-aware X-MAC and Preemption Interference
Fix, to have a better and more reliable TCP behaviour over X-MAC. Session-aware X-MAC
is described in Section 4.1 and Preemption Interference Fix (PIF) is explained in Section 5.
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Figure 6.2: Preemption Interference Fix provides more stable completion times and
Session-aware X-MAC decreases completion times significantly.

Sensors Web service, shown in Table 6.1, is used to obtain completion times andpower
consumption which can be found in Figures 6.2 and 6.3 respectively. X-MAC2 settings are
used in the evaluation. Web services are called 5 times in 4 sets. Power consumption is
measured for each set (5 Web services are called in 60 seconds), averaged and represented
with their standard deviation. Measurements using Session-aware X-MAC also includes
Preemption Interference Fix.

Regarding completion times, it is seen that Preemption Interference Fix lead more reli-
able results than original X-MAC. Original version has 4 spikes at 8th, 14th, 16th and 17th
calls. With Preemption Interference Fix, X-MAC has more stable results sincespikes do
not exist. There are only small fluctuations which are normal and caused by difference in
X-MAC timing to switch on the radio. Also it is clearly seen that completion times are
improved slightly.

Session-aware X-MAC outperforms original X-MAC in terms of completion times.
There are only small fluctuations, i.e. 1st, 8th and 16th calls are luckier than the others
since they are roughly synchronized with the radio wake up period.

Regarding power consumption, Preemption Interference Fix decreasespower consump-
tion for the sensor node significantly since the router keeps the radio switched on all the
time, sensor node does not need to send a lot of preambles to wake the router up and there-
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Figure 6.3: Preemption Interference Fix has much more smaller power consumption for
1-hop away node than original X-MAC. Session-aware X-MAC uses more energy for the
sake of better responsiveness.

fore power consumption decreases thanks to less data transmission in total. Also, original
X-MAC has bigger standard deviation than Preemption Interference Fix in power consump-
tion which is expected due to the spikes.

Session-aware X-MAC consumes more power than when we employ Preemption Inter-
ference Fix alone. This behaviour is normal since Session-aware X-MAC keeps the radio
switched on throughout the whole TCP connection. However, thinking it together with the
great increase in the responsiveness of the system, power consumptionincrease is reason-
able.

6.3 Power Consumption and Completion Times of RESTful Sen-
sor Networks

I evaluate serving RESTful Web services on Tmote Sky motes in terms of power consump-
tion and completion time. My evaluation confirms that it is reasonable to realize RESTful
Web services on wireless sensor networks even though there exists significant overhead
resulting from TCP/IP and the verbose nature of HTTP and XML standards.

Different RESTful Web service calls are analyzed to monitor the effect of different
data sizes over power consumption and completion time and results from both X-MAC and
NULLMAC protocol is provided for comparison, especially to prove that with the help of
certain optimizations, it is possible to get good completion times using battery conserving
MAC protocols.

The details of these services are provided in Table 6.1.
Among the RESTful Web services chosen, Dummy service is chosen as a small example



Web Service Request Size (bytes)Response Size (bytes)Total Size (bytes)
Dummy 84 48 132

LED Control 89 52 141
Light 79 135 214

Temperature 85 141 226
Sensors 81 324 405

Table 6.1: Details of RESTful Web services. Sizes do not include TCP andlower layer
header sizes.
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Figure 6.4: Completion times of Web services on sensor node.

whereas Sensors service has the biggest response and total data size.
Moreover, among the possible HTTP level optimizations described in Chapter4, Con-

ditional GET is applied to Sensors and Temperature Web services to show theeffectiveness
of standard optimization techniques.

Completion Time

Completion times are obtained using built-intime command of bash shell to measure
the interval between issuing the Web service call via curl tool [2] and getting the response.
Figure 6.4 shows the results of the measurements of the single-hop who communicates with
the router using radio communication. The results are promising in the sense that requests
can be fulfilled within a second using a power conserving MAC protocol.

Figure 6.5 shows completion time measurements of Web service calls to the router.
This measurement is interesting since we have the chance to see overhead of the connection
between Desktop computer and the router (overhead of serial line, SLIPand TUN). Addi-
tionally, by comparing it with Figure 6.4 it is possible to see the overhead of relaying the
request over radio interface.

I also measure completion times of Web services using NULLMAC which does not
conserve power and X-MAC2 which is more power conservative than X-MAC setup used
above. The result can be seen in Figure 6.6 which is obtained by calling two Web ser-
vices mentioned in the figure. As expected NULLMAC gives better results since it does
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Figure 6.5: Completion times of Web services on router sensor node. Communication is
done over serial line, therefore no radio communication overhead exists.
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Figure 6.6: Completion times using different MAC protocols. NULLMAC performs the
best because it does not switch off the radio.

not switch off the radio at all, however employing Session-aware X-MAC and Preemption
Interference Fix optimizations, the difference between NULLMAC and X-MAC is small
enough. On the other hand, X-MAC2 has doubled Off Time so the completion times are
bigger.

Lastly, I measure completion times over IPv6. NULLMAC is used as MAC protocol and
results are given in Figure 6.7. The results prove that IPv6 offers reasonable performance
over wireless sensor networks.

Power Consumption

I evaluate power consumption of sensor motes that serve RESTful Web services. Services
are called 5 times in 60 seconds period and power consumption is tracked using Contiki’s
power profiler [21]. Figure 6.8 shows power measurements of Web services calls over 1-
hop away neighbour. To have more insight about where the energy is actually spent, I also
provide the parts of the power consumption for Sensors service in Figure6.9.
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Figure 6.8: The cost of calling Web services in terms of power consumption.X-MAC is
used as the MAC protocol.

Furthermore, Figure 6.10 shows the power usage of NULLMAC, X-MAC and X-MAC2
for two Web services as well as for a idle status in 60 seconds period. When node is idle,
X-MAC2 conserves power better than X-MAC since it keeps the radio switched off longer.
This also explains the measurement of Sensors Web service. However, one interesting
observation is that X-MAC seems to save power more than X-MAC2 during Dummy Web
service. This is a consequence of Session-aware X-MAC which keepsthe radio on during
TCP connection. Having less completion times, transmissions/receptions take less time
with X-MAC and idle energy consumption can not suppress it for that example.

The bottom line of MAC protocol analysis is that the one suitable for the purpose should
be chosen. For nodes connected to power supply all the time, NULLMAC maybe the best
solution of course, however depending on the trade-off between power utilization and la-
tency, settings of X-MAC should be played with to find the optimal settings for thepartic-
ular problems.
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Figure 6.10: Power consumption compared with different MAC protocols.

Evaluation of Conditional GET

Conditional GET is a caching technique in which the client gets the content from its cache
if data is not changed. The details are described in Section 4.2.1. I evaluateit to show that
standard web optimizations which made Web scalable as it is today are likely to succeed for
WSNs too. Two Web service examples, Sensors and Temperature from Table 6.1, are ana-
lyzed using Conditional GET and compared with the original results. Details ofthe cached
versions is in Table 6.2. Figure 6.11 provides completion times and power consumption
measurements. X-MAC is used for the evaluations. The results are given inTable 6.3.

Cached versions have a little bit bigger request data size because of the extra ETag
header they transmit, whereas they have significantly smaller response datasizes since they

Web Service Request Size Response Size Total Size
Temperature 91 55 146

Sensors 87 55 142

Table 6.2: Details of Web services employing Conditional GET.



Web Service Data Size DecreasePower Save Completion Time Decrease
Temperature 35.4% 24.0% 31.8%

Sensors 64.9% 33.1% 53.3%

Table 6.3: Performance improvement provided by Conditional GET.
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Figure 6.11: Conditional GET improves responses and power consumptionsignificantly.

do not include any data content. As it is seen, the response sizes for the cached versions
are same for both services since the same data is transfered, namely only theheaders which
happens to be the same for these examples. This also explains why the completion times
are roughly same. Also, as expected, cached Sensors Web service performs better for sav-
ing power as well as decreasing completion time (in percentage) than Temperature service
which is consistent to the bandwidth saves.

Results in a Multi-hop Network

In order to evaluate the effect of multi-hop communication for sensor network Web services,
I measure completion times of a set of Web services over a multi-hop network. Iuse the
Session-aware X-MAC on every hop of the network. Figure 6.12 showsthe measured
completion times, with a varied number of hops. The results show that delay caused by
relaying RESTful requests in a wireless sensor network is quite reasonable even in a multi-
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Figure 6.13: Power consumption of a bystander node, an endpoint node, and a relay node
in a multihop network.

hop network.

Figure 6.13 shows the power consumption of three nodes in the multi-hop network.
The figure shows the power consumption of a bystander node (not serving any Web service
nor relaying it), an endpoint node (actually serving the Web service), and a relayer node
(Web service is served by the next hop node). The Sensors Web service is used for all
measurements. The results show that the power consumption increases fornodes that are
either endpoints or relay nodes. Relay nodes have a slightly higher powerconsumption
because the session-aware MAC protocol enables duty cycling some time after the session
has been closed by the endpoint node.



Web Service Request Size Response Size Total Size
LED Control 576 498 1074

Table 6.4: Details of SOAP-based Web service
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Figure 6.14: RESTful Web service outperforms SOAP-based Web service in power con-
sumption as well as completion time.

6.4 RESTful Web Services vs SOAP-Based Web Services

I show that having SOAP-based Web services in sensor motes is also possible with the
prototype I developed and the evaluations given. However, SOAP-based Web services use
verbose SOAP messages over HTTP which makes these Web services lessreasonable than
RESTful Web services for wireless sensor networks. The two main reasons for that are:

– Verbose SOAP messages cause extra latency and transmission/reception power us-
age.

– Memory space required for SOAP implementation and execution is much more higher
both in data and instruction memory.

As a side note, my aim here is to compare overhead of REST approach with SOAP
rather than claiming REST approach is better than SOAP. To do the comparison, I have
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selected LED Control RESTful Web service (given in Table 6.1) and implemented it as a
SOAP-based Web service. The details of the SOAP-based Web service isgiven in Table 6.4.

I evaluate LED Control as a SOAP-based Web service to compare it with the RESTful
counterpart. csoap [1] is used as the client library to make SOAP-Based Web service calls
and X-MAC is used as MAC layer protocol. Cost of both Web services in terms of power
consumption and completion time are given in Figure 6.14. As it is expected, SOAP-based
Web service consumes much more energy, especially for communication. However, the
increase of processing power usage due to parse and processing ofSOAP messages are
ignorable when compared to power usage of radio. This is due to the fact that power con-
sumption of CPU is significantly smaller than the consumption of transceiver in a typical
sensor node. Regarding completion times, RESTful Web service outperforms SOAP-based
one as expected.

6.5 Battery Lifetime

I estimate battery lifetime of a sensor node serving a typical sensor monitoring service:
Temperature service in Table 6.1. I assume to have two AA batteries offering2.5 Watt-
hours each and X-MAC2 setting is used. Then, estimate battery life of the sensor node
depending on the number of calls is as in Figure 6.15.

6.6 Energy Consumption on Byte Level

I measure energy consumption and calculate throughput/power and power/throughput to
find out energy consumption on byte level. I call various sized Web services and Figure 6.16
presents the results. As expected, number of bytes for unit energy increases when data size
of the Web service increases since TCP overheads (especially connection establishment
and closing) are less dominant for bigger data sizes. However, the maximumpacket size
supported by 802.15.4 is only 127 bytes which means that even for big data sizes, TCP
header, IP header and ACKs have almost same overhead, so the graphgets stable quickly.
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Figure 6.16: For bigger data sizes, TCP overheads are less effectiveso number of bytes per
unit energy increases.





Chapter 7

Conclusions and Future Work

Currently, the Internet has limited capability of monitoring and acting on the realworld.
Both network layer and application layer interoperability are needed between WSNs and
networked objects in the Internet to solve this problem. Emergence of IP-enabled smart
objects has already solved the former issue by using IP as the network layer. And this thesis
focuses on solving the latter issue; employing RESTful Web services on WSNs to pro-
vide an interoperable application layer. Up to now, diverse structures ofsensor nodes and
the non-standard protocols used were the biggest obstacles in front ofintegrating wireless
sensor networks into the Web. Standard and widely used protocols are needed. Typically,
employing HTTP and XML, RESTful Web services is a very good option forthat matter.
Overheads introduced, especially due to the verbose nature of HTTP and XML specifica-
tions, are reasonable compared to the advantages gained using them. Hence, realizing Web
services on sensor nodes is feasible since both HTTP and XML are well known, proven and
highly used specifications which means that they increase interoperability and reliability of
the wireless sensor networks. Being quite light and simple, RESTful Web services is a good
candidate to be an important part of Future Internet for wireless sensornetworks integration
because of the exact reasons the Web flourished. So, REST architecture style seems to be
an important candidate to connect sensor nodes to each other and to the Internet on the way
of achieving the Web of Things. Extending the Web with WSNs enables new, promising
and easily developed applications.

In the vision of the Web of Things, this thesis presents a RESTful Web service archi-
tecture for sensor networks that allow direct integration between the Web and IP-based
sensor networks. I provide an extensive performance evaluation of the system, showing
sub-second completion time of RESTful Web service requests to low-powersensor nodes
in both single-hop and multi-hop networks.

7.1 Future Work

Security was not a concern in this thesis. Only plain HTTP requests are used which means
that eavesdropping between the clients and the servers are possible. Using HTTPS would
solve this problem by securing communication on transport level, so an interesting chal-
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lenge for future work would be the addition of HTTPS on these tiny devices.
Some improvements for the XML parsing is possible. Currently, I use a non-validating

SAX parser, so an idea would be to add validation support in future basedon a schema.
However, that may complicate the parser too much for a memory limited environment.On
the other hand, according to my experience writing SAX-based codes aremuch more harder
and complicated than equivalent DOM-based codes. Due to efficiency reasons I mentioned
before, it is very hard to use a DOM parser in sensor nodes, howeverimplementing/porting
pull parsers and compare it with SAX counterpart would be a good challenge. Pull parsers
are well-known for their efficiency as well as easy usage. Besides, another aspect is ex-
changing a more compact form of XML to save bandwidth and hence energy in significant
amounts. EXI seems to be very promising to allow efficient interchange of XMLdocuments
and an open source Java implementation named EXIficient [4] exists. Developing an EXI
parser for sensor platforms would make it possible to exchange compact XML documents
in an interoperable way.

This thesis focused mainly on using XML as representation of data howeverJSON is
getting popular more and more each day in Web 2.0 applications which makes it worth to
look into in future such as implementing/porting a small JSON parser for nodes.

Caching in HTTP is one of the main reasons that made the Web very scalable. Tradi-
tional web servers implement some set of caching elements to make it work with theclients
and proxies. So an interesting future work would be to search for the best approaches to
make caching as efficient as possible for tiny servers in WSNs.

A very important work area would be to analyze how well RESTful approaches can
encounter typical sensor application problems. For that matter, I presentand analyze a
RESTful approach to solve typical real world monitoring problems in the following sec-
tions. I leave the implementation and evaluation of the work as future work.

7.1.1 Solving Asynchronous Real World Problems in a RESTful Way

Typical sensor network applications usually benefit from asynchronous behaviour. I believe
it is feasible for wireless sensor networks to have the illusion of asynchronism by splitting
the operation into two or more synchronous requests as described in [46]. The first request
creates the operation while the subsequent ones are used to get informedabout the result of
the operation.

Suppose for example, we want to create a task in which temperature values will be read
in 30 minutes intervals. Then we can create a new task resource by POST:

POST /task?type=temperature;period=30 HTTP/1.1
Host: www.example.com

The sensor accepts the request, creates a temperature monitoring task. Ifit is a long
time running task, sensor can return 202 (Accepted) status code immediately tonotify that
the operation is created:

HTTP/1.1 202 Accepted
Location: http://www.example.com/task/id123
[Entity Body]



Now the sensor created a new task as a resource and returned its URI sothat client can
make GET requests to this particular URI and see the current state of the task:

GET /task/id123 HTTP/1.1
Host: www.example.com

In our particular example, this may return the last number of readings, or themost up-
to-date reading, or even something more complicated such as the collection of temperatures
from the nearby sensors. The returned representation may be XML, JSON or something
else depending on the client’s request and sensors’ capabilities.

Later client can cancel the task by using DELETE method of HTTP:

DELETE /task/id123 HTTP/1.1
Host: www.example.com

7.1.2 Discussion

In this section, I analyze the idea about how well it solves the real world monitoring prob-
lems stated in Section 1.3. This approach solves the second problem, time-consuming
operations, without any extra support. For example, the process of a data collection in
a wireless sensor network can be quite time consuming and keeping the connection open
may not be a good idea. However, the above mechanism fits very well. Regarding the first
and third problems -immediate access to new readings and network utilization respectively-
still client needs to poll the resource constantly to access newly updated data, however us-
ing optimizations, it can be made very feasible. One optimization example is the standard
client side caching mechanism named Conditional GET that saves bandwidth todecrease
the effect of intermediate pollings when the result did not change, i.e. no new temperature
reading for our particular example, or operation still in progress. Almost all of the major
web tools support it already. Details of Conditional GET and how it can be used in scenario
here can be found in Chapter 4.

This approach is very flexible since a lot of different usages are possible especially by
using the power of URIs. For example; Collect both light and temperature:

/task/light;temperature

Collect light values between given periods:

/task?type=light?start=18.30;end=21.30 or /task?type=light/18.30-21.30





Appendix A

Code API

A.1 TYPE DEFINITIONS

#ifndef bool
#define bool unsigned char

#endif /*bool*/

#ifndef true
#define true 1

#endif /*true*/

#ifndef false
#define false 0

#endif /*false*/

Type definitions

A.2 HTTP-COMMON

#define STATE WAITING 0
#define STATE OUTPUT 1

current state of the request, waiting: handling request, output: sending response

#define LINE FEED CHAR ’\n’
#define CARRIAGE RETURN CHAR ’\r’

definitions of the line ending characters

extern const char* httpString;
needed for web services giving all path (http://172.16.79.0/services/light1)
instead relative (/services/light1) in HTTP request. Ex: Restlet lib. does it
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extern const char* httpGetString;
extern const char* httpHeadString;
extern const char* httpPostString;
extern const char* httpPutString;
extern const char* httpDeleteString;

HTTP method strings

extern const char* spaceString;
extern const char* httpv1 1;
extern const char* lineEnd;
extern const char* contiki;
extern const char* close;
extern const char* headerDelimiter;

Various other strings

extern const char* HTTP HEADER NAME CONTENT TYPE;
extern const char* HTTP HEADER NAME CONTENT LENGTH;
extern const char* HTTP HEADER NAME LOCATION;
extern const char* HTTP HEADER NAME CONNECTION;
extern const char* HTTP HEADER NAME SERVER;
extern const char* HTTP HEADER NAME HOST;
extern const char* HTTP HEADER NAME IF NONE MATCH;
extern const char* HTTP HEADER NAME ETAG;

header names

#define PORT 8080
#define RESPONSEBUFFER SIZE 500
#define MAX REQUESTHEADERS 6
#define MAX RESPONSEHEADERS 6
#define REQUESTBUFFER SIZE 1000
#define MAX URL MATCHED ATTRS 4
#define INCOMING DATA BUFF SIZE 102 /*100+2, 100 = max url len, 2 = space char+’\0’*/

Configuration parameters

typedef enum
{

NO ERROR,
/*Memory errors*/
MEMORY ALLOC ERR,
MEMORY BOUNDARY EXCEEDED,
/*specific errors*/
XML NOT VALID ,
SOAP MESSAGE NOT VALID ,
URL TOO LONG,
URL INVALID

} Error t;

error definitions



typedef enum
{

TEXT PLAIN, TEXT XML , APPLICATION XML ,
APPLICATION JSON, APPLICATION WWW FORM, APPLICATION ATOM XML

} MediaType t;

typedef enum
{

CLIENT ERROR BAD REQUEST = 400,
CLIENT ERROR METHOD NOT ALLOWED = 405,
CLIENT ERROR NOT ACCEPTABLE = 406,
CLIENT ERROR NOT FOUND = 404,
CLIENT ERROR REQUESTURI TOO LONG =

414,
CLIENT ERROR UNSUPPORTEDMEDIA TYPE =

415,
NOT MODIFIED = 304,
SERVER ERROR INTERNAL = 500,

SERVER ERROR NOT IMPLEMENTED = 501,

SERVER ERROR SERVICE UNAVAILABLE =
503,

SUCCESSACCEPTED = 202,
SUCCESSCREATED = 201,
SUCCESSNO CONTENT = 204,
SUCCESSOK = 200,

} StatusCodet;

Media Types and Statuses (both copied from Restlet)

struct UserDatat
{

char* queryString;
uint16 t queryStringSize;
uint8 t numOfAttrs;
struct Attr t
{

char* pattern;
char* realValue;

} attributes[ MAX URL MATCHED ATTRS ];

char* postData;
uint16 t postDataSize;

};

User Data type

struct Headert
{

char* name;
char* value;

};

Header type



struct Responset
{

StatusCodet statusCode;
char* statusString;
const char* url;
uint8 t numOfResponseHeaders;
struct Headert headers[ MAX RESPONSEHEADERS ];
uint16 t responseBuffIndex;
char responseBuffer[RESPONSEBUFFER SIZE];

};
Response type

typedef struct
{

struct psock sin, sout; /*Protosockets for incoming and outgoing communication*/
struct pt outputpt;
char inputBuf[INCOMING DATA BUFF SIZE]; /*to put incoming data in*/
char* resourceUrl;
uint8 t state;
HttpMethod t requestType; /* GET, POST, etc */

struct Responset response;

char connBuffer[REQUESTBUFFER SIZE];
uint16 t connBuffUsedSize;

uint8 t numOfRequestHeaders;
struct Headert headers[ MAX REQUESTHEADERS ];

struct UserDatat userData;
} ConnectionStatet;

This structure contains information about the HTTP request.

void http common init connection(ConnectionStatet* pConnectionState);
Initializes the connection state by clearing out the data structures

A.3 HTTP-Server

PROCESSNAME(httpdProcess);
Declare process

typedef bool (*ServiceCallback) (ConnectionStatet* pConnectionState);
Type definition of the service callback

void http serverset servicecallback( ServiceCallback callback);
Setter of the service callback, this callback will be called in case of HTTP request.



bool http serverget query variable(
ConnectionStatet* pConnectionState,
const char *pcName,
char* pcOutput,
uint16 t nOutputSize);

Returns query variable in the URL.
Returns true if the variable found, false otherwise.
Variable is put in the buffer provided.

bool http serverget post variable(
ConnectionStatet* pConnectionState,
const char *pcName,
char* pcOutput,
uint16 t nOutputSize);

Returns variable in the Post Data.
Returns true if the variable found, false otherwise.
Variable is put in the buffer provided.

const char* http serverget req headervalue(
ConnectionStatet* pConnectionState, const char* pcHeaderName);

Returns the value of the header name provided. Return NULL if header does not exist.

bool http serverhandle req header(const char* pcHeaderName);
Requests to save the header; only a number of headers will be saved
in buffer due to resource limitations.
Return true if the header will be saved, false otherwise.

bool http serveradd res header(
ConnectionStatet* pConnectionState,
const char* pcName,
const char* pcValue,
bool bCopyValue);

Adds the header name and value provided to the response.
Name of the header should be hardcoded since it is accessed from code segment
(not copied to buffer) whereas value of the header can be copied
depending on the relevant parameter. This is needed since some values may be
generated dynamically (ex: e-tag value)

HttpMethod t http serverget http method(ConnectionStatet* pConnectionState);
Getter method for the HTTP method (GET, POST, etc) of the request

void http serverset http status(ConnectionStatet* pConnectionState, StatusCodet status);
Setter for the status code (200, 201, etc) of the response.

char* http serverput in conn buffer(ConnectionStatet* pConnectionState, char* pcValue);
Puts the provided string in the connection buffer, used by a bunch of other functions
as well as rest module.

char* http serverget res buf(ConnectionStatet* pConnectionState);
Return a pointer to the response buffer in case the user wants to have direct access.



Error t http servercopy to response(
ConnectionStatet* pConnectionState, const char* pcBuffer, uint16 t nSize);

Copy the provided buffer contents to the response buffer.

Error t http serverconcatenatestr to response(
ConnectionStatet* pConnectionState, const char* pcBuffer);

Copies the provided string to the end of the response buffer.

const char* http serverget post data(ConnectionStatet* pConnectionState);
Returns pointer to the Post Data buffer.

void http serverget baseurl(char* pcOut);
Generates base url (ex: "http://172.16.79.0:8080") and copies it into the buffer provided.

const char* http serverget relative url(ConnectionStatet* pConnectionState);
Returns the relative URL (ex: /temperature) of the resource accessed.

bool http serverset representation(
ConnectionStatet* pConnectionState, MediaType t mediaType);

Set the header "Content-Type" to the given media type.

A.4 REST

PROCESSNAME(restWebServicesProcess);
Declare process

typedef void (*RestfulHandler) (ConnectionStatet* pConnectionState);
typedef bool (*RestfulPreHandler) (ConnectionStatet* pConnectionState);
typedef void (*RestfulPostHandler) (ConnectionStatet* pConnectionState);

Signature of handler functions*/

struct Resourcet
{

struct Resourcet *next; /*points to next resource defined*/
HttpMethod t requestTypesToHandle; /*handled HTTP methods*/
const char* pUrlPattern; /*simple template of handled URLs

ex: “/task/{id}” id is parameterized*/
RestfulHandler handler; /*handler function*/
RestfulPreHandler preHandler; /*to be called before handler, may perform initializations*/
RestfulPostHandler postHandler; /*to be called after handler, may perform finalizations (cleanup, etc)*/
void* pUserData; /*pointer to user specific data*/

};
typedef struct Resourcet Resourcet;

Data structure representing a resource in REST.



#define RESOURCE(name,typesToHandle,url) \
void name## handler(ConnectionStatet* pConnectionState); \
Resourcet resource##name = { NULL , typesToHandle, url, name## handler, NULL , NULL , NULL }

Macro to define a Resource
Resources are statically defined for the sake of efficiency and better memory management.

void rest init(void);
Initializes REST framework and starts HTTP process

void rest activate resource(Resourcet* pResource);
Resources wanted to be accessible should be activated with the following code.

bool rest invoke restful service( ConnectionStatet* pConnectionState);
To be called by HTTP server as a callback function when a new HTTP connection appears.
This function dispatches the corresponding RESTful service.

bool rest set url(ConnectionStatet* pConnectionState, const char* pcUrl);
Sets "Location" header

char* rest get attribute(ConnectionStatet* pConnectionState, const char* pcPattern);
Returns the value of the attribute mapped to the template URL.
Ex: Template URL "/task/{id}" matches "/task/5" and so calling this function with
"id" pattern will return "5".

void rest set user data(Resourcet* pResource, void* pUserData);
Setter method for user specific data.

void* rest get user data(Resourcet* pResource);
Getter method for user specific data.

void rest set pre handler(Resourcet* pResource, RestfulPreHandler preHandler);
Sets the pre handler function of the Resource.
If set, this function will be called just before the original handler function.
Can be used to setup work before resource handling.

void rest set post handler(Resourcet* pResource, RestfulPostHandler postHandler);
Sets the post handler function of the Resource.
If set, this function will be called just after the original handler function.
Can be used to do cleanup (deallocate memory, etc) after resource handling.

A.5 SIMPLEXML

typedef void *SimpleXmlParser;
The simple xml parser structure.
SimpleXmlParsers should be created and destroyed using the functions
simpleXmlCreateParser, simpleXmlDestoryParser.



typedef enum simple xml event {
FINISH TAG, ADD ATTRIBUTE, FINISH ATTRIBUTES, ADD CONTENT, ADD SUBTAG

} SimpleXmlEvent;
Enumeration describing the event types that are sent to an SimpleXmlHandler
by an SimpleXmlParser.
see#SimpleXmlTagHandler
see#SimpleXmlParser

typedef struct simplexmlvalue buffer {
/* buffer data */
char* sBuffer;
/* size of the buffer */
long nSize;
/* insert position in buffer */
long nPosition;

} TSimpleXmlValueBuffer, *SimpleXmlValueBuffer;
Value buffer.
This structure resembles a string buffer that
grows automatically when inserting data.

struct TSimpleXmlValueBuffer;
enum WriteState{OPENED TAG,CLOSED TAG};
typedef struct
{

SimpleXmlEvent state;
TSimpleXmlValueBuffer xmlWriteBuffer;

} XmlWriter;
Added for xml generation

typedef void (*SimpleXmlTagHandler) (
SimpleXmlParser parser,
SimpleXmlEvent event,
const char* uri,
const char* szName,
const char** attr

);
Callback function to handle simple xml events.
The SimpleXmlTagHandler is invoked by a SimpleXmlParser
whenever one of the following event types occur:
FINISH TAG

indicates that parsing of this tag has finished, szName contains the tag
name, szAttribute and szValue are NULL, the result of the handler is
ignored.

ADD ATTRIBUTE
indicates that an attribute for this tag has been parsed, szName contains
the tag name, szAttribute the attribute name and szValue contains the
attribute contents, the result of the handler is ignored.

FINISH ATTRIBUTES,
indicates that parsing of attributes for this tag is finished, szName
contains the tag name, szAttribute and szValue are NULL, the result of
the handler is ignored.



ADD CONTENT
indicates that content of this tag has been parsed and should be added,
szName contains the tag name and szValue contains the data to add,
szAttribute is NULL and the result of the handler is ignored.

ADD SUBTAG
indicates that a subtag has been parsed, szName contains the name of the
subtag read, szAttribute and szValue are NULL, the result of the handler
should either be NULL to indicate that this subtag is not of interest
and should be skipped a SimpleXmlTagHandler that is used for handling
the subtag.

see#SimpleXmlEvent
see#SimpleXmlParser

extern SimpleXmlParser simpleXmlCreateParser (
const char *sData, long nDataSize

);

Creates a new simple xml parser for the specified input data.
The input data may be parsed with simpleXmlParse and the parser returned
by this function as parameter.
Note: The parser will not copy the input data or in any way modify it.
However any modifications of the input data in a callback handler while
parsing will have an undefined result!
param sData the input data to parse(must no be NULL).
param nDataSize the size of the input data buffer (sData) to parse (must
be greater than 0).
return the new simple xml parser or NULL if there is not enough memory or
the input data specified cannot be parsed.

extern void simpleXmlDestroyParser(
SimpleXmlParser parser

);
Destroys the specified simple xml parser.
param parser the parser to destroy(must have been created using
simpleXmlCreateParser).

extern int simpleXmlInitializeParser(
SimpleXmlParser parser, const char *sData, long nDataSize

);
Reinitializes the specified simple xml parser for parsing the specified
input data.
param parser the parser to initialize.
param sData the input data to parse (must not be NULL).
param nDataSize the size of the input data buffer(sData) to parse(must
be greater than0).
return 0 if the parser could not be initialized,> 0 if the parser was
initialized successfully and parsing may be started using simpleXmlParse.

int simpleXmlParse (SimpleXmlParser parser, SimpleXmlTagHandler handler);

Starts an initialized (or newly created) xml parser with the specified
document tag handler.
Note: This function may only be called once after creation or
initialization of a parser. To reuse the parser it has to be freshly



initialized (using simpleXmlInitializeParser) prior to calling the
function again.
param parser the parser to start.
param handler the handler to use for the document tag.
return 0 if there was no error, and error code> 0 if there was an error.

char* simpleXmlGetErrorDescription(SimpleXmlParser parser);
Returns a description of the error that occured during parsing.
param parser the parserfor which to get the error description.
return an error description or NULL if there was no error during parsing.

long simpleXmlGetLineNumber (SimpleXmlParser parser);

Returns the line number of the current input line that the parser has read.
In case of an error this method will return the line number on which the
error was encountered after a call to simpleXmlParse.
If called from a handler during parsing this function will return the
current line number.
If called after a successfull simpleXmlParse run this function will return
the line number of the last line parsed in the xml data.
return the current input line number of the parser or−1 if it is unknown.

#define SIMPLE XML USER ERROR 1000
#define SIMPLE XML USER ERROR XML NOT VALID 1001

Minimum value for a user abort.
see#simpleXmlParseAbort

void simpleXmlParseAbort(SimpleXmlParser parser, int nErrorCode);
Causes the simple xml parser to abort parsing of the input data.
This method may only be called from a tag handler.
The active simpleXmlParse run will be aborted and the simpleXmlParse
function will return with the specified error code.
param nErrorCode the error code with which to abort(the error code must
be >= SIMPLE XML USER ERROR else the abort request is ignored!)

void* simpleXmlGetUserData(SimpleXmlParser parser);
int simpleXmlSetUserData(SimpleXmlParser parser, void* pData);

Added for getting user data

const char* simpleXmlGetAttrUri(size t nNumber, const char** attr);
const char* simpleXmlGetAttrName(size t nNumber, const char** attr);
const char* simpleXmlGetAttrValue(size t nNumber, const char** attr);
size t simpleXmlGetNumOfAttrs(const char** attr);

Attribute handlers

void simpleXmlStartDocument(XmlWriter* xmlWriter, char* buffer, unsigned short size);
void simpleXmlStartElement(XmlWriter* xmlWriter, const char* ns, const char* name);
void simpleXmlAddAttribute(XmlWriter* xmlWriter, const char* ns ,

const char* name, const char* value);
void simpleXmlCharacters(XmlWriter* xmlWriter, const char* value);
void simpleXmlEndElement(XmlWriter* xmlWriter, const char* ns, const char* name);
void simpleXmlEndDocument(XmlWriter* xmlWriter);

Added for xml generation



A.6 LOGGER

#ifdef LOG ENABLED

Logging is enabled via LOGENABLED Macro

enum eLevel{L NONE, L ERR, L INFO, L DBG};

Debug levels specifying how much information will be printed

void logger helper(unsigned char level, const char* func name);

Helps the logger by printing log record number, log level etc.

#ifndef PERSISTENTLOG
#define basic logger(. . .) printf( VA ARGS )

#else /*PERSISTENTLOG*/
void persistentlogger(char* fmt, . . .);
#define basic logger(. . .) persistentlogger( VA ARGS )

#endif /*PERSISTENTLOG

Defines functions depending on whether persistent or basic logger is wanted.

#define TOOLS LOGGER(level,. . .) \
do \
{ \

logger helper(level, func ); \
basic logger( VA ARGS ); \

} while(0)

Main Logger Macro.

func added by C99 standard and it is not a macro though;

the preprocessor does not know the name of the current function.



#define LOG ERR(. . .) TOOLS LOGGER(L ERR, VA ARGS )

#if (LOG ENABLED >= 2)
#define LOG INFO(. . .) TOOLS LOGGER(L INFO, VA ARGS )
#if (LOG ENABLED >= 3)
#define LOG DBG(. . .) TOOLS LOGGER(L DBG, VA ARGS )

#else
#define LOG DBG(. . .)

#endif
#else
#define LOG INFO(. . .)
#define LOG DBG(. . .)

#endif

#else /*LOG ENABLED*/
#define LOG ERR(. . .)
#define LOG INFO(. . .)
#define LOG DBG(. . .)

#endif /*LOG ENABLED*/

Logger macro definitions

A.7 SOAP

typedef struct
{

char name[50];
char urn[50];

uint8 t numOfParams;
#define MAX PARAMS 8
struct Paramt
{

char name[20];
char value[20];
char type[20];

} params[MAX PARAMS];

char *action;
} SoapMethodt;

Representation of a SOAP Method



typedef struct
{

char* faultcode;
char* faultstring;
char* faultactor;
char* detail;

} SoapFaultt;
Representation of a SOAP Fault

typedef struct
{

SoapMethodt method;
SoapFaultt fault;

} SoapBodyt;
Representation of a SOAP Body

typedef struct
{

SoapBodyt body;
char* buffer;

} SoapEnvelopet;
Representation of a SOAP Envelope

typedef struct
{

SoapEnvelopet env;
}SoapContextt;

Representation of a SOAP Context

typedef void (*SoapHandler) (SoapMethodt* request, SoapMethodt* response);
Signature of handler function

typedef struct
{

struct SoapWebServicet *next;
const char* pUrl;
const char* pUrn;
const char* pMethodName;
SoapHandler handler;

} SoapWebServicet;
SOAP Web Service Data Structure

#define SOAP WEB SERVICE(name,url,urn,method) \
void name## handler(SoapMethodt* request, SoapMethodt* response); \
SoapWebServicet soapWebService##name = { NULL , url, urn, method, name## handler}

Macro to define a SOAP-Based Web Service

void soap init(void);
Initializes SOAP library and starts HTTP process

void soapactivateservice( SoapWebServicet* pWebService);



Web services should be activated with the following code to be accessible

bool soapinvoke service( ConnectionStatet* pConnectionState);
To be called by HTTP server as a callback function when a new HTTP connection appears.
This function dispatches the corresponding Web service.

void soapset methodname(const char *pcUrn, const char *pcName, SoapMethodt* pMethod);
Sets the name and urn of the method to be called over SOAP.

void soapadd param(
const char *pcName, const char *pcValue, const char *pcType, SoapMethodt* pMethod);

Adds new parameter(name, value and type of it) in the SOAP Method.
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