
A Comparison of some recent Task-based Parallel

Programming Models

Artur Podobas1, Mats Brorsson1,2, and Karl-Filip Faxén2

1 KTH Royal Institute of Technology
2 Swedish Insitute of Computer Science (SICS)

Abstract. The need for parallel programming models that are simple
to use and at the same time e�cient for current ant future parallel plat-
forms has led to recent attention to task-based models such as Cilk++,
Intel TBB and the task concept in OpenMP version 3.0. The choice of
model and implementation can have a major impact on the �nal perfor-
mance and in order to understand some of the trade-o�s we have made
a quantitative study comparing four implementations of OpenMP (gcc,
Intel icc, Sun studio and the research compiler Mercurium/nanos mcc),
Cilk++ and Wool, a high-performance task-based library developed at
SICS.
We use microbenchmarks to characterize costs for task-creation and
stealing and the Barcelona OpenMP Tasks Suite for characterizing ap-
plication performance. By far Wool and Cilk++ have the lowest over-
head in both spawning and stealing tasks. This is re�ected in application
performance when many tasks with small granularity are spawned where
Cilk++ and, in particular, has the highest performance. For coarse gran-
ularity applications, the OpenMP implementations have quite similar
performance as the more light-weight Cilk++ and Wool except for one
application where mcc is superior thanks to a superior task scheduler.
The OpenMP implemenations are generally not yet ready for use when
the task granularity becomes very small. There is no inherent reason for
this, so we expect future implementations of OpenMP to focus on this
issue.

1 Introduction

Now that parallelism is the only way forward to be able translate Moore's law
into performance, it has become all the more important to �nd parallel program-
ming models that are suitable for future manycore architectures from today's
4-64 cores to 100s in �ve years and 1000s in ten years and beyond [11,6].

We will soon have access to more cores than we will expect to utilize ef-
fectively at any given time. We may not even be able to run all at full speed
for power reasons. Even so, scalability of application performance is of utmost
importance to be able to deliver continued total system performance improve-
ments. Some current approaches to parallel software development require the
programmer to handle the complexity of performance scalability in addition to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

exposing the parallelism in the underlying algorithms. We believe that this is a
dead end to leverage the manycore technology at a wide scale. The vast major-
ity of programmers must be able to focus on exposing potential parallelism with
the aim for high-quality and high productivity. For portability and e�ciency
reasons, it should be left to the system software layers to deal with assigning
work to available resources dynamically in run-time, although there is a need to
expose it to programmers in special cases.

All of these considerations favour programming in high level programming
models which provide abundant �ne-grained parallelism, obviating the need for
developers or compilers to explicitly map computations to the underlying hard-
ware, which in any case is a moot approach in the face of dynamic workloads
and heterogeneous hardware. This mapping is instead done by a run-time system
that takes care of scheduling and resource management of the parallel activities.
Such programming models are characterized by large numbers of dynamically
created concurrent computations (tasks).

An important development are the task-parallel programming models such
as exempli�ed by OpenMP [3,15], Cilk++ [5,13], and the Intel TBB framework
[16]. This style is characterized by �ne-grained parallelism that follows closely
the structure of the application. For instance, a parallel loop can be implemented
as a set of tasks corresponding to one or more loop iterations. The main form of
synchronization is waiting for the completion of child tasks. Data parallelism can
be realized as a higher level abstraction on top of task parallelism. Thus, e�cient
implementation of task parallelism also aids this model. A vital property of task-
level parallelism is its ability to cope with heterogeneous and dynamically varying
numbers of processing cores which is an inevitable result of future manycore
development as we approach physical limits. While most implementations of
this parallel programming model is done entirely in user-level libraries, there
is at least one implementation where the model is integrated in the operating
system [1].

This study is a performance comparison between six di�erent implemen-
tations of task-parallel programming models. The models looked at are four
implementations of OpenMP, Cilk++ and Wool, a new high-performance task
library [9]. The four OpenMP implementations are: Gcc (v 4.4) [14], Intel Icc
(v 11.0), Sun Studio 12 (update 1) and Mcc (Mercurium version 1.3.1 with
Nanos run-time system version 4.1.3), a research compilation framework and
run-time system from Barcelona Supercomputer Center [2,4]. For the study we
have used a set of microbenchmarks developed by ourselves and applications
from the Barcelona OpenMP Tasks Suite [8]. Although di�erent schedulers and
implementations have been compared before, this is, to the best of our knowledge
the �rst to include Wool and to explicitly investigate the e�ects of �ne-grained
task-based parallelism [2,12].

We have found that the studied OpenMP implementations are not yet ready
for �ne-grained task parallelism. The associated overheads are by far to high.
Cilk++ and Wool, on the other hand perform comparably well with a sligth
advantage for Wool.

2

2 Task-based parallel programming models

The task-parallel programming models represented by the implementations stud-
ied here were pioneered in the mid-90s by Blumofe at al. at MIT [5]. It was early
recognized that the work-sharing constructs of OpenMP are not su�cient to
express the potential parallelism in programs dominated by pointer-based data
structures [17], but it took almost ten years to enter the OpenMP speci�cation
[3]. Wool was developed in order to further investigate the overheads associated
with the task-based model and we have found that it indeed is possible to further
push the limits.

Below is a short introduction to how each of the three models: OpenMP,
Cilk++ and Wool implement task-based parallelism exempli�ed on a recursive
calculation of the Fibonacci sequence.

2.1 OpenMP

OpenMP is a programming model that was created by a group that was repre-
senting several major vendors of high-performance computing [7]. It uses com-
piler directives and library routines to express and control parallelism. By adding
these compiler directives to a sequential program, the users specify what parts
are to be executed in parallel and how. As of version 3.0, OpenMP supports con-
structs for task-based parallelism while previous versions focused on loop based
parallelism [15]. Figure 1 shows a code snippet of the �nbonacci calculation.
Parallelism is created by the �#pragma omp parallel� construct which creates
a �team of threads�. The statement following the single directive is executed
by the �rst encountering thread and kicks-o� the recursive computation.

The compund statement following a �#pragma omp task� construct consti-
tutes a computation which can be scheduled to be executed by any of the par-
ticipating threads in a team of threads. A task may be executed immediately
at the task creation or deferred to later execution by some other thread. By
default, tasks are tied to the thread that starts executing it, so once a task has
begun execution, it is then always executed by the same thread. The algorithm
by which tasks are scheduled to available threads is not speci�ed by the OpenMP
speci�cation but rather left to the implementation.

The taskwait construct suspends execution of the current task until all tasks
created within this task has �nished. In the example of Figure 1 this means that
we are guaranteed to have valid values of variables x and y.

2.2 Cilk++

Cilk++ is model created and maintained by Cilk Arts, based on the original cilk
model developed at MIT [13,5]. Through a small number of keywords, which are
used to de�ne possible parallel areas of a serial code, e�cient parallel execution is
realized. Removing these keywords from a cilk program creates a so-called �serial
elision� of the program, which basically is a serial version of the programmed that
can be used for debugging purposes. The Cilk++ scheduler is a work-�rst (also

3

. . .
#pragma omp p a r a l l e l /∗ Pa r a l l e l reg ion , a team of threads i s c r ea ted ∗/
#pragma omp s i n g l e

{
/∗ Executed by the f i r s t thread ∗/
f i b_r e su l t= f i b (n) ;

}
} /∗ End o f p a r a l l e l r eg i on ∗/
. . .

i n t f i b (i n t n) {
i n t x , y ;
i f (n < 2)

re turn n ;
e l s e {

#pragma omp task shared (x)
x = f i b (n−1); /∗ A new task ∗/

#pragma omp task shared (y)
y = f i b (n−2); /∗ A new task ∗/

#pragma omp taskwai t /∗ Wait f o r the two ta sk s above to complete ∗/
return x + y ;

}
}

Fig. 1. OpenMP Fibonacci

called depth-�rst) scheduler with a work-stealing mechanism where di�erent idle
workers can steal from other workers task pools. Figure 2 shows the example
function written using Cilk++. cilk_spawn is the keyword for spawning a task,
and cilk_sync will synchronize all spawned tasks with their parent.

The cilk_spawn and cilk_sync constructs are direct counterparts to the
task and taskwait constructs of OpenMP. In contrast to OpenMP, the worker
threads are completely implicit in Cilk++ and only the tasks are explicit. Also,
the scheduling of tasks is prede�ned and not open for di�erent implementations.

2.3 Wool

Wool is a library supporting the nested independent task parallel programming
model [10]. It provides constructs for de�ning, spawning, and joining with tasks
as well as for de�ning and invoking parallel for loops. Joining is accomplished
using the SYNC operation which blocks until evaluation of the corresponding task
is completed, providing for a direct, as opposed to continuation passing, program
structure. Wool is designed to test the limits of low overhead task management.
Figure 3 shows the example function written using Wool. SPAWN creates a task
and SYNC synchronizes with the task, and fetches the return value o� it. CALL
is basically a faster version of a merged SPAWN and SYNC.

4

i n t f i b (i n t n) {
i n t x , y ;
i f (n < 2)

re turn n ;
e l s e {

x = cilk_spawn f i b (n−1);
y = cilk_spawn f i b (n−2);
c i lk_sync ;
re turn x + y ;

}
}

Fig. 2. Cilk++ Fibonacci

TASK_1 (int , f i b , int , n) {
i f (n < 2)

re turn n ;
e l s e {

i n t x , y ;
SPAWN(f ib , n−1) ;
y = CALL(f ib , n−2) ;
x = SYNC(f i b) ;
r e turn x + y ;

}
}

Fig. 3. Wool Fibonacci

Wool is implemented using work stealing, that is, each processor (core) has
a private task dequeue; SPAWN pushes a task on to the owner end of the dequeue
while a SYNC pops a task from the same end. When a processor is out of work
it steals a task from the thief end of the task dequeue of a randomly selected
victim.

The stacklike behaviour of SPAWN and SYNC is visible in the API since a SYNC
always joins with the most recently spawned, unjoined task. SPAWN operations
do not return a result; if the task is stolen, the result is stored in the task
queue when ready and extracted by the corresponding SYNC. Tasks that are not
stolen are invoked by the SYNC using the arguments stored in the dequeue, this
is known as inlining the task. A SYNC operation takes as argument the name of
the task de�nition of the task it expects to join with, so that the code to invoke
when inling the task is known and can be called directly, exposing it to compiler
optimization.

Synchronization between thief and victim is based on individual task de-
scriptors in the task dequeue rather than on the pointers into the queue, so that

5

the local processor's spawning and joining can take place independently of other
processors looking for work.

Wool is implemented in C using macros, inline functions and a small amount
of inline assembly (on x86 and x86-64 only to emit the exchg instruction). The
SPARC V9, x86, x86-64 and IA64 architectures are currently supported. Wool
is being developed at SICS.

3 Microbenchmark characterization

Most schedulers are built around a set of queues. The activities to be scheduled
are stored in queues when not running on a processor. A simple scheme is to
have a single queue to where all processors store work not presently running,
but this scheme su�ers from several performance problems. First, if work is �ne
grained relative to the number of procesors, there will be signi�cant contention
for access to the queue. Second, work tends to be distributed over the proces-
sors in a random fashion, while it would be advantageous to keep related work
running on the same processor to maximize the e�ectiveness of caches. Hence
most task schedulers use distributed queues, where each processor manages their
own queue(s) with occasional coordination between processors for the purpose
of load balancing.

In this section we present measurements of the basic operations of the dif-
ferent task schedulers using a small set of microbenchmarks. Speci�cally, we
measure the overhead of using tasks as compared to running the same compu-
tation using procedure calls.

The use of distributed queues makes creation of parallelism a two stage pro-
cess: First, new tasks are spawned to the local queue and later some (typically
few) of the tasks move to execute on other processors. This enables very low
overhead task creation since the �rst step typically does not entail communic-
tion between processors.

All experiments in this and the next sections were run on a Dell PowerEdge
SC1435 dual quadcore Opteron server with 16GB of memory running Ubuntu
Linux 9.04, kernel 2.28-15.

3.1 Experimental metodology

Measuring the cost of inlined tasks We have measured the cost of creating,
spawning and joining with a task on a single processor by comparing the timings
of the fib programs (given in �gures 1, 2 and 3) when running on a single
processor with that of a serial C program and dividing by the number of tasks
created by the task parallel program. We have used di�erent inputs for the
di�erent systems to arrive at execution times of a few seconds. This measures
the marginal cost of a task over the cost of a procedure call in the case where the
task end up being executed by the same processor that spawned it. Such tasks
are referred to as inlined tasks in the work stealing context, and we extent the
terminology to all of the systems investigated regardless of the scheduler used.

6

��
��

HH
HH�

�
H
H

�
�
H
H�H �H �H �H

C C C C C C C C

H
HH

H

�
��

�
HH �� HH ��

H� H� H� H�

Fig. 4. The steal cost microbenchmark for 8 processors; C is an simple loop that makes
no memory references

Inlining is the most common fate of a small task, especially in a work stealing
implementation such as that of Cilk++ and Wool. The cost covers allocating,
initializing and making the task available to the scheduler (spawning) as well as
the cost of later joining with the not yet executed task (including the cost of
synchronizaion and the cost of resuming its execution). We have attempted to
disable optimizations that are unsafe when running on more than one processor,
hence these timings include the cost of atomic instructions or memory barriers for
the joining operation (sync or taskwait) although these rae not strictly necessary
for a single processor execution.

Measuring the cost of stolen tasks We measure the cost of stealing or
migrating a task to a di�erent processor (core) using a microbenchmark that
repeatedly spawns and joins a balanced binary tree of tasks (see Figure 4), each
of which executes a simple loop C making no memory references. The size of
the tree is equal to the number p of processors used; consequently, the depth d
of the tree is log2 p. We have measured the scaling behavior by varying d from
1 to 3 for two, four and eight processors, respectively. To compute the cost of
spawning and joining the tasks in the tree, we compare the time to execute a
depth d tree on 2d processors (the parallel run) with the timing for a depth
0 tree (that is, just the loop C) on a single processor (the sequential run); the
di�erence is the spawn/join cost. The number of iterations of the C loop is chosen
individually for each system and value of d so that the di�erence in time becomes
10-20%, ensuring that we really get parallel execution of the tasks. Given that,
the number of repetitions R is chosen to make the running time a few seconds.
C and R are of course identical in the corresponding seqential sequential and
parallel runs for a single system.

3.2 Performance results from microbenchmark study

As we can see from Table 1, Wool have signi�cantly lower spawn/join cost than
the other systems, and the consequences of that can be seen in the timings for
the application programs. Since these measurements are from sequential runs,

7

Table 1. Costs of task creation/spawn/join on a single processor and across two, four
and eight processors. All costs are measured in clock cycles.

System Spawn/join
(inlined)

Spawn/join
(2 cores)

Spawn/join
(4 cores)

Spawn/join
(8 cores)

Wool 19 2 200 5 600 10 400

Cilk++ 134 31 050 73 600 110 400

Gcc 415 5 200 16 800 52 800

Icc 878 4 830 9 200 20 240

Mcc 1 005 25 760 253 920 706 560

Sun cc 915 45 000 780 000 552 000 000

the overheads are only due to book keeping and not to e�ects like false sharing.
This also explains why some systems are very dependent on limiting task depth.

When it comes to the parallel spawn/join benchmarks, the results show how
well the synchronization and communication works. The ideal case here is low
absolute time together with scaling with depth of the tree rather than the size
(number of spawns) since the steals/migrations closer to the roots of the tree
could in principle be performed in parallel. Of the tested systems, Cilk++ ap-
pears to be closest to scaling with the depth of the tree, although the costs are
among the highest in absolute terms. Both mcc, gcc and the Sun cc compiler
scales worse than linearly in the number of tasks spawned while Wool scales
approximately linearly. The Intel compiler scales slightly better than linearly.

The Sun compiler stands apart in this comparison. Not only are the absolute
costs higher than those of the other systems, but the scaling behaviour is exces-
sive. Further studies are needed to understand this behaviour, but a preliminary
analysis is as follows: We have observed that total CPU time in the eight pro-
cessor case is less than eight times the elapsed time. Thus the processors have
signi�cant idle time. This phomenon occurs when the number of avalable tasks
is not much larger than the number of processors. For instance, running the
benchmark with d = 4 + log2 p brings the overhead to about �ve million cycles.
Thus these results are probably related to the synchronization mechanisms used
when accessing the task queue(s).

The microbenchmarks gives us some indications on the relative performance,
but how is the e�ect on real application perfomance? This is investigated in the
next section.

4 Application study

In this section we study and compare the performance of the six di�erent models
for �ve benchmarks from an early version of the Barcelona OpenMP task suite
(BOTS) [8]. We ported the programs to Cilk++ and Wool, respectively, which
was an easy task as these programs only used the functionality of the subset
of OpenMP that is implemented in both Cilk++ and Wool. The �ve programs
chosen are mostly taken from the original Cilk distribution (except SparseLU).

8

Table 2. The programs chosen to drive the performance comparison.

Name Domain Summary Task size modi�er

FFT Spectral method Calculates a Fast Fourier
Transform

Size of vector before going serial.
From 64k down to 16.

NQueens Search Finds solutions of the
NQueens problem

Permitted task depth: 4, 8, 12 and
16.

Multisort Integer sorting Uses a mixture of sorting
algorithms to sort a vector

Size of list before starting serial
sort/merge. From 512k/256k down
to 16/8.

SparseLU Sparse linear
algebra

Computes the LU
factorization of a sparse
matrix

N/A.

Strassen Dense linear
algebra

Computes a matrix
multiply with Strassen's
method

Size of sub-matrix before going
serial. From 256 down to 16.

When this project started, we also had the programs Alignment and Floorplan
from BOTS available but they either used OpenMP threadprivate variables or
had other issues that made porting to Cilk++ and Wool not straightforward. Ta-
ble 2summarizes the �ve programs used. The default workloads of each program
as implemented in BOTS have been used.

In the next sections we show the relative performance of the six di�erent
task-based models/implementations. The programs are con�gured so that the
task-depth in recursive calls can be controlled. SparseLU does not have recursive
generation of tasks, so this program naturally, does not have this. Table 3 shows
the compiler �ags used in each case.

Table 3. Compiler �ags used in the experiments.

Compiler Flags

Serial (gcc) -O3 -m64 -static

Wool -O3 -m64 -lpthread -lm

Cilk++ -O3 -m64 -static

Gcc -O3 -m64 -fopenmp -static

Icc -O3 -m64 -openmp -openmp-link static

Mcc -O3 -m32 -v -k

Sun cc -O3 -m64 -xopenmp=parallel

Most of these programs, except SparseLU, are recursive in nature and one
of the main objectives of this study has been to investigate as to how OpenMP
and the other models fare when we allow deep recursions as it is either di�cult
to make automatically in the run-time system or cumbersome for programmers
to do themselves. This is modi�ed for the di�erent programs according to the
task size modi�er speci�ed in Table 2.

9

4.1 Performance results

Parallelism overhead The �rst experiment reports on the overhead created by
the parallel constructs in Wool, Cilk++ and OpenMP, respectively in sequential
program compared to the parallel programs with one thread. Table 4 shows
the result of this measurement normalized to the sequential execution of each
program. In these experiments, as in all others in this section, the programs
have been executed ten times on an otherwise unloaded machine and the mean
execution time taken.

Table 4. Overhead of parallel constructs for the �ve programs and six models.

Compiler FFT NQueens Multisort SparseLU Strassen

Wool 0.96 0.98 0.96 0.97 0.76

Cilk++ 0.93 0.78 0.93 0.96 0.76

Gcc 0.95 0.91 0.97 0.88 0.72

Icc 0.98 0.93 0.94 0.98 0.84

Mcc 0.91 0.95 0.98 0.99 0.55

Sun cc 0.73 0.89 0.92 0.99 0.94

The results are somewhat inconclusive. None of the compilers is consistently
best, although Icc seems to have a robust performance in this respect. All others
have really poor performance for at least some benchmark. Future studies will
investigate the sources of this in more details.

Overall performance Figures 5 to 9 show the speedups relative the serial
execution for all compilers using 1-8 processors. To the left in each �gure is
shown the default coarse grain task granularity where a cuto� in the generation
of recursive tasks is set quite early. To the right (except for SparseLU) is shown
a �ne-grained generation of tasks for which we discuss the results in section 4.1.

When task-granularity is coarse, all compilers perform relatively well. The
di�erence in performance can be attributed more to di�erence in compiler opti-
mizations rather than in the implementation of parallelism. For Multisort, Mcc
clearly outperforms all other compilers and the full reason for this remains to be
investigated. Pro�lers show that the programs spend most of their time in the
run-time system for multisort so the implementation of task scheduling is crucial
here. Sun CC outperforms all other compilers for the Strassen benchmark. The
reason here is superior code quality and in particular much lower branch miss
prediction penalty as indicated by experiments using AMD CodeAnalyst.

Importance of task-depth cut-o� The real interesting results are shown
when we allow the program to generate many �ne-grained tasks. In all cases, the
OpenMP compilers really perform poorly when the task granularity becomes
small. One of the main advantages of using a task-based model is that the user

10

Fig. 5. FFT speedup with coarse and �ne grained task granularity.

Fig. 6. NQueens speedup with coarse and �ne grained task granularity.

11

Fig. 7. Multisort speedup with coarse and �ne grained task granularity.

Fig. 8. Sparse LU Speedup.

Fig. 9. Strassen speedup with coarse and �ne grained task granularity.

12

should be able to concentrate on exposing the parallelism inherent in the ap-
plication rather than trying to �gure out how it would �t on this particular
machine.

Furthermore Wool consistently outperforms Cilk++ for all �ne-grained ap-
plications. In some cases signi�cantly. We have paid great detail in spe�cally
making the spawn process cheap and also to provide for a low-overhead and
scalable work-stealing algorithm which pays o� for programs such as NQueens
and Multisort.

5 Conclusions

We have reported on performance results for a number of task-parallel programs
for six di�erent implementations of task-based parallel programming models. It
is clear that the OpenMP implementations studied work well for coarse grained
applications but equally clear that they fail miserably for �ne-grained tasks. One
of the main advantages of task-based parallelism is that the programmer can
concentrate on exposing available parallelism instead of worrying on scheduling
the computations on threads manually which is what you have to do with normal
thread-centric models as pthreads and also to some extent with OpenMP ≤ 2.5.
There is no inherent reason that OpenMP should perform this badly for �ne-
grained applications so we expect that this will be an area of focus for future
implementations.

This study is, to the best of our knowledge, the �rst to compare Wool with
the other major models and also to look at �ner granularity of tasks. We are
happy to note that the comparison puts Wool into a good position, but there are
also a number of questions that we need to further study in order to understand
what is happening. Why is Sun cc so increadibly bad in the micr-benchmark but
reasonably e�ective for the coarse grained applications? Why is mcc considerably
better for the multisort application? Why are the parallelism overheads varying
so much for the di�erent programs? All of these questions as well as scalability
issues for larger core counts will be the focus of future studies.

References

1. Grand central dispatch. Technology Brief, 2009. Retrieved Sept 29, 2009 from
http://www.apple.com/macosx/technology/.

2. E. Ayguadé, A. Duran, J. Hoe�inger, F. Massaioli, and X. Teruel. An experimental
evaluation of the new openmp tasking model. Lecture Notes In Computer Science,
5234:63�77, 2008.

3. Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoe�inger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The
design of openmp tasks. IEEE Transactions on Parallel and Distributed Systems,
20(3):404�418, 2009.

4. J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta.
Nanos mercurium: a research compiler for openmp. In Proceedings of the European
Workshop on OpenMP, volume 2004, 2004.

13

5. R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An e�cient multithreaded runtime system. In Proceedings of the �fth
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 207�216. ACM New York, NY, USA, 1995.

6. S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the
44th annual conference on Design automation, pages 746�749. ACM New York,
NY, USA, 2007.

7. L. Dagum, R. Menon, and S.G. Inc. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science & Engineering, 5(1):46�55,
1998.

8. Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard
Ayguadé. Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the
Exploitation of Task Parallelism in OpenMP. In 38th International Conference on
Parallel Processing (ICPP '09), page 124�131, Vienna, Austria, September 2009.
IEEE Computer Society, IEEE Computer Society.

9. Karl-Filip Faxén. Wool-a work stealing library. SIGARCH Comput. Archit. News,
36(5):93�100, 2008.

10. Karl-Filip Faxén. Wool user's guide. Technical report, Swedish Institute of Com-
puter Science, 2009.

11. International technology roadmap for semiconductors. http://www.itrs.net, 2007.
Retrieved on Sept 28, 2009.

12. Olivier Stephen L. and Prins Jan F. Evaluating OpenMP 3.0 Run Time Systems
on Unbalanced Task Graphs. In Fifth International Workshop on OpenMP, June
2009.

13. C.E. Leiserson. The Cilk++ concurrency platform. In 46th Design Automation
Conference, San Francisco, CA, 2009.

14. D. Novillo. OpenMP and automatic parallelization in GCC. In GCC developers
summit, 2006.

15. Openmp v. 3.0 speci�cation. http://www.openmp.org, 2008. Retrieved on Sept
28, 2009.

16. J. Reinders. Intel threading building blocks: out�tting C++ for multi-core processor
parallelism. O'Reilly Media, Inc., 2007.

17. S. Shah, G. Haab, P. Petersen, and J. Throop. Flexible Control Structures for
Parallel C/C++. In First European Workshop on OpenMP, September, September
1999.

14

