
Impact Estimation using Data Flows over Attack Graphs

Tomas Olsson

Swedish Institute of Computer Science
P.O. Box 1263, SE-164 29 Kista, Sweden

tol@sics.se

Abstract. We propose a novel approach to estimating the impact of an attack using a
data model and an impact model on top of an attack graph. The data model describes
how data flows between nodes in the network – how it is copied and processed by softwares
and hosts – while the impact model models how exploitation of vulnerabilities affects the
data flows with respect to the confidentiality, integrity and availability of the data. In
addition, by assigning a loss value to a compromised data set, we can estimate the cost
of a successful attack. We show that our algorithm not only subsumes the simple impact
estimation used in the literature but also improves it by explicitly modeling loss value
dependencies between network nodes. With our model, the operator will be able to use
less time when comparing different security patches to a network.

1 Introduction

In order to manage the dynamic nature of the security of a network, where new nodes are added
and new softwares are installed, operators regularly run scanning tools such as Nessus to discover
the network topology and existing vulnerabilities [1]. However these tools do not put vulnera-
bilities into the context of how these vulnerabilities can be exploited to obtain illegal access to
resources in the network. Thus, the process of setting attacks into context and determining the
impact of attacks is still largely a manual process.

Due to these deficiencies, a great number of approaches to automate the analysis of network
security have been proposed during the last decade [2]. Some of these automated approaches
define security metrics over the paths of an attack graph to measure the security of the network
[3,4,5,6,7,8] while others define a security metric in terms of security risk [9,10]. Most of these
papers use a simple model for assessing the impact to the network. They either do not use an
explicit model, for instance, only using probabilities, or sum the weights of the set of compromised
nodes. As an example, in [8], the security of two networks, one patched and one unpatched,
is compared by either computing the number of hosts removed from the attack graph or by
in addition using a weight of importance for each host assigned by an expert. This would be
equivalent to estimating the impact by counting the number of compromised hosts in the attack
graph or by computing the sum of their weights.

In our model, we estimate the impact to a network using a data model in combination with
an impact model. The data model models how data is copied between softwares in a network
and thereby taking into account the dependencies between different hosts and the dependencies
between different data flows. The impact model describes what impact individual vulnerabilities
have on the data sets with respect to confidentiality, integrity and availability as well as the impact
propagation from compromised data sets. By assigning loss values to data sets, we can estimate
the cost of a successful attack. Thus, in our work, an operator does not need to understand the
importance of each node in a network as is the case in the papers referred to above.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

For our model, we follow the terminology of the multi-prerequisite attack graph (MP attack
graph) presented in [8], but we introduce our own notation. However, we are not bound to any
specific attack graph as long as we can model the flow of data.

The Common Vulnerability Scoring System (CVSS) is an open framework for communicating
the impact of vulnerabilities to an IT-system [11]. We take advantage of the expert knowledge
gathered through CVSS by using the impact elements from CVSS version 2.

A simple network from [8] illustrates what sort of problem we want to address with our
modeling framework. In the example, there are seven hosts, A, B,C, FW (Firewall) , D, E, F .
The attacker has root access to host A. All other hosts, but the firewall, have a single vulnerability
instance, e.g. vB , that can be exploited remotely via one single open port. The firewall will accept
that hosts C and D communicate with host E and will deny all other communication. In Fig. 1, we
show the MP attack graph where the triangles indicate vulnerability nodes, circles indicate attack
states and rectangles indicate what nodes can be reached from an attack state. The problem we
are addressing is how to compare different networks with respect to their vulnerabilities using
our impact estimation.

The rest of the paper is organized as follows. Sect. 2 introduces our formalization of the
network model and the attack graph presented in [8]. Sect. 3 describes the model of the logic
of the impact to a network. Sect. 4 presents the impact estimation computation and shows
that it subsumes and extends the previous simple approaches. Sect. 5 presents related work in
comparison with the proposed framework.

2 Introducing the MP Attack Graph Model

Our approach begins with constructing a model of the network containing elements such as a
network topology, and traffic rules. Then, we define the MP attack graph. In the next sections,
we follow the terminology of the NetSPA tool presented in [8]. However, the notation we will
introduce is our own contribution.

Basic Network Model A network topology consists of a set of hosts N and a set of links E.
Each host h ∈ N has a set of interfaces i(h) ⊆ I where I is the set of all interfaces in the
network. The hosts are connected via a set of links such that each link l ∈ E connects a set
of interfaces i(l) ⊆ I. In addition, each interface i ∈ i(h) has a set of ports p(h, i).

A traffic rule allows a source and a destination software instance to communicate via two
interfaces of a host. Each host h ∈ N has a set of traffic rules r(h). For each r ∈ r(h), r
has two interfaces in i(h) and two location identifiers for source and destination. A location
identifier consists of a host, an interface and a port. By setting the second interface in a
traffic rule equal to the first, we can allow traffic to only flow from or to the host of the rule.

MPAttack Graph The MP attack graph consists of three types of nodes: prerequisites, attack
states and vulnerability instances.

A prerequisite is the means needed to gain access to a vulnerability instance. It is either
a credential; any piece of information such as a password or a private key used for access
control or a reachability group that points to a set of reachable hosts. We use Q to denote
the set of all prerequisites in a network. For each prerequisite q ∈ Q, v(q) denotes the set of
(reachable) vulnerability instances of q.

An attack state a consists of a host h ∈ N and an attack level o ∈ {root, user, dos, other}.
Notice that the attack state is only used as a model of possible attacks, and the attack level

B
,C

,D

A

v
B

v
C

v
D

FE

D
C

B

v
E

v
FE

E
,
F

Fig. 1. The multi-prerequisites attack graph from [8].

is not used for modeling impact directly. We model the impact in the next section. We use
A to denote the set of all attack states. For each a ∈ A, an attacker will, by obtaining attack
state a, also obtain a set of prerequisites q(a) ⊆ Q available at a.

A vulnerability instance is any means that an attacker can use to gain access to a system,
such as a password, a software flaw, a trust relationship or a configuration error. We use V
to denote the set of all vulnerability instances. Each software instance s at a host h has a
set of vulnerability instances v(s) ⊆ V affecting s. By successfully exploiting a vulnerability
instance v ∈ V , an attacker will obtain a single attack state a(v) ∈ A.

In Table 1 and Table 2, we use our definitions to model the network model and the attack
graph shown in Fig. 1 respectively, for the simple network example from Sect. 1.

Table 1. Network model.

N = {A, B, C, D, FW, E, F}
E = {l1, l2}, i(FW) = {iFW1, iFW2}
∀n ∈ N − {FW} : i(n) = {in}
i(l1) = {iA, iB , iC , iD, iFW1}
i(l2) = {iFW2, iE , iF }
r(FW) = {〈iFW1, iFW2, [C, iC , 0], [E, iE , 0]〉,
〈iFW1, iFW2, [D, iD, 0], [E, iE , 0]〉}
r(C) = {〈iC , iC , [C, iC , 0], [E, iE , 0]〉}
r(D) = {〈iD, iD, [D, iD, 0], [E, iE , 0]〉}
r(E) = {〈iE , iE , [C, iC , 0], [E, iE , 0]〉,
〈iE , iE , [D, iD, 0], [E, iE , 0]〉}

Table 2. MP attack graph

A = {aA, aB , aC , aD, aE , aF }
Q = {qBCD, qE , qEF }
V = {vB , vC , vD, vE , vF }
v(qBCD) = {vB , vC , vD}
v(qE) = {vE}, v(qEF) = {vE , vF }
q(aA) = q(aB) = {qBCD}
q(aC) = {qBCD, qE}
q(aD) = {qBCD, qE}
q(aE) = {qEF }, q(aF) = {qEF }
a(vB) = aB , a(vC) = aC , a(vD) = aD

a(vE) = aE , a(vF) = aF

3 Modeling the Impact to a Network using Data flows

After defining the basic network model and the attack graph, we define the data model and the
impact model. These are our own contributions, except for some borrowed notions from [11].

3.1 Defining the Data Model

We start by defining a data set instance to be a copy of any set of data that is being protected
with respect to the three security aspects – confidentiality, integrity and availability. We use D
to denote the set of all data set instances.

In order to locate a data set instance in a network, we use a data set instance location that
consists of a data set instance d ∈ D and a location identifier with a host h ∈ N , an interface
i ∈ i(h) of host h and a port p ∈ p(h, i) of interface i.

We assume that all data set instances are somehow processed by software instances located
at hosts in the network. We denote the set of all software instances S. Thus, each host h ∈ N
has a set of software instances s(h) ⊆ S. In order to be the originator or creator of a data set
instance, each software instance s ∈ s(h) has a set of data set instances located at s denoted
store(s). Examples of stores are a database, an HTML file or the RAM and examples of software
instances are a SQL engine for accessing a database, a web server for accessing HTML pages and
a search engine processing queries that caches recent search results in RAM.

If the data is not already in the store, then it must be retrievable from somewhere else. Thus
for each software instance s ∈ s(h) and for each interface i ∈ i(h), inputs(s, i) denotes the set of
data set locations from where s retrieves data set instances via interface i. Similarly, outputs(s, i)
denotes the set of data set instance locations with data set instances produced by s that can be
retrieved from interface i. Therefore, for each data set location u ∈ outputs(s, i) at a host h, the
interface of u is i, the host of u is h, the port of u is in p(h, i).

We model dependencies between data set instances and thereby between data flows as follows.
We let depends(s, d) denote the set of data set instances used by s to produce data set d. Then,
either each data set instance d ∈ depends(s, d′) is already stored at s (that is, d ∈ store(s))
or it can be retrieved from somewhere else (that is, there is an interface i ∈ i(h) such that d
has a data set instance location in inputs(s, i)). For instance, a distributed search engine would
retrieve data from different databases and then present them uniformly by removing duplicates.

Then, we define a data flow for a data set instance d ∈ D from a producer software instance
s0 ∈ S to a retriever software instance sn ∈ S as a sequence of hosts (h0, h1, . . . , hn−1, hn) in
N where: (a) n > 0, (b) outputs(s0, i0) and inputs(sn, in) contain the same data set instance
location with host h0, interface i0, port p0 ∈ p(h0, i0) and data set instance d, (c) there exists
links with interfaces connecting all hosts in the sequence, and (d) there exists a traffic rule at each
host allowing traffic from source host h0 to destination host hn using as source and destination
the location identifiers of the producer and the retriever respectively.

Finally, a data flow f is active if the retriever actually can retrieve the data set instance.
Thus, if the data set instance is depending on other data set instances through the dependencies
relation then either the data sets are stored at the producer or there must exist an active data
flow f ′ for each retrieved data set instance with the producer of f as the receiver of f ′.

In Table 3, we show a data model for the simple network from Sect. 1 and Table 1.

3.2 Defining the Impact Model

As a means to define the local impact, we define that a data set instance d ∈ D is accessible to
a software instance s ∈ S if either d ∈ store(s) (d is stored), there exists an active data flow
for d with s as receiver (d is retrieved) or there exists an interface i such that d has a data
set instance location in outputs(s, i) while for each d′ ∈ depends(s, d), either d′ ∈ store(s, d) or
there exists an active data flow for d′ with s as receiver (d is produced). Similarly, we define
that a data set instance d ∈ D is accessible to a host h ∈ N if there exists a software instance
s′ ∈ s(h) such that d is accessible to s′ or there exists an active data flow for d with a sequence
of hosts containing h. Hence it is accessible if either the data set instance is stored/produced at
the software instance/host or that it can flow to the software instance/host.

Since we want to model the impact of a successful attack to the three security aspects, confi-
dentiality, integrity and availability (denoted c,i,a), we define that for each vulnerability instances

v ∈ V and for each security aspect e ∈ {c, i, a}, impact(v, e) ∈ {None, Partial, Complete} de-
notes the local impact that vulnerability instance v has on security aspect e at a host h. We
borrow the values None, Partial, Complete for the three security aspects from CVSSv2 [11].

For our purpose, we interpret the impact values of CVSSv2 such that for each security aspect
e ∈ {c, i, a}, an attacker will locally violate the security aspect e of, in the case of impact value: (a)
None, no data set instances, (b) Partial, all data set instances accessible to the software instance
with an exploited vulnerability instance, and (c) Complete, all data set instances accessible to the
host of the software instance with the exploited vulnerability instance. Then, we define that for
each data instance d ∈ D, for each security aspect e ∈ {c, i, a}, for each subset of exploited vul-
nerability instances Vexploit ⊆ V and for each host h ∈ N , locallyV iolated(e, d, h, Vexp) denotes
that d was locally violated by an attacker at host h with respect to e given VExploit.

Then, by assigning a loss value, we can estimate a cost of exploiting a vulnerability instance
with a certain loss of security. For each data set instance d ∈ D, and for each security aspect
e ∈ {c, i, a}, cost(d, e) denotes the loss value of data set d with respect to e.

Now, we define predicates for whether a data set instance is violated at the network level:

Loss of confidentiality For each data set instance d ∈ D, for each host h ∈ N and for each
subset of vulnerability instances Vexp ⊆ V , lossOfConf(d, h, Vexp) holds true if locally-
V iolated(c, d, h, Vexp) holds true.

Loss of integrity For each data set instance d ∈ D, for each host h ∈ N and for each
set of vulnerability instances Vexp ⊆ V , lossOfInteg(d, h, Vexp) holds true if either (a)
locallyV iolated(i, d, h, Vexp) holds true, or (b) there exists s ∈ S such that d′ ∈ depends(s, d)
and there exists an active data flow f for d′ where the receiver is s and there exists a host
h′ in the sequence of hosts of f where h′ 6= h and lossOfInteg(d′, h′, Vexp) holds true.

Loss of availability For each data set instance d ∈ D, for each host h ∈ N and for each set
of vulnerability instances Vexp ⊆ V , lossOfAvailability(d, h, Vexp) holds true if either
(a) locally- V iolated (a, d, h, Vexp) holds true, or (b) there exists s ∈ S such that d′ ∈
depends(s, d) and for each active data flow f for d′ where the receiver is s there exists a host
h′ in the sequence of hosts of f where h′ 6= h and lossOfAvail(d′, h′, Vexp) holds true.

Generic loss of security For each security aspect e ∈ {c, i, a}, for each data set instance d ∈ D
and for each set of vulnerability instances Vexp ⊆ V , lossOfSecurity(e, d, Vexp) holds true
if there exits h ∈ N such that either e = c and lossOfConf(d, h, Vexp) or e = i and
lossOfInteg(d, h, Vexp) or e = a and lossOfAvail(d, h, Vexp) holds true.

Notice that we have assumed that the loss of integrity and loss of availability are recursive in
nature, while loss of confidentiality is not. This is because, apart from being violated locally at
a host, a data set instance d will also suffer a loss of integrity if there is a loss of integrity of
any data set instance d′ that d is depending on for its existence. If d′ was changed and d′ is
used to produce d then d has also been changed. The same is reasonable for the availability of
data. However, in case of integrity, it is enough that there exists a single data flow for d′ to the
producer of d such that d′ has been compromised, while in case of loss of availability, all data
flows for d′ to the producer of d must be compromised. If d can be accessed through a remaining
data flow then d′ can still be produced. In case of loss of confidentiality, we assume that a loss
does not propagate to other data set instances. Though this is not necessarily the case since if d
is an aggregation of, for instance, two data set instances d′ and d′′ then there is some dependency
between these three data set instances d, d′ and d′′. We leave this extension to future work.

In Table 3, we show an example of a data model for the simple example in Sect. 1. There is a
single vulnerability instance at host B − F and data set instance dF is most valuable. The data
model models that data sets dE is located at host E, dF is located at F and that dE′ is dependent
of dE for its existence and that dE′ flows from E to C using a set of software instances.

Table 3. Data model.

S = {sB , sC , sD, sE , sF }
∀h ∈ N − {A, FW} : s(h) = {sh}
D = {dE , dE′ , dF }, store(sF) = {dF }
store(sE) = {dE}, depends(sE , dE′) = {dE}
outputs(sE , iE) = {〈dE′ , E, iE , 0〉}
inputs(sC , iC) = {〈dE′ , E, iE , 0〉}

Table 4. Impact Model.

V = {vB , vC , vD, vE , vF }
∀h ∈ N − {A, FW}, v(sh) = {vh},

∀e ∈ {c, i, a}, impact(vh, e) = Complete
∀e ∈ {c, i, a} : cost(dE , e) = 1
∀e ∈ {c, i, a} : cost(dE′ , e) = 0.5
∀e ∈ {c, i, a} : cost(dF , e) = 2

Table 5. Summary of notation

N Set of hosts: a typical element is h ∈ N
D Set of data set instances: a typical element is d ∈ D
V Set of vulnerability instances: a typical el. is v ∈ V

c, i, a Confidentiality, integrity, availability: e ∈ {c, i, a}
cost(d, e) Loss value of d for e ∈ {c, i, a}

S Set of software instances: a typical element is s ∈ S
s(h) Set of software instances at host h

store(s) Set of data set instances stored at s

lossOfSecurity(e, d, V) holds if d has been locally violated for e given V

4 Defining and Applying the Impact Estimation

In Table 5, we have summarized the definitions from the previous section needed to understand
this section. Recall from Sect. 1 that the impact estimation for [8] and many other papers could
be computed as the sum of the weights over the number of compromised hosts in the attack
graph A as in (1) where P (h) is zero if host h is not in A or one otherwise, and cost(h) is the
importance weight. The corresponding impact estimation for our model is the sum over the data
sets is shown in (2) where Pe(d) is zero if lossOfSecurity(e, d, V) does not hold or one otherwise.

loss0(A) =
X
h∈N

cost(h) · P (h) (1) loss(A) =
X

cost(d, e)
d∈D,e∈{c,i,a}

· Pe(d) (2)

Now, we can show that (2) can express an equivalent impact estimation as (1): Let D =
{dh}h∈N and for each h ∈ N , s(h) = {sh}, store(sh) = {dh}, cost(dh, c) = cost(h), cost(dh, i) =
cost(dh, a) = 0, then, since for each h ∈ N , lossOfSecurity(c, dh, V) holds true, according to its
definition, such that Pc(dh) = P (h):

loss(A) =
∑
d∈D

cost(dh, c)Pc(dh) =
∑
h∈N

cost(h)Pc(dh) =
∑
h∈N

cost(h)P (h) = loss0(A) Q.E.D.

(3)

Typically, we have an original attack graph A and we want to use (1) or (2) to compare
modifications to A to determine which vulnerability to patch first. Thus, if A = {A0, . . . ,Ak} is
a set of modified attack graphs then we want to choose the graph with lowest estimated impact:

Â = min
A∗∈A

(loss(A∗)) (4)

Table 6 shows the impact estimation for the simple example from [8] that was described in
Sect. 1, Fig. 1 and Table 1-4. We show the values for three different data models and four different
patch choices. In [8], patches of set of vulnerabilities are compared. For this simple example, we
only patch a single vulnerability instance. The first column shows the impact estimation of the
models in Table 3 and 4. The second column shows the values when we remove the data flow,
in which case, dE′ cannot be reached anymore when vE is patched. The third column have the
values when each host B−F has weight 1. Notice that patching vE is the best choice in all cases.

In the case that a data model lacks data flows, (1) can be used to model the same impact
estimations as (2). However, we can show that in order to use (1) for comparing graphs where at
least one compromised host affects a data flow, we will most likely have to change the weights
of the hosts for that case. The weight assignment can also be rather counterintuitive.

Assume that we have a simple network: N = {E,F, G} with the three attack graphs A,
A0, A1 shown left in Table 7 where the attacker starts in E with root access. There is also an
active data flow with the sequence of hosts (G, F) for d. Let the impact value be Complete for
all vulnerabilities and cost(d, c) = 1, cost(d, i) = cost(d, a) = 0. Then in case of (2), loss(A) =
loss(A0) = 1, loss(A1) = 0. For (1), reasonable weights for A would be cost(F) = 0, cost(G) = 1,
making loss0(A) = 1, but loss0(A0) = loss0(A1) = 0. Thus, we have to change the weights.
Counterintuitively, we get the desired result for cost(F) = 1, cost(G) = 0! The cost(G) is 0
because compromising F is enough – there is no gain by compromising G as well. Consider what
happens when we have a third vulnerability vG′ accessible from E to G. Then, we have the
three new attack graphs A′, A0′(= A), A1′ and A2′ in Table 7. Now loss(A′) = loss(A0′) =
loss(A1′) = loss(A2′) = 1 and loss0(A′) = loss0(A0′) = loss0(A1′) = 1 but loss0(A2′) = 0.
To get the desired result, we revert to cost(G) = 1, cost(F) = 0. Thus, in contrast to (2), the
importance of a host depends on the attack graph.

Table 6. The impact estimation for
three different data models.

Patch Unmod No Flow Uniform
none 10.5 10.5 5
vB 10.5 10.5 4
vC 10.5 10.5 4
vD 10.5 10.5 4
vE 1.5 0 3
vF 4.5 4.5 4

E

F

G

v
F

v
G

v
G’

A’

E

F

G

v
F

v
G

A0’

E

F

G

v
F

v
G’

A1’

E

G

v
G’

A2’

E

F

G

v
F

v
G

A

E

F

v
F

A0

E

A1

Table 7. Simplified attack graphs for original and modified
cases, where one vulnerability is removed.

5 Related work

A set of papers [3,4,5,6,7] define metrics to measure the impact to network based primarily on
different ways of weighing paths in an attack graph. Other approaches – like our work – use the
cost or loss of an intrusion as the basis for the impact metric [9,10].

An early work is presented in [3,4]. Instead of estimating the impact of an attacker, the
authors estimate cost of the attacker in terms of the time from an attack starts until it succeeds
and the effort required by the attacker to succeed. Thus, their work complements our work.

A work inspired by reliability analysis is presented in [5,6]. The authors use a model checker
to construct an attack graph from a detailed system model. They can compute the probability of
ending up in an unsafe system state. They do not consider any cost of reaching an unsafe state.

In [7] the authors use the PageRank algorithm of Google to measure the security of a network
from an attack graph. Their hypothesis is that an attacker behaves quite similarly to a person
browsing the web. In contrast to our work, they do not consider the value of protected assets or
dependencies between attack states.

In [9], the authors present a framework called RheoStat that uses a cost-benefit analysis to
select responses to attacks. A cost is assigned to each asset, but no dependencies between assets
are considered and only one host is considered.

The work in [10] uses a Hidden Markov Model (HMM) to estimate the probability for a
network given observed intrusion alerts from an IDS to be in malicious states. In contrast to our
work, the authors only assign costs of each host being in a state. The impact is estimated either
computed as the total expected cost for all hosts or the average expected cost per host.

6 Summary and Concluding Remarks

We have presented a framework for assessing the impact to a network using data flows and an
impact model. By modeling the flow of data, we take into account dependencies between different
software applications and different hosts as well as dependencies between different data flows.
Thus, the operator does not have to consider the importance of different hosts. However, more
work is needed to really understand which services exists and how they retrieve and use the data.

An interesting extension, which we have been working on, is to use historical attack data to
estimate the probability of a successful exploitation. Thus, turning the Pe function of Sect. 4 into
a continuous function in [0,1]. We will leave this work to a future publication.

Acknowledgements. This work has been performed within the SICS Center for Networked Sys-
tems funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera and T2Data.

References

1. Nessus: The network vulnerability scanner. http://www.nessus.org (April 2009)
2. Lippman, R., Ingols, K.: An annotated review of past papers on attack graphs. Project Report

PR-IA-1, MIT Lincoln laboratory (March 2005)
3. Dacier, M., Deswarte, Y., Kaaniche, M.: Quantitative assessment of operational security: Models

and tools (1996)
4. Ortalo, R., Deswarte, Y.: Experimenting with quantitative evaluation tools for monitoring opera-

tional security. IEEE Transactions on Software Engineering 25 (1999) 633–650
5. Jha, S., Sheyner, O., Wing, J.M.: Minimization and reliability analyses of attack graphs. Technical

Report CMU-CS-02-109, School of Computer Science, Carnegie Mellon University (2002)
6. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and analysis of

attack graphs. In: IEEE Symposium on Security and Privacy. (2002) 273– 284
7. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs. In: Proceedings of

Recent Advances in Intrusion Detection, Springer (2006)
8. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for network defense.

In: Computer Security Applications Conference. (2006) 121–130
9. Gehani, A., Kedem, G.: Rheostat : Real-time risk management. In: Proceedings of the 7th Interna-

tional Symposium on Recent Advances in Intrusion Detection. (2004) 15–17
10. Årnes, A., Valeur, F., Vigna, G., Kemmerer, R.A.: Using hidden markov models to evaluate the

risks of intrusions - system architecture and model validation. In: Proceedings of Recent Advances
in Intrusion Detection, Springer (2006)

11. CVSS: Common vulnerability scoring system. http://www.first.org/cvss/ (April 2009)

