
Assessing Security Risk to a Network Using a
Statistical Model of Attacker Community

Competence1

Tomas Olsson

Swedish Institute of Computer Science
P.O. Box 1263, SE-164 29 Kista, Sweden

tol@sics.se

Abstract. We propose a novel approach for statistical risk modeling
of network attacks that lets an operator perform risk analysis using a
data model and an impact model on top of an attack graph in combina-
tion with a statistical model of the attacker community exploitation skill.
The data model describes how data flows between nodes in the network –
how it is copied and processed by softwares and hosts – while the impact
model models how exploitation of vulnerabilities affects the data flows
with respect to the confidentiality, integrity and availability of the data.
In addition, by assigning a loss value to a compromised data set, we can
estimate the cost of a successful attack. The statistical model lets us in-
corporate real-time monitor data from a honeypot in the risk calculation.
The exploitation skill distribution is inferred by first classifying each vul-
nerability into a required exploitation skill-level category, then mapping
each skill-level into a distribution over the required exploitation skill, and
last applying Bayesian inference over the attack data. The final security
risk is thereafter computed by marginalizing over the exploitation skill.
1

1 Introduction

In order to manage the dynamic nature of the security of a network, where
new nodes are added and new softwares are installed, operators regularly run
scanning tools such as Nessus to discover the network topology and existing
vulnerabilities [1]. However these tools do not put vulnerabilities into the context
of how these vulnerabilities can be exploited to obtain illegal access to resources
in the network. Likewise, they do not automatically determine the impact to the
system or the potential risk.

As a consequence, a great number of automated approaches to security anal-
ysis have been proposed during the last decade [2]. Some of these automated
approaches define security metrics over the paths of an attack graph [3,4,5,6,7],
while others define a security metric in terms of security risk [8,9,10,11].
1 The original publication is available at www.springerlink.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434865?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we follow the second path by proposing a novel approach to
compute the security risk. Risk is usually defined as the expected loss or as
defined in [12]:

Risk is a function of the likelihood of a given threat-source’s ex-
ercising a particular potential vulnerability, and the resulting
impact of that adverse event on the organization.

Accordingly, a risk computation consists of two parts: a probability estimation
of a successful attack and an impact estimation.

Most of the papers referred to above, use a simple model for estimating the
impact to the network. Typically, they either do not use an explicit model, e.g.
only probabilities, or sum the assigned weights of compromised nodes. As an
example, in [13], the security of two networks, one patched and one unpatched,
was compared by computing the number of hosts removed from the attack graph
or by assigning a weight of importance to each host as well. This would be
equivalent to estimating the impact by counting the number of compromised
hosts in the attack graph or by computing the sum of their weights. In addition,
many of the papers that use probabilistic models do not describe of how to
estimate these probabilities. Therefore, in this work, we extend existing work
with a more advanced network impact model and with a novel approach for
inferring probabilities over attack graphs using a Bayesian approach assuming
that a record of historical attack data from a honeypot is given [14].

The network impact model consists of a data model in combination with an
impact model over an attack graph. The data model models how data is copied
between softwares in a network, thereby taking into account the dependencies
between different hosts and the dependencies between different data flows. The
impact model describes what impact individual vulnerabilities have on the data
sets with respect to confidentiality, integrity and availability as well as the impact
propagation from compromised data sets. By assigning loss values to data sets,
we can estimate the cost of a successful attack. Thus, in our work, an operator
does not need to understand the importance of each node in a network as is the
case in the papers referred to above.

The probability estimation of a successful attack is computed by first clas-
sifying each vulnerability into a required exploitation skill-level category that
denotes how hard it is to successfully exploit the vulnerability. Then, based on
historical attack data, we can create a statistical model of the exploitation skill
of the attacker community using a Bayesian approach. Last, the final security
risk is computed by marginalizing over the exploitation skill.

For our model, we follow the terminology of the multi-prerequisite attack
graph (MP attack graph) presented in [13], but we introduce our own notation.
The MP attack graph is fast to create, easy to understand and easy to work
with; it uses very few model elements and have been shown to scale to large
networks [13]. However, we are not bound to any specific attack graph as long
as we can model the flow of data.

Notice however, that our model subsumes the original model such that our
model can instantiate an equivalent recommendation algorithm for patching as in

[13]. By removing all data flows, assigning all probabilities of successful attacks
to the constant value 1.0 and putting data sets with a uniform loss value of
1 at each node, we can reproduce the original recommendation algorithm. By
assigning different loss values to the different data sets, we also can reproduce
the weighted version of the original algorithm. In addition, in contrast to the
original model, our model makes it possible to apply partial patches that instead
of removing a vulnerability, increase the required exploitation skill-level.

The Common Vulnerability Scoring System (CVSS) is an open framework
for communicating the impact of vulnerabilities to an IT-system [15]. We take
advantage of the expert knowledge gathered through CVSS by using the impact
elements from CVSS version 2.

A simple network from [13] that is shown in Fig. 1(a) illustrates what sort of
problem we want to address with our approach. In this simple example, attacks
start at host A with root access. All other hosts, but the firewall (FW), have
a single vulnerability instance, e.g. vB , that can be exploited remotely via one
single open port. The firewall will accept that hosts C and D communicate with
host E and will deny all other communication. In Fig. 1(b), we show the MP
attack graph where the triangles indicate vulnerability nodes, circles indicate
attack states and rectangles indicate what nodes can be reached from an attack
state. The problem we are addressing is how to compare the security of different
networks with respect to their vulnerabilities.

The rest of the paper is organized as follows. Sect. 2 introduces our formal-
ization of the network model and the attack graph from [13]. Sect. 3 describes
the network impact model. Sect. 4 presents the model for computing the prob-
ability that an attack will successfully exploit a vulnerability. Sect. 5 describes
how to compute the security risk given a historical record of attack data. Sect 6
applies our framework to the simple network example described above. Sect. 7
compares related work with the proposed framework.

2 Introducing the MP Attack Graph Model

Our approach begins with constructing a model of the network containing el-
ements such as a network topology, and traffic rules. Then, we define the MP
attack graph. In the next sections, we follow the terminology of the NetSPA tool
presented in [13], but we introduce our own notation.

Basic Network Model A network topology consists of a set of hosts N and
a set of links E. Each host h ∈ N has a set of interfaces i(h) ⊆ I where I
is the set of all interfaces in the network. Each link l ∈ E connects a set of
interfaces i(l) ⊆ I. Each interface i ∈ i(h) has a set of ports p(h, i).

A traffic rule allows source and destination software instances to communi-
cate via two interfaces of a host. Each host h ∈ N has a set of traffic rules
r(h). By setting the second interface in a traffic rule equal to the first, we
can allow traffic to only flow from or to the host of the rule.

MP Attack Graph The MP attack graph consists of three types of nodes:
prerequisites, attack states and vulnerability instances.

A prerequisite is the means needed to gain access to a vulnerability instance.
We use Q to denote the set of all prerequisites in a network. For each pre-
requisite q ∈ Q, v(q) denotes the set of (reachable) vulnerability instances
of q.

An attack state a consists of a host h ∈ N and an attack level o ∈ {root,
user, dos, other}. We use A to denote the set of all attack states. For each
a ∈ A, an attacker will, by obtaining attack state a, also obtain a set of
prerequisites q(a) ⊆ Q available at a.

A vulnerability instance is any means that an attacker can use to gain access
to a system. We let V denote the set of all vulnerability instances. Each
software instance s ∈ S has a set of vulnerability instances v(s) ⊆ V . By
successfully exploiting a vulnerability instance v ∈ V , an attacker will obtain
a single attack state a(v) ∈ A.

3 Modeling the Impact to a Network using Data flows

After defining the basic network model and the attack graph, we define the data
model and the impact model. These are our own contributions, except for some
borrowed notions from [15]. A more elaborate description of the network impact
model can be found in [16].

3.1 Defining the Data Model

A data set instance is a copy of any set of data that we protect with respect to
the three security aspects – confidentiality, integrity and availability – that we
denote c, i and a. D denotes the set of all data set instances.

A data set instance location consists of a data set instance d ∈ D and a
location identifier with a host h ∈ N , an interface i ∈ i(h) of host h and a port
p ∈ p(h, i) of interface i.

All data set instances are assumed to be processed by software instances. S
denote the set of all software instances. For each host h ∈ N , s(h) ⊆ S denotes
all software instances at h. For each software instance s ∈ s(h), store(s) denotes
all data set instances stored at s and for each interface i ∈ i(h), inputs(s, i) and
outputs(s, i) denotes the set of data set locations from where s retrieves and
produces data set instances via interface i respectively.

We let depends(s, d) denote the set of data set instances used by s to produce
data set d. Then, either, for each data set instance d ∈ depends(s, d′), d ∈
store(s) or there is an interface i ∈ i(h) such that d has a data set instance
location in inputs(s, i).

A data flow for data set instance d ∈ D from a producer software in-
stance s0 ∈ S to a retriever software instance sn ∈ S is a sequence of hosts

(h0, h1, h2, . . . , hn−1, hn) in N where: (a) n > 0, (b) outputs(s0, i0) and input-
s(sn, in) contain the same data set instance location with host h0, interface i0,
port p0 ∈ p(h0, i0) and data set instance d, (c) there exists links with inter-
faces connecting all hosts in the sequence, and (d) there exists a traffic rule at
each host allowing traffic from source host h0 to destination host hn using as
source and destination the location identifiers of the producer and the retriever
softwares respectively.

In addition, a data flow f is active if the data set instance of f is depending
on other data set instances through the depends relation and then each of these
data sets are either stored at the producer or retrieved such that there must
exist an active data flow f ′ for the retrieved data set instance with the producer
of f as the receiver of f ′.

3.2 Defining the Impact Model

As a means to define the local impact, we define that a data set instance d ∈ D
is accessible to a software instance s ∈ S if either d ∈ store(s) (d is stored),
there exists an active data flow for d with s as receiver (d is retrieved) or there
exists an interface i such that d has a data set instance location in outputs(s, i)
while for each d′ ∈ depends(s, d), either d′ ∈ store(s, d) or there exists an active
data flow for d′ with s as receiver (d is produced). Similarly, a data set instance
d ∈ D is accessible to a host h ∈ N if there exists a software instance s′ ∈ s(h)
such that d is accessible to s′ or there exists an active data flow for d with a
sequence of hosts containing h.

Since we want to model the impact of a successful attack to the three
security aspects, confidentiality, integrity and availability, we define that for
each vulnerability instances v ∈ V and for each security aspect e ∈ {c, i, a},
impact(v, e) ∈ {None, Partial, Complete} denotes the local impact that vul-
nerability instance v has on security aspect e at a host h. We borrow the values
None, Partial, Complete for the three security aspects from CVSSv2 [15].

For our purpose, we interpret the impact values of CVSSv2 such that for each
security aspect e ∈ {c, i, a}, an attacker will locally violate the security aspect e
of, in the case of impact value: (a) None, no data set instances, (b) Partial, all
data set instances accessible to the software instance with an exploited vulnera-
bility instance, and (c) Complete, all data set instances accessible to the host of
the software instance with the exploited vulnerability instance. Then, we define
that for each data instance d ∈ D, for each security aspect e ∈ {c, i, a}, for each
subset of exploited vulnerability instances Vexploit ⊆ V and for each host h ∈ N ,
locallyV iolated(e, d, h, Vexp) denotes that d was locally violated by an attacker
at host h with respect to e given VExploit.

Now, we define predicates that infer violation of data set instances at the
network level:

Loss of confidentiality For each data set instance d ∈ D, for each host h ∈ N
and for each subset of vulnerability instances Vexp ⊆ V , lossOfConf(d, h,
Vexp) holds true if locally- V iolated(c, d, h, Vexp) holds true.

Loss of integrity For each data set instance d ∈ D, for each host h ∈ N and
for each set of vulnerability instances Vexp ⊆ V , lossOfInteg(d, h, Vexp)
holds true if either (a) locallyV iolated(i, d, h, Vexp) holds true, or (b) there
exists s ∈ S such that d′ ∈ depends(s, d) and there exists an active data flow
f for d′ where the receiver is s and there exists a host h′ in the sequence of
hosts of f where h′ 6= h and lossOfInteg(d′, h′, Vexp) holds true.

Loss of availability For each data set instance d ∈ D, for each host h ∈ N and
for each set of vulnerability instances Vexp ⊆ V , lossOfAvail(d, h, Vexp)
holds true if either (a) locallyV iolated (a, d, h, Vexp) holds true, or (b) there
exists s ∈ S such that d′ ∈ depends(s, d) and for each active data flow f for
d′ where the receiver is s there exists a host h′ in the sequence of hosts of f
where h′ 6= h and lossOfAvail(d′, h′, Vexp) holds true.

Generic loss of security For each security aspect e ∈ {c, i, a}, for each data
set instance d ∈ D and for each set of vulnerability instances Vexp ⊆ V ,
lossOfSecurity(e, d, Vexp) holds true if there exits h ∈ N such that either
e = c and lossOfConf(d, h, Vexp) or e = i and lossOfInteg(d, h, Vexp) or
e = a and lossOfAvail(d, h, Vexp) holds true.

Lastly, by assigning a loss value, we can estimate a cost of exploiting a vul-
nerability instance with a certain loss of security. For each data set instance
d ∈ D, and for each security aspect e ∈ {c, i, a}, cost(d, e) denotes the loss value
of data set d with respect to e.

4 Modeling the Probability of a Successful Attack

In [13], the authors assume a worst case scenario for a successful attack: a sin-
gle attacker, starting at an initial attack state, will be able to exploit every
vulnerability instance in the MP attack graph. However, it is not a reasonable
assumption, since attackers might have different exploitation skills and vulner-
ability instances might have different required exploitation skills. We propose a
different scenario where an attacker will be able to try to exploit all vulnera-
bility instances it has gained access to, but that the probability of successfully
exploit a vulnerability instance depends on the required exploitation skill-level of
the vulnerability instance and the exploitation skill of the attacker. Notice that
we view each attacker as an instantiation of the wider attacker community, and
thus, we do not model each attacker individually, but as a group.

For convenience, we have chosen to use four different exploitation skill-levels
that we define in terms of a required exploitation skill. We map each exploita-
tion skill-level into a probability distribution over the required exploitation skill.
Similarly, we have chosen the exploitation skill to be in the arbitrary range [0,1].

In addition, we assume that an expert has assigned a exploitation skill-level to
each vulnerability instance, for instance, by analyzing a freely available database
such as NVD [17].

Required Exploitation Skill-Level First we define the required exploitation
skill-level. For each vulnerability instance v ∈ V , z(v) ∈ {Low, MediumLow,

MediumHigh, High} denotes the exploitation skill-level required by an at-
tacker to successfully exploit v. To make formulas shorter, we sometimes use
the following notation: z0 = Low, z1 = MediumLow, z2 = MediumHigh
and z3 = High. Thus, instead of typing z(v) = Low, we type z(v) = z0 and
so forth.

Successful Exploitation Then, we define the successful exploitation proba-
bility. For each vulnerability instance v ∈ V , k ∈ [0, 1] denotes the actual
exploitation skill of an attacker, kv ∈ [0, 1] denotes the required exploita-
tion to successfully exploit v, p(kv|mz, σz) denotes the probability density
function over kv (where kv is normally distributed with parameters mz and
σz and z = z(v)), and Φ(k, z) denotes the probability that an attacker with
exploitation skill k will succeed to exploit v:

∀i ∈ {0, 1, 2, 3},mzi =
i

4
+

1
8

and σzi
=

1
5
, (1)

Φ(k, z) ∝
∫ 1

k

p(kv|mz, σz)dkv = erf

(
k −mz

σz
√

2

)
− erf

(
−mz

σz
√

2

)
(2)

where erf is the error function [18].

5 Computing the Risk

In order to compute the risk to a network, without relying too much on expert
knowledge, we use Bayesian statistical inference over a historical record of attack
data.

To gather historical attack data for whether vulnerability instances were suc-
cessfully exploited or not, we propose using a high-interactive honeypot. A hon-
eypot is a controlled computer created to be vulnerable to attacks and therefore,
any occurring traffic is suspicious [19]. Hence, it easy to detect attack attempts.
If the nature of a set of vulnerability instances in the honeypot is known, it
should also be possible to verify whether they where successfully exploited [20].
Of course, it is also possible to add other compromises investigated by the op-
erator of the network.

Notice though, that to keep the probability estimations up-to-date, we must
limit how old attack data we take into account. For instance, it might be realistic
to only use the last six months of data, since older data might make the risk
value obsolete.

Recall from Sect. 1 that risk is a function of an impact value and the prob-
ability of a successful attack. Therefore, we define the total risk to a network
from attacks starting at a0 ∈ A in attack graph A during next s time slots as
the expected loss over all data set instances:

risk(a0, s,X,A) =
∑

d∈D,e∈{c,i,a}

cost(d, e) · Pe(d|a0, s,X,A) (3)

where Pe(d|a0, s,X,A) is the probability of at least one successful attack on data
d given the historical attack data X, a0 and s.

Historical Attack Data First, we define the historical record of attack data
X over a time period T where X contains n(X) number of attacks and
and T contains n(T) number of time slots. For each attack data instance
x ∈ X, z(x) ∈ {z0, z1, z2, z3} denotes the required exploitation skill-level
of the vulnerability instance during the attack, and e(x) ∈ {0, 1} denotes
whether the attack was successful (e(x) = 1) or not (e(x) = 0).

Posterior Distribution Second, we derive the posterior distribution for the
exploitation skill k and a parameter λ, which governs the number of expected
attack instances, using Bayesian inference. The posterior distribution given
X is:

P (k, λ|X) ∝ P (X|k, λ) · P (k) · P (λ) (4)

where P (X|k, λ) denotes the probability thatX was generated by an attacker
community with exploitation skill k and parameter λ, while P (k) and P (λ)
denotes the prior distributions for k and λ, respectively. We let P (k) ∝ 1
(uniform distribution) and P (λ) = Gamma(a, b) (Gamma distribution). The
prior distributions describe what we know about the parameters prior to
having the real data. Assuming independence between k and λ, we have:

P (X|k, λ) = P (X|k) · P (n(X)|λ) (5)

where P (X|k) is the probability of X given k and P (n(X)|λ) is the proba-
bility of n(X) number of attack instances during time period T . For P (X|k)
we have:

P (X|k) ∝
∏
x∈X

P (x|k) (6)

where for each attack data instance x ∈ X, P (x|k) denotes the probability
distribution over x given exploitation skill k ∈ [0, 1]:

P (x|k) = (1− Φ(k, z))(1−e(x)) · Φ(k, z)e(x) where z = z(x) (7)

such that

P (X|k) ∝
3∏
i=0

(1− Φ(k, zi))
e−zi · Φ(k, zi)ezi (8)

where e−zi
is the total number of unsuccessful attacks and ezi

is the number
of successful attacks on vulnerability instances with required skill-level zi.
Then, for P (n(X)|λ) we assume a Poisson distribution with mean value
n(T) · λ such that:

P (n(X)|λ) =
(n(T)λ)n(X)e−n(T)λ

n(X)!
. (9)

Probability of Success Last, we derive the probability of at least one success-
ful attack by marginalization. In case of attack graph A and attacks starting
in attack state a0 ∈ A, for each data set instances d ∈ D and for each security
aspects e ∈ {c, i, a}, Pe(d|a0,A, k) denotes the probability that an attacker
from an attacker community with exploitation skill k ∈ [0, 1] will successfully
exploit vulnerability instances in A such that d will be compromised with
respect to e, and Pe(dn|a0,A, k) denotes the probability that at least one of
n attack attempts succeeds:

Pe(dn|a0,A, k) = 1− (1− Pe(d|a0,A, k))n . (10)

Then, we can compute the probability of at least one successful attack on d
with respect to e, given X and within next s time slots, as:

Pe(d|a0, s,X,A) ∝∫ 1

0

∫ ∞
0

∞∑
n=0

Pe(dn|a0,A, k) P (n(s)|λ) P (X|k, λ) p(k) p(λ)dλdk =

C −
∫ 1

0

1(
1 + sPe(d|a0,A,k))

b+n(T)

)a+n(X)

3∏
i=0

(1− Φ(k, zi))
e−zi Φ(k, zi)ezidk

(11)

where n(s) is the number of attacks during next s time slots, for which we
use a Poisson distribution with mean s · λ, and C is a constant.

We compute the marginal distribution in (11) using a Monte-Carlo simulation,
since computing Pe(d|a0,A, k) for the generic problem is NP-complete for rea-
sonably complex networks [21].

The Monte-Carlo algorithm (Appendix A) is a variant of the algorithm for
probabilistic networks with random links presented in [21]. In our case, instead
of links, vulnerabilities can be randomly exploited or not, but where the ex-
ploitation of a vulnerability might require that some other vulnerabilities must
already have been exploited. Our algorithm starts from the initial attack state,
and then randomly draws an exploitation skill k. Thereafter, we follow the MP
attack graph by randomly exploiting all vulnerability instances reachable from
the prerequisites of the initial attack state. Next, we repeat the last step for
all reachable attack states of the exploited vulnerability instances, until we have
tried to exploit all vulnerability instances gained access to through prerequisites.
Then, from a large number of repetition of the previous steps, while keep start-
ing the attacks from the initial attack state, we can use our predicates to check
for loss of security for any data set instance, and finally, estimate probabilities
of successful attacks.

6 Modeling and Analyzing the Simple Network Example

In Table 1-2, we model the simple network example from Sect. 1. The network
in Fig. 1(a) is modeled in Table 1 and the MP attack graph shown in Fig. 1(b)

is modeled in Table 2. Table 3 and Table 4 shows a data model as well as an
impact model respectively. The data model models that data set dE is located
at host E, dF is located at F and that dE′ is dependent of dE for its existence
and that dE′ flows from E to C. We let all vulnerabilities have the same required
exploitation skill-level.

In Fig. 6, each curve shows the expected risk during the next time slot (s = 1)
for one of the required exploitation skill-levels. The expected risk is shown on
the y-axis (maximum risk is 10.5) and the time on the x-axis. At time point
zero, there are no attacks, but because of our prior distributions, we can infer
a risk anyway. Thereafter, an attack attempt is recorded at each time point as
shown in Table 5. A time slot is 15 time points and thus, the number of time
slots n(T) is 1, 2, . . . , 7 depending on at what time the risk is computed.

Our prior distribution p(k) ∝ 1 implies the cautious, prior belief that the
exploitation skill is uniformly distributed in the attacker community, while for
the prior distribution of λ we set a = 1 and b = 1 in (11) such that p(λ) = e−λ.

A B C D

FW

E F

(a) The simple example net-
work.

Can reach B,C,D

A

vB vC vD

B C D

Can reach E

E

vE

Can reach E,F

F

vF

(b) The multi-prerequisites at-
tack graph.

Fig. 1. The simple example from [13].

Table 1. Network model

N = {A,B,C,D, FW,E, F}
E = {l1, l2}
i(FW) = {iFW1, iFW2}
∀n ∈ N0 : i(n) = {in}
i(l1) = {iA, iB , iC , iD, iFW1}
i(l2) = {iFW2, iE , iF }
r(FW) = {〈iFW1, iFW2, [C, iC , 0],
[E, iE , 0]〉, 〈iFW1, iFW2, [D, iD, 0],
[E, iE , 0]〉}
r(C) = {〈iC , iC , [C, iC , 0], [E, iE , 0]〉}
r(D) = {〈iD, iD, [D, iD, 0], [E, iE , 0]〉}
r(E) = {〈iE , iE , [C, iC , 0], [E, iE , 0]〉,
〈iE , iE , [D, iD, 0], [E, iE , 0]〉}

Table 2. MP attack graph

A = {aA, aB , aC , aD, aE , aF }
Q = {qBCD, qE , qEF }
v(qBCD) = {vB , vC , vD}
v(qE) = {vE}
v(qEF) = {vE , vF }
q(aA) = q(aB) = {qBCD}
q(aC) = {qBCD, qE}
q(aD) = {qBCD, qE}
q(aE) = {qEF }, q(aF) = {qEF }
a(vB) = aB , a(vC) = aC

a(vD) = aD, a(vE) = aE , a(vF) = aF

Table 3. Data model

S = {sB , sC , sD, sE , sF }
∀h ∈ N − {A,FW} : s(h) = {sh}
D = {dE , dE′ , dF }
store(sF) = {dF }
store(sE) = {dE}
dependencies(sE , dE′) = {dE}
outputs(sE , iE) = {〈dE′ , E, iE , 0〉}
inputs(sC , iC) = {〈dE′ , E, iE , 0〉}

Table 4. Impact Model

V = {vB , vC , vD, vE , vF }
∀h ∈ N − {A,FW} : v(sh) = {vh}
∀h ∈ N − {A,FW}, e ∈ {c, i, a} :

impact(vh, e) = Complete
∀e ∈ {c, i, a} : loss(dE , e) = 1
∀e ∈ {c, i, a} : loss(dE′ , e) = 0.5
∀e ∈ {c, i, a} : loss(dF , e) = 2

As we might have expected, each curve looks different given a different re-
quired exploitation skill-level. Not surprisingly, for all curves, the risk decreases
given evidence of unsuccessful attacks, while the risk increases when given evi-
dence of successful attacks. Reasonable enough, the Low-curve is most sensitive
to all types of attacks, while attacks at a lower skill-level have lesser impact on
a risk curve with a higher required skill-level.

We can now compare our model with the recommendation algorithm for
patches in [13]. Table 6 shows the impact estimation when the probability of
success is 1.0 for all vulnerabilities. We have compared three different data mod-
els and five different patch choices. In [13], patches of set of vulnerabilities are
compared. For this simple example, we only patch a single vulnerability instance.
Column 2 shows the impact estimation of the models in Table 3 and 4. Column
3 shows the values when we remove the data flow, in which case dE′ cannot be
reached anymore because vE is patched. Column 4 has the values for the case
when each host B − F has a data set instance with loss value 1. Notice that
patching vE is the best choice in all cases.

The column 3 and 4 of Table 6 can easily be replicated by the algorithm in
[13], but not column 2. Column 3 is replicated by letting E have weight 4.5 and

Low

MediumLow

MediumHigh

High

Fig. 2. Risk as function of time according to required exploitation skill-level.

Table 5. Attack data; a time slot is 15 time points.

Time Skill-level Success. #attacks
0 none - 0

1 - 15 Low No 15
16 - 30 Low Yes 30
31 - 45 MedLow No 45
46 - 60 MedLow Yes 60
61 - 75 MedHigh No 75
76 - 90 MedHigh Yes 90
90 - 105 High No 105
106 - 205 High Yes 205

Table 6. Impact for three different
data models.

Patch Unmod No Flow Uniform
none 10.5 10.5 5
vB 10.5 10.5 4
vC 10.5 10.5 4
vD 10.5 10.5 4
vE 1.5 0 3
vF 4.5 4.5 4

Table 7. Impact for original model.

Original 1 Original 2
10.5 10.5
10.5 10.5
10.5 9
10.5 10.5

0 1.5
4.5 4.5

F weight 6 and column 4 by letting B−F have weight 1. However, consider the
second column, if we use the same weights as for the third column, we would
have the result in the first column in Table 7, where the value of patching vE
differs from that in column 2 in Table 6. To fix this, we can assign weight 3
to E, 1.5 to C and 6 to F , but then we get the result in column 2 of Table 7,
where instead the value of patching vC differs from that in column 2 in Table 6.
Consequently, the importance of a host depends on the attack graph in case of
the original algorithm, while this is not the case for our improved model. The
problem is that in order to compromise data set instance dE′ , we only have to
compromise either C or E. Thus compromising one of them is enough. However,
this is not possible to express using the simple weight assignment.

In Fig. 6, we show the estimated risk using our statistical model, correspond-
ing to column 1 in Table 6. We let all vulnerabilities have required skill-level
Low while using the attacks from Table 5. As can be seen, the risk curves of
our algorithm converge into the same values, given enough attack evidence, as
in column 1 in Table 6. Thus similarly, by removing vulnerability instance vE
we would have the least risk regardless of attack data. Thus, ve would be our
best recommendation. The next best would be vF . However, if we would have
made the recommendation before time point 45, we would instead have recom-
mended vulnerability instance vC as the next best recommendation. Notice also
that at time step 100, removing vD or vC would be better than removing vB or
doing nothing. Accordingly, in contrast to the original algorithm that produces
no difference in risk/impact over time, our algorithm makes it possible to make
fine grained prioritization of patches, using not only expert knowledge as input,
but also monitor data.

7 Related work

A set of papers [3,4,5,6,7] define metrics to measure the security of networks
based primarily on different ways of weighing paths in an attack graph. Other
approaches – like our work – use the risk as a measure of the security of a
network where the cost or loss of an intrusion is used as the basis for the metric
[8,9,10,11].

An early work in this area is presented in [3,4]. As security metrics the authors
use the time from an attack starts until it succeeds and the effort required by
the attacker to succeed. They use a Markov model over a privilege graph to
compute the two metrics, where they assume exponential distributions for the
required time and effort. Their metrics are complementary to our work in that
they consider the cost for an attacker, while we consider the loss to the system
owners.

A work inspired by reliability analysis is presented in [5,6]. The authors use a
model checker to construct an attack graph from a detailed model of the system.
As a security metric they propose the probability that an attacker will end up
in a unsafe system state. They estimate the probabilities by the use of a Markov
Decision Process (MDP) [22]. In contrast to our work, they don’t consider the

V
E
: *

V
F
: !

none : !

V
B
: x

V
D
: +

V
C
: -

Fig. 3. The risk curves for patching one vulnerability.

different skill required to use an exploit. In addition, they do not suggest how
to come up with estimations of the transition probabilities of the MPD.

In [7] the authors use the PageRank algorithm of Google to measure the
security of a network from an attack graph. The result is an ergodic Markov chain
that converges into a probability distribution over the attack states. In contrast
to our work, they do not consider the value of protected assets or dependencies
between attack states; neither do they suggest how to use historical data to
derive transition probabilities.

In [8], the authors present a framework called RheoStat that uses a risk-
based analysis to select a response. Due to that RheoStat’s likelihood metric
is not probability based, RheoStat can only estimate the risk conditioned on
the current intrusion alerts, while our work also can estimate the risk given the
intrusion activities over time. Thus, our work can be used to compare different
network configurations.

The work in [9] uses a Hidden Markov Model (HMM) to estimate the prob-
ability that nodes in a network are in malicious states given observed intrusion
alerts from an IDS. In contrast to our work, the authors only assign costs of
each host being in a malicious state. The impact is estimated either as the total
expected cost for all hosts or the average expected cost per host. They neither
consider the value of protected assets nor dependencies between host.

Another approach to real-time risk analysis uses Hidden Markov Models as
input to a Fuzzy inference system [10]. A set of Fuzzy rules are used to derive
three linguistic variables: intrusion frequency, probability of threat success and
severity. The HMMs provide an estimation of the intrusion frequency of different
attack types, while the other input values come from a distributed intrusion
detection system and from a traffic rate monitor. Then another set of Fuzzy
rules infer the final risk assessment from the three linguistic variables. In [11],
the same authors present an extension where the Fuzzy rules are optimized using
a neural network that learn from given training examples. The papers are brief
on how the system works and how it was tested, hence a comparison with our
approach is not easy to do.

8 Summary and Concluding Remarks

We have presented a framework for assessing the security risk to a network using
data flows over an attack graph and a Bayesian model of the exploitation skill
of the attacker community, given a record of attack data. By modeling the flow
of data, we take into account dependencies between different hosts and different
data flows. In addition, we are able to update the risk computation as soon as
we receive more attack data.

We also propose using a honeypot to collect historical attack data. However,
in order to model the exploitation skill, each vulnerability instance must be
classified by an expert into a required exploitation skill-level. This can turn into
a problem since a vulnerability that once was hard to exploit might suddenly
become easy when somebody creates a downloadable exploitation code. Thus,
some monitoring system for updating the information about vulnerabilities is
needed as well as a support system for classifying old and new vulnerabilities
given new information.

Acknowledgements. This work has been performed within the SICS Center
for Networked Systems funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab
Systems, TeliaSonera and T2Data.

References

1. Nessus: The network vulnerability scanner. http://www.nessus.org (April 2009)
2. Lippman, R., Ingols, K.: An annotated review of past papers on attack graphs.

Project Report PR-IA-1, MIT Lincoln laboratory (March 2005)
3. Dacier, M., Deswarte, Y., Kaaniche, M.: Quantitative assessment of operational

security: Models and tools (1996)
4. Ortalo, R., Deswarte, Y.: Experimenting with quantitative evaluation tools for

monitoring operational security. IEEE Transactions on Software Engineering 25
(1999) 633–650

5. Jha, S., Sheyner, O., Wing, J.M.: Minimization and reliability analyses of attack
graphs. Technical Report CMU-CS-02-109, School of Computer Science, Carnegie
Mellon University (2002)

6. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: IEEE Symposium on Security and Privacy. (2002)
273– 284

7. Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J.: Ranking attack graphs. In:
Proceedings of Recent Advances in Intrusion Detection, Springer (2006)

8. Gehani, A., Kedem, G.: Rheostat : Real-time risk management. In: Proceedings
of the 7th International Symposium on Recent Advances in Intrusion Detection.
(2004) 15–17

9. Årnes, A., Valeur, F., Vigna, G., Kemmerer, R.A.: Using hidden markov models
to evaluate the risks of intrusions - system architecture and model validation. In:
Proceedings of Recent Advances in Intrusion Detection, Springer (2006)

10. Haslum, K., Abraham, A., Knapskog, S.: Dips: A framework for distributed in-
trusion prediction and prevention using hidden markov models and online fuzzy
risk assessment. In: Third International Symposium on Information Assurance and
Security, IEEE Computer Society press (2007)

11. Haslum, K., Abraham, A., Knapskog, S.J.: Hinfra: Hierarchical neuro-fuzzy learn-
ing for online risk assessment. In: Asia International Conference on Modelling and
Simulation. (2008) 631–636

12. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for informa-
tion technology systems. Technical Report NIST SP 800-30, Computer Security
Division, Information Technology Laboratory, National Institute of Standards and
Technology (2002)

13. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: Computer Security Applications Conference. (2006) 121–130

14. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Second
edn. Chapman & Hall/CRC (July 2003)

15. CVSS: Common vulnerability scoring system. http://www.first.org/cvss/ (April
2009)

16. Olsson, T.: Impact estimation using data flows over attack graphs. In: Proceedings
of the 14th Nordic Conference on Secure IT Systems (NordSec). (October 2009)

17. NVD: National vulnerability database. http://nvd.nist.gov/ (April 2009)
18. Abramowitz, M., Stegun, I.A., eds.: Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. Dover, New York (1972)
19. McGrew, R., Vaughn, R.B.: Experiences with honeypot systems: Development,

deployment, and analysis. In: Proceedings of the 39th Hawaii International Con-
ference on System Sciences. (2006)

20. Alata, E., Nicomette, V., Kaâniche, M., Dacier, M., Herrb, M.: Lessons learned
from the deployment of a high-interaction honeypot. In: EDCC’06, 6th European
Dependable Computing Conference. (October 2006)

21. Marzot, G.S.: Netstat: A probabilistic network connectivity analysis tool. Technical
Report A838262, MITRE CORP BEDFORD MA (Feb 1993)

22. Filar, J.A., Vrieze, K.: Competitive Markov Decision Processes. Springer (1996)

A Monte-Carlo Algorithm

Input: a0 - attack state, d - data set instance, s - time slots, e - security aspect,
X - attack data

Output: prob - the estimated probability of loss of security.
N ← 100000 : Number of sampled values.

me ← 0 : mean value of the probability of loss of security .

x← 0 : a weighted value, indicating whether d was compromised.

mP (X) ← 0 : estimated mean value for probability of the Data.
sP (X) ← 0 : estimated standard deviation of probability of the Data.
for i = 0; i < N ; i = i+ 1 do

k ← sample from p(k);
StatesCurrent← {a0}, V ulnsCurrent← ∅, StatesUsed← ∅;
V ulnsUsed← ∅, PrerequistesUsed← ∅, V ulnsExploited← ∅;
Collect samples of successfully exploitations:

while StatesCurrent 6= ∅ do
foreach a ∈ StatesCurrent do

foreach q ∈ q(a) and q 6∈ PrerequistesUsed do
foreach v ∈ v(q) and v 6∈ V ulnsUsed do

V ulnsCurrent← V ulnsCurrent ∪ {v};
V ulnsUsed← V ulnsUsed ∪ v(q);

PrerequistesUsed← PrerequistesUsed ∪ q(a);

StatesUsed← StatesUsed ∪ StatesCurrent, StatesCurrent← ∅;
foreach v ∈ V ulnsCurrent do

if rand(0, 1) > 1− Φ(k,mz(v), σz(v)) and a(v) 6∈ StatesUsed then
StatesCurrent← StatesCurrent ∪ {a(v)},
V ulnsExploited← V ulnsExploited ∪ {v};

V ulnsCurrent← ∅;
Estimate current mean value:

if lossOfSecurity(e, d, V ulnsExploited) holds true then

x←
“

n(T)+b
n(T)+s+b

”n(X)+a

· p(X|k) else x← P (X|k);

if i = 0 then
m′

e ← x, s′
e ← 0, m′

P (X) ← P (X|k), s′
P (X))← 0 : Init old values

else
me ← m′

e + (x−m′
e)/(i+ 2),

mP (X) ← m′
P (X) + (P (X|k)−m′

P (X))/(i+ 2)

m′
e ← me, s′

e ← se, m′
P (X) ← mP (X), s

′
P (X) ← sP (X) : Save old

values

prob← 1− me
mP (X)

;

