
A Framework for WirelessHART
Simulations

Igor Konovalov < igor@sics.se >

Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, Sweden

SICS Technical Report T2010:06
ISSN 1100-3154

June 15, 2010

Keywords: wirelessHART, hybrid simulations, time synchronization, protocol

analyzer

Abstract

Due to stringent timing requirements of the WirelessHART protocol, we
need to extend previously known hybrid simulation approaches with Wire-
lessHART specific functionality. Because of intermediary devices that connect
simulation and real environments a communication delay significantly exceeds
time boundaries of a WirelessHART slot. Our solution is to add a Wire-
lessHART -enabled intermediary device operating at the Physical and the Data
Link layers that can handle time critical tasks of the WirelessHART protocol.
This approach allows to evaluate the performance of a WirelessHART network
and WirelessHART -enabled devices in a hybrid simulation environment.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank my advisors Fredrik Ősterlind from SICS and Jonas
Neander from ABB for their support and kind advices during my work. I would
also like to thank all the Networked Embedded Systems group and my examiner
Thomas Lindh from the Royal Institute of Technology.

This thesis has been performed within the SICS Center for Networked
Systems funded by ABB.

iii

Abbreviations

ACK Acknowledgment
APDU Application Layer Protocol Data Unit
ASN Absolute Slot Number
CCM Counter with CBC-MAC
DLPDU Data Link Layer Protocol Data Unit
HART Highway Addressable Remote Transducer
IETF Internet Engineering Task Force
ISM Industrial, Scientific and Medical
MAC Medium Access Control
MIC Message Integrity Code
NPDU Network Layer Protocol Data Unit
OSI Model Open Systems Interconnection Basic Reference Model
PPDU Physical Layer protocol Data Unit
TDMA Time Division Multiple Access
TPDU Transport Layer Protocol Data Unit
WSN Wireless Sensor Network

v

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.2 Method . 2

1.3 Alternative Approaches . 2

1.4 Scientific Contributions . 2

1.5 Delimitations . 2

1.6 Thesis Structure . 3

2 Background 5

2.1 Software Development Tools . 5

2.2 Hardware Development Tools . 5

2.2.1 Tmote Sky . 6

2.2.2 The SmartMesh IA-510 D2510 Network Manager 6

2.2.3 The M2510 Evaluation Mote Module 7

2.3 The WirelessHART Protocol . 7

2.3.1 The WirelessHART Physical Layer 8

2.3.2 The WirelessHART Data-Link Layer 9

2.3.3 The WirelessHART Network Layer 10

2.3.4 The WirelessHART Transport Layer 11

2.3.5 The WirelessHART Application Layer 12

2.4 WirelessHART Security Analysis 12

3 Design and Implementation 15

3.1 Simulation framework . 16

3.1.1 Hardware bridges . 16

3.1.2 Software bridges . 17

3.1.3 Network Manager and Field Devices 17

3.1.4 COOJA network simulator 17

3.2 Bridge implementation . 17

3.3 WirelessHART packet analyzer 19

3.4 Extended Bridge . 21

3.4.1 Time Synchronization with the WirelessHART clock . . . 21

3.4.2 SPI Access . 22

3.4.3 WirelessHART Link-layer Acknowledgments 23

vii

viii Contents

4 Evaluation 25
4.1 Single-hop Round Trip Time Measurements 25
4.2 Multi-hop Round Trip Time Measurements 27
4.3 A WirelessHART Network Traffic Analysis 28
4.4 WirelessHART ACK Timing . 28
4.5 The Time Synchronization Stabilitiy 31

5 Related Work 33

6 Conclusions and Future Work 35
6.1 Conclusions . 35
6.2 Future Work . 35

References 37

List of Figures

2.1 The Tmote Sky Sensor Node . 6
2.2 The IA-510 D2510 Network Manager 7
2.3 The M2510 Evaluation Mote Module 7
2.4 WirelessHART Physical PDU Structure 8
2.5 WirelessHart Data-Link PDU Structure 9
2.6 WirelessHART NPDU Structure 10
2.7 Wireless HART TPDU Structure 11
2.8 Wireless HART Application Layer PDU Structure 12
2.9 WirelessHART Device Integration into a Network and Security

Keys Allocation . 13

3.1 The Hybrid Simulation Framework for WirelessHART 16
3.2 Generic Bridge Algorithm . 18
3.3 Serial Forwarder Plugin for COOJA 18
3.4 WirelessHART Layered Architecture 19
3.5 WirelessHART Packet Analyzer Basic Algorithm 21
3.6 WirelessHART Slot Timing . 22

4.1 Single-hop Latency Measurements 25
4.2 Round Trip Time Increase with a Generic Bridge 26
4.3 Multi-hop Latency Measurements 27
4.4 RTT Deviation in A Mesh Network 28
4.5 ACK Creation Time Expectancy 29
4.6 ACK Total Time without SPI Acceleration 30
4.7 ACK Total Time with SPI Acceleration 31
4.8 Local Clock Deviation from The Real Time 32

ix

Chapter 1

Introduction

WirelessHART is an emerging communication protocol for industrial automa-
tion. It is an extension of the widely used Highway Addressable Remote
Transducer (HART) communication protocol [1]. On April 2010 WirelessHART
was approved by the International Electrotechnical Commission (IEC) as a first
international standard for industry process automation [2].

Existing deployments of legacy HART networks encourages the development
and adoption of WirelessHART as an extension to a HART infrastructure.
WirelessHART is a secure and reliable communication protocol operating at
the IEEE 802.15.4 2.4 GHz wireless Physical Layer that uses Time Division
Multiple Access (TDMA) Media Access Control (MAC) with frequency hopping.
The protocol is loosely organized around the OSI-7 interconnection model
and requires WirelessHART -enabled devices from different vendors to be
interoperable[3].

1.1 Problem Statement

Typical hybrid simulation tools are not suitable for simulating WirelessHART
networks, and thus an enhanced approach for performing hybrid simulations is
necessary. Time constrained and secure communications of the WirelessHART
protocol impose additional requirements that need to be considered when
simulating a WirelessHART network in a hybrid simulation environment.

Simulations of WirelessHART networks present an efficient and cost-effective
way to perform network evaluations. For a better understanding of the
WirelessHART protocol a feasible tool suitable for testing capabilities of
WirelessHART -enabled devices and a WirelessHART mesh network is required.

The goal of the project is to create a simulation tool that can be used to test
WirelessHART -enabled devices and simulate a WirelessHART network. This
thesis main goal is to create an interface to connect a simulation environment
with real WirelessHART -enabled devices and be able to analyze a network
traffic and an operation of a network.

The major challenges for this project are constraints imposed by both the
hardware and the WirelessHART protocol. These constraints include the time
critical operation of the protocol, protocol security-enabled communications and
a low computational power and memory of the hardware.

1

2 CHAPTER 1. INTRODUCTION

The software should be designed to run on wireless sensor nodes and must
depend only on the Physical Layer employed. A wireless sensor node shall
be capable of a transparent data forwarding from the wireless medium to the
simulated environment and vice versa. Devices running the WirelessHART
protocol stack demand considerable amount of computations. A typical wireless
sensor node is best suited for low computational complexity applications and
low memory consumption. Hence most of WirelessHART capabilities should be
implemented outside a sensor node.

1.2 Method

The method used in this thesis is experimental computer science. We start
with the implementation of a generic framework and follow with a literature
survey of the WirelessHART protocol and then proceed to the implementation
of additional protocol related features. An evaluation of the implementation
is verified periodically using both available literature sources and developed
analyzing tools.

1.3 Alternative Approaches

Among the alternative solutions related to this thesis, a software simulation
is an another approach. This approach requires a feasible WirelessHART
stack however currently there is no full implementation of it. A different
approach is to perform a non-real time simulation employing an event-
based simulation behavior, but this approach requires a suitable event-based
simulation framework.

1.4 Scientific Contributions

There are two contributions of this thesis. First a hybrid simulation framework
for the WirelessHART protocol is presented. Secondly, we show that it is
possible to perform the time critical computations on a constrained embedded
platform without exceeding the time boundaries imposed by the WirelessHART
protocol.

1.5 Delimitations

Due to lack of a complete and stable implementation of the WirelessHART
stack, the evaluation has been done using a Tmote Sky [4] sensor node that
is configured with relevant WirelessHART capabilities. The Tmote Sky sensor
node was chosen based on its popularity and an extensive support. Since most
of the WirelessHART requirements addressed in this thesis are at the Physical
and the Data Link layers, the results are expected to be accurate enough.

1.6. THESIS STRUCTURE 3

1.6 Thesis Structure

The reminder of this thesis has been structured as follows. In Chapter 2, we will
describe some important properties of the WirelessHART protocol that has to
be considered in the implementation. After this we describe software tools that
aid in development of the simulation framework. The chapter finishes with an
evaluation of the protocol emphasizing pros and cons of the protocol. The design
and implementation is described in Chapter 3 and the evaluation in Chapter 4.
Chapter 5 will discuss related work and in Chapter 6 the thesis is concluded.

Chapter 2

Background

Software development tools such as Contiki operating system and COOJA
network simulator alongside with the hardware tools including Tmote Sky sensor
node and the D2510 Network Manager are introduced in this chapter. Also the
layered structure of the WirelessHART protocol is described.

2.1 Software Development Tools

In this thesis Contiki operating system[5] is used to develop an application
interfacing the 2.4 GHz wireless medium. Contiki utilizes an event-driven kernel,
communication stacks and a stackless thread-like abstraction - protothreads[6].
Contiki operating system is an actively developed operating system ported
to a number of wireless sensor platforms including a Tmote Sky[7] wireless
sensor node. Contiki operating system supports different Media Access
Protocols (MACs) and provides three communication stacks - Rime[8], uIP[9]
and uIPv6[10]. Contiki operating system is developed using C programming
language.

COOJA network simulator[11] is used for developing the simulation frame-
work and WirelessHART related applications. COOJA is a cross-level simula-
tion tool that enables simulations at different abstraction levels - the network
level, the operating system level, and the machine code level. COOJA
is developed using Java programming language, thus it is a cross-platform
simulator that can run independently of the underlying hardware architecture.

2.2 Hardware Development Tools

In this thesis wireless sensors are used for a physical connection between Wire-
lessHART -enabled devices and the simulation framework. Wireless sensors are
typically capable of sensing different physical phenomenon such as temperature,
humidity, light and other. In this thesis wireless sensors are used mainly as radio
transceivers.

5

6 CHAPTER 2. BACKGROUND

2.2.1 Tmote Sky

The Tmote Sky sensor node (figure 2.1) is a real-time computing constraint
embedded system[12] manufactured by Moteiv corporation. It is a low-power
wireless sensor node that features an MSP430 microcontroller[13] from Texas
Instruments with 10 kilobytes of RAM, 48 kilobytes of internal memory and 1
megabyte of external flash memory.

Figure 2.1: The Tmote Sky Sensor Node

The MSP430 is a Reduced Instruction Set Computer (RISC) with an
extremely low current consumption both in active and sleep modes thus allowing
for an extended battery life. The Tmote Sky uses the IEEE 802.15.4 compliant
Chipcon CC2420[14] Radio Transceiver.

The CC2420 is a single-chip 2.4 GHz RF Transceiver with an effective data
rate of 250 kbps. The CC2420 RF transceiver provides hardware support
for various MAC layer functionalities, including data encryption and data
authentication.

2.2.2 The SmartMesh IA-510 D2510 Network Manager

The D2510 Network Manager[15] (figure 2.2) combines the Dust Networks
Gateway and the Network Manager for up to 250 SmartMesh IA-510 motes[15].
The D2510 Network Manager is the main unit in a WirelessHART -enabled
SmartMesh network. Among others, its responsibilities include network
configuration and scheduling, packet routing, network maintenance, and data
publishing to a wired network.

2.3. THE WIRELESSHART PROTOCOL 7

Figure 2.2: The IA-510 D2510 Network Manager

The D2510 Network Manager employs reliable and low latency data
communications and a deterministic power management. The operation of the
Network Manager can be configured via one of its three maintenance interfaces
(i.e. serial, Ethernet or XML). Although the Network Manager allows to
configure various features, it is not possible to directly change its operation.

2.2.3 The M2510 Evaluation Mote Module

The M2510 evaluation sensor mote in the figure 2.3 is an ultra low-power wireless
transceiver[15]. It can receive serial data from attached sensors (if any) and use
an onboard radio to send packets to neighboring motes.

Figure 2.3: The M2510 Evaluation Mote Module

This mote runs the SmartMesh software and forwards data in a series of hops
to the Network Manager. In this thesis the M2510 Evaluation Mote Module is
used to monitor the WirelessHART joining procedure to the Network Manager
as well as for further analyses of WirelessHART communications.

2.3 The WirelessHART Protocol

The WirelessHART protocol is an extension to a legacy HART protocol that
adds a wireless capability to its predecessor. The WirelessHART protocol main

8 CHAPTER 2. BACKGROUND

features are summarized below:

• Communication protocol designed for industrial automation

• Extension to HART5, 4-20mA protocol

• Full international standard

• IEEE 802.15.4-2006 Physical Layer

• Secure, reliable, and simple communications

• Frequency hopping TDMA MAC protocol

• Four basic network elements:

1. Network Manager

2. Security Manager

3. Gateway/Access Point

4. Field Device

• Command-based network management and data communication

WirelessHART has a number of basic capabilities and even greater amount
of additional features that can be configured. The reminder of this chapter
introduces the WirelessHART protocol covering each of its layers which we
believe is the most comprehensive way to describe the protocol. The detailed
information of capabilities of generic WirelessHART -enabled devices such as
the Network Manager or the Gateway are not discussed here and an interested
reader can refer to a set of WirelessHART specifications for an additional
information. All of the subsequent sections in this chapter describes the protocol
capabilities that are valid to the D2510 Network Manager and the M2510 Field
Device.

2.3.1 The WirelessHART Physical Layer

The WirelessHART protocol employs the partially adopted[16] IEEE 802.15.4-
2006 Physical Layer[17] operating at 2.4 GHz. The Physical Layer PDU (PPDU)
(figure 2.4) begins with a synchronization header (SHR). The SHR consists of
a preamble sequence followed by a Start of Frame Delimiter (SFD).

Figure 2.4: WirelessHART Physical PDU Structure

The SHR is always transmitted first for any WirelessHART frame. For the
2.4 Ghz Physical Layer the preamble sequence length is 4 bytes and the SFD
length is 1 byte. The preamble field is used by the transceiver to obtain chip and

2.3. THE WIRELESSHART PROTOCOL 9

symbol synchronization with an incoming message. The SFD field indicates an
end of the SHR and a start of a packet data. A length field is 7 bits in length,
it specifies the total number of bytes contained in the PPDU payload excluding
itself.

2.3.2 The WirelessHART Data-Link Layer

The WirelessHART frame or the Data Link Layer Protocol Data Unit (DLPDU)1

establishes a structure of the WirelessHART frame and provides means for
reliable and secure communications at the Data-Link Layer (DLL). The DLL
resides on top of the IEEE 802.4.15 Physical Layer. The WirelessHART DLL
differs from the IEEE 802.15.4-2006 DLL introducing frequency hopping and
channel blacklisting. The later one can be used to reduce the interference in a
presence of a noise that can be introduced by industrial processes.

The WirelessHART DLPDU specifies an address format employed, contains
a sequence number for every frame transaction and an information about the
DLPDU type and priority. With an aid of WirelessHART DLPDUs a network
of WirelessHART -enabled devices is maintained and synchronized in time.
The WirelessHART DLPDU structure is illustrated in the figure 2.5. Every
WirelessHART frame (that is any message sent or received) starts with a fixed
first byte (0x41) that can be used, if needed, for filtering of WirelessHART
frames. The first byte alongside with an Address Specifier field is an IEEE
802.15.4 Frame Control Field. Since security is an essential part of the
WirelessHART protocol, bit four of the first byte is set to indicate that an
IEEE 802.15.4-2006 security is enabled.

Figure 2.5: WirelessHart Data-Link PDU Structure

The TDMA Data Link Layer Specification[18] defines five WirelessHART
frame types.

1In the reminder of this thesis the WirelessHART frame and the DLPDU are used
interchangeably

10 CHAPTER 2. BACKGROUND

These frame types are:

1. Acknowledgment DLPDU

2. Advertise DLPDU

3. Keep-Alive DLPDU

4. Disconnect DLPDU

5. Data DLPDU

All the DLPDUs except the Data DLPDU are exclusively the DLL PDUs.
Essentially, Acknowledgment (ACK), Advertise, Keep-Alive and Disconnect
WirelessHART DLPDUs are originated at the DLL and are exchanged only
between neighboring peer devices.

Advertisement DLPDUs are invitations to a network. Devices wishing to
join a network listen for Advertisement DLPDUs.

Keep-Alive DLPDUs are frames without a payload, they can be used for
network time synchronization, access communication with a neighbor and a
neighbor discovery.

ACK DLPDUs are used to inform a sender of a non-broadcast frame if the
DLPDU is accepted or not. ACK DLPDUs contain a Response Code and a
Time Adjustment field (a difference between expected and actual time of the
DLPDU reception). Destination Devices will respond with an ACK DLPDU in
response to all Keep-Alive, Advertise, or Disconnect DLPDUs addressed to a
device and successfully receive[19].

Disconnect DLPDUs are used to advise neighboring devices that the device
is leaving the network.

2.3.3 The WirelessHART Network Layer

The Network Layer defines and controls the operation of a network and it is
a cornerstone for the WirelessHART protocol. Figure 2.6 shows a Network
Protocol Data Unit (NPDU) structure. The Network Layer responsibilities
consist of several functions including packet routing, ensuring secure end-to-end
communications and encapsulating the Transport Layer information exchanged
across a network.

Figure 2.6: WirelessHART NPDU Structure

The NPDU header starts from a Control byte that specifies an addressing
scheme employed and indicates if special routes are used in the reminder of the
header.

2.3. THE WIRELESSHART PROTOCOL 11

A Time-To-Live (TTL) field is a counter which is decremented at the each
next hop, hence determining an amount of hops a packet can travel before it is
dropped.

An Absolute Slot Number (ASN) Snippet field provides performance metrics
and a diagnostic information of a network operation. This field specifies the time
passed since a packet was created.

A Graph ID field is used to route a packet across a network, identifying
nodes which can be used along the way.

Remaining fields specifies addresses and additional routing options.
Security sublayer is a part of the NPDU header, it is used for data encryption

(encipherment) and the NPDU authentication. Security sublayer Control field
is 8 bit in length and it specifies a type of a security employed. The length of
the security sublayer (excluding data) depends on the type of a security used.
Currently there are three security types:

1. Session Keyed Security: Total length = 6 Bytes

2. Join Keyed Security: Total length = 9 Bytes

3. Handheld Keyed Security: Total length = 9 Bytes

The other two fields in the security sublayer are needed by a security
algorithm. The NPDU payload is encrypted using the algorithm specified in
the Security Type field.

A Message Integrity Code (MIC) is responsible for checking data integrity.
An overall length of the NPDU header may vary depending on the length of
the source and the destination addresses, special routes and the counter length.
The minimum length of the NPDU header is 21 bytes.

In summary the total NPDU consists of the NPDU header (including
security bits) and an enciphered payload. The enciphered payload consists
of the Transport Layer PDU and is added to deliver an actual data such as
WirelessHART commands. After the NPDU is assembled it is passed to the
DLL.

2.3.4 The WirelessHART Transport Layer

WirelessHART employs the lightweight Transport Layer which is used to
indicate a status of a device and ensure an end-to-end packet delivery. Figure
2.7 illustrates the WirelessHART Transport Layer PDU (TPDU) structure.

Figure 2.7: Wireless HART TPDU Structure

12 CHAPTER 2. BACKGROUND

The TPDU is enciphered using one of the session keys or the join key. Devices
that wish to communicate must be provisioned with the identical join keys. The
Transport Layer encapsulates WirelessHART Application Layer data, that is an
array of aggregated commands.

2.3.5 The WirelessHART Application Layer

The Application Layer PDU (APDU) contains an actual command data used
in WirelessHART communications. Figure 2.8 illustrates the structure of the
Application Layer.

Figure 2.8: Wireless HART Application Layer PDU Structure

Each command starts with a 16-bit number allowing for total of 65535
commands[20]. The length field indicates the size of a command and the Data
field contains the command payload.

2.4 WirelessHART Security Analysis

The WirelessHART security is reasonably strong[21] however using a symmetric-
key encryption standard (i.e. AES) can be potentially dangerous due to a fact
that a private key has to be distributed prior communications. At one point
a network operator or the Network Manager has to provide an initial key to a
remote device. WirelessHART -enabled devices use the join key for integration
into a network. Usually remote devices are configured with the join key via their
maintenance port by an operator. It is also possible to distribute the join key
with the Network Manager assistance. Upon powering on a WirelessHART -
enabled device it does not have any keys except the well-known key that is
used as a per-hop key for unauthenticated device before the Network Manager
allocates the Network Key. The Well-Known key is used in advertisements and
when joining a network.

After performing initial device provisioning which include obtaining the join
key, a join request is initiated. The join request is used to query the Network
Manager for an admission to a network and to establish a secure channel between
a Field Device and the Network Manager. Figure 2.9 illustrates the security keys
that are used at different steps of a device integration into a network.

2.4. WIRELESSHART SECURITY ANALYSIS 13

Figure 2.9: WirelessHART Device Integration into a Network and Security Keys
Allocation

First, the configured join key is used to encipher the join request between
a remote device and the Network Manager. At the Data Link Layer the Well-
Known key is used to calculate and confirm the MIC. The Well-Known key is
generally known and can be found in the TDMA WirelessHART specification
[18]. The join key is written via a device maintenance port and it can be
extracted by a network operator or by a person who has access to a Network
Manager console or a web interface. Obtaining the join key allows to decrypt
captured packets that are encrypted using the join key.

In order to be admitted to the network device has to present its credentials
which are:

1. The device’s Identity

2. The Device’s Long Tag

3. The list of Neighbors detected by the device

4. The devices’s Join Key

If the Network Manager will decide that a device can be granted an access
to a network it will allocate the session and the network keys and the device’s
nickname (2-byte short address). An encipherment of a data packet containing
the session and the network keys alongside with the device nickname is done
using the join key.

14 CHAPTER 2. BACKGROUND

In the figure 2.9 when the Network Manager sends the NPDU containing
the network and the session keys, the NPDU is encrypted with the join key
that is known to an administrator or an operator. Hence, during the device
integration to a network the session and the network keys can be acquired and
all subsequent communications can be tracked. In order to successfully decrypt
a WirelessHART NPDU payload, one should also keep track of the join/session
nonces.

In summary, without considerable knowledge about a network (i.e. knowl-
edge about the join/session key) it is extremely hard to eavesdrop communi-
cations. Nevertheless, it is possible to sniff a WirelessHART traffic using the
knowledge about the protocol operation.

Chapter 3

Design and Implementation

A significant part of this thesis is devoted to implementation of the Wire-
lessHART simulation framework in Contiki operating system and COOJA
network simulator. First, the simulation framework is shown and then
applications that are used for this implementation are introduced. Further,
some specific challenges are described such as time constrained WirelessHART
communications, security and software and hardware ACKs.

There are few WSNs simulators available however none of them is par-
ticularly suitable for simulating WirelessHART networks. COOJA network
simulator is a simulation tool that is easy to adapt to the requirements of the
WirelessHART protocol such as slotted TDMA communications and security.
The major problem for simulating WirelessHART networks is that there are no
complete and stable open-source implementations of the WirelessHART -stack
available.

In [22] and [23] prototype implementations of WirelessHART architecture
are discussed. Despite some promising results these architectures are far
from being complete and lack many of essential features of the WirelessHART
protocol. Clearly WirelessHART imposed requirements are hard to meet, hence
without a dedicated hardware platform it is complicated to fully implement the
WirelessHART stack.

Our implementation introduces an approach where the critical tasks of the
WirelessHART protocol can be implemented outside the resource constrained
hardware. The main design goals are as follows:

Limited hardware dependency
Since hardware computational power is likely to be a bottleneck, the aim
is to reduce the influence of a hardware platform as much as possible.

Implementation generalization
The implementation should not be specific to any protocol or architecture.
An operating frequency and a maximum packet length are the only
requirements.

15

16 CHAPTER 3. DESIGN AND IMPLEMENTATION

3.1 Simulation framework

WSN simulations can be performed in several different approaches. Software
simulation is an approach, where a WSN is entirely realized in a software
and wireless sensor nodes are either emulated images or software applications
reflecting characteristics of real nodes. Simulation in COOJA network simulator
is a typical example of such approach, where emulated nodes run the same code
as real nodes. A second approach is to deploy a combined network of both real
hardware sensor nodes and simulated sensor nodes. This simulation framework
is often called a hybrid simulation or an augmented reality. An example of such
framework is discussed in [24].

The simulation framework described in this thesis is based on a hybrid
simulation approach. A motivation behind a hybrid simulation tool is an absence
of open WirelessHART stack implementations. Instead, real WirelessHART -
enabled devices provided by DUST[25] are used. This setup introduces a
possibility to test and analyze the operation of the WirelessHART protocol
by examining an operation of WirelessHART -enabled devices. In order to keep
the implementation as independent as possible from the used operating system,
only a small subset of capabilities of Contiki operating system has been used.

Figure 3.1: The Hybrid Simulation Framework for WirelessHART

Figure 3.1 illustrates a simulation environment setup. The framework con-
sists of several components including software and hardware bridges discussed
in details in Section 3.2, the WirelessHART D2510 Network Manager, Field
Devices and COOJA network simulator.

3.1.1 Hardware bridges

Each hardware bridge senses one of the available frequency channels and
relays data between COOJA network simulator and the wireless medium. The
WirelessHART Physical Layer specification[16] defines 16 frequency channels
that can be used to transmit or receive data. Initially all of the channels are
enabled, however unless significant interference is present, there is no need to
use all of the available 16 frequency channels. In this thesis we use 5 frequency
channels since it is the minimum amount of channels that has to be enabled.
The implementation of the application that runs on a hardware bridge is done
in Contiki operating system.

3.2. BRIDGE IMPLEMENTATION 17

3.1.2 Software bridges

Software bridges are interconnected with their corresponding hardware versions,
thus composing a generic Bridge. Software bridges are implemented in COOJA
network simulator. Software bridges have similar capabilities as their hardware
copies and can be extended with additional features.

3.1.3 Network Manager and Field Devices

The D2510 Network Manager is discussed in Section 2.2.2. The Network
Manager is the source of all WirelessHART DLPDUs that are sent over
the wireless medium. Field Devices and the Network Manager are used for
evaluation of a WirelessHART network. Information about a WirelessHART
Field Device can be found in section 2.2.3.

3.1.4 COOJA network simulator

COOJA network simulator contains software applications that reflect an
operation of hardware bridges. It also may contain emulated versions of
hardware bridges and emulated WirelessHART -enabled devices. Hence, the
size of a WirelessHART network can be extended without a need of additional
hardware devices.

There is, however, a little support for WirelessHART -enabled devices in
COOJA, specifically mainly the WirelessHART Network and Transport layers
are supported. In this thesis we are mainly focused on lower protocol layers such
as the Data-Link Layer and the Physical Layer and on developing interfaces and
testing the Network Manager and Field Devices.

3.2 Bridge implementation

The implementation of a generic Bridge contains three components:

• Hardware bridge

• Serial Forwarder Plugin for COOJA

• Software bridge

The main task of a generic Bridge is to forward received data from the
2.4 GHz wireless medium to the simulation environment and vice versa. Data
is forwarded over a serial line which is typically a synchronous bus. Before
forwarding data over a serial line it is converted into a hexadecimal format.
Similarly when a hexadecimal data is received from a serial line it is converted
into 8-bit Unicode characters. The figure 3.2 shows the generic algorithm used
in a generic Bridge application.

18 CHAPTER 3. DESIGN AND IMPLEMENTATION

Figure 3.2: Generic Bridge Algorithm

Due to the event-based nature of Contiki operating system, after the
initialization Bridge process waits for an event to occur. There are two possible
events that may happen. Data is either received from the 2.4 GHz wireless
medium or from a serial line.

In the first case the length of an incoming data is verified and if it is bigger
than the minimum length (in this case 1 byte) data is forwarded over a serial line,
otherwise it is dropped. In the second case, received data length is compared
with the maximum allowed length (in this case 256 bytes) and if it meets
the requirement data is sent via the 2.4 GHz wireless medium, otherwise it
is dropped. This simple algorithm allows for a lossless relay of data and is not
specific to any hardware platform or operating system.

A Serial forwarder plugin is responsible for sending and receiving data over
the USB port. It is implemented using an open-source RXTX library for serial
communications[26]. The Serial forwarder in the figure 3.3 is a graphical plugin
that is used to connect and listen to the specified serial port and to relay data.

Figure 3.3: Serial Forwarder Plugin for COOJA

Finally, a software bridge has the same capabilities as its hardware image.
Since it resides on a powerful computer a software bridge can perform very
intense computations, for instance, it can be used to store data and print logs.
The idea behind a generic Bridge is to be entirely transparent to higher layers
of any communication protocol. Its operation should be similar to the Ethernet
bridge in a learning state. The WirelessHART protocol, however, imposes some
very strict timing requirements at the DLL, and therefore specifically for this

3.3. WIRELESSHART PACKET ANALYZER 19

protocol implementation an extended version of a generic Bridge (discussed in
Section 3.4) is introduced.

3.3 WirelessHART packet analyzer

The WirelessHART protocol is loosely organized around the OSI-7 layered
architecture. The protocol defines 5 separate layers - the Physical Layer, the
Data-link Layer, the Network Layer, the Transport Layer and the Application
Layer. Figure 3.4 shows the WirelessHART layered architecture.

Figure 3.4: WirelessHART Layered Architecture

Each layer of the WirelessHART protocol can be described with its
corresponding PDU. During this thesis a WirelessHART packet analyzer has
been developed aiding in understanding of an operation of the protocol and
WirelessHART -enabled devices. The packet analyzer is designed in a modular
fashion, that is each layer of the protocol is processed individually and in order.

PPDU

The PPDU encapsulates the WirelessHART DLPDU and its contents are
processed and stripped away by the underlying hardware. In the figure 3.4 a
PPDU contains the Cyclic-Redundary-Check (CRC), however strictly speaking
this a DLPDU field. Implementations of most of the CRC-checks are performed
in hardware, thus if a packet arrives without errors CRC is stripped away and
a packet is passed to the DLL for further processing.

DLPDU

The DLPDU is an actual data payload that is transferred from a radio
transceiver to the DLL. The WirelessHART DLPDU is not encrypted, however
its contents starting from the first byte (refer to figure 2.5) till the end of the
payload, are authenticated using a Counter with CBC-MAC (CCM)[27] security
algorithm. If the WirelessHART DLPDU contains the Network Layer payload
it is passed to the Network Layer for processing. For some WirelessHART

20 CHAPTER 3. DESIGN AND IMPLEMENTATION

DLPDUs such as keep-alive DLPDUs there is no Network Layer overhead, hence
it is processed depending on the DLPDU type. The DLPDU’s first byte can be
used to filter only WirelessHART frames.

NPDU

Data DLPDUs contain the Network Layer information and are processed after
the DLPDU header and footer. The NPDU header is not enchiphered, however
an NPDU payload is enchiphered using CCM security algorithm and then
the entire NPDU is authenticated using CCM authentication. First step in
processing the NPDU is to process the NPDU header to determine the size
of the payload and the security parameters used for data encryption and
authentication. After security information is extracted, the corresponding
nonces are constructed and the appropriate key is selected. Keys and nonces
are stored in hash tables and are selected depending on the security session with
the neighboring device.

TLPDU

After decryption of a packet is completed, the plain payload is passed to the
Transport Layer for further processing. The Transport Layer information is
used to get the status of a device and information about the session (i.e.
broadcast or unicast). The TLPDU may contain several commands merged
into an array. Each of the commands related to a packet is stored in the array
with its corresponding 16-bit command number.

APDU

The Application Layer contains a command data and all of the commands that
are stored in the temporary command arrays are processed one after another.
There are more than 65000 possible commands in the WirelessHART protocol.
Some of the commands are generic and are common for every device, however
some of the commands are specific to the manufacturer. Clearly it is not possible
to know all the specific commands of a proprietary device, therefore the packet
analyzer is designed to make it easy to add new commands. Whenever a new
command is to be added, a new module is introduced into the code.

After processing of command data is finished, all the buffers are released and
the analyzer enters its initial state, that is waiting for an incoming data from a
serial port.

The Algorithm

The implementation of the packet analyzer is made as a plugin to the existing
radio logger in COOJA network simulator. The basic algorithm of the
WirelessHART packet analyzer is shown in the figure 3.5. The packet analyzer
is designed in a sequential fashion and it is easy to complement with new
capabilities, for instance, it can be used to store data in a text file.

3.4. EXTENDED BRIDGE 21

Figure 3.5: WirelessHART Packet Analyzer Basic Algorithm

Since each of the layers of the WirelessHART stack is processed individually
the packet analyzer can be easily extended without changing the former
implementation. A successful processing of a packet requires only the join key.
There are commercial WirelessHART packet analyzers however none of them
allows to adapt its behavior in details like it is done here.

3.4 Extended Bridge

The Tmote Sky wireless sensor node is used as a hardware bridge in this
thesis. Although, the Tmote Sky is limited in capabilities especially in its
computational power and memory, we show that it possible to meet most of
the WirelessHART -related requirements using this sensor board.

3.4.1 Time Synchronization with the WirelessHART clock

A generic Bridge operates mainly at the Physical and the Data-Link lay-
ers. WirelessHART defines a strict 10ms time slot and utilizes the TDMA
technology to provide collision free and deterministic communications. One

22 CHAPTER 3. DESIGN AND IMPLEMENTATION

particularly critical requirement for a WirelessHART -enabled device is the time
synchronization with the absolute clock. The WirelessHART Gateway is the
source of the absolute time in a WirelessHART network, hence devices that
wish to join a network must synchronize its time with the Gateway’s clock.
The WirelessHART Gateway periodically broadcasts Advertisement DLPDUs
that are used, among other things, to maintain the time synchronization. The
specific timing requirements inside a WirelessHART time slot is shown in the
figure 3.6[18].

Figure 3.6: WirelessHART Slot Timing

The WirelessHART protocol requires the clock resolution of 1µs to meet the
requirements within a WirelessHART time slot. The Tmote Sky is equipped
with the 32768 Hz watch crystal, thus the maximum achievable clock resolution
is around 30.5µs.

In the beginning when a node enters a WirelessHART network it has no
idea what current time is. To synchronize with the absolute clock a node reads
an advertisement DLPDU and extracts the ASN value. A real time timer task
is then used to initialize a slot counter.

Eventually, due to a limited resolution of the Tmote Sky clock, time will drift
and the synchronization will be lost. To constantly maintain the synchronization
with the ASN a node listens to the wireless medium and timestamps frame
arrivals and then it calculates the difference between the estimated beginning
of a time slot (measured with its own clocks) and its actual beginning.

Since the structure of a time slot is fixed, a node can calculate the beginning
of a next time slot using formula:

TnextSlot = arrival time+ 10ms− TsTxOffset

Synchronization happens for every frame received and advertisement DLPDUs
are used to verify that the ASN and the local slot counter are the same. In
Section 4 we discuss stability of the time synchronization module.

3.4.2 SPI Access

A 4-wire Serial Peripheral Interface (SPI) Bus is used for the CC2420 RF
transceiver configuration and data buffering. SPI is used for reading an incoming
packet from the wireless medium, also for writing a packet to be transmitted
and for CC2420 configuration, for instance, to select a security mode.

SPI speed is a limiting factor for most of the operations that use CC2420 RF
transceiver. Early results showed that without SPI acceleration some critical
tasks, such as reading bytes from a receiver buffer, take too much time. The

3.4. EXTENDED BRIDGE 23

decision has been made to increase the SPI speed in Contiki operating system
for specific tasks. The SPI speed is increased for reading and writing data, and
for configuring CC2420 transceiver.

3.4.3 WirelessHART Link-layer Acknowledgments

WirelessHART -enabled devices make use of DLL ACKs to provide reliable
hop-to-hop communications. The WirelessHART frame transfer and its
corresponding ACK occur within the same time slot (refer to the figure 3.6). A
node has 1ms to prepare an ACK (TsTxAckDelay field) that includes switching
radio transceiver from receive to transmit mode and constructing an ACK. The
latency in a serial line between COOJA and an extended Bridge is too high to
create DLL ACKs in software.

One possible solution to this problem is to use a hardware bridge for DLL
ACKs. Essentially, time to prepare an ACK is the main bottleneck within a
time slot. In order to prepare an ACK a node should read contents of a DLPDU
header, construct an ACK DLPDU and authenticate it using the CCM security
mode. In Section 4 we show the total timing for preparing an ACK DLPDU
using the Tmote Sky and CC2420 radio transceiver.

Chapter 4

Evaluation

The latency for relaying data introduced by a generic Bridge and the timing
and stability of the WirelessHART Data-Link Layer for the Tmote Sky sensor
node are discussed in this chapter.

4.1 Single-hop Round Trip Time Measurements

A Communication delay introduced by a serial line and hardware and software
bridges is the most critical metric for a generic Bridge. A generic Bridge is
represented by two nodes and packets that are relayed via a generic Bridge are
expected to exhibit a higher delay.

(a) Direct Communications (b) Bridged Communications

Figure 4.1: Single-hop Latency Measurements

The figure 4.1 shows two experiment setups while measuring the single-hop
latency introduced by a generic Bridge. In the figure 4.1b the Round Trip Time
(RTT) is measured using a Generic Bridge as an intermediary device between
COOJA network simulator and a real node. The Node A sends a packet that is
relayed via a generic Bridge to the Node B which immediately responds with the
same packet. Figure 4.1a shows the direct communications experiment setup
performed exclusively with real nodes.

In order to get accurate RTT measurements the time when a packet is
detected by the RF transceiver is saved and compared with the next time when

25

26 CHAPTER 4. EVALUATION

a packet is detected. In addition to the transmission time of a packet payload,
the IEEE 802.15.4 Physical Layer overhead has to be taken into account.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Without Bridge With Bridge

m
s

13.9

161.74
Transmission Time (42.68 ms)

SPI Time (3.23 ms)

Real-to-Sim Delay (16.35 ms)
Serial Forwarding Delay (99.48 ms)

Figure 4.2: Round Trip Time Increase with a Generic Bridge

Measurements were performed over 100 packets with a packet size of 125
bytes. An RTT comparison between the two experiment setups (refer to the
figure 4.1) is shown in the figure 4.2.

The IEEE 802.15.4 maximum transmission rate is 250 kbps, thus the
transmission time for a 125 bytes packet is 4ms. The transmission time is
increased by 192µs due to the IEEE 802.15.4 Physical Layer overhead (preamble
and SFD) and the length byte that is not a frame payload. The Physical Layer
overhead is taken into consideration only for a response packet, whereas the
length byte should be calculated for both packets. Hence, the total transmission
time for the 125 bytes response packet is 4192µs and for the request packet is
4032µs, and thus the RTT is 8224µs. In [28] was shown that the actual single-
hop maximum transmission rate is, in fact, lower than the theoretical maximum
and is equal to 225 kbps and therefore the RTT for single-hop communications
in figure 4.1a is approximately 9.14ms.

Measured Time Expected Time
RTT (ms) 10.67 9.14

Table 4.1: RTT transmissions

Measurement results and expected values for the direct communications
scenario are summarized in the table 4.1. The difference between the values
is introduced due to, for instance, a serialization delay.

Bridged communication scenario (refer to the figure 4.1b) in the figure 4.2
exhibits 1163% higher RTT of which 16.35ms is a delay introduced by the Tmote
Sky, specifically delay due to a data forwarding to a serial line. Also, since in

4.2. MULTI-HOP ROUND TRIP TIME MEASUREMENTS 27

this setup there are 4 nodes the transmission time is 4 times higher. The other
factor that influences the communication delay is a Serial Forwarder application
delay.

Although it is possible to optimize the performance of a generic Bridge,
no acceleration technique will allow to achieve the communication delay
similar to the delay of a direct communications scenario. The WirelessHART
request/response transaction occurs in a 10ms time span, obviously with the
currently achievable speed it is not possible to satisfy these requirements.
Fortunately, WirelessHART does not impose such strict demands on end-to-
end communications which occur based on a network schedule and per slot
basis. The use of an extended Bridge for a request/response transaction within
10ms can help to overcome this problem.

4.2 Multi-hop Round Trip Time Measurements

The figure 4.3 illustrates an experiment setup used to measure the multi-hop
communication delay. Four real Tmote Sky sensor nodes are connected with four
emulated nodes via a Generic Bridge. All of the nodes run the same application
constructing a typical mesh network. We start by measuring the multi-hop
round trip time. We also analyze the difference in the RTT by substituting the
real nodes with the emulated images in the simulation framework. As we do not
have the WirelessHART stack, we do not use WirelessHART -enabled devices,
however the overall performance is expected to be similar.

Figure 4.3: Multi-hop Latency Measurements

The table 4.2 summarizes measured statistics for several experimental
setups.

Number of Real Nodes 4 3 2 1
Number of Simulated Nodes 4 5 6 7

RTT (ms) 319 324 322 326

Table 4.2: Multi-hop Round Trip Times

In this experiment the packet is forwarded via all of the nodes until it comes
back to the sink node - node which is the source of the initial packet. The RTT
is measured at the sink node which is a real hardware sensor node.

28 CHAPTER 4. EVALUATION

 300

 305

 310

 315

 320

 325

 330

 335

 340

 1 2 3 4

m
s

Number of Real Nodes

Figure 4.4: RTT Deviation in A Mesh Network

The multi-hop RTT is shown in the figure 4.4. Since emulated nodes
precisely reflect their hardware copies, the RTT remains approximately the same
regardless of the amount of real nodes.

Our hybrid simulation framework introduces a certain variation in the RTT
and this is an another reason to use an extended bridge for time critical
operations of the WirelessHART protocol.

4.3 A WirelessHART Network Traffic Analysis

The WirelessHART protocol analyzer is the primary tool for evaluating a
WirelessHART network traffic. Physical interfaces for capturing WirelessHART
packets are represented by the RF transceivers of the Tmote Sky sensor nodes
each tuned to a specific frequency, based on the Network Manager configuration.
Instead of using channel hopping and thus decreasing the reliability of the
analyzer packet capture rate, we use a number of radios each listening at
the specific channel. This approach do not require to adjust the operation
of the analyzer to the frequency hopping scheme and is more reliable since it is
guaranteed that every packet will be captured.

4.4 WirelessHART ACK Timing

Upon successful reception of a frame (last byte of a frame has arrived to a
destination device) a node must construct (if a frame passes security and error
checks) an ACK and respond within the time specified by a TsTxACK Delay
(refer to the figure 3.6).

In order to successfully acknowledge a frame at the DLL a node must be
able to prepare an ACK within approximately 1000 µs (not including an error

4.4. WIRELESSHART ACK TIMING 29

tolerance of 100µs). The ACK preparation consists of reading a part of an
incoming DLPDU header (up to 22 bytes if both addresses are 8 bytes), writing
bytes to a FIFO queue (up to 20 bytes) and performing an in-line authentication
of a message in the FIFO queue. Since an ACK is the DLL PDU it does not
contain the Network Layer overhead, and therefore an encrypted payload is
absent in the ACK DLPDU. It is assumed that any received WirelessHART
frame passes an authentication check, thus a MIC is not verified.

MeasurementWirelessHART Average time [µs]2

Reading from FIFO 289
Writing to FIFO 174.56
Authentication3 186.767
ACK total time 663.76

Table 4.3: Hardware ACK timing

The table 4.3 shows measured values to prepare an ACK on the Tmote
Sky sensor node and the figure 4.5 provides a visual comparison between these
values.

 0

 100

 200

 300

 400

 500

 600

 700

 800

Read 26
 bytes from

 FIFO

Write 26
 bytes to

 FIFO

In-line
 Authentication

Total Time

µ
s

Measurement Type

Times for preparing an ACK

289

174.56 186.77

663.76

Figure 4.5: ACK Creation Time Expectancy

The TsTxAckDelay (refer to the figure 3.6) include the transmission time
of an ACK. The reception of an ACK starts from locating the Start Of the
Message (SOM) which begins directly after the synchronization header.

The SHR is always transmitted first for any frame employing the IEEE
802.15.4 Physical Layer. The SHR consists of the preamble and the SFD fields.
In addition, every time before the SHR transmission sender waits for the time
equal to 12 symbols. After byte to symbol mapping 5 bytes of the SHR result

2Measured over 100 samples without accounting for an absolute error. The absolute error
for an individual measurement is 4X = X0 - X, where 4X ∼= 30.5175 µs.

3Not including the transmission time for an authenticated message.

30 CHAPTER 4. EVALUATION

in 10 symbols, hence the total number of symbols before the SOM is detected
equals to 22 symbols. The 2450 MHz Physical Layer employs a 62.5 ksymbol/s
rate which equals to 16 µs per symbol, and therefore the total (theoretical)
duration before the SOM detection is equal to 352 µs.

Measurement Average Time [µs] Average Time (boosted SPI) [µs]
SHR+12 symbols 335.7 335.7
TsTxAckDelay4 1007 925.3

Table 4.4: Sending node (Network Manager side)

The Table 4.4 illustrates the duration of several states within an individual
WirelessHART transaction. Due to the Tmote Sky limited timer resolution an
error of 1/32768 s (30.5175 µs) can be introduced, however with the current
precision it is still possible to achieve sensible results.

 0

 200

 400

 600

 800

 1000

Read 26
 bytes from

 FIFO

Write 26
 bytes to

 FIFO

In-line
 Authentication

SHR Time TsTxAckDelay
 α+β+χ+δ

µ
s

(α)=289

(β)=174.56 (χ)=186.77

(δ)=335.7

1007

Figure 4.6: ACK Total Time without SPI Acceleration

In figures 4.6 and 4.7 the total time when reading 26 bytes from the RX
FIFO for delivering an ACK is shown. The figure 4.6 shows the time without
the acceleration of an SPI and figure 4.7 shows the time with the acceleration
of an SPI.

In the worst case scenario the total time for preparing and sending an
ACK using the Tmote Sky node is 1007 µs. In fact the Network Manager
is likely to accept an ACK arriving after 1007 µs since it has a certain error
variation tolerance. Nevertheless, although 1007 µs is almost equal to the
allowed maximum value, it is unnecessary to read 26 bytes to prepare an ACK.
In most situations it will be enough to read 10 bytes from an RX FIFO, hence
the total time will be reduced by approximately 150-180 µs resulting in around
800 µs. Finally, most of the bytes of an ACK frame can be preloaded into
a TX FIFO in advance (for instance during reception of a frame) since they

4Including Synchronization Header duration and 12 symbols waiting time.

4.5. THE TIME SYNCHRONIZATION STABILITIY 31

 0

 200

 400

 600

 800

 1000

Read 26
 bytes from

 FIFO

Write 26
 bytes to

 FIFO

In-line
 Authentication

SHR Time TsTxAckDelay
 α+β+χ+δ

µ
s

(α)=259.1

(β)=159.9 (χ)=170.6

(δ)=335.7

925.3

Figure 4.7: ACK Total Time with SPI Acceleration

are generally known (i.e. Network ID, DLPDU Specifier, First Byte, Source
Address and even Destination Address) which basically will decrease a FIFO
writing time to 30-50 µs.

4.5 The Time Synchronization Stabilitiy

The time synchronization with the Gateway ASN requires very stable and
precise clocks. The Tmote Sky sensor node resolution upper bound is around
30µs whereas the WirelessHART TDMA specification states a resolution of 1µs.
Nevertheless, here we test our clock module implementation with regards to the
clock drift and the clock offset. The clock drift indicates the frequency of local
clock’s change over time and the clock offset is the difference of the local clock
from the real time (ASN).

Over the 10 minutes time span (60 000 time slots) conducted experiments
show 100% reliability of the clock, that is the clock drift is zero. The clock
offset, however, is variable as it is expected due to 16 KHz clocks employed in
the Tmote Sky sensor node.

Figure 4.8 shows the local clock deviation from the real time. Clocks are
synchronized upon reception of a packet and a shift error is calculated. Time
synchronization is the most critical task and therefore the synchronization and
error calculation is performed in the interrupt - immediately after the last byte
of a packet is received.

The comparison is made between the local clocks and the time between
packet receptions. The local clocks do not allow for an absolute precision
necessary for the WirelessHART protocol, thus essentially a clock offset is
introduced.

Obtained results indicate that the absolute clock offset does not exceed 100µs
with the 95% probability, however this synchronization algorithm is stable only

32 CHAPTER 4. EVALUATION

-50

 0

 50

 100

 150

 0 20 40 60 80 100 120 140

µs

Measurement samples

local time

Figure 4.8: Local Clock Deviation from The Real Time

if messages are sent frequently. With the longer time between two consecutive
messages at the same channel the clock offset becomes higher. Fortunately,
WirelessHART Advertisement DLPDUs are sent periodically and on a frequent
basis (at least one Advertisement DLPDU per second), therefore it is a valid
approach to synchronize the clocks.

Chapter 5

Related Work

A hybrid simulation framework for WSNs has been discussed by Lalomnia et
al. [24] based on TOSSIM [29] WSN simulator. In addition, the authors discuss
the timing issues using simulated and real nodes and introduce a concept of a
shadow node which is essentially a generic Bridge. This report considers similar
issues for WSN hybrid simulations targeting cross platform implementation in
COOJA with some support of Contiki operating system.

In Wen et al. [30] an example scenario for WSN augmented reality is
presented. The authors introduce some relevant issues in WSN such as routing
and media access with regards to augmented reality. In this report mainly
latency problems are discussed and higher level issues were not in interest.

WirelessHART has been thoroughly studied by Kim et al. [31]. This
paper describes, among other things, implementation and design issues when
implementing WirelessHART architecture.

Many of the related security issues in WirelessHART was studied in Raza
et al. [21]. The authors introduce pros and cons of WirelessHART security
scheme alongside with a prototype implementation of a security manager.

Song et al. [22] and Gustafson [23] propose prototype architectures for
WirelessHART. In the first case the authors implement a fairly complete Wire-
lessHART architecture targeting such critical parts such as synchronization,
time keeping, routing and scheduling. In the later case, the author mainly
focuses on higher level issues such as the Network Layer and the Transport
Layer services including reliable data delivery through the mesh network and
handling of commands. None of the mentioned papers, however, specifically
targets security implementation issues in WirelessHART as even specification
remains independent from it. In this thesis, we look closely at the security
implementation issues and the corresponding timing problems both in real
devices and in augmented reality. We have also introduced time synchronization
algorithms and related MAC problems for WirelessHART.

Time keeping problems in WSN were studied in [32] where a concept
of Reference Broadcasts for network time synchronization is proposed and
a competing scheme is introduced in [33]. In this thesis we evaluate time
synchronization with respect to well established parameters such as a clock
drift and clock offset. Main advantage of the current scheme is that no special
software protocol is needed to keep network-wide synchronization, since it is
aligned with the absolute network clock.

33

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

Hybrid simulations present a feasible tool for evaluation of WirelessHART
networks, and thus critical WirelessHART tasks can be decoupled from less
crucial routines. Time limited operations at the Physical and Data Link
layers are performed synchronously whereas less critical operations are processed
asynchronously. The latency when performing hybrid simulations is too high for
the WirelessHART protocol, however resource constrained hardware platform
is suitable for performing most of the time critical WirelessHART tasks and the
power unconfined machine can be used to perform time unlimited operations.
Hardware acknowledgments can be used to maintain communication with the
WirelessHART Network Manager, thus allowing for stable network operation.
The 923.5µs needed to prepare a WirelessHART ACK is enough to be within
the time bounds required by the WirelessHART specification (refer to the figure
3.6). Finally, time synchronization module shows no major break aways and the
clock offset is small enough to be within the time slot boundaries (refer to the
figure 4.8).

6.2 Future Work

This thesis work is one of the first steps towards implementation of Wire-
lessHART simulations. Fields such as partial cross platform implementation
of WirelessHART architecture and simulation scalability issues are outside the
scope of this thesis.

Although real time hybrid simulations for WSNs is a desirable approach,
scalability problems are likely to be encountered. Another possibility is
to perform simulations in a non real time which will be considered for
the future work. In order to foster further development of a simulation
framework for WirelessHART, a stable, cross platform and preferably an
open source implementation of the WirelessHART Network Manager, the
Gateway and a Field Device is necessary. Future efforts will be dedicated

35

36 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

towards the implementation of the Network Manager architecture and related
WirelessHART components.

References

[1] HART Communication Foundation, The HART Protocol - A Solution
Enabling Technology, February 2004.

[2] “Hart communication foundation.” http://www.hartcomm.org.

[3] HART Communication Foundation, HART Communication Protocol
Specification, March 2009.

[4] “The tmote sky / telosb platform.” http://www.sics.se/contiki/

platforms/the-telos-sky-platform.html, March 2007.

[5] A. Dunkels, B. Grőnvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in Proceedings of the First
IEEE Workshop on Embedded Networked Sensors (Emnets-I), (Tampa,
Florida, USA), November 2004.

[6] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
event-driven programming of memory-constrained embedded systems,” in
Proceedings of the Fourth ACM Conference on Embedded Networked Sensor
Systems (SenSys 2006), (Boulder, Colorado, USA), 2006.

[7] “Moteiv corporation. tmote sky - ultra low power ieee 802.15.4 compliant
wireless sensor module,” November 2006.

[8] A. Dunkels, “Rime — a lightweight layered communication stack forsensor
network,” in Proceedings of the European Conference on Wireless Sensor
Networks (EWSN), Poster/Demo session, (Delft, The Netherlands),
January 2007.

[9] A. Dunkels, “Tcp/ip for 8-bit architectures,” in Proceedings of the Swedish
National Computer Networking Workshop, (Arlanda stad, Sweden,), 2003.

[10] M. Durvy, J. Abeill, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,
M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and A. Dunkels, “Making
sensor networks ipv6 ready,” in Proceedings of the Sixth ACM Conference
on Networked Embedded Sensor Systems (ACM SenSys 2008), poster
session, (Raleigh, North Carolina, USA), November 2008.

[11] F. Ősterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
sensor network simulation with cooja,” in Proceedings of the First IEEE
International Workshop on Practical Issues in Building Sensor Network
Applications (SenseApp 2006), (Tampa, Florida, USA), November 2006.

37

38 References

[12] J. Polastre, R. Szewczyk, and D. E. Culler., “Telos: enablingultra-low
power wireless research,” in IPSN, pp. 364–369, IEEE, 2005.

[13] “Msp430 - mixed signal microcontroller.” Texas Instruments, 2004.

[14] “Chipcon: Cc2420 802.15.4 compliant radio.” http://www.chipcon.com,
2007.

[15] Dust Networks, SmartMesh IA-510 D2510 Manager Guide, 040-0060 rev.
1 ed., April 2008.

[16] HART Communication Foundation, 2.4GHz DSSS O-QPSK Physical Layer
Specification, September 2007.

[17] IEEE Computer Society, Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs), September 2006.

[18] HART Communication Foundation, TDMA Data Link Layer Specification,
May 2008.

[19] HART Communication Foundation, Network Management Specification,
March 2009.

[20] HART Communication Foundation, Command Summary Specification,
July 2007.

[21] S. Raza, A. Slabbert, T. Voigt, and K. landerna̋s, “Security considerations
for the wirelesshart protocol,” in Proceedings of the 14th IEEE international
conference on Emerging technologies and factory automation, 2009.

[22] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, , and
W. Pratt, “Wirelesshart: Applying wireless technology in real-time
industrial process control,” Real-Time and Embedded Technology and
Applications Symposium, IEEE, p. 0:377–386, 2008.

[23] D. Gustafsson, “Wirelesshart - implementation and evaluation on wireless
sensors,” Master’s thesis, Royal Institute of Technology, 2009.

[24] A. Lalomia, G. L. Re, and M. Ortolani, “A hybrid framework for soft real-
time wsn simulation,” International Symposium on Distributed Simulation
and Real Time Applications, IEEE/ACM, 2009.

[25] “Dust networks.” http://www.dustnetworks.com.

[26] “Rxtx - a native library providing serial and parallel communication for
the java development toolkit (jdk).” http://www.rxtx.org.

[27] M. Dworkin, “Recommendation for block cipher modes of operation: The
ccm mode for authentication and confidentiality,” tech. rep., National
Institute of Standards and Technology, May 2004.

[28] F. Ősterlind and A. Dunkels, “Approaching the maximum 802.15.4 multi-
hop throughput,” tech. rep., Swedish Institute of Computer Science, March
2008.

References 39

[29] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and scalable
simulation of entire tinyos applications,” SenSys, Los Angeles, California,
USA., November 2003.

[30] Y. Wen, W. Zhang, R. Wolski, and N. Chohan, “Simulation-based
augmented reality for sensor network development,” SenSys, Sydney,
Australia., November 2007.

[31] A. N. Kim, F. Hekland, S. Petersen, and P. Doyle, “When hart goes
wireless: Understanding and implementing the wirelesshart standard,” in
ETFA, pp. 899–907, 2008.

[32] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” in Proceedings of the Fifth
Symphosium on Operating Systems Design and Implementation (OSDI
2002), (Boston, MA), 2002.

[33] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of ACM Conference on Embedded
Networked Sensor Systems SENSYS., 2003.

