

 SICS Technical Report ISRN : SICS-T--2008/03-SE
 T2008:03 ISSN : 1100-3154

An Analytical Framework for the Performance

Evaluation of Proximity-aware Structured Overlays

by

Supriya Krishnamurthy and John Ardelius

Swedish Institute of Computer Science
Box 1263, SE-164 29 Kista, SWEDEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434820?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Analytical Framework for the Performance

Evaluation of Proximity-aware Structured Overlays ∗

Supriya Krishnamurthy1,2 and John Ardelius1

1 Swedish Institute of Computer Science (SICS), Sweden
2 IMIT, KTH-Royal Institute of Technology, Sweden

{supriya,john}@sics.se

February 28, 2008

Abstract

In this paper, we present an analytical study of proximity-aware
structured peer-to-peer networks under churn. We use a master-equation-
based approach, which is used traditionally in non-equilibrium statis-
tical mechanics to describe steady-state or transient phenomena. In
earlier work we have demonstrated that this methodology is in fact
also well suited to describing structured overlay networks under churn,
by showing how we can accurately predict the average number of hops
taken by a lookup, for any value of churn, for the Chord system. In
this paper, we extend the analysis so as to also be able to predict
lookup latency, given an average latency for the links in the network.
Our results show that there exists a region in the parameter space of
the model, depending on churn, the number of nodes, the maintenance
rates and the delays in the network, when the network cannot function
as a small world graph anymore, due to the farthest connections of
a node always being wrong or dead. We also demonstrate how it is
possible to analyse proximity neighbour selection or proximity route
selection within this formalism.

1 Introduction

Structured peer-to-peer networks have in recent years emerged as a promis-
ing infrastructure in large scale distributed applications. The concept of
having a distributed hash table, DHT, among participating nodes [8] to-
gether with a structured lookup protocol forms the basis of many overlay

networks [18, 19, 22, 23, 25]. Structured overlays have turned out to exhibit
interesting properties in that many implementations allow a node to find a
specific key in a number of network hops logarithmic in system size (keys or

∗This work is funded by the 6th FP EVERGROW project.

1

nodes), resulting in very good scalability. The number of network hops is
however not the only quantity of interest. Design of structured overlay net-
works has to consider tradeoffs between various performance meassures such
as the number of connections kept between the participating nodes (state)
vs. expected number of hops to find a specific target (hop count), how often
a node needs to repair broken links (maintanence) vs. the number of nodes
joining and leaving the system (churn) etc.

Since peer-to-peer systems lack a central management point, global sys-
tem properties can only be affected through change in local policies and
actions. How to predict the impact of local policies on the overall network
performance is an important but complex issue.

A few attempts have been made to theoretically analyze overlay networks
under realistic dynamic conditions [4,6,11] but in order to fully understand
dynamic peformance aspects more elabortate models are needed.

In this work we analytically study the impact of link delays and proximity
selection in the Chord [23] system under churn. The results show that there
is a critical point in the parameter space at which the system with high
probability breaks down, in that it can no longer efficiently route searches.
With high enough churn rate and large link delays the nodes are not able
to maintain consistent state, a finite fraction of the connections are always
wrong or dead. The results are not unique for Chord but are generalizable
to any structured overlay. These kind of feed back based phase transitions
are common in many kinds of complex systems and our results are only
begining to explore their role in distributed computer systems.

The paper is organized as follows. We describe related work in Section
2, and our analytical framework in Section 3. Section 4 briefly introduces
all the parameters in the model. Section 5,6, 7 and 8 describe our results
followed by a summary in section 9.

2 Related work

Theoretical models of overlay networks for proving bounds on the number
of expected network hops often do not consider practical problems such as
network delays, massive node failures and link congestion. Surveys of the
impact of link delays in real large scale overlay networks do exist [5] and
numerical experiments also show that there is a tradeoff between cost and
performance in overlay networks [14]. Different proximity-aware lookup poli-
cies have been suggested to increase performance and some are numerically
evaluated in [3, 20]. Analytic work on proximity-aware lookup policies is to
the best of our knowledge still lacking but related work exists. In [9] a model
of congestion-aware routing is evaluated and analytical models for network
resilience to failures are studied in [4, 24].

2

3 Analytical Framework of the Master-Equation
Approach

In a typical P2P network, there are many interleaved processes happening
in time. Nodes join or fail. Maintenance messages are scheduled, requests
for lookups are sent out to different nodes, and queries are answered. Apart
from these processes, there are also several other factors that affect the per-
formance of the network. These include the number of nodes currently in the
network, the specific lookup or maintenance algorithm used, the delays in
receiving replies to queries, the number of contacts per node and how these
contacts are chosen in the first place. There are clearly many parameters
that can be varied and the performance of the network, usually measured
in terms of lookup latency, depends on each and every one of them. The
question then arises, of whether there is a systematic and modular way to
quantify the effect of different design choices and/or different parameters.
Currently extensive simulation is the prevalent tool for gaining such knowl-
edge. Examples include the work of Li et al. [15], Rhea et al. [21], and
Rowstron et al. [2].

There has also been a lot of theoretical analysis done on DHT’s. For in-
stance, Liben-Nowell et al. [16] prove a lower bound on the maintenance rate
required for a network to remain connected in the face of a given churn rate.
Aspnes et al. [1] give upper and lower bounds on the number of messages
needed to locate a node/data item in a DHT in the presence of node or link
failures. The value of theoretical studies of this nature is that they provide
insights neutral to the details of any particular DHT. However performance
can vary substantially within these bounds. In addition, it is usually not
clear how to extend these results if a design choice or a parameter is varied.

We thus adopt a different approach to the theoretical analysis of DHT’s.
We concentrate not on establishing bounds, but rather on a more precise
prediction of the relevant quantities in such dynamically evolving systems.
Our analysis is based mainly on the Master-Equation approach used in the
analysis of physical systems. We have previously introduced our approach
in [11–13] where we have presented a detailed analysis of the Chord system
[23]. More specifically, we have shown how we can quantify the number of
hops taken by lookups in Chord, for any value of churn (we specify how
exactly we quantify churn a little later in this section), for any value of
the number of nodes in the network, and for any number of connections
per node. As a bonus, we see that the analysis has a modular form in the
sense that if a design choice (such as the specific maintenance strategy that a
node uses to keep its connections from getting outdated) is varied, we do not
need to rethink the whole analysis again. It is enough to redo the relevant
part which is affected by the design choice. We find that a very important
quantity which is affected substantially by the design choice is the fraction

3

of dead (or corrupted) network links. This depends not only on the specific
maintenance strategy used [13], but also on the manner these connections
are constructed. In addition it also depends on churn (clearly) and even on
which specific connection we are talking about (to a neighbor, or to a node
far away and if the latter, then exactly how far away). This quantity goes
as an input into the Lookup equation, solving which enables us to predict
the average number of hops for any system parameter. The structure of the
Lookup Equation itself, depends only on the routing algorithm used as well
as the specific overlay graph, but it requires as an input both the fraction
of dead fingers as well as the distribution of node id’s in the key space.

In this paper, we demonstrate for the first time to our knowledge, how to
generalise the master equation approach to take proximity into account. We
first show how we can take delays into account, by evaluating the lookup
latency for a given average delay in the network. An interesting feature
that comes out of this analysis is that there is a phase transition in the
space of the parameters. In one region of the parameter space, the system
is viable, and a given node has, with some probability, all its connections
functioning at least part of the time. In a different region of the parameter
space however, the furthest connections that a node has (its largest fingers
in Chord) are always dead, and even if the ring is not disconnected, the
system no longer functions like a ’small-world’. We then use this analysis
to predict the performance of the network for the two different choices of
Proximity Neighbor Selection (PNS) and Proximity Route Selection (PRS).
The utility of our approach is thus, to develop an analytical framework for
thinking about proximity-aware networks. While the numbers we get from
our analysis will certainly depend on the slightest details of the implemen-
tation of Chord, the qualitative picture should certainly hold. In addition,
our approach is both detailed (in taking the minutiae of system protocols
into account) and broad. A similar approach should work for almost any
DHT on the market.

4 The Churn Model and Parameters defining the
system

Due to space limitations, we provide only a very brief description of Chord
below, with a view to explaining the parameters involved.

The Chord Ring is a circular key space of size K populated by N
nodes.

Fingers. To reduce the average lookup path length, nodes keep M =
log2 K pointers known as the “fingers”. Using these fingers, a node can
retrieve any key in O(log N) hops. The fingers of a node n (where n ∈
0 · · · K− 1) point to exponentially increasing distances of keys away from n.
That is, ∀i ∈ 1..M, n points to a node whose key is equal to n + 2i−1. The

4

corresponding entry in the finger table is the successor of this key.
Stabilization, Delays, Churn & Steady State. To keep the pointers

up-to-date in the presence of churn, we consider a periodic stabilization
strategy (We have also analysed a reactive strategy in [13]). We define λj

as the rate of joins per node, λf the rate of failures per node and λs as
the rate at which stabilizations are scheduled, per node. With probabilty
α, the node chooses to stabilise a successor and with probability 1 − α, it
sends out a lookup message for any one of its finger. One can think of
these rates as the inverse of the average time-interval between a join, fail
or stabilisation event happening for any given node on the ring. In our
analysis, we do assume that these rates are independent of time, so that we
can impose the steady-state condition λj = λf at all times unless otherwise
stated. Further it is useful to define r ≡ λs

λf
which is a relevant measure

of churn, e.g, r = 50 means that a join/fail event takes place every half an
hour for a stabilization which takes place once every 36 seconds. To take
delays into account, we have another rate λt which we take to be the rate of
message transmission, or the inverse of the average time taken for a message
to reach the recipient, over one overlay link. In our analysis in Section 5, λt

can be thought of as an average rate of transmission or the inverse of the
average delay of a link in the network. In our section on PNS and PRS, we
also need a distribution of delays in the network. For ease of analysis, we
use a simple model where there are only two kinds of links, good or bad.
The bad links have transmission rate xλt, while the good ones transmit at
simply λt. Throughout the paper we will use the terms λjN∆t, λfN∆t,
αλsN∆t , (1 − α)λsN∆t and λtN∆t to denote the respective probabilities
that a join, failure, initiation of a successor stabilization, the initiation of a
finger lookup or a message transmission across a link takes place anywhere
on the ring during a micro period of time of length ∆t.

5 Results

We are interested in analysing a model where messages sent across over-
lay links are not necessarily instantaneous. The delays could be caused by
several factors. For one, a node may take some time after the receipt of a
message, before sending it, if there is a long queue.For another, the under-
lying network may impose delays.

These are typically in the range of 100 ms to 3 seconds.
The delay gives us a typical time between the message being sent by the

sender and the message being received by the recipient. Our model for the
delay in a given link is the following:

If the delay is 100 ms we assume λt = 1/100, which means that in a time
∆t = 100ms, the probablilty that a message gets relayed is 1 but there is
some small probability that a message gets transmitted earlier. This idea of

5

N=215

N=214

N=213

N=212

N=211

 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

λs / λf

Figure 1: Different regions of stability as a funtion of λs/λf , which is the
ratio of the rate at which stabilisation actions are scheduled (though not
necessarily executed, because of delays) to the rate of failures of nodes. For
low rates the ring breaks up. For slightly higher value the ring is connected
but the delays cause the largest fingers of any node, to be dead all the
time. The existence of this region is one of the principle predictions of our
formalism. For higher rates of stabilisation, the system functions properly.
As can be seen the region of instability increases with the number of nodes
in the network. For this plot it is assumed that the time taken for the
messages to be delivered across one overlay link is 100 times faster than the
time interval between failures.

6

N=215

N=214

N=213

N=212

N=211

 5 10 15 20 25 30

S
ys

te
m

 s
iz

e

λs / λf

Figure 2: The region in which the system does not function also increases
very rapidly with an increase in the average delay in the network. For this
plot, the time taken for the messages to be delivered across one overlay link
is only 19 times faster than the time interval between failures. The unstable
region for the largest system size is almost 4 times as much as in Fig. 1.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 20 30 40 50 60 70 80 90

Lo
ok

up
 L

at
en

cy
 in

 s
ec

on
ds

r

Greedy routing without proximity awareness
PRS
PNS

Figure 3: The average lookup latency in seconds, versus r = λs/λf , for the
three schemes studied in this paper for N = 23000. This is in the region of
parameter space when the system is functioning normally.

7

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

th
at

 th
e

la
rg

es
t f

in
ge

r i
s

de
ad

r

Greedy routing without proximity awareness
PRS
PNS

Figure 4: The probability of the largest finger being dead versus r = λs/λf ,
for the three schemes studied in this paper (same N value as in Fig 3.), in
the region of parameter space when the system is functioning normally.

converting time into rates is the same as explained in section 4.
In general, different network connections have different delays and there

will be a distribution of delays.
For the purposes of the first model that we study in this paper, we only

need the average delay per link, λt.
When we consider PRS and PNS in the following sections, the distribu-

tion of delays will also be important. In this case, for ease of analysis, we
will consider the following simple distribution:

A fraction (1 − p) of the links are “good ” links with a delay of 100 ms.
A fraction p of the links are “bad” with a delay which can range from 300
ms to 3 s.

Let us now consider how we go about analysing such a model.
- Given a ring of K keys and N nodes (on average), where nodes can

join and leave independently, the probability that two adjacent nodes are a
distance x apart on the ring is simply P (x) = ρx−1(1 − ρ) where ρ = K−N

K
.

Using this distribution, it is easy to estimate the probability that there is
definitely at least one node in an interval of length x. This is: a(x) ≡ 1 − ρx.
The probability that the first node encountered from any key is at a distance
i from that key is then bi ≡ ρi(1 − ρ). Hence the conditional probability that
the first node from a given key is at a distance i given that there is at least
one node in the interval is bc(i, x) ≡ b(i)/a(x).

- The probability that the first successor is wrong (which means lookups
are inconsistent) follows along the lines of our earlier calculations [11–13].

- We now come to the probabilities of fingers being dead. Delays play

8

an important role in the correction of dead fingers. This is because, in the
Chord protocol, new information about fingers is received through lookups.
And how long lookups take, as well as the probability of lookups being
executed sucessfully depends on the delays in the network, as we will see
below.

The fraction of failed fingers, in its turn, affects the number of hops
that lookups take, since failed fingers cause timeouts and hence increase the
lookup length.

So in contrast to the situation without delays (where lookups were con-
sidered to take place many orders of magnitude faster than the time-scale
of node joins, failures and stabilisation and hence did not play any role in
the fraction of dead fingers), here we have a system with feedback. Delays
affect the probabilites that lookups are succesful and hence the probabil-
ity that dead fingers are successfully corrected. Dead fingers increase the
number of hops that lookups take. Hence for high churn, we could have
a situation where lookups take longer, fingers are corrected slower, which
causes lookups to take yet longer. Depending on the value of churn, we find
that there is a region of parameter space in which the system is just not
viable. That is for some values of joins and failures, N and average delay
time, the probabilities that larger fingers are dead goes to 1 and hence the
system does not function efficiently as a DHT anymore (Fig. 1 and 2).

In the following paragraphs, we detail the dependance of the probabilites
of dead fingers on the lookup length and vice versa.

For the moment, we only consider fingers being dead not wrong. Unlike
members of the successor list, alive fingers even if outdated (which in Chord,
means that instead of pointing to the first successor of an interval, sometimes
the finger maybe pointing to the second or third node. This happens only
rarely though, if λs >> λj) always bring a query closer to the destination.
Hence they do not affect the consistency of a lookup or even substantially
the lookup length.

We make an optimisation in the correction of the earlier fingers. On
average ln2(K) − ln2(N) of them are basically just the first successor. So
we assume that these fingers are corrected every time the first successor is
corrected and hence have the same probability of being dead.

For the remaining ln2(N) fingers, we assume that when the node decides
to schedule a finger correction, it sends a lookup for any one of these ln2(N)
fingers randomly.

Fingers of nodes far apart are independant of each other. Fingers of
adjacent nodes can be correlated and we take this into account.

Let fk(r, α) denote the fraction of nodes whose kth finger points to a
failed node and Fk(r, α) denote the respective number. For notational sim-
plicity, we write these as simply Fk and fk. We can predict this function
for any k by estimating the gain and loss terms for this quantity, caused
by a join, failure or stabilization event, and keeping only the most relevant

9

Table 1: The relevant gain and loss terms for Fk, the number of nodes whose
kth fingers are pointing to a failed node for k > 1.

Fk(t + ∆t) Probability of Occurence

= Fk(t) + 1 c3.1 = (λjN∆t)
∑k

i=1 pjoin(i, k)fi

= Fk(t) − 1 c3.2 = (1 − α) 1
ln2(N)fk(λsN∆t)ack λt

λt+λsck

= Fk(t) + 1 c3.3 = (1 − fk)
2[1 − p1(k)](λf N∆t)

= Fk(t) + 2 c3.4 = (1 − fk)
2(p1(k) − p2(k))(λf N∆t)

= Fk(t) + 3 c3.5 = (1 − fk)
2(p2(k) − p3(k))(λf N∆t)

= Fk(t) 1 − (c3.1 + c3.2 + c3.3 + c3.4 + c3.5)

terms. These are listed in Table 1.
The calculations of the probability of the kth finger being dead follows

along the lines of our earlier work [11–13], with a few essential differences in
the term c3,2. To understand the probability that the kth finger is corrected
in time ∆t, a node with a dead kth pointer needs to have sent out a lookup
(this happens with probability (1−α) 1

ln2(N)fk(λsN∆t) and this lookup needs
to be succesful. To estimate the latter probability, let nk be the number of
hops for one particular lookup message for the kth finger with a given value of
churn. We can think of this as a series of nk messages → {mnk ,mnk−1 ...m1}.

The exact manner in which the lookup approaches the target depends
on the routing algorithm and is explained in the lookup equation.

To estimate the probability that a lookup is succesful however, we need
to consider how a message succesfully makes a transition from mnk to mnk−1.
Let us use Mni to denote the number of nodes which have to relay messages
mni forward. Then

Mni →











Mni + 1 ; (λt∆t)Mni+1

Mni − 1 ; (λf∆t)Mni

Mni − 1 ; (λt∆t)Mni

(1)

The explanation of the terms is as follows. The number of nodes with
message mni increases by one, if a successful transmission takes place from a
node with mni+1 and decreases by one either if a node carrying the message
fails or if it successfully transmits it.

In steady state:

Mni
= Mni+1

[
λt

λt + λf
] (2)

hence,

M1 = [
λt

λt + λf
]nk (3)

10

We define
λt

λt + λf
= a (4)

which explains term c3,2 partially. The important variable here is the ratio
of the rate of delays to the rate of failures. To consider some numbers, if
λt ≈ 1/100ms and λf ≈ 1/3mins then a = 1800

1801 = 0.999. If a = 1 we get the
case without delays studied earlier [11–13]. If the delay is larger however
(either due to queueing or congestion), a could be much less than one.

We study 0.9 < a < 1 in our system. Since the ratio λt

λf
is the relevant

quantity in our analysis, a 100ms delay with a node joining or failing every
3 minutes is equivalent to a 1s delay if a node joins or fails every 30 minutes.
The “time” that lookups take will of course be larger in the latter case. But
the probability that lookups are successful is not affected.

The last term in c3,2 is the ratio λt

λt+λsnk
. This multiplied by λs is

the effective rate at which correction messages ,which took nk hops, are
received. Since even a successful lookup takes time and queries are not
answered instantaneously. ck is the average number of hops that a lookup
for the kth finger takes.

The equation we get for the fk’s is hence

(1 − fk)
2[1 + p̃rep] + pjoin(k)f =

(1 − α)

ln2N
fkλs

∑

ankp(nk)
λt

λt + nkλs
(5)

In the right hand side we have ankp(nk)
λt

λt+nkλs
summed over nk, where

p(nk) is the probability that a lookup for the kth finger takes nk steps. We
approximate the term inside the sum by ack λt

λt+ckλs
, where ck =

∑

nkp(nk).
This is justified for the parameter values of interest [a → 1] and if p(nk) is
a distribution with a well defined average and small standard deviation (as
seems to be the case [7, 17]).

We should mention that the master equation formalism can be used to
estimate the error in this estimate and in fact also the distribution p(nk).
However in this paper, we only use

ck =
∑

nkp(nk) (6)

as a measure of the performance of the system.
The equation for fk is hence:

(1 − fk)
2[1 + p̃rep] + pjoin(k)f =

(1 − α)

ln2N
fkλsa

ck
λt

λt + λsck
(7)

If a = 1, or λt is infinitely large, the above is a simple quadratic equation
and we get back our earlier results. However if a 6= 1 we need the value of
ck.

11

As we will see below, ck itself also depends on fk. Hence the equation
for ck and fk have to be solved simultaneously and consistently to obtain
the values for both ck and fk.

6 Lookup equation

In this section, we demonstrate how the information about the failed fingers
and successors can be used to predict the cost of stabilizations, lookups or
in general the cost for reaching any key in the id space. By cost we mean
the number of hops needed to reach the destination including the number
of timeouts encountered en-route. For this analysis, we consider timeouts
and hops to add equally to the cost, though we could as easily study this as
an additional parameter as well.

Define Ct(r, α) (also denoted by Ct) to be the expected cost for a given
node to reach some target key which is t keys away from it (which means
reaching the first successor of this key). For example, C1 would then be the
cost of looking up the adjacent key (1 key away).

To find the expected cost for reaching a general distance t we need to
closely follow the Chord protocol, which would lookup t by first finding the
closest preceding finger. For the purposes of the analysis, we will find it
easier to think in terms of the closest preceding start. Let us hence define
ξ to be the start of the finger (say the kth) that most closely precedes t.
Hence ξ = 2k−1 +n and t = ξ +m i.e., there are m keys between the sought
target t and the start of the closest preceding finger. With that, we can
write a recursion relation for Cξ+m as follows:

Cξ+m = Cξ [1 − a(m)]

+ (1 − fk)a(m)

[

1 +

m−1
∑

i=0

bc(i,m)Cm−i

]

+ fka(m)

[

1 +

k−1
∑

i=1

hk(i)

ξ/2i−1
∑

l=0

bc(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

(8)

where ξi ≡
∑

m=1,i ξ/2m and hk(i) is the probability that a node is forced

to use its k− ith finger owing to the death of its kth finger. The probabilities
a, b, bc have already been introduced earliler and we define the probability
hk(i) below.

The lookup equation though rather complicated at first sight merely
accounts for all the possibilities that a Chord lookup will encounter, and
deals with them exactly as the protocol dictates.

12

The first term accounts for the eventuality that there is no node inter-
vening between ξ and ξ +m (occurs with probability 1−a(m)). In this case,
the cost of looking for ξ + m is the same as the cost for looking for ξ.

The second term accounts for the situation when a node does intervene
in between (with probability a(m)), and this node is alive (with probability
1 − fk). Then the query is passed on to this node (with 1 added to register
the increase in the number of hops) and then the cost depends on the length
of the distance between this node and t.

The third term accounts for the case when the intervening node is dead
(with probability fk). Then the cost increases by 1 (for a timeout) and the
query needs to find an alternative lower finger that most closely precedes the
target. Let the k − ith finger (for some i, 1 ≤ i ≤ k−1) be such a finger. This
happens with probability hk(i) i.e., the probability that the lookup is passed
back to the k − ith finger either because the intervening fingers are dead or
share the same finger table entry as the kth finger is denoted by hk(i). The
start of the k − ith finger is at ξ/2i and the distance between ξ/2i and ξ is
equal to

∑

m=1,i ξ/2m which we denote by ξi. Therefore, the distance from

the start of the k − ith to the target is equal to ξi + m. However, note that
fink−i.node (which is the node which first precedes fink−i.start the start of
the k − ith region) could be l keys away (with probability bc(l, ξ/2i)) from
fink−i.start (for some l, 0 ≤ l < ξ/2i). Therefore, after making one hop to
fink−i.node, the remaining distance to the target is ξi +m− l. The increase
in cost for this operation is 1 + (i− 1); the 1 indicates the cost of taking up
the query again by fink−i.node, and the i − 1 indicates the cost for trying
and discarding each of the i− 1 intervening fingers. The probability hk(i) is
easy to compute given the distribution of the nodes and the fk’s computed
in the previous section.

hk(i) =a(ξ/2i)(1 − fk−i)

×Πs=1,i−1(1 − a(ξ/2s) + a(ξ/2s)fk−s), i < k

hk(k) =Πs=1,k−1(1 − a(ξ/2s) + a(ξ/2s)fk−s)

(9)

In Eq. 9 we account for all the reasons that a node may have to use
its k − ith finger instead of its kth finger. This could happen because the
intervening fingers were either dead or not distinct. The probabilities hk(i)
satisfy the constraint

∑k
i=1 hk(i) = 1 since clearly, either a node uses any

one of its fingers or it doesn’t. This latter probability is hk(k), that is the
probability that a node cannot use any earlier entry in its finger table. In
this case, n proceeds to its successor list. The query is now passed on to
the first alive successor and the new cost is a function of the distance of this
node from the target t. We indicate this case by the last term in Eq. 8 which
is O(hk(k)). This can again be computed from the inter-node distribution.
However in practice, the probability for this is extremely small except for

13

targets very close to n. Hence this does not significantly affect the value of
general lookups and we ignore it in our analysis.

The cost for general lookups is hence

L(r, α) =
ΣK−1

i=1 Ci(r, α)

K

We solve the lookup equation numerically and search for a value of fk

which satisfies the fk equation. We need to do this for all k (for the different
fingers).

Results are shown in Figures 1 − 4.
Figures 1 and 2 show the region in parameter space when the phase

transition takes place and the system is no longer viable (the thick line).
Below this point , there is no solution for the coupled fk-ck equations. fk → 1
and the network can no longer rely on having fingers in every sector. The
difference in the two figures is the average delay in the network. In the first
case, the time taken to send a message across a link is taken to be 100 times
faster than the average session time of nodes. In the second case, it is 19
times faster. As can be seen, the system is very sensitive to such an increase.

Figures 3 and 4, show the average lookup length and fk (the probability
that the largest finger is dead), respectively for a proximity unaware system
with delays using plain greedy routing, and a system with delays using PNS
or PRS (the specific algorithms we use for PNS and PRS are elaborated on
in the next two sections). As can be seen in Fig. 3, for a system with delays,
using PNS is very slightly better than PRS (as discussed in [5]) when r is
large (which is equivalent to low churn), but the situation reverses when
churn is high. Using either of them is certainly better than using simply the
greedy lookup strategy without any proximity awareness.

Interestingly from Figure 4, we see that PRS may actually give marginally
better performance in maintaining consistency and state. The probability
that the largest fingers are dead is actually lower for PRS then PNS, though
only very slightly.

Of course these results will depend on the specific latency distribution
used for the links in the network, as well as the specific PNS and PRS
algorithms used. For Figs. 3 and 4, we have used the average delay per link
to be 19 times faster than the session time of nodes. For PRS and PNS, we
also need to specify what fraction of the links are good or bad. We assume
that 0.01 percent of the links are 20 times slower. If that has still to give an
average delay per link to be 19 times faster than the average session time
of nodes, then the time taken by the faster links to transmit is about 19.2
times the average session time for nodes, while the time taken by the slower
links to transmit is only about 0.96 times the average session time.

We expect the difference between the PNS and PRS algorithm to in-
crease, with an increase in the fraction of “bad” links, even if these bad
links are not quite as bad as what we have assumed above.

14

Preliminary results show that the PRS scheme is actually more robust
in the sense that the region of instability (the region of parameter space
in which the larger fingers are almost always dead) is smaller, all other
parameters being exactly the same.

Preliminary results also show that the difference between PRS and PNS
can increase with the number of nodes in the system. Our investigations
along these lines are under way.

7 Proximity neigbour selection (PNS)

In this section, we study a scheme for PNS in the context of Chord and show
how we can analyse it within our framework.

We assume that every node tries to only have fingers which transmit at
a fast rate. This could imply that a node has no fingers in an interval. But
this will happen only for the smaller intervals and does not substantially
affect anything.

We assume that each node chooses its fingers in the following way. To
get a contact in section 2i−1 ≤ m < 2i (its ith finger), the node intiates
a lookup for id 2i−1 in the usual way. With a probability 1 − p the first
successor of this is a good link in which case this is kept as the ith finger.
With a probability p however, it is a bad link. In this case, the node pings all
the successors of this node consecutively (we assume that for every lookup
for a finger, the target node also sends back its full successor list) till it finds
a good link. In practice as shown in some studies, a node will with high
probability not need to ping more than 10 nodes, before it finds a suitable
finger candidate.

A few properties of this scheme that are useful are mentioned below.
The conditional probability of having the first node in the interval as a

finger entry given that there exists at least one node in the interval is (1−p).
Hence the simultaneous probability of having the first node in the interval

as a finger entry and there being at-least-one node in the interval is (1 −
p)a(m). a(m) is derived from the geometric distribution of nodes on the
ring as mentioned earlier.

To be more accurate, these probabilities also depend on churn. However,
we ignore this dependancy for the moment.

We need to recompute fk for this system, as well as rewrite the lookup
equation 8 to take into account the fact that now fingers in a sector, need
not necessarily be the first node in that sector.

7.1 fk

The term that we need to recompute is c3,2 since the join and fail protocols
are the same as before and give the same terms. c3,2 is the probability that in
a time ∆t, a wrong kth finger is corrected. This happens when a node with a

15

dead kth finger sends out a lookup for this finger (at rate λs

log2N (1−α)). The
lookup has a probability ack of being successful as before and in addition
takes some time which gives the factor [λt

λt+λsck
]. All this is exactly as before.

In addition the first successor of the key is accepted as a finger entry only
if its a ’good’ link with probability 1 − p.

Putting this together we get:

c3.2 =
λs

log2(N)
(1 − α)[

λt

λt + λsck
](1 − p)S1a

ck(∆t) (10)

+ a term quantifying the rate of finding a good link by pinging the
successors.

The definition of a is as before, however we no longer mean average rate
of decay by λt. λt is now the rate of transmission of a good link since now,
with high probability, all the connections of a node are good links.

If we want to compare the result of this scheme, with the proximity
unaware scheme, then we need to fix the parameters here accordingly. In
the greedy lookup scheme we took λ̄t

λ̄t+λf
= 0.95 as the worst-case value.

This fixed the ratio λ̄t

λf
= 0.95

.05 = 19. In our PNS scheme

λ̄t

λf
= x

λt

λf
p + (1 − p)

λt

λf
(11)

If x ≈ 0.05 and p = 0.01 then

[
λt

λf
] =

λ̄t/λf

xp + 1 − p
≈ 19.2 (12)

We still need to understand the factor S1 in the first term, as well as
how to compute the second term.

To do this, assume that a node can be in one of 2 states. State s1 is the
default state that all nodes are in.

A node goes into the state s2 when a normal lookup does not find it a
good link. In this case, it has to ping all the successors one by one, till it
finds a replacement for its finger. It is useful to make this difference because
of the different actions that a node in these two states can take. In state s1

a node can fail, initate a stabilisation action for its own successor or finger
or transmit a message for another node.

However in state s2, a node prioritises pinging the target nodes to find
an appropriate entry for its finger table. So a node in state s2 can either fail
or contiune its search for a good link.

As usual, we use S1 or S2 to denote the number of nodes in these states.
We make further distincions between nodes in state s2 in the following man-

ner. Define S
(1)
2 as the nodes yet to ping the first successor.

S
(2)
2 as the number of nodes yet to ping the second sucessor (because the

first successor did not provide a good connection) and so on.

16

We can quantify the changes in S
(1)
2 in the following manner.

S
(1)
2 →











S
(1)
2 + 1 λs

log2N (1 − α)ackp[λt

λt+λtck
]S1∆t

S
(1)
2 − 1 λf∆tS

(1)
2

S
(1)
2 − 1 [λt(1 − p)∆t + xλtp∆t]S

(1)
2

(13)

The first term is the same as appears in the expression for c3,2 except
that now we multiply with a p instead of (1− p). This accounts for the case
when an ordinary lookup gives a bad connection and the node now needs to
start pinging its neigbours. The second term accounts for the case when a

node in state s
(1)
2 -type fails.

The 3rd term accounts for the case when either an S
(1)
2 node finds a

good connection [with probability (1 − p)λt] in which case it sets its finger
entry to this value and goes back to the s1 state. Or it does not find a good

connection with probability [xpλt] and it goes into the s
(3)
2 state.

Similarly for S
(2)
2 we have

S
(2)
2 →











S
(2)
2 + 1 [xλtp∆t]S

(1)
2

S
(2)
2 − 1 [λf∆tS

(2)
2]

S
(2)
2 − 1 [λt(1 − p)∆t + xλtp∆t]S

(2)
2

(14)

Out of all these equations we only need to know what is S2 (= S
(1)
2 +

S
(2)
2 + S

(3)
2 + ... = N − S1). Since the term of interest , the second term in

the expression for c3,2, is λt(1 − p)S2. Solving for S2 we get

S2 =
qS1

1 − b
(15)

where

b =
xλtp

λf + [xλtp + (1 − p)λt]
< 1 (16)

and

q =
(1 − α) λs

log2(N)a
ckp[λt

λt+λsck
]

λf + [xλtp + (1 − p)λt]
(17)

Since S1 + S2 = N we get

S1 +
q

1 − b
S1 = N ⇒ S1 =

N

[1 + q/(1 − b)]
(18)

Putting this in we finally get

17

c3,2 = [(1−α)
λs

log2(N)
ack(1−p)

λt

λt + λsck
][

1

1 + q/(1 − b)
]+λt(1−p)[

q/(1 − b)

1 + q/(1 − b)
]

(19)
As before we need to solve the equations for the fk’s simultaneously with

the equations for the ck’s. However we need to rewrite the lookup equation
(Eq. 8) slightly so that we account for the possibility that the first node in
the interval need not always be the finger.

7.2 Lookup Equation for the PNS scheme

The lookup equation has the same logical structure as Eq. 8 except for one
difference. The coefficient a(m) - the probability of having at least one node
in an interval of size m, is replaced by y(m), the probability of having a
finger in an interval m, since we are no longer guaranteed that the first node
in an interval is the finger of choice.

y(m) is easily calculated recursively in the following manner. Let y
′

(m)
be the probability of not having a finger in an interval of size m. Clearly
y
′

(m) = y
′

(m − 1)(ρ + (1 − ρ)p) , that is, the probability of not having a
finger in an interval of size m is the same as the probability of not having
a finger in an interval of size m − 1, times the probability that either there
exists no node at the mth spot or there is one but with a bad link.

Solving the recursion, we get y(m) = 1 − (ρ + (1 − ρ)p)m. In the case
that p = 0 when all links are the same, y(m) is the same as a(m).

With this, we can write the lookup equation for the PNS system as

Cξ+m = Cξ [1 − y(m)] (1 − p)

+ [1 − y(m)] p

[

1 +

k−1
∑

i=1

hk(i)

ξ/2i−1
∑

l=0

bd(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

+ (1 − fk)y(m)

[

1 +

m−1
∑

i=0

bd(i,m)Cm−i

]

+ fky(m)

[

1 +
k−1
∑

i=1

hk(i)

ξ/2i−1
∑

l=0

bd(l, ξ/2i)(1 + (i − 1) + Cξi−l+m) + O(hk(k))

]

(20)

The logical structure is almost the same as before. The four terms enu-
merate the four possibilities. Either there is no finger in the interval but the

18

first successor is still the finger (with probability 1 − p), there is no finger
in the interval and the first successor is not the finger (with probability p),
there is an alive finger in the interval or there is a dead finger in the inter-
val. The function hk are the same as before and the functions bd’s are the
counterpart of the bc’s which appear in Eq. 8 and are given in terms of the
y(m)’s as

bd(i,m) =
(1 − y(i − 1))(1 − ρ)(1 − p)

y(m)

As before we solve simultaneously for the fk’s and the lookup cost, to
get the plots in Figs 3 and 4.

8 Proximity Route Selection

We briefly demonstrate here how we can also analyse proximity route selec-
tion. In this case we do not need to recompute the probability of fingers
being dead. This is the same as equation as Eq. 7. But we need to consider
a PRS scheme for routing. There clearly exist many such schemes [20], but
we consider the simplest of them which is one based on pure proximity. In
this case, a node, uses a finger for routing only if its a good link, no matter
how far back it has to hop from the target. Since the manner in which
fingers are chosen is the same as in the case without proximity, The lookup
equation is the same as Eq. 8 except that the hk’s are now a little different,
to account for the fact that a jump back to an earlier finger can be made
even if the finger was alive but a bad link.

The expression for the hk’s is hence:

hk(i) =a(ξ/2i)(1 − fk−i)(1 − p)

×Πs=1,i−1(1 − a(ξ/2s) + a(ξ/2s)fk−s + (1 − a(ξ/2s))(1 − fk−s)p), i < k

hk(k) =Πs=1,k−1(1 − a(ξ/2s) + a(ξ/2s)fk−s + (1 − a(ξ/2s))(1 − fk−s)p)

(21)

Again we solve the lookup equation and the equation for the fk’s simul-
taneously to get the results in Figs 3 and 4.

9 Discussion and Conclusion

In this paper, we have presented an analytical framework for analysing prox-
imity related issues in P2P networks. Our methods, though carried out for
Chord, can be carried over to other systems. In addition, the analysis has
a naturally modular structure, which makes it easy to redo the analysis for
different design choices or parameters that go into building a DHT.

19

Our analysis predicts that there is a region in parameter space where the
ring, though still connected, does not carry out efficient searches because
of the longest fingers always being dead. In addition we are also able to
compare the PNS and PRS schemes for varying system sizes and parameters.

For the future, we also intend to think about congestion in this frame-
work. That is, we will not only think of messages being passed over links
but also how big these messages are, and how frequent. This could affect
the average delay in a network, leading to interesting consequences.

10 Acknowledgements

We would like to thank Ali Ghodsi for several useful discussions. SK is
funded by the swedish research council.

References

[1] James Aspnes, Zoë Diamadi, and Gauri Shah, Fault-tolerant routing in peer-to-peer

systems, Proceedings of the twenty-first annual symposium on Principles of dis-
tributed computing, ACM Press, 2002, pp. 223–232.

[2] Miguel Castro, Manuel Costa, and Antony Rowstron, Performance and dependability

of structured peer-to-peer overlays, Proceedings of the 2004 International Conference
on Dependable Systems and Networks (DSN’04), IEEE Computer Society, 2004.

[3] F. Dabek, J. Li, E. Sit, J. Robertson, M.F. Kaashoek, and R. Morris, Designing a

DHT for low latency and high throughput, Proc. NSDI 4 (2004).

[4] A. Datta and K. Aberer, Internet-scale storage systems under churn2̆014A study of

the steady-state using Markov models, Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing (2006), 133–144.

[5] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, The

impact of DHT routing geometry on resilience and proximity, Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications (2003), 381–394.

[6] O. Herrera and T. Znati, Modeling Churn in P2P Networks, Proceedings of the 40th
Annual Simulation Symposium (ANSS’07)-Volume 00 (2007), 33–40.

[7] C. Jin, H. Wang, and K.G. Shin, Hop-count filtering: an effective defense against

spoofed DDoS traffic, Proceedings of the 10th ACM conference on Computer and
communications security (2003), 30–41.

[8] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin, Con-

sistent hashing and random trees: distributed caching protocols for relieving hot spots

on the World Wide Web, Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing (1997), 654–663.

[9] F. Klemm, J.Y. Le Boudec, D. Kostic, and K. Aberer, Improving the Throughput of

Distributed Hash Tables Using Congestion-Aware Routing.

[10] S. Krishnamurthy, S. El-Ansary, E. Aurell, and S. Haridi, A statistical theory of chord

under churn, Proceedings of the 4th IPTPS (2005).

[11] Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi, A statisti-

cal theory of chord under churn, The 4th International Workshop on Peer-to-Peer
Systems (IPTPS’05) (Ithaca, New York), February 2005.

20

[12] , An analytical study of a strutured overlay in the presence of dynamic mem-

bership, IEEE Joint Transactions on Networking, in press (2007).

[13] , Comparing maintenance strategies for overlays, Tech. report, Swedish Insti-
tute of Computer Science, Proceeedings of PDP2008 2007.

[14] J. Li, J. Stribling, T.M. Gil, R. Morris, and M.P. Kaashoek, Comparing the Per-

formance of Distributed Hash Tables Under Churn, Peer-To-Peer Systems III: Third
International Workshop, IPTPS 2004, La Jolla, CA, USA, February 26-27, 2004:
Revised Selected Papers (2004).

[15] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M. Gil,
A performance vs. cost framework for evaluating dht design tradeoffs under churn,
Proceedings of the 24th Infocom (Miami, FL), March 2005.

[16] David Liben-Nowell, Hari Balakrishnan, and David Karger, Analysis of the evolution

of peer-to-peer systems, ACM Conf. on Principles of Distributed Computing (PODC)
(Monterey, CA), July 2002.

[17] B.T. Loo, T. Condie, J.M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica, Imple-

menting declarative overlays, ACM SIGOPS Operating Systems Review 39 (2005),
no. 5, 75–90.

[18] D. Malkhi, M. Naor, and D. Ratajczak, Viceroy: A scalable and dynamic emulation

of the butterfly, Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing (PODC ’02), August 2002.

[19] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker,
A Scalable Content Addressable Network, Proceedings of the ACM SIGCOMM ’01
Conference (Berkeley, CA), August 2001.

[20] S. Rhea, B.G. Chun, J. Kubiatowicz, and S. Shenker, Fixing the embarrassing slow-

ness of OpenDHT on PlanetLab, Proc. WORLDS (2005).

[21] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz, Handling churn

in a DHT, Proceedings of the 2004 USENIX Annual Technical Conference(USENIX
’04) (Boston, Massachusetts, USA), June 2004.

[22] Antony Rowstron and Peter Druschel, Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems, IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), 329-350 2001.

[23] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan, Chord: A scalable peer-to-peer lookup service

for internet applications, IEEE Transactions on Networking 11 (2003).

[24] Shengquan Wang, Dong Xuan, and Wei Zhao, On resilience of structured peer-to-

peer systems, GLOBECOM 2003 - IEEE Global Telecommunications Conference,
Dec 2003, pp. 3851–3856.

[25] Ben Y. Zhao, Ling Huang, Sean C. Rhea, Jeremy Stribling, Anthony D Joseph, and
John D. Kubiatowicz, Tapestry: A global-scale overlay for rapid service deployment,
IEEE J-SAC 22 (2004), no. 1, 41–53.

21

