
A Mobile Fitness Companion
Olov Ståhl1, Björn Gambäck1, 2, Preben Hansen1, Markku Turunen3 and Jaakko Hakulinen3

Abstract. The paper introduces a Mobile Companion prototype,
which helps users to plan and keep track of their exercise
activities via an interface based mainly on speech input and
output. The Mobile Companion runs on a PDA and is based on a
stand-alone, speaker-independent solution, making it fairly
unique among mobile spoken dialogue systems, where the
common solution is to run the ASR on a separate server or to
restrict the speech input to some specific set of users. The
prototype uses a GPS receiver to collect position, distance and
speed data while the user is exercising, and allows the data to be
compared to previous exercises. It communicates over the
mobile network with a stationary system, placed in the user’s
home. This allows plans for exercise activities to be downloaded
from the stationary to the mobile system, and exercise result data
to be uploaded once an exercise has been completed.

1 INTRODUCTION
A computational agent that acts as a conversational partner to its
user, builds a long-term relationship to the user, and learns about
the user’s needs and preferences is termed a ‘Companion’ [1] or
a ‘relational agent’ [2]. If such a Companion is to be persistent
and totally integrated into the life of the user, it must be fully
mobile and have the ability to take different shapes and forms in
different situations. In essence, building a truly mobile
Companion requires us to address three basic issues in the design
of conversational agents:

• What physical form(s) can a mobile Companion take?
• How can the computer system itself be adapted to the

(limited) size of the physical mobile platform?
• How does the mobile setting influence the user

interaction?

In the present paper we concentrate on the last two issues,
while touching the first one. However, for the sake of the present
discussion we will here limit ourselves to physical forms for a
mobile Companion that are already available on the market, that
is, mobile devices such as cell phones, PDAs, etc.

1.1 The COMPANIONS Project
The overall ambitious goal of the EC-funded (FP6/IST) project
COMPANIONS (www.companions-project.org) is to develop
autonomous, persistent, affective and personal multimodal
interfaces with robust dialogue capabilities (based on machine

1 SICS, Swedish Institute of Computer Science AB.

{olovs,gamback,preben}@sics.se
2 Department of Computer and Information Science, Norwegian
University of Science and Technology (NTNU), Trondheim.
3 Department of Computer Science, University of Tampere.

{mturunen,jh}@cs.uta.fi

learning strategies). To this end, fifteen partners from eight
different countries in Europe and the US will collaborate over a
4-year period. At this time, the project is barely half-way
through, but two such conversational agent prototype systems
have been built [3]. One aims to enable dialogues about the
user’s photographs, while the other wants to support the user in
upholding a healthy lifestyle.

1.2 The Health and Fitness Companion
The second current Companion prototype, the Health and Fitness
Companion, is shown in Figure 1. The Companion has a
stationary (“home”) component which accounts for the main part
of the user interaction, and a mobile component which is the
topic of the present paper. The system components communicate
with each other over a regular mobile phone network. The
overall prototype is described in detail in [4].

Figure 1. Overview of the Health and Fitness Companion

It is important to note that the overall aim of the Health and
Fitness Companion prototype is to develop the Companion
concept, rather than to study the actual fitness area as such. Thus
it is not of vital importance that the system should be a first-rate
fitness coach, but it is essential that the system should be able to
take a persistent part in the user’s life, that is, that it should be
able to follow the user in all the user’s activities. This means that
the Companion must have mobile capabilities. Not necessarily
self-mobile (as a robot or a pet), but mobile so that the user can
bring the system with her, like a handbag or a pair of shoes. Or
as a mobile phone or PDA, which is what the present Mobile
Health and Fitness Companion is all about.

The rest of the paper is laid out as follows: First the Mobile
Companion prototype as such is described. Then we will go into
detail on the user interaction with the Mobile Companion (in
Section 3) and the actual implementation (Section 4). Section 5
airs some initial user evaluation topics, while Section 6 discusses
related work by others. Finally, Section 7 sums up the paper and
points to some directions in which the work can be extended.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.companions-project.org/

2 THE MOBILE COMPANION PROTOTYPE
The Mobile Health and Fitness Companion prototype runs on a
mobile handset (e.g., a PDA), and can be used during physical
exercise (e.g., while running or walking) to track the distance,
pace, duration, and calories burned. The data gathered during an
exercise is stored in the device’s record store, and can be used to
compare the results to previous or future runs. The interaction
with the user is supported by a user interface that allows input to
be provided via speech, buttons or stylus interaction, while
system output to the user can be purveyed via speech as well as
in text messages on the graphical display.

The Mobile Companion communicates with the stationary
Companion (home-system) that presently takes the physical form
of a Nabaztag rabbit (www.nabaztag.com). To give the user a
feeling of Companion persistence, the user interface of the
Mobile Companion shows an image of a Nabaztag rabbit along
with some text areas where various exercise and device status
information is displayed. The rabbit has a speech bubble, which
is used to present textual versions of all sentences spoken by the
Companion via TTS. The interface is made up of a single screen,
as shown in Figure 2.

Figure 2. The Mobile Companion GUI

At the top of the screen is a red status bar that shows the status of
the GPS device that is used to track the user’s movements during
the exercise. The application is able to use an external Bluetooth
GPS, or a GPS receiver that is built into the PDA device.

Below the GPS status bar is the avatar and text output area,
showing the Nabaztag rabbit image and a speech bubble. The
rabbit image is static, that is, no animation is performed, for
instance as TTS output is produced. The speech bubble is used to
output the same text as is spoken by the Companion via TTS. By
using the rabbit as the visual representation of the Companion,
we try to make a connection to the physical Nabaztag rabbit used
by the home system. This will hopefully give the users a sense of
communicating with the same Companion, no matter if they are
using the stationary or mobile system. To further the feeling of
persistence, the stationary and mobile parts of the Health and
Fitness Companion also use the same TTS voice.

The exercise status bar at the bottom of the screen shows the
current status of the exercise at a glance. The exercise
information that is available is: duration (how long the exercise
has been going on), the distance covered so far, the current pace
(an average over the last ten seconds), and calories burned. The

Companion can also report the same information (duration,
distance, pace, and calories) via speech output. This is done
when the user gives a specific voice command or presses a
specific button on the device.

3 INTERACTING WITH THE MOBILE
COMPANION
The interaction with the Mobile Health and Fitness Companion
is based almost entirely on the use of speech. This means that the
Companion will use synthesized speech to address the user
(typically ask questions), and the user will reply by speaking into
the microphone. However, the user can interact with the Mobile
Companion in three different ways:

1. Via voice: The normal mode of operation. The mobile
prototype is capable of doing TTS and speaker-
independent ASR, with a push-to-talk model.

2. Via button presses: Some of the PDA device’s keys

can be used as shortcuts to input commands, for
instance, to request the Companion to summarize the
status of an ongoing exercise. The same command can
also be given via voice.

3. Via stylus interaction: If the PDA is equipped with a

touch sensitive screen, input to some questions asked
by the Companion can be answered by tapping on a
list of possible choices on the screen. The same input
can also be given via voice.

When the application is started, the user is presented with a
greeting. The Companion then asks whether it should connect to
the home system and download the current plan. Such a plan
consists of various tasks (e.g., shopping or exercise tasks) that
the user should try to achieve during the day, and is generated by
the home system during a session with the user. If the user
chooses to download the plan – and the download is successful –
the Companion summarizes the content of the plan for the user,
excluding all tasks that do not involve some kind of exercise
activity. The Companion then suggests a suitable task based on
time of day and the user’s current location. If the user chooses
not to download the plan, or rejects the suggested exercise(s), the
Companion instead asks the user to suggest an exercise. Once
the exercise type is agreed, the Companion checks the status of
the GPS receiver, and outputs a warning message if the user’s
current position cannot be determined. This happens, for
instance, if the user is still in-doors. The Companion is then
waiting for the user to initiate the exercise, which can be done
via voice or by pressing a specific button on the mobile device.

During the exercise, the user is able to give a few commands
at any time:

• Ask for exercise status: The Companion will reply
with a summary of the exercise. If the GPS is not
working, the data will be restricted to the duration.

• Ask the Companion to start playing music, to move on
to the next song, or to stop playing music.

• Stop the exercise. The Companion will confirm this
and then give a summary of the exercise results.

After the exercise is over and the result summary has been given
to the user, the Companion asks whether the result should be
uploaded (to the home system). If the user agrees, the
Companion sends the information to a web server, where it can
be downloaded and examined by the home system later on.

The error recovery in the present version of the Mobile
Companion is fairly rudimentary. To avoid misunderstandings,
the Companion requests confirmations concerning user input if
the ASR confidence score is below a certain threshold. Thus:

C: What kind of exercise would you like to do?
U: I would like to go for a walk
C: You have selected walking, correct?

If the user says something not defined by the current grammar,
the Companion tells the user that it cannot understand the input.
If, for instance, a silence timeout occurs (the user pushes the
“talk” button but does not say anything), the Companion tells the
user that it could not hear what the user said. Should the
Companion be expecting an answer to a question, the question is
then repeated after a short pause.

4 IMPLEMENTATION
The Mobile Companion currently runs on a Windows Mobile-
based Fujitsu Siemens Pocket LOOX T830 device, which has a
416 Mhz XScale processor (128 MB RAM) and a built-in GPS
receiver. The prototype is made up of two programs:

1. A Java midlet (MIDP2) that controls the main

application logic (exercise tracking, dialogue
management, etc.), as well as the graphical user
interface.

2. A C++-based speech server that performs TTS and
ASR functions on request by the Java midlet.

The midlet and the speech server communicate via a TCP socket.
The socket is used to send “commands” from the midlet to the
speech server, and to send back results in the other direction. The
following sections describe the two programs in more detail.

4.1 Java midlet
The main application is based on Java technologies such as
PART (Pervasive Applications RunTime; part.sourceforge.net).
The midlet is made up of a number of singleton manager Java
classes that provide various basic services (event dispatching,
GPS input, audio playback, TTS and ASR, etc.). However, the
main application logic is implemented using the Hecl scripting
language (www.hecl.org).

When the midlet is started, it reads a script file from the
mobile device’s file system. The script file is evaluated in a Hecl
interpreter. The script then builds the graphical user interface by
using various commands for rendering images, drawing text, and
so on. The script also has access to a number of script commands
defined by the various Java manager classes, allowing it to
initiate TTS and ASR operations, etc. Events produced by the
Java code are dispatched to the script, which means that it will
be notified about, for instance, the user’s current GPS position,
GUI interactions (e.g., stylus interaction and button presses), and
voice input (Figure 3).

Figure 3. The interaction between the script and Java managers

One of the services supplied by the Java manager classes is to
provide a persistent data store where information can be saved
in-between Companion sessions. This allows information that is
produced during a session to be accessed and examined in a later
session. The information is represented by PART objects to
which dynamic properties can be added. Such properties consist
of <name,value> tuples, where both name and value are
strings:

obj.addProperty(name,value);
String val = obj.getProperty(name);

These objects can be saved and loaded using the midlet’s data
store manager, which in turn uses one of the persistency
managers provided by PART. Currently the store is mapped to
the device’s record store (a concept provided by J2ME).

The object store is also available to the application script via a
number of scripting commands added by the data store manager.
Since the scripting language does not support object-oriented
programming, an object reference parameter is used instead to
identify which object the command concerns:

set objRef [objcreate]
setprop objRef name value
set value [getprop objref name]

In the current implementation, the data store is used to save the
result of exercises and various information about the user, such
as name, weight, and preferences.

4.1.1 Dialogue management
The Companion uses a push-to-talk model for speech input.
When the user wants to say something to the Companion, a
button needs to be pressed to indicate that speech input will
follow. The button press causes the Java code to send a
command to the speech server to activate speech recognition.

The dialogue with the user is implemented in the scripting
language using a state machine model. Each state is represented

http://www.hecl.org/

by a scripting procedure that receives and analyzes the user’s
input while the dialogue is in that particular state. Based on the
analysis, the active input procedure decides whether to move on
to another state, or to stay in the current one. A state transition is
achieved by setting the target state’s input procedure as the
current one, making it responsible for handling user input the
next time it occurs. State transitions are often combined with
some speech output, a change of the voice recognition grammar,
and in some cases, updates to the data store. The script can
perform all of these actions by calling various script commands.
All input procedures take three arguments:

1. A string representation of the user’s input, i.e., the

word(s) spoken by the user (according to the ASR).
2. The recognition confidence, i.e., the likelihood that the

recognized input string matches the actual users input.
3. The semantic expression returned by the grammar rule

matching the user’s input (may be null).

An example script input procedure is shown below. It handles
user answers to the system questions such as “You have selected
jogging, correct?”

proc confirmExSel {input confidence semExpr} {
 if {eq $semExpr "CONFIRM"} {
 asr_grammar_select "exerciseCommands"
 set_asr_input_handler await_exercise_commands
 } elseif {eq $semExpr "REJECT"} {
 tts_question "What kind of exercise would
 you like to do then?"
 asr_grammar_select "exerciseSelect"
 set_asr_input_handler awaitSelectExercise
 }
}

If the user gives a positive answer (e.g., “Yes” or “Correct”), the
grammar will return the semantic tag CONFIRM, which will end
up as the value of the semExpr parameter. In the same way, if the
user gives a negative answer (e.g., “No” or “That is not
correct”), the value of the semExpr parameter will be REJECT.
If the user confirms the exercise selection, the script changes
grammar and moves on to a state where exercise commands are
handled. Otherwise, a TTS message is generated, the grammar is
changed and the script moves on to a state expecting the user to
select another type of exercise.

Note that only the most likely hypothesis is sent from the
speech server to the midlet, and then delivered to the active
script input procedure, that is, there is currently no way for the
input procedure to access the “next” hypothesis (if available) –
or an n-best list from the ASR – should it not be able to make
sense of the current input hypothesis.

In the current implementation, all semantic expressions used
by the grammars are in fact string literals, simply because an
earlier version of the ASR library that was used supported no
other semantic information. However, the library has now been
upgraded to a version supporting full ECMA scripts, which will
be utilized in future versions of the Mobile Companion.

Currently, all system reactions to the user input are based on
the semantic information only (i.e., the input string is ignored).
As a result, it is possible for the user to also give input via button
presses as well as stylus interaction. When the user produces
voice input, the input information (input string, confidence and
semantic expressions) is delivered to the application script from

the Java code via an ASR input event. Such events are delivered
to a specific script event handler, which extracts the input
information and then calls the active input procedure. These
events can also be produced by the script code itself, so the script
programmer has the option to map certain button presses and
screen interactions into input events, which will then be treated
as “ordinary” input events by the rest of the system. As an
example, during an exercise the user has the choice of giving
input either via voice or button presses to control the playback of
music or to request status reports.

ASR errors reported by the speech server are passed from the
Java code to the application script via an ASR error event. Such
events will cause the Companion to respond with the spoken
message “Sorry, I don’t understand”. Also, if the Companion is
expecting an answer to a question, the question is repeated. ASR
errors may, for instance, occur if the user’s utterance cannot be
recognized using the current grammar, or if the ASR library
cannot detect any input long after the recognition was activated.

The dialogue in the current prototype makes use of eleven
dialogue states (script input procedures), and seven different
input grammars. The total grammar word count is around 100.

4.1.2 Integration with the home system
The plan generated by the home system exists as an XML
document available on the web. When the Mobile Companion is
started, it asks the user if the plan should be downloaded (if not
already done in a previous session the same day). If the user
agrees, the plan XML document is downloaded via an HTTP call
to the web server where the plan is stored. This requires the
mobile device to have Internet access, for instance, via WLAN
or 3G/GPRS. If the download succeeds, the XML document is
parsed and all information concerning planned exercise activities
is extracted. Such information consists of the type of the exercise
(e.g., walking or cycling), possible start and end points (e.g.,
from home to work), time of day (e.g., during lunch), and so on.
Based on the time of day and the user’s current location, the
Companion suggests an exercise to the user (given that a
“matching” exercise can be found). If the user declines the
Companion’s suggestion, it tries to find another exercise to
suggest, and so on. If the plan does not contain any exercise
tasks – or if the user rejects all suggestions – the Companion will
move on and instead ask the user to suggest an exercise.

When the user has completed an exercise that was part of the
daily plan, the Companion asks the user if the result (distance
travelled, duration and calories burned) should be uploaded to
the home system. If the user accepts, the Companion makes a
new HTTP call to the same web server, supplying the exercise
result as part of the URL. The result will be saved by the web
server as another XML document, which can be accessed by the
home system and referred to in later sessions.

4.2 Speech server
When the speech server is started, it creates a socket endpoint
and then waits for the Java midlet to connect. Once a connection
has been established, the server accepts a number of
“commands” which can be sent by the client over the socket.
The server also sends back messages to the client, for instance,
notifications about certain speech-related events, or command
results. The following set of commands is available:

• VOICE_SELECT nameOfVoice – set the voice that
will be used for speech output.

• TTS message – speak a message using the Text-to-
Speech synthesizer.

• GRAMMAR_LOAD nameOfGrammar – load a
grammar that will be used for speech recognition.

• ASR – activate speech recognition.

The events or results that are sent back from the speech server to
the Java midlet are the following:

• TTS_STARTED – speech output is started as a result
of the server receiving a TTS command.

• TTS_STOPPED – the speech output has ended.
• ASR_RESULT input confidence semanticTag –

deliver the result of an ASR operation. The input
parameter is a string representation of the utterance
spoken by the user. The confidence parameter specifies
the speech server’s confidence in the returned result.
The semanticTag parameter is any semantic tag
information returned by the grammar rule(s) used to
match the user’s input.

The speech server may also return a number of error messages,
for instance, to inform the midlet that a TTS voice or an ASR
grammar was not available, or that a speech recognition
operation failed.

The speech server is based on the Loquendo ASR (speaker-
independent) and TTS software to handle both speech input and
output; currently Loquendo’s Embedded ASR 7.4 and
Embedded TTS 7.4 systems [5]. The Mobile Companion uses
SRGS 1.0 grammars in XML format. The grammars are pre-
compiled before being installed on the mobile device.

5 USER EVALUATION
The overall evaluation for the COMPANIONS project is only in
its initial stages. As further described in [6], the evaluation will
be performed in three phases, with the first one just providing
informative feedback on the initial prototypes, while the third
phase will be a large-scale analysis of the prototypes, involving
more users and increasingly robust prototypes, as well as a more
stable experimental evaluation set-up design.

The second phase will play a key-part in that it will expose
users to the prototypes for the first time, and enable the
evaluators and developers to agree on the key evaluation metrics.
Since the Mobile Companion is in an early prototype phase, it is
necessary to develop a list of metrics and then collect data.
These initial metrics will enable us to achieve three goals:

1. A first baseline evaluation of system performance –

this is required as a measure of development progress.
2. Characterisation of the Companion – this is a

mechanism to determine capabilities of the prototype.
3. Constructive developer feedback. Developers will be

involved in the evaluation and get indications of errors,
problems, and issues concerning user feedback.

A set of metrics has been developed for the different evaluation
stages: Speech Metrics (e.g., word error rate, concept error rate);

Dialogue Metrics (e.g., dialogue duration, number of turns, word
per turn dialogue structure); Task Metrics (e.g., task completion);
and User Metrics (e.g., user satisfaction, requirement elicitation).

Preliminary results from the first phase Mobile Companion
evaluation show three key areas that need to be addressed:

• The technology: memory space restrictions; issues

regarding using a headset vs. using the PDA as such.
• The user interaction: problems relating to having a

speech-driven interface and at the same time
interacting with a mobile screen.

• The dialogue: music and dialogue processing
interfering with each other.

The third point from the first tests shows that using only the
PDA’s built-in microphone is not feasible, since the music
throws the ASR off track: When the music is playing the system
has difficulty in discerning between instructions relating to the
exercise and the music control. However, the evaluators indicate
that adding the functionality of controlling music choice by
voice goes a long way in improving user experience and is very
well-suited for a workout scenario.

6 RELATED WORK
As pointed out in the introduction, it is not the aim of the Mobile
Health and Fitness Companion to be a full-fledged fitness coach.
However, there are several examples of commercial systems that
aim to help users with their fitness training via the use of mobile
devices, such as miCoach (www.micoach.com) from Adidas and
NIKE+ (www.nike.com/nikeplus, www.apple.com/ipod/nike)
from Nike. Both systems use a pedometer attached to the user’s
shoe that communicates speed and distance information
wirelessly to a mobile phone or iPod. The miCoach system also
uses a heart rate monitor attached to the user’s chest. Both
systems allow the collected data to be uploaded to a website for
further analysis. However, the user interfaces are rather limited
in terms of user interaction, and do not aim for a social and
emotional relationship with the user, which can be an efficient
basis for improving the motivation [2].

MOPET [7] is a PDA-based personal trainer system that
supports outdoor fitness activities. The system can guide the user
through an exercise session (e.g., jogging), and provides advice
based on the current context, a user model and knowledge
elicited from a personal trainer and a sport physiologist. The
interface is based on a 3D-animated agent that can output text
messages as well as pre-recorded audio. MOPET is similar to a
Companion in that it tries to build a relationship with the user,
but it does not currently use ASR or TTS. There is no real
dialogue between the user and the system. Instead the interaction
is based on the user pressing buttons on the PDA keyboard to
switch between various UI screens, where the agent provides
information or requests the user to perform various types of
exercise actions.

MPTrain/TripleBeat [8,9] runs on a mobile phone and aims to
help users to more easily achieve their exercise goals. This is
done by selecting music indicating the desired pace and different
ways to enhance user motivation. The system can track the heart-
rate and movement (steps per minute) via a user-worn chest-
band. This information is then used to select music with specific
features that will for instance encourage the user to speed up or

slow down. The user interface consists of a number of window
screens, for instance displaying exercise information (e.g., pace,
heart-rate and calories burned) via text and graphs. The system
supports no speech input and output, and does not use an
embodied agent user interface model.

InCA [10] is a spoken language-based distributed personal
assistant conversational character that runs on a PDA, and that
uses a GUI based on a 3D avatar and facial animation. Similar to
the Mobile Companion, the architecture is made up of two
programs (a GUI client and a speech server), but unlike the
Mobile Companion, the InCA server runs as a back-end system
on a Linux workstation. This means that audio captures of the
user’s voice have to be streamed over the network, which
introduces delays and requires a constant network connection. A
similar solution is presented in [11], although utilizing client-
based audio pre-processing using the ES 202 212 standard,
allowing speech input to be sent over GPRS connections to the
server back-end.

It is thus important to stress that the Mobile Companion is
based on a stand-alone, speaker-independent solution, making it
fairly unique among mobile spoken dialogue systems, where the
common solution is to run the ASR on a separate server, for
example [12], and/or to restrict the speech input to some specific
set of users/speakers [10].

7 CONCLUSIONS AND FUTURE WORK
We have presented a Mobile Health and Fitness Companion
prototype, which helps users to keep track of their exercise
activities via an interface based mainly on speech input and
output. The Mobile Health and Fitness Companion is currently
being developed further in the COMPANIONS project, and we
expect the results from the series of user studies currently being
carried out to provide several suggestions for modifications and
extensions of the prototype.

Apart from input from the user studies, plans for future work
include extending the mobile platform with various sensors that
can be accessed by the Companion’s software. One example is a
pulse sensor that gives the Companion information about the
user’s pulse while exercising, which can be used to provide
feedback such as telling the user to speed up or slow down. We
are also interested in using sensors to allow users to provide
gesture-like input, in addition to the voice and button/screen
click input available today.

An extension suggesting itself would be to use the Mobile
Companion platform to build a mobile Companion for another
domain. As noted in the introduction, the COMPANIONS
project is – in addition to the Health and Fitness Companion –
also building a Companion allowing for human-computer
dialogues centred round digital photographs. A mobile extension
of this Companion would, for instance, allow the user to take
photographs using the Mobile Companion, have a brief
discussion concerning the context of the photograph (current
location, who or what is in the picture, etc), and then upload the
photograph to the stationary system at home. This would then in
addition allow for mobile photo sharing between users, in a
fashion similar to the one in [13].

ACKNOWLEDGEMENTS
This work was funded by the European Commission’s
Information Society Technologies 6th Framework programme
under contract number IST-FP6-034434, “COMPANIONS'”.

Thanks to Enrico Zovato and Patrizia Pautasso at Loquendo
S.p.A. for help with licensing and installation issues regarding
the embedded ASR and TTS software. Thanks also to Jay
Bradley and Oli Mival from Napier University for initial
evaluation feedback.

REFERENCES
[1] Y. Wilks, “Is there progress on talking sensibly to machines”'

Science, vol. 318, no. 9, pp. 927-928 (2007).
[2] T.W. Bickmore, R.W Picard. Establishing and maintaining long-term

human-computer relationships ACM Transactions on Computer-
Human Interaction vol. 12, no. 2, pp. 293-327 (2005).

[3] M. Turunen, J. Hakulinen, A. Kainulainen, R. Catizone, H. Pinto, G.
Gorrell, Y. Wilks, O. Ståhl, B. Tabutiaux, M.C. Rodríguez Gancedo,
M. Cavazza, M. Danieli, and D. Pelé, “An initial prototype
COMPANION,” University of Tampere, Tampere, Finland,
COMPANIONS Deliverable D1.1.3, Apr. 2008.

[4] M. Turunen, J. Hakulinen, O. Ståhl, B. Gambäck, P. Hansen, M.C.
Rodríguez Gancedo, R. Santos de la Cámara, C. Smith, D. Charlton,
and M. Cavazza, “Multimodal Agent Interfaces and System
Architectures for Health and Fitness Companions”, 4th International
Workshop on Human-Computer Conversation, Bellagio, Italy, 2008.

[5] Loquendo Embedded Technologies: Text to Speech and Automatic
Speech Recognition, www.loquendo.com/en/brochure/Embedded.pdf
(accessed 2008-09-04).

[6] D. Benyon, P. Hansen, and N. Webb, “Evaluating Human-Computer
Conversation in Companions”, 4th International Workshop on
Human-Computer Conversation, Bellagio, Italy, 2008.

[7] F. Buttussi, and L. Chittaro, “MOPET: a context-aware and user-
adaptive wearable system for fitness training”, Artificial Intelligence
in Medicine, vol. 42, nr. 2, pp. 153-163 (2008).

[8] N. Oliver, and F. Flores-Mangas, “MPTrain: A Mobile, Music and
Physiology-Based Personal Trainer”, 8th International Conference
on Human-Computer Interaction with Mobile Devices and Services,
Espoo, Finland, 2006. ACM.

[9] R. de Oliveira, and N. Oliver, “TripleBeat: Enhancing Exercise
Performance with Persuasion”, 10th International Conference on
Human-Computer Interaction with Mobile Devices and Services,
Amsterdam, the Netherlands, 2008. ACM.

[10] M. Kadous, and C. Sammut, “InCa: A Mobile Conversational
Agent”, 8th Pacific Rim International Conference on Artificial
Intelligence. Auckland, New Zealand, 2004.

[11] L.B. Larsen, K.L. Jensen, S. Larsen, and M. Rasmussen, “A
Paradigm for Mobile Speech-Centric Services”, INTERSPEECH,
Antwerp, Belgium, 2007.

[12] M. Turunen, J. Hakulinen, A. Kainulainen, A. Melto, and T. Hurtig,
“Design of a Rich Multimodal Interface for Mobile Spoken Route
Guidance,” INTERSPEECH, Antwerp, Belgium, 2007.

[13] J. Clawson, A. Voida, N. Patel, and K. Lyons, “Mobiphos: A
Collocated-Synchronous Mobile Photo Sharing Application”, 10th
International Conference on Human-Computer Interaction with
Mobile Devices and Services, Amsterdam, the Netherlands, 2008.

http://www.loquendo.com/en/brochure/Embedded.pdf

